JP2009226298A - Method for treating exhaust gas and exhaust gas treatment apparatus - Google Patents

Method for treating exhaust gas and exhaust gas treatment apparatus Download PDF

Info

Publication number
JP2009226298A
JP2009226298A JP2008073791A JP2008073791A JP2009226298A JP 2009226298 A JP2009226298 A JP 2009226298A JP 2008073791 A JP2008073791 A JP 2008073791A JP 2008073791 A JP2008073791 A JP 2008073791A JP 2009226298 A JP2009226298 A JP 2009226298A
Authority
JP
Japan
Prior art keywords
exhaust gas
mol
mercury
catalyst
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008073791A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kamata
博之 鎌田
Toshiichiro Ueno
俊一朗 上野
Toshiyuki Naito
俊之 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008073791A priority Critical patent/JP2009226298A/en
Publication of JP2009226298A publication Critical patent/JP2009226298A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating an exhaust gas which is capable of removing mercury in an exhaust gas discharged from a coal burning boiler with high efficiency and at a low cost without newly generating NOx when coal is burnt by a coal burning boiler, and to provide an exhaust gas treatment apparatus. <P>SOLUTION: In the method for treating an exhaust gas which removes mercury included in the exhaust gas discharged from the coal burning boiler B, it promotes the oxidization reaction of metal mercury included in the exhaust gas by carrying an oxide of at least one of transition metal species among V, Cr, Mo, Fe and Cu within a range that the reaction heat with hydrogen chloride ranges from -4 to -12 (kcal/mol) on the carrier to form a catalyst 9 so that the mercury oxidization reaction rate per 1 mol of the active element becomes 5×10<SP>-5</SP>(mol-Hg/mol-metal/sec) or more, and arranging the catalyst 9 into a flue R from the coal burning boiler B. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、石炭焚きボイラやセメント窯や製鉄高炉などの燃焼装置から排出される排ガス中に含まれる水銀を除去するのに用いられる排ガス処理方法及び排ガス処理装置に関するものである。   The present invention relates to an exhaust gas treatment method and an exhaust gas treatment device used to remove mercury contained in exhaust gas discharged from a combustion device such as a coal fired boiler, a cement kiln, or an iron blast furnace.

上記した燃焼装置、例えば、石炭焚きボイラから排出される石炭の燃焼排ガスには、石炭に起因する微量の水銀が含まれている。この水銀は、難溶性の金属水銀Hgと、水溶性の2価水銀Hg2+(HgCl)と、燃焼灰に付着した粒子状水銀Hgとの三つの形態に分かれて排ガス中に存在する。
この排ガスから窒素酸化物(NOx)やばいじん(PM;Particulate Matter)や硫黄酸化物(SOx)を除去する排ガス処理装置としては、例えば、石炭焚きボイラから煙突に至るまでの煙道に、脱硝部、脱塵部及び脱硫部を順次配置して成るものがある。
The above-described combustion apparatus, for example, coal combustion exhaust gas discharged from a coal-fired boiler contains a trace amount of mercury resulting from coal. This mercury is present in the exhaust gas in three forms: hardly soluble metallic mercury Hg 0 , water-soluble divalent mercury Hg 2+ (HgCl 2 ), and particulate mercury Hg P adhering to combustion ash. .
As an exhaust gas treatment device that removes nitrogen oxide (NOx), soot and dust (PM) and sulfur oxide (SOx) from this exhaust gas, for example, in a flue from a coal-fired boiler to a chimney, a denitration part In some cases, the dust removal unit and the desulfurization unit are sequentially arranged.

排ガス中に含まれる水銀のうちの粒子状水銀Hgは、その大半がこの排ガス処理装置の電気集じん器やバグフィルタなどの脱塵部で除去され、2価水銀Hg2+は、湿式の脱硫部で高効率に除去されるが、排ガス中に含まれる金属水銀Hgは、脱塵部や脱硫部でほとんど除去されずに大部分が大気に放出されているのが現状である。
大気中に放出された金属水銀Hgは、環境中でより有害な有機水銀(メチル水銀)に変換されるので、この有機水銀が魚貝類などの食用生物に蓄積されて、これが食物連鎖を経て人体内へ入り込むことが懸念されている。
Of the mercury contained in the exhaust gas, most of the particulate mercury Hg P is removed by a dust removal part such as an electric dust collector or a bag filter of this exhaust gas treatment device, and the divalent mercury Hg 2+ is wet desulfurization. However, most of the metallic mercury Hg 0 contained in the exhaust gas is released to the atmosphere without being almost removed by the dedusting part or the desulfurization part.
Metallic mercury Hg 0 released into the atmosphere is converted into more harmful organic mercury (methylmercury) in the environment, and this organic mercury is accumulated in edible organisms such as fish and shellfish, which passes through the food chain. There is concern about entering the human body.

この現状を踏まえて、米国環境保護局では、石炭焚き火力発電所からの水銀排出量を規制することを決定していて、水銀排出量を2010年までに現行の30%削減し、さらに、2018年までに現行の70%削減することを義務付けており、これと同様に、カナダでも石炭焚き火力発電所からの水銀排出量の規制を決定している。
そこで、米国では、石炭焚きボイラなどの燃焼装置から排出される排ガス中の水銀を除去する技術として、煤塵を除去する電気集じん器やバグフィルタなどの脱塵部の上流に、活性炭などの水銀吸着剤を吹き込み、この吸着剤表面に水銀を吸着させて除去する方法が提案されている(例えば、特許文献1参照)。
In light of this situation, the US Environmental Protection Agency has decided to regulate mercury emissions from coal-fired thermal power plants, reducing mercury emissions by 30% by 2010, and 2018 In the same way, Canada has decided to regulate mercury emissions from coal-fired thermal power plants.
Therefore, in the United States, as a technology for removing mercury in exhaust gas discharged from combustion devices such as coal-fired boilers, mercury such as activated carbon is disposed upstream of dust removal parts such as electric dust collectors and bag filters that remove dust. There has been proposed a method in which an adsorbent is blown and mercury is adsorbed on the surface of the adsorbent and removed (see, for example, Patent Document 1).

しかし、この吸着剤を用いた除去技術では、吸着剤を常時吹き込む必要があるため、ランニングコストが高くつくうえ、排ガス中の硫黄酸化物(SOx)濃度が高い場合には、水銀捕集効率が著しく低下するといった欠点がある。
ここで、排ガス中に含まれる金属水銀Hgは、水銀と同じく石炭に含まれる塩素に起因する塩化水素(HCl)によって、反応式(1)に示すように、脱硝触媒や石炭灰や未燃焼分炭素の表面上で酸化される。この脱硝触媒としては、通常、バナジウム(V)とタングステン(W)、或いは、バナジウム(V)とモリブデン(Mo)の各酸化物を酸化チタン(TiO)に担持させたものを原料とするハニカム構造体が用いられる。
However, this removal technique using an adsorbent requires constant blowing of the adsorbent, which increases the running cost. If the sulfur oxide (SOx) concentration in the exhaust gas is high, the mercury collection efficiency is high. There is a drawback that it is significantly reduced.
Here, the metallic mercury Hg 0 contained in the exhaust gas is denitrated catalyst, coal ash, unburned as shown in the reaction formula (1) by hydrogen chloride (HCl) caused by chlorine contained in the coal as in mercury. Oxidized on the surface of carbon. As this denitration catalyst, usually a honeycomb made of a material in which each oxide of vanadium (V) and tungsten (W) or vanadium (V) and molybdenum (Mo) is supported on titanium oxide (TiO 2 ) is used as a raw material. A structure is used.

Hg+2HCl+1/2O → HgCl+HO 反応式(1)
但し、2価水銀Hg2+はHgClである。
この反応は、平衡上低温になればなる程進行し、HCl濃度が高い程高温で2価水銀Hg2+が安定して生成される。
上記脱硝触媒において、水銀酸化反応が進行するので、この脱硝触媒の下流側の排ガス中では、2価水銀Hg2+の割合が高くなる。生成した2価水銀Hg2+は、金属水銀Hgに比べて吸着性が強いことから、まず、脱塵部において灰の表面に吸着して粒子状水銀Hgとして捕集され、一方、この脱塵部で捕集されなかった2価水銀Hg2+は、湿式の脱硫部において脱硫排水中に捕集される。
Hg 0 + 2HCl + 1 / 2O 2 → HgCl 2 + H 2 O Reaction formula (1)
However, divalent mercury Hg 2+ is HgCl 2 .
This reaction proceeds as the temperature becomes lower in equilibrium, and divalent mercury Hg 2+ is stably generated at a higher temperature as the HCl concentration is higher.
Since the mercury oxidation reaction proceeds in the denitration catalyst, the ratio of divalent mercury Hg 2+ increases in the exhaust gas downstream of the denitration catalyst. Since the produced divalent mercury Hg 2+ has a higher adsorptivity than the metal mercury Hg 0 , it is first adsorbed on the ash surface and collected as particulate mercury Hg P in the dust removal section. Divalent mercury Hg 2+ not collected in the dust part is collected in the desulfurization waste water in the wet desulfurization part.

このように、生成した2価水銀Hg2+は、そのほぼ全量が、石炭焚きボイラから煙突に至るまでのプラント内で捕集されるので、煙突を通して大気中には放出されない。
このような脱硝触媒上での水銀酸化を利用した排ガス中微量有害物質の除去装置及びその運転方法(例えば、特許文献2参照)や、同じく脱硝触媒での水銀酸化反応を利用して湿式脱硫部で水銀を捕集する排ガス処理装置および排ガス処理方法(例えば、特許文献3参照)が提案されているが、これらの水銀除去技術では、水銀を酸化して除去する手立てとしては有効であるものの、脱硝触媒上での水銀酸化反応は、図4に示すように、脱硝反応用として煙道に噴霧されるアンモニア(NH)によって阻害されるため、それ程高い効果を期待することができないのが実情である。
Thus, almost all of the produced divalent mercury Hg 2+ is collected in the plant from the coal-fired boiler to the chimney, and thus is not released into the atmosphere through the chimney.
A device for removing trace harmful substances in exhaust gas using mercury oxidation on such a denitration catalyst and its operating method (see, for example, Patent Document 2), and a wet desulfurization section using a mercury oxidation reaction with a denitration catalyst. Although an exhaust gas treatment apparatus and an exhaust gas treatment method (see, for example, Patent Document 3) for collecting mercury are proposed, these mercury removal techniques are effective as a means for oxidizing and removing mercury, As shown in FIG. 4, since the mercury oxidation reaction on the denitration catalyst is inhibited by ammonia (NH 3 ) sprayed on the flue for denitration reaction, it is impossible to expect such a high effect. It is.

なお、図4において、横軸は、NH/NOモル比(=入口NOモル濃度と注入したNHモル濃度との比率)であり、縦軸は、各NH/NOモル比における脱硝率及び水銀酸化率を示す。脱硝率(●)はNH/NO比が高くなると増加するが、水銀酸化率(▲)はNH/NO比が高くなると低下する。
一方、上記した従来における脱硝触媒の他の脱硝触媒として、水銀酸化反応に高い活性を示す種々の触媒を採用する水銀除去方法が提案されており、この水銀除去方法では、TiO,SiO,ZrOのうちの少なくとも一つの酸化物及び/又はゼオライトを担体として使用し、この担体にPt,Ru,Rh,Pd,Ir,V,W,Mo,Ni,Co,Fe,Cr,Cu,Mnのうちの少なくとも一つの金属を担持させて成る触媒を用いて、脱硝反応及び水銀酸化反応を行わせるようにしている(例えば、特許文献4参照)。
米国特許第6521021号 特開2006-205128号公報 特開2007-167698号公報 特許第3935547号
In FIG. 4, the horizontal axis represents the NH 3 / NO molar ratio (= the ratio between the inlet NO molar concentration and the injected NH 3 molar concentration), and the vertical axis represents the denitration rate at each NH 3 / NO molar ratio. And mercury oxidation rate. The denitration rate (●) increases as the NH 3 / NO ratio increases, but the mercury oxidation rate (▲) decreases as the NH 3 / NO ratio increases.
On the other hand, as another denitration catalyst in the conventional denitration catalyst described above, a mercury removal method that employs various catalysts showing high activity in mercury oxidation reaction has been proposed. In this mercury removal method, TiO 2 , SiO 2 , At least one oxide of ZrO 2 and / or zeolite is used as a support, and Pt, Ru, Rh, Pd, Ir, V, W, Mo, Ni, Co, Fe, Cr, Cu, Mn are used as the support. A denitration reaction and a mercury oxidation reaction are performed using a catalyst formed by supporting at least one of these metals (see, for example, Patent Document 4).
U.S. Patent No. 6521021 JP 2006-205128 JP JP 2007-167698 A Patent No. 3935547

ところが、上記した特許文献4に記載の水銀除去方法において、例えば、白金(Pt)を触媒として用いると、脱硝用に注入したアンモニア(NH)が脱硝触媒上で酸化されて、新たにNOxを生成してしまうことから、現実的な解決策とは言えない。
本発明は、上記した課題を解決するためになされたもので、例えば、石炭を石炭焚きボイラ(燃焼装置)によって燃焼させる際に、新たにNOxを発生させることなく、燃焼装置から排出される排ガス中の水銀を高効率でしかも低コストで除去することが可能な排ガス処理方法及び排ガス処理装置を提供することを目的としている。
However, in the mercury removal method described in Patent Document 4, for example, when platinum (Pt) is used as a catalyst, ammonia (NH 3 ) injected for denitration is oxidized on the denitration catalyst, and NOx is newly added. This is not a realistic solution.
The present invention has been made to solve the above-described problems. For example, when coal is burned by a coal-fired boiler (combustion device), exhaust gas discharged from the combustion device without newly generating NOx. It is an object of the present invention to provide an exhaust gas treatment method and an exhaust gas treatment apparatus that can remove mercury in the interior with high efficiency and low cost.

本発明の請求項1に係る発明は、石炭焚きボイラなどの燃焼装置から排出される排ガス中に含まれる水銀を除去する排ガス処理方法であって、活性元素1mol当たりの水銀酸化反応速度を5×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−4〜−12(kcal/mol)の範囲となるV,Cr,Mo,Fe,Cuのうちの少なくとも一つの遷移金属種の酸化物を担体上に担持して触媒を形成し、この触媒を前記燃焼装置からの煙道に配置して、前記排ガス中に含まれる金属水銀の酸化反応を促進させる構成としたことを特徴としており、この排ガス処理方法の構成を前述した従来の課題を解決するための手段としている。 The invention according to claim 1 of the present invention is an exhaust gas treatment method for removing mercury contained in exhaust gas discharged from a combustion apparatus such as a coal-fired boiler, wherein the mercury oxidation reaction rate per 1 mol of active element is 5 ×. V, Cr, Mo, Fe, Cu in which the heat of reaction with hydrogen chloride is in the range of −4 to −12 (kcal / mol) in order to be 10 −5 (mol-Hg / mol-metal / sec) or more. An oxide of at least one of the transition metal species is supported on a support to form a catalyst, and the catalyst is placed in a flue from the combustion device to oxidize metallic mercury contained in the exhaust gas. The exhaust gas treatment method is configured as a means for solving the above-described conventional problems.

本発明の請求項2に係る排ガス処理方法は、活性元素1mol当たりの水銀酸化反応速度を7×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−5〜−10(kcal/mol)の範囲となるV,Cr,Moのうちの少なくとも一つの遷移金属種の酸化物を担体上に担持して触媒を形成する構成としている。 In the exhaust gas treatment method according to claim 2 of the present invention, the heat of reaction with hydrogen chloride is set so that the mercury oxidation reaction rate per mol of the active element is 7 × 10 −5 (mol-Hg / mol-metal / sec) or more. Is a structure in which an oxide of at least one transition metal species of V, Cr, and Mo in the range of −5 to −10 (kcal / mol) is supported on a support to form a catalyst.

本発明の請求項3に係る発明は、活性元素1mol当たりの水銀酸化反応速度を9×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−6〜−7(kcal/mol)の範囲となるV及びMoのうちの少なくともいずれか一方の遷移金属種の酸化物を担体上に担持して触媒を形成する構成としている。
本発明の請求項4に係る排ガス処理方法は、前記煙道に設置した脱硝部の後流側近傍に前記触媒を配置して、前記排出される排ガス中に含まれる金属水銀の酸化反応を促進させる構成としており、本発明の請求項5に係る発明は、前記担体として酸化チタンから成るものを用いた構成としている。
In the invention according to claim 3 of the present invention, the reaction heat with hydrogen chloride is − in order to make the mercury oxidation reaction rate per mol of the active element 9 × 10 −5 (mol-Hg / mol-metal / sec) or more. The catalyst is formed by supporting an oxide of at least one of transition metal species of V and Mo in the range of 6 to -7 (kcal / mol) on a support.
In the exhaust gas treatment method according to claim 4 of the present invention, the catalyst is disposed in the vicinity of the downstream side of the denitration unit installed in the flue to promote the oxidation reaction of metallic mercury contained in the exhaust gas discharged. In the invention according to claim 5 of the present invention, the carrier is made of titanium oxide.

一方、本発明の請求項6に係る発明は、石炭焚きボイラなどの燃焼装置から排出される排ガス中に含まれる水銀を除去する排ガス処理装置であって、前記燃焼装置からの煙道に、活性元素1mol当たりの水銀酸化反応速度を5×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−4〜−12(kcal/mol)の範囲となるV,Cr,Mo,Fe,Cuのうちの少なくとも一つの遷移金属種の酸化物を担体上に担持して成る触媒を配置した構成としたことを特徴としており、この排ガス処理装置の構成を前述した従来の課題を解決するための手段としている。 On the other hand, the invention according to claim 6 of the present invention is an exhaust gas treatment device that removes mercury contained in exhaust gas discharged from a combustion device such as a coal-fired boiler, and is active in a flue from the combustion device. In order to make the mercury oxidation reaction rate per 1 mol of element 5 × 10 −5 (mol-Hg / mol-metal / sec) or more, the heat of reaction with hydrogen chloride ranges from −4 to −12 (kcal / mol) The exhaust gas treatment apparatus has a configuration in which a catalyst is formed by supporting an oxide of at least one transition metal species of V, Cr, Mo, Fe, and Cu on a carrier. This is a means for solving the above-described conventional problems.

本発明の請求項7に係る排ガス処理装置において、前記燃焼装置からの煙道に配置する触媒は、活性元素1mol当たりの水銀酸化反応速度を7×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−5〜−10(kcal/mol)の範囲となるV,Cr,Moのうちの少なくとも一つの遷移金属種の酸化物を担体上に担持して成っている構成としている。 In the exhaust gas treatment apparatus according to claim 7 of the present invention, the catalyst disposed in the flue from the combustion apparatus has a mercury oxidation reaction rate of 7 × 10 −5 (mol-Hg / mol-metal / mol per 1 mol of active element). sec) or more, an oxide of at least one transition metal of V, Cr, and Mo having a reaction heat with hydrogen chloride in the range of −5 to −10 (kcal / mol) is supported on the support. The composition is made up of.

本発明の請求項8に係る発明において、前記燃焼装置からの煙道に配置する触媒は、活性元素1mol当たりの水銀酸化反応速度を9×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−6〜−7(kcal/mol)の範囲となるV及びMoのうちの少なくともいずれか一方の遷移金属種の酸化物を担体上に担持して成っている構成としている。 In the invention according to claim 8 of the present invention, the catalyst disposed in the flue from the combustion device has a mercury oxidation reaction rate of 9 × 10 −5 (mol-Hg / mol-metal / sec) per mol of the active element. In order to achieve the above, an oxide of at least one of transition metals of V and Mo in which the heat of reaction with hydrogen chloride is in the range of −6 to −7 (kcal / mol) is supported on the support. The composition is made up of.

本発明の請求項9に係る排ガス処理装置は、前記煙道に設置した脱硝部を備え、この脱硝部の後流側近傍に前記触媒を配置した構成としており、本発明の請求項10に係る発明は、前記担体を酸化チタンから成るものとした構成としている。
本発明の排ガス処理方法及び排ガス処理装置において、遷移金属種の酸化物と塩化水素との反応熱は、以下に示す反応式(2)〜(5)によるものとして定義され、遷移金属種をMとして表すと、遷移金属1mol当たりの反応熱として定義される。
An exhaust gas treatment apparatus according to claim 9 of the present invention includes a denitration unit installed in the flue, and the catalyst is disposed in the vicinity of the downstream side of the denitration unit, and according to claim 10 of the present invention. In the invention, the carrier is made of titanium oxide.
In the exhaust gas treatment method and the exhaust gas treatment apparatus of the present invention, the heat of reaction between the oxide of transition metal species and hydrogen chloride is defined by the following reaction formulas (2) to (5). Is defined as the heat of reaction per mole of transition metal.

2価の酸化物の場合(例えば、M=CuO)
MO(s)+HCl(g)→1/2MOCl(s)+1/2HO(g) 反応式(2)
3価の酸化物の場合(例えば、M=Cr,Fe
(s)+2HCl(g)→2MOCl(s)+HO(g) 反応式(3)
5価の酸化物の場合(例えば、M=V
(s)+2HCl(g)→2MOCl(s)+HO(g) 反応式(4)
6価の酸化物の場合(例えば、M=MoO,WO
MO(s)+2HCl(g)→MOCl(s)+HO(g) 反応式(5)
また、上記した遷移金属種の酸化物を担体に1wt%だけ担持させて成るサンプル触媒について、350℃における水銀酸化率を調べると、図2に示すように、Cr,V,Fe,MoO,CuO,NiOの順に水銀酸化活性が高いことが確認できる。その一方で、水銀酸化を活性させる触媒活性元素の性能は、担持した酸化物における活性元素1mol当たりの水銀酸化反応速度(TOF;Turn Over Frequency)で定義される。
In the case of a divalent oxide (for example, M = CuO)
MO (s) + HCl (g) → 1 / 2M 2 OCl (s) + 1 / 2H 2 O (g) Reaction formula (2)
In the case of trivalent oxide (for example, M = Cr 2 O 3 , Fe 2 O 3 )
M 2 O 3 (s) + 2HCl (g) → 2MOCl (s) + H 2 O (g) Reaction formula (3)
In the case of pentavalent oxide (for example, M = V 2 O 5 )
M 2 O 5 (s) + 2HCl (g) → 2MO 2 Cl (s) + H 2 O (g) Reaction formula (4)
In case of hexavalent oxide (for example, M = MoO 3 , WO 3 )
MO 3 (s) + 2HCl (g) → MO 2 Cl 2 (s) + H 2 O (g) Reaction formula (5)
Further, when the mercury oxidation rate at 350 ° C. was examined for the sample catalyst in which the oxide of the transition metal species was supported on the carrier by 1 wt%, as shown in FIG. 2, Cr 2 O 3 , V 2 O 5 , Fe 2 O 3 , MoO 3 , CuO, NiO can be confirmed to have higher mercury oxidation activity in this order. On the other hand, the performance of the catalytically active element that activates mercury oxidation is defined by the mercury oxidation reaction rate (TOF; Turn Over Frequency) per mol of the active element in the supported oxide.

そこで、上記反応熱及びTOFについて検討したところ、触媒の水銀酸化活性と触媒の物性との間に相関関係があることが判り、図3に示すように、各金属酸化物と塩素との反応における反応熱−ΔH(kcal/mol)及びTOF(mol-Hg/mol-metal/sec)との間には、反応熱−ΔH=−7(kcal/mol)を頂点とするボルケーノタイプ(火山型)の関係があることを見出した。なお、反応熱−ΔHの値は、M. W. M. Hisham and S. W. Benson, J. Phys. Chem. 1995, 99, 9194-6198に記載された値を用いた。   Therefore, when the reaction heat and TOF were examined, it was found that there was a correlation between the mercury oxidation activity of the catalyst and the physical properties of the catalyst. As shown in FIG. 3, in the reaction of each metal oxide with chlorine. Between the heat of reaction -ΔH (kcal / mol) and TOF (mol-Hg / mol-metal / sec), the volcano type (volcano type) with the heat of reaction -ΔH = -7 (kcal / mol) as the apex I found that there is a relationship. In addition, the value described in M. W. M. Hisham and S. W. Benson, J. Phys. Chem. 1995, 99, 9194-6198 was used for the value of heat of reaction -ΔH.

この際、上記反応熱−ΔHが大きすぎる場合には、吸着したCl種が非常に安定であり、水銀と反応しないと考えられ、一方、反応熱−ΔHが小さすぎる場合には、Cl種の吸着そのものが不安定であり、水銀との反応に必要な吸着種が十分に形成されなと考えられるので、本発明の請求項1に係る排ガス処理方法及び請求項6に係る排ガス処理装置では、TOFを5×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−4〜−12(kcal/mol)の範囲となるV,Cr,Mo,Fe,Cuのうちの少なくとも一つの遷移金属種の酸化物を担体上に担持して成る触媒を用いることとした。 At this time, if the reaction heat -ΔH is too large, the adsorbed Cl species is considered to be very stable and does not react with mercury. On the other hand, if the reaction heat -ΔH is too small, the Cl species Since the adsorption itself is unstable and it is considered that the adsorbed species necessary for the reaction with mercury are not sufficiently formed, in the exhaust gas treatment method according to claim 1 and the exhaust gas treatment apparatus according to claim 6 of the present invention, In order to make the TOF 5 × 10 −5 (mol-Hg / mol-metal / sec) or more, the reaction heat with hydrogen chloride is in the range of −4 to −12 (kcal / mol) V, Cr, Mo, A catalyst is used in which an oxide of at least one transition metal species of Fe and Cu is supported on a support.

また、好ましい実施態様である本発明の請求項2に係る排ガス処理方法及び請求項7に係る排ガス処理装置では、TOFを7×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−5〜−10(kcal/mol)の範囲となるV,Cr,Moのうちの少なくとも一つの遷移金属種の酸化物を担体上に担持して成る触媒を用いることとした。 In the exhaust gas treatment method according to claim 2 of the present invention and the exhaust gas treatment apparatus according to claim 7 which are preferred embodiments, the TOF is set to 7 × 10 −5 (mol-Hg / mol-metal / sec) or more. Therefore, there is provided a catalyst in which an oxide of at least one transition metal species of V, Cr, and Mo having a heat of reaction with hydrogen chloride in the range of −5 to −10 (kcal / mol) is supported on a support. I decided to use it.

さらに、より好ましい実施態様である本発明の請求項3に係る排ガス処理方法及び請求項8に係る排ガス処理装置では、TOFを9×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−6〜−7(kcal/mol)の範囲となるV及びMoのうちの少なくともいずれか一方の遷移金属種の酸化物を担体上に担持して成る触媒を用いることとした。 Furthermore, in the exhaust gas treatment method according to claim 3 and the exhaust gas treatment apparatus according to claim 8 which are more preferred embodiments, the TOF is 9 × 10 −5 (mol-Hg / mol-metal / sec) or more. Therefore, a catalyst in which an oxide of at least one of transition metals of V and Mo having a heat of reaction with hydrogen chloride in the range of −6 to −7 (kcal / mol) is supported on a support. It was decided to use.

このように、反応熱−ΔHが上記範囲内に収まり得る遷移金属種を触媒の活性元素として用いることで、実用的な水銀酸化性能が得られることとなる。
さらにまた、本発明の請求項4に係る排ガス処理方法及び請求項9に係る排ガス処理装置では、上記した触媒を脱硝部の後流側近傍に配置するので、より実用的な水銀酸化性能が得られることとなり、本発明の請求項5に係る排ガス処理方法及び請求項10に係る排ガス処理装置では、触媒の担体が酸化チタンから成っているので、担体が排ガス中に含まれる硫黄分と反応して劣化するという懸念を払拭し得ることとなる。
In this way, practical mercury oxidation performance can be obtained by using a transition metal species whose reaction heat −ΔH can be within the above range as an active element of the catalyst.
Furthermore, in the exhaust gas treatment method according to claim 4 of the present invention and the exhaust gas treatment device according to claim 9, since the above-described catalyst is disposed in the vicinity of the downstream side of the denitration unit, more practical mercury oxidation performance is obtained. Thus, in the exhaust gas treatment method according to claim 5 of the present invention and the exhaust gas treatment apparatus according to claim 10, since the catalyst carrier is made of titanium oxide, the carrier reacts with the sulfur content contained in the exhaust gas. It is possible to eliminate the concern of deterioration.

本発明の請求項1〜3に係る排ガス処理方法及び請求項6〜8に係る排ガス処理装置では、上記した構成としているので、例えば、石炭を石炭焚きボイラで燃焼させる際に、新たにNOxを生じさせることなく、石炭焚きボイラから排出される排ガス中の水銀を高効率で且つ低コストで除去することが可能であるという非常に優れた効果がもたらされる。
また、本発明の請求項4に係る排ガス処理方法及び請求項9に係る排ガス処理装置では、上記した構成としたから、ガス中の水銀をより一層高効率で除去することが可能であるという非常に優れた効果がもたらされる。
Since the exhaust gas treatment method according to claims 1 to 3 of the present invention and the exhaust gas treatment apparatus according to claims 6 to 8 have the above-described configuration, for example, when coal is burned in a coal-fired boiler, NOx is newly added. Without causing it, the mercury in the exhaust gas discharged from the coal-fired boiler can be removed with high efficiency and low cost.
In addition, since the exhaust gas treatment method according to claim 4 and the exhaust gas treatment apparatus according to claim 9 of the present invention are configured as described above, it is possible to remove mercury in the gas even more efficiently. Has an excellent effect.

さらに、本発明の請求項5に係る排ガス処理方法及び請求項10に係る排ガス処理装置では、上記した構成としたため、請求項1〜4に係る排ガス処理方法及び請求項6〜9に係る排ガス処理装置と同様の効果が得られるのに加えて、担体が排ガス中に含まれる硫黄分と反応して劣化してしまうといった事態が生じるのを回避することができるという非常に優れた効果がもたらされる。   Furthermore, since the exhaust gas treatment method according to claim 5 and the exhaust gas treatment device according to claim 10 of the present invention have the above-described configuration, the exhaust gas treatment method according to claims 1 to 4 and the exhaust gas treatment according to claims 6 to 9 are used. In addition to obtaining the same effect as the apparatus, it is possible to avoid the occurrence of a situation in which the carrier deteriorates by reacting with the sulfur content contained in the exhaust gas. .

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の一実施形態による排ガス処理装置を示しており、この実施形態では、本発明の排ガス処理方法及び排ガス処理装置を石炭焚きボイラ(燃焼装置)から排出される排ガスの処理に適用した場合を例に挙げて説明する。
図1に示すように、この排ガス処理装置1は、石炭焚きボイラBから煙突2に至るまでの煙道Rに順次配置した脱硝部3、エアヒータ4、脱塵部5、熱交換器6、脱硫部7及び熱交換器8を備えており、煙道Rにおける脱硝部3の下流側近傍には、石炭焚きボイラBから排出される排ガス中に含まれる金属水銀の酸化反応を促進させる触媒9が配置してある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an exhaust gas treatment apparatus according to an embodiment of the present invention. In this embodiment, the exhaust gas treatment method and the exhaust gas treatment apparatus of the present invention are used to treat exhaust gas discharged from a coal fired boiler (combustion device). The case where it is applied will be described as an example.
As shown in FIG. 1, the exhaust gas treatment apparatus 1 includes a denitration unit 3, an air heater 4, a dedusting unit 5, a heat exchanger 6, a desulfurization unit, which are sequentially arranged in a flue R from a coal burning boiler B to a chimney 2. A catalyst 9 that promotes an oxidation reaction of metallic mercury contained in the exhaust gas discharged from the coal-fired boiler B, in the vicinity of the downstream side of the denitration unit 3 in the flue R. It is arranged.

この実施形態において、触媒担体として、表面積が約90m/gの酸化チタン粉末(TiO)を用い、V,Cu,Mo,Cr,Feの硝酸塩水溶液に上記酸化チタンから成る担体の粉末を含浸させた。この際、5種類の活性金属の各担持量は、いずれも酸化物として、1wt%(重量%)とした。
このような酸化チタン粉末を含浸させた水溶液をスターラで攪拌しつつ、徐々に蒸発させて余分な水分を除去した後、120℃にセットした乾燥器中で乾燥させて余分な水分を完全に取り除き、この十分に乾燥させた触媒担体を空気中において400℃で3時間焼成させることで、目的とする5種類の組成の金属酸化物担持酸化チタン触媒9を調製した。
In this embodiment, a titanium oxide powder (TiO 2 ) having a surface area of about 90 m 2 / g is used as a catalyst carrier, and a nitrate aqueous solution of V, Cu, Mo, Cr, Fe is impregnated with the above carrier powder made of titanium oxide. I let you. At this time, the loading amounts of the five kinds of active metals were all 1 wt% (weight%) as oxides.
While stirring the aqueous solution impregnated with such titanium oxide powder with a stirrer, it is gradually evaporated to remove excess moisture, and then dried in a drier set at 120 ° C to completely remove excess moisture. The fully dried catalyst carrier was calcined in the air at 400 ° C. for 3 hours, thereby preparing metal oxide-supported titanium oxide catalysts 9 having five desired compositions.

次に、上記触媒9の触媒粉末をペレット状に加圧成形し、粉砕後に250〜500μmに分級したものを触媒活性評価用の試料として、触媒活性の評価を行った。
この場合、分級した試料を140mg用い、反応温度を250,300,350,400℃として触媒活性の評価を行った。
まず、石炭を燃焼させた際の排ガスを模した混合ガス[NO(200ppm),SO(200ppm),O(2%),CO(10%),HO(10%)(Nバランス)]に、金属水銀Hgを10μg/m、塩化水素HClを10ppm添加し、触媒試料の前後における金属水銀Hg及び2価水銀Hg2+の各濃度を分析した。触媒試料に供給した、ガスの総流量は、約1800cc/minであり、触媒試料の出入り口の各水銀濃度は、冷原子吸光法による形態別連続水銀分析計を用いて計測した。
Next, the catalyst activity of the catalyst 9 was pressure-molded into pellets, and after pulverization, the catalyst powder was classified into 250 to 500 μm, and the catalyst activity was evaluated.
In this case, 140 mg of the classified sample was used, and the catalytic activity was evaluated at reaction temperatures of 250, 300, 350, and 400 ° C.
First, mixed gas simulating exhaust gas when burning coal [NO (200 ppm), SO 2 (200 ppm), O 2 (2%), CO 2 (10%), H 2 O (10%) (N 2 balance)] was added 10 μg / m 3 of metallic mercury Hg 0 and 10 ppm of hydrogen chloride HCl, and the concentrations of metallic mercury Hg 0 and divalent mercury Hg 2+ before and after the catalyst sample were analyzed. The total flow rate of the gas supplied to the catalyst sample was about 1800 cc / min, and each mercury concentration at the inlet / outlet of the catalyst sample was measured using a continuous mercury analyzer classified by form by cold atomic absorption method.

この触媒試料について、350℃における水銀酸化率(アンモニアNHを添加していないデータ)を調べたところ、図2に示すように、Cr,V,Fe,MoO,CuOの順に水銀酸化活性が高いことが確認でき、各金属酸化物と塩素との反応における反応熱−ΔH(kcal/mol)及びTOF(mol-Hg/mol-metal/sec)との関係から、すなわち、図3に示す反応熱−ΔH=−7(kcal/mol)を頂点とするボルケーノタイプ(火山型)の関係から、この触媒試料(触媒9)が、TOFとして5×10−5(mol-Hg/mol-metal/sec)以上の値を得る条件(塩化水素との反応熱−ΔHが−4〜−12(kcal/mol)の範囲内にあること)を満たしていることが確認できた。 For this catalyst sample, the mercury oxidation rate at 350 ° C. (data without addition of ammonia NH 3 ) was examined. As shown in FIG. 2, Cr 2 O 3 , V 2 O 5 , Fe 2 O 3 , MoO 3 , It can be confirmed that mercury oxidation activity is higher in the order of CuO, and the relationship between reaction heat in reaction of each metal oxide with chlorine -ΔH (kcal / mol) and TOF (mol-Hg / mol-metal / sec) That is, from the relationship of volcano type (volcano type) with the heat of reaction −ΔH = −7 (kcal / mol) shown in FIG. 3 as the apex, this catalyst sample (catalyst 9) has a TOF of 5 × 10 −5. (Mol-Hg / mol-metal / sec) or more conditions are satisfied (heat of reaction with hydrogen chloride -ΔH is in the range of -4 to -12 (kcal / mol)). Theft could be confirmed.

上記した排ガス処理装置1において、石炭焚きボイラBから排出される排ガスの処理を行う場合には、まず、煙道Rにおける脱硝部3の上流側にアンモニアが添加されて、排ガスに含まれるNOxが還元されて窒素と水に変換され、脱硝部3において、排ガス中に含まれる水銀のうちの金属水銀Hgが塩素Clと酸化反応して水溶性の2価水銀Hg2+(HgCl)に変換されて下流側に流れる。 In the exhaust gas treatment apparatus 1 described above, when the exhaust gas discharged from the coal-fired boiler B is processed, first, ammonia is added to the upstream side of the denitration unit 3 in the flue R, and NOx contained in the exhaust gas is reduced. It is reduced and converted into nitrogen and water, and in the denitrification unit 3, metal mercury Hg 0 in the mercury contained in the exhaust gas undergoes an oxidation reaction with chlorine Cl 2 to form water-soluble divalent mercury Hg 2+ (HgCl 2 ). It is converted and flows downstream.

このとき、脱硝部3の下流側近傍には、水銀酸化活性の高い触媒9が配置してあるので、脱硝部3で捕集されなかった金属水銀Hgの酸化反応が促進されて、新たにNOxを生じさせることなく、排ガス中の金属水銀Hgを高効率で且つ低コストで除去し得ることとなる。
この際、脱硝部3及び触媒9の下流側に位置する脱塵部5は、エアヒータ4の加減により好ましくは150℃以上の温度で運用されているので、2価水銀Hg2+(HgCl)が脱塵部5の灰に吸着されるのが回避される。
At this time, the vicinity of the downstream side of the denitration unit 3, since the high catalytic 9 mercury oxidation activity are arranged, are accelerated oxidation reaction of metallic mercury Hg 0 that was not trapped by the NOx removal unit 3, a new The metal mercury Hg 0 in the exhaust gas can be removed with high efficiency and low cost without generating NOx.
At this time, the denitration unit 3 and the dedusting unit 5 located on the downstream side of the catalyst 9 are preferably operated at a temperature of 150 ° C. or more by adjusting the air heater 4, so that divalent mercury Hg 2+ (HgCl 2 ) is Adsorption to the ash of the dust removal unit 5 is avoided.

そして、湿式脱硫部7では、上記脱塵部5を通過した2価水銀Hg2+(HgCl)を液相で吸収して汚泥中に取り込んで捕集し、この後、水銀を含んだ汚泥を回収処理するようにしている。
上記したように、この実施形態の排ガス処理方法及び排ガス処理装置1では、煙道Rにおける脱硝部3の下流側近傍に、上述したようにして調製することで水銀酸化活性を高めた触媒9を配置しているので、石炭を石炭焚きボイラBによって燃焼させる際に、新たにNOxを生じさせることなく、排ガス中の金属水銀Hgを高効率で且つ低コストで除去し得ることとなる。
In the wet desulfurization section 7, the divalent mercury Hg 2+ (HgCl 2 ) that has passed through the dedusting section 5 is absorbed in the liquid phase, taken into sludge, and thereafter, the sludge containing mercury is collected. The collection process is made.
As described above, in the exhaust gas treatment method and the exhaust gas treatment apparatus 1 of this embodiment, the catalyst 9 having enhanced mercury oxidation activity by being prepared as described above in the vicinity of the downstream side of the denitration unit 3 in the flue R. Therefore, when the coal is burned by the coal-fired boiler B, the metallic mercury Hg 0 in the exhaust gas can be removed with high efficiency and low cost without newly generating NOx.

本発明の一実施形態による排ガス処理装置を示す概略構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is schematic structure explanatory drawing which shows the waste gas processing apparatus by one Embodiment of this invention. 図1における排ガス処理装置に用いる複数種の触媒の各水銀酸化率を示すグラフである。It is a graph which shows each mercury oxidation rate of the multiple types of catalyst used for the exhaust gas processing apparatus in FIG. 図2における触媒の各酸化物の塩素に対する反応熱と水銀酸化反応速度との関係を示すグラフである。It is a graph which shows the relationship between the reaction heat with respect to chlorine of each oxide of the catalyst in FIG. 2, and a mercury oxidation reaction rate. 排ガス処理装置の脱硝触媒における水銀酸化率と脱硝率との関係を示すグラフである。It is a graph which shows the relationship between the mercury oxidation rate in a denitration catalyst of an exhaust gas treatment apparatus, and a denitration rate.

符号の説明Explanation of symbols

1 排ガス処理装置
3 脱硝部
9 触媒
B 石炭焚きボイラ(燃焼装置)
R 煙道
1 Exhaust gas treatment device 3 Denitration part 9 Catalyst B Coal-fired boiler (combustion device)
R Flue

Claims (10)

石炭焚きボイラなどの燃焼装置から排出される排ガス中に含まれる水銀を除去する排ガス処理方法であって、
活性元素1mol当たりの水銀酸化反応速度を5×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−4〜−12(kcal/mol)の範囲となるV,Cr,Mo,Fe,Cuのうちの少なくとも一つの遷移金属種の酸化物を担体上に担持して触媒を形成し、
この触媒を前記燃焼装置からの煙道に配置して、前記排ガス中に含まれる金属水銀の酸化反応を促進させる
ことを特徴とする排ガス処理方法。
An exhaust gas treatment method for removing mercury contained in exhaust gas discharged from a combustion apparatus such as a coal-fired boiler,
The heat of reaction with hydrogen chloride is in the range of −4 to −12 (kcal / mol) so that the mercury oxidation reaction rate per mol of the active element is 5 × 10 −5 (mol-Hg / mol-metal / sec) or more. A catalyst is formed by supporting an oxide of at least one transition metal species of V, Cr, Mo, Fe, and Cu on the support.
An exhaust gas treatment method, wherein the catalyst is arranged in a flue from the combustion device to promote an oxidation reaction of metallic mercury contained in the exhaust gas.
活性元素1mol当たりの水銀酸化反応速度を7×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−5〜−10(kcal/mol)の範囲となるV,Cr,Moのうちの少なくとも一つの遷移金属種の酸化物を担体上に担持して触媒を形成する請求項1に記載の排ガス処理方法。 The heat of reaction with hydrogen chloride is in the range of -5 to -10 (kcal / mol) so that the mercury oxidation reaction rate per mol of active element is 7 × 10 -5 (mol-Hg / mol-metal / sec) or more. The exhaust gas treatment method according to claim 1, wherein the catalyst is formed by supporting an oxide of at least one transition metal species of V, Cr, and Mo on the support. 活性元素1mol当たりの水銀酸化反応速度を9×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−6〜−7(kcal/mol)の範囲となるV及びMoのうちの少なくともいずれか一方の遷移金属種の酸化物を担体上に担持して触媒を形成する請求項2に記載の排ガス処理方法。 The reaction heat with hydrogen chloride is in the range of −6 to −7 (kcal / mol) so that the mercury oxidation reaction rate per mol of the active element is 9 × 10 −5 (mol-Hg / mol-metal / sec) or more. The exhaust gas treatment method according to claim 2, wherein a catalyst is formed by supporting an oxide of at least one of transition metal species of V and Mo on the carrier. 前記煙道に設置した脱硝部の後流側近傍に前記触媒を配置して、前記排出される排ガス中に含まれる金属水銀の酸化反応を促進させる請求項1〜3のいずれか一つの項に記載の排ガス処理方法。   The catalyst according to any one of claims 1 to 3, wherein the catalyst is disposed in the vicinity of the downstream side of the denitration unit installed in the flue to promote an oxidation reaction of metallic mercury contained in the exhaust gas discharged. The exhaust gas treatment method described. 前記担体として酸化チタンから成るものを用いた請求項1〜4のいずれか一つの項に記載の排ガス処理方法。   The exhaust gas treatment method according to any one of claims 1 to 4, wherein a carrier made of titanium oxide is used as the carrier. 石炭焚きボイラなどの燃焼装置から排出される排ガス中に含まれる水銀を除去する排ガス処理装置であって、
前記燃焼装置からの煙道に、活性元素1mol当たりの水銀酸化反応速度を5×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−4〜−12(kcal/mol)の範囲となるV,Cr,Mo,Fe,Cuのうちの少なくとも一つの遷移金属種の酸化物を担体上に担持して成る触媒を配置した
ことを特徴とする排ガス処理装置。
An exhaust gas treatment device for removing mercury contained in exhaust gas discharged from a combustion device such as a coal-fired boiler,
In order to make the mercury oxidation reaction rate per mol of the active element 5 × 10 −5 (mol-Hg / mol-metal / sec) or more in the flue from the combustion apparatus, the heat of reaction with hydrogen chloride is −4˜ Exhaust gas characterized in that a catalyst comprising an oxide of at least one transition metal species selected from V, Cr, Mo, Fe, and Cu in the range of −12 (kcal / mol) is disposed on the support. Processing equipment.
前記燃焼装置からの煙道に配置する触媒は、活性元素1mol当たりの水銀酸化反応速度を7×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−5〜−10(kcal/mol)の範囲となるV,Cr,Moのうちの少なくとも一つの遷移金属種の酸化物を担体上に担持して成っている請求項6に記載の排ガス処理装置。 The catalyst arranged in the flue from the combustion device has a heat of reaction with hydrogen chloride so that the mercury oxidation reaction rate per mol of the active element is 7 × 10 −5 (mol-Hg / mol-metal / sec) or more. The exhaust gas treatment according to claim 6, wherein an oxide of at least one transition metal species of V, Cr, and Mo in a range of -5 to -10 (kcal / mol) is supported on the support. apparatus. 前記燃焼装置からの煙道に配置する触媒は、活性元素1mol当たりの水銀酸化反応速度を9×10−5(mol-Hg/mol-metal/sec)以上とするべく、塩化水素との反応熱が−6〜−7(kcal/mol)の範囲となるV及びMoのうちの少なくともいずれか一方の遷移金属種の酸化物を担体上に担持して成っている請求項7に記載の排ガス処理装置。 The catalyst arranged in the flue from the combustion device has a heat of reaction with hydrogen chloride so that the mercury oxidation reaction rate per mol of active element is 9 × 10 −5 (mol-Hg / mol-metal / sec) or more. The exhaust gas treatment according to claim 7, wherein an oxide of at least one transition metal species of V and Mo in a range of -6 to -7 (kcal / mol) is supported on a support. apparatus. 前記煙道に設置した脱硝部を備え、この脱硝部の後流側近傍に前記触媒を配置した請求項6〜8のいずれか一つの項に記載の排ガス処理装置。   The exhaust gas treatment apparatus according to any one of claims 6 to 8, further comprising a denitration unit installed in the flue, wherein the catalyst is disposed in the vicinity of the downstream side of the denitration unit. 前記担体を酸化チタンから成るものとした請求項6〜9のいずれか一つの項に記載の排ガス処理装置。   The exhaust gas treatment apparatus according to any one of claims 6 to 9, wherein the carrier is made of titanium oxide.
JP2008073791A 2008-03-21 2008-03-21 Method for treating exhaust gas and exhaust gas treatment apparatus Pending JP2009226298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008073791A JP2009226298A (en) 2008-03-21 2008-03-21 Method for treating exhaust gas and exhaust gas treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008073791A JP2009226298A (en) 2008-03-21 2008-03-21 Method for treating exhaust gas and exhaust gas treatment apparatus

Publications (1)

Publication Number Publication Date
JP2009226298A true JP2009226298A (en) 2009-10-08

Family

ID=41242358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008073791A Pending JP2009226298A (en) 2008-03-21 2008-03-21 Method for treating exhaust gas and exhaust gas treatment apparatus

Country Status (1)

Country Link
JP (1) JP2009226298A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086087A (en) * 2011-10-24 2013-05-13 Taiheiyo Cement Corp Combustion discharge gas treatment apparatus and treatment method
JP2015155078A (en) * 2014-02-20 2015-08-27 三菱日立パワーシステムズ株式会社 Mercury removal apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644248A (en) * 1987-05-26 1989-01-09 Inst Francais Du Petrole Method for producing and regenerating solid substance for collecting copper-containing mercury
JP2004237244A (en) * 2003-02-07 2004-08-26 Mitsubishi Heavy Ind Ltd Method and system for removing mercury in exhaust gas
JP2007209899A (en) * 2006-02-09 2007-08-23 Babcock Hitachi Kk Catalyst for oxidizing metal mercury, exhaust gas cleaning catalyst provided with the same and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644248A (en) * 1987-05-26 1989-01-09 Inst Francais Du Petrole Method for producing and regenerating solid substance for collecting copper-containing mercury
JP2004237244A (en) * 2003-02-07 2004-08-26 Mitsubishi Heavy Ind Ltd Method and system for removing mercury in exhaust gas
JP2007209899A (en) * 2006-02-09 2007-08-23 Babcock Hitachi Kk Catalyst for oxidizing metal mercury, exhaust gas cleaning catalyst provided with the same and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086087A (en) * 2011-10-24 2013-05-13 Taiheiyo Cement Corp Combustion discharge gas treatment apparatus and treatment method
JP2015155078A (en) * 2014-02-20 2015-08-27 三菱日立パワーシステムズ株式会社 Mercury removal apparatus

Similar Documents

Publication Publication Date Title
KR101207958B1 (en) Cement kiln firing waste gas treating apparatus and treating method
JP5576023B2 (en) Ammonia oxidation catalyst for coal burning public facilities
JP5051977B2 (en) Device for removing trace harmful substances in exhaust gas and operation method thereof
KR101298305B1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
WO2018143000A1 (en) Exhaust-gas treatment system and exhaust-gas treatment method
CN112774687A (en) SCR catalyst for synergistically removing NO and VOCs and preparation method thereof
KR20140033069A (en) Catalysts possessing an improved resistance to poisoning
JP4936002B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
KR100973675B1 (en) Catalyst for reduction of nitrogen oxide and oxidation of mercury in exhaust gas and method for removing nitrogen oxide and mercury simultaneously using the catalyst
JP2009226298A (en) Method for treating exhaust gas and exhaust gas treatment apparatus
JP6703924B2 (en) Mercury oxidation catalyst and method for manufacturing mercury oxidation treatment apparatus equipped with mercury oxidation catalyst
JP2008126124A (en) Cleaning apparatus for exhaust gas containing nitrogen oxide and metallic mercury
JP2008030017A (en) Removal apparatus of trace harmful substance in exhaust gas and its operation method
JP2008126103A (en) Oxidation catalyst for removing fine particulate substance in exhaust gas, and removing method of fine particulate substance using the same
JP2010022974A (en) Method and apparatus for treating exhaust gas
JP6400379B2 (en) Denitration method for combustion exhaust gas
JP2007032400A (en) Method for processing particulate in diesel engine exhaust gas
JP2001252562A (en) Low temperature denitration catalyst and low temperature denitration method
JP3779889B2 (en) Catalyst regeneration method
KR101629487B1 (en) Manganese-ceria-tungsten-titania catalyst for removing nox at low temperature and preparing method same
JP5716188B2 (en) Arsenic compound removal method and removal apparatus, and denitration catalyst regeneration method and regeneration apparatus
JP2001079346A (en) Method and device for treating gas and method for regenerating honeycomb activated carbon
JP2010158669A (en) Exhaust gas purification catalyst, method for manufacturing the same, exhaust gas cleaning filter, method for manufacturing the same, and exhaust gas cleaning device
US20130004396A1 (en) Processes and apparatuses for eliminating elemental mercury from flue gas using deacon reaction catalysts at low temperatures
JP2008238057A (en) Absorbent material of metal mercury in exhaust gas and method for removing metal mercury using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121031