JP2009224334A - Method for sizing powder and its device, and method for manufacturing electrode active material layer, battery electrode, and storage layer for hydrogen or others, and battery, secondary battery, or tank - Google Patents

Method for sizing powder and its device, and method for manufacturing electrode active material layer, battery electrode, and storage layer for hydrogen or others, and battery, secondary battery, or tank Download PDF

Info

Publication number
JP2009224334A
JP2009224334A JP2009107006A JP2009107006A JP2009224334A JP 2009224334 A JP2009224334 A JP 2009224334A JP 2009107006 A JP2009107006 A JP 2009107006A JP 2009107006 A JP2009107006 A JP 2009107006A JP 2009224334 A JP2009224334 A JP 2009224334A
Authority
JP
Japan
Prior art keywords
vacuum
active material
battery
storage layer
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009107006A
Other languages
Japanese (ja)
Inventor
Yasukuni Kishimoto
康邦 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009107006A priority Critical patent/JP2009224334A/en
Publication of JP2009224334A publication Critical patent/JP2009224334A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Fuel Cell (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for sizing and filling a battery mixed powder, etc., without applying stress such as friction and losing characteristics, and with high bulk density and high storage density efficiency, and provide a method for performing mass production of a battery electrode and a hydrogen storage layer which excels labor-saving, full automation, high accuracy quantitative analysis, lower cost, and high security. <P>SOLUTION: The invention relating to the method for sizing a powder with high accuracy and a sizing device includes: a piston 5 which is densely mounted in a casing 1 and has a length shorter than that of a piston hole 4 formed in a rotatable cylinder 3; and an eccentric shaft 9, wherein an acceptor product room A is formed by the rotation of the cylinder 3, and the eccentric shaft 9 is adjusted to a specified length by cutting circumference contour face so as to communicate with an evacuation hole and perform vacuum deairing from outside, thereby being capable of controlling degree of vacuum. Further, the method for manufacturing the battery electrode and the hydrogen storage layer includes the step of filling, in the form of plates, the battery active-material powder or paste and the like in an envelope made of aluminum foil, etc., which has one opening, and applying pressure and performing vacuum deairing in a compartment. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は化学品等の粉粒体等の分粒方法及び装置。及び極活質層、電池極、電池、燃料電池、又は水素等タンク、機器等に関する。The present invention relates to a method and apparatus for sizing granular materials such as chemicals. And an electrode active layer, a battery electrode, a battery, a fuel cell, or a hydrogen tank, equipment, and the like.

燃料電池自動車や電池自動車の量産化が検討されている現状、水素吸着材等の充填方法が航続距離を伸ばす起因の一つでもある。燃料電池、水素等タンクや電池極の水素吸着材等の充填は、粒子に特殊な加工しているため、オーガー等が使用出来ないので、自然落下による充填が余儀なくされ、5〜50時間の長時間を要す。The current situation in which mass production of fuel cell vehicles and battery vehicles is being considered, and this is one of the reasons why the hydrogen adsorbent filling method increases the cruising range. Filling fuel cells, hydrogen tanks and battery electrode hydrogen adsorbents is specially processed into particles, so an auger cannot be used. It takes time.

燃料電池自動車の水素等タンクの、水素吸着材の場合は、多孔性で攪拌、摩擦、練り、圧縮、衝突等の応力を与えると、吸着材の多孔性等の特性が潰れる。特殊な本来の特性が損傷する。今、燃料電池自動車や電池自動車は、航続距離が短いのを伸ばすことが最大の課題である。空隙間が生じ、その分水素吸着材や電池混合粉の嵩密度が小さく、航続距離が短くなる。又、真空脱気の水素吸着材、電池混合粉で無いため密度が小さく、その分水素、電池特性の吸収効率が悪く、航続距離が短い。そして、嵩密度が小さく、長時間充填、難工程、多工程及び高価格である。又、電池自動車のリチウムイオン電池の場合は、電池混合粉をスクリーン塗布方法等が多く用いられているが、充填量が少なく、大容量電池には不向きである。難工程、多工程、高価原材料等で、高価である。In the case of a hydrogen adsorbent in a hydrogen tank of a fuel cell vehicle, if the porous material is subjected to stress such as agitation, friction, kneading, compression, collision, etc., characteristics such as the porosity of the adsorbent are destroyed. Special intrinsic properties are damaged. Currently, the biggest challenge for fuel cell vehicles and battery vehicles is to increase the cruising range. An air gap is generated, and accordingly, the bulk density of the hydrogen adsorbent and the battery mixed powder is small, and the cruising distance is shortened. Further, since it is not a vacuum degassed hydrogen adsorbent or battery mixed powder, the density is small, and accordingly, the absorption efficiency of hydrogen and battery characteristics is poor, and the cruising distance is short. And the bulk density is small, it is long time filling, difficult process, multi-process and high price. In the case of a lithium ion battery for a battery car, a screen coating method or the like is often used for the battery mixed powder, but the filling amount is small and it is not suitable for a large capacity battery. Difficult process, multi-process, expensive raw material, etc. and expensive.

電池混合粉は、飛び粉が出来、微粉体等が飛散し、環境に悪い。Battery mixed powder is spattered and fine powder is scattered, which is bad for the environment.

又、電池極等は格段の生産量が多く、高価の物が多く、高騰し読く材料費でロス金額が大きい。In addition, battery electrodes and the like have a great amount of production, many expensive items, soaring material costs that are soaring and reading are large.

特願2009−63514Japanese Patent Application No. 2009-63514

発明が解消しょうとする課題Problems to be solved by the invention

電池自動車や燃料電池自動車の量産化が検討されている現状、水素吸着材等の充填方法に問題がある。特性を損傷しない、短時間充填、水素吸収効率高い、省工程、コストダウンが要求される。
そこで、本目的を達成するため、特願2009−63514記載で改良点がある。電池特性を最良にするには、粒度の違う物を、粒度別に積層充填方法が、重要な起因を解決する、大量生産が出来ることと、容易に製造が出来、安全で安価に提供できる。
Currently, mass production of battery cars and fuel cell cars is being studied, and there is a problem with the method of filling hydrogen adsorbents and the like. There is a need for short-time filling, high hydrogen absorption efficiency, low process, and cost reduction without damaging properties.
Therefore, in order to achieve this object, there is an improvement point described in Japanese Patent Application No. 2009-63514. In order to achieve the best battery characteristics, stacking and filling methods with different particle sizes can solve the important causes, can be mass-produced, can be easily manufactured, and can be provided safely and inexpensively.

リチウムイオン電池等のスクリーン塗布方式等は、充填量が少なく、小型で大容量の極活物質層、電池極、電池又は水素吸蔵層が不向きである。難工程、多工程等で、高価である。A screen coating method such as a lithium ion battery has a small filling amount and is not suitable for a small and large-capacity active material layer, a battery electrode, a battery, or a hydrogen storage layer. Difficult process, multi-process, etc. and expensive.

発明を解決するための手段Means for Solving the Invention

上記目的を達成する為、該発明者の記載、2009−63514を改良発明する。ケーシング内に密に内装されて、回転自在なシリンダに設けられる、シリンダの軸心に直交方向のピストン穴及びピストン穴に往復自由にゆるく嵌められたピストン穴長さより短寸のピストンと、偏心軸で構成し、シリンダの回転に従い受容体積室を形成手段することと、偏心軸を、ピストンスライダ径又はピストン径を許容する長さで、偏心軸円周の外径面をカットすることと、停止位置が吸込口と、受容体積室と、シリンダ排出穴又は焼結合金多孔穴と、ケーシング排出穴又は焼結合金多孔穴で導通し、外部から真空脱気する。ケーシング排出穴又は焼結合金多孔穴径を順次小さくし、ケーシング排出穴又は焼結合金多孔穴を通過した物を外部で収容手段することで、粒がより高精度に分粒することを特徴とする分粒方法及び分粒装置。で一開口したアルミニュウム箔等の容器又は板状に、リチウムイオン化合物からなる正極活物質粉又はペースト等を、形成、充填手段し、極重積活物質板、電池極又は水素吸蔵層を製造する。焼結合金の穴径を順次大から小にすることで、高精度の分粒が、電池混合粉のように金属粉の比重大の物も、気流式と違い細分化分粒が容易である。そして、高精度のに分粒した物を複数台で積層充填が容易で連続製造する。In order to achieve the above object, the inventor's description 2009-63514 is improved. A piston that is tightly housed in the casing and provided in a rotatable cylinder, a piston hole perpendicular to the axis of the cylinder and a piston shorter than the length of the piston hole loosely reciprocally fitted in the piston hole, and an eccentric shaft And forming a receiving volume chamber according to the rotation of the cylinder, cutting the outer diameter surface of the eccentric shaft circumference with a length allowing the eccentric shaft to allow the piston slider diameter or the piston diameter, and stopping The position is conducted through the suction port, the receiving volume chamber, the cylinder discharge hole or the sintered alloy porous hole, the casing discharge hole or the sintered alloy porous hole, and vacuum deaeration from the outside. The diameter of the casing discharge hole or sintered alloy porous hole is made smaller in order, and the particles that pass through the casing discharge hole or sintered alloy porous hole are accommodated outside, so that the particles are sized more accurately. Sizing method and sizing apparatus. A positive electrode active material powder or paste made of a lithium ion compound is formed and filled in a container or a plate of aluminum foil or the like that is opened at 1 to produce a super active material plate, a battery electrode, or a hydrogen storage layer. . By gradually reducing the hole diameter of the sintered alloy from large to small, high-precision sizing is easy to subdivide, even in the case of metal powder like powder mixed powder, unlike the airflow type. . And it is easy to carry out lamination filling with a plurality of units with high accuracy and is continuously manufactured.

該発明は、カップに入れて品物中を真空脱気して、余分の空気を真空排気して、縮小、嵩密度大にして、ひっくり返し吐出すと同じ原理で、まったく電池特性等を損傷しない。尚、排気穴の部分を、部分的又はシリンダ全体を粒子が通過しない、穴径の焼結合金にしても良く、焼結合金で微粉体及び超微粉体等も可能にする。小容量の物は、ピストンスライダを省略することで、可能でピストン径が小さくなり、極小容量も容易となる。ピストンを複数にすることで、多連型にすることも出来る。複数のピストンを変位位置に設けることで、脈動を消すことで連続塗布充填が可能である。In the invention, the product is put in a cup and vacuum degassed, and the excess air is evacuated, reduced, bulk density is increased, and it is discharged in the same principle. . The exhaust hole portion may be a sintered alloy having a hole diameter in which particles do not pass partially or through the entire cylinder, and the sintered alloy enables fine powder and ultrafine powder. Small capacity objects are possible by omitting the piston slider, the piston diameter is reduced, and the minimum capacity is facilitated. Multiple pistons can be made by using multiple pistons. By providing a plurality of pistons at the displacement position, continuous application filling is possible by eliminating pulsation.

又、該粒子径の一定なる、粒子の含有率が一定である極活物質粒子を、請求項1、で形成、充填する。The active material particles having a constant particle diameter and a constant particle content are formed and filled in the first aspect.

加圧、真空方法として、真空隔室内で、平面又は凹凸面(線状又は点状)を具備し、加圧と、同時に真空脱気手段の、相乗関係で余分な空気の脱気効率が大になり、より縮小する。平プレス方法又は真空手段を設けた平プレス方法やローラー及びサンドベルト等による加圧する。As a pressurization and vacuum method, it has a flat or uneven surface (linear or dotted) in a vacuum compartment, and the deaeration efficiency of excess air is large due to the synergistic relationship between pressurization and vacuum deaeration means at the same time. Become smaller. Pressure is applied by a flat press method or a flat press method provided with a vacuum means, a roller, a sand belt, or the like.

リチウムイオン電池等のスクリーン塗布方法等と違い充填量が多く出来るので、より電池特性が高い、小型、軽量で大容量の極活物質層、電池極、電池又は水素等の吸蔵層が容易に連続的に量産が可能になる。Unlike screen coating methods such as lithium ion batteries, the filling amount can be increased, so that the battery characteristics are higher, and the compact, lightweight, large-capacity active material layer, battery electrode, battery, or hydrogen storage layer is easily continuous. Mass production is possible.

凹凸面(線状又は点状)が形成保型されているので、燃料電池の場合は、積層構造で、凹凸面が空気の通り道となり対流、流動性が良く、発電効率が高い、電池が小型の軽量で、大容量で長時間使用にする。Since the uneven surface (linear or dotted) is formed and maintained, in the case of a fuel cell, it has a laminated structure, the uneven surface becomes a passage for air, has good convection and fluidity, high power generation efficiency, and a small battery. Lightweight, large capacity and long time use.

発明の効果The invention's effect

該発明は、以上説明したように構成されているので、以下に記載されているような効果をうながす。Since the present invention is configured as described above, the following effects can be achieved.

焼結合金の穴径を順次大から小にすることで、高精度の分粒が、電池混合粉のように金属粉の比重大の物も、気流式と違い細分化分粒が容易である。そして、高精度の分粒した物を個別複数台で積層充填が容易で連続製造できる。By gradually reducing the hole diameter of the sintered alloy from large to small, high-precision sizing is easy to subdivide, even in the case of metal powder like powder mixed powder, unlike the airflow type. . And it is easy to carry out lamination filling with a plurality of individual units with high accuracy, and can be continuously manufactured.

化学品等粉粒体の状態に左右されず、燃料電池機器、電池混合粉容器等の形状に関わらず、既脱気の電池混合粉等を精密分粒し、定量分割、形成、充填が可能となる。既真空脱気電池混合粉等をアルミニュウム等の箔の容器や板等に真空加圧下の充填可能で、より電池混合粉や水素等の貯蔵効率が高くなる。Regardless of the shape of chemicals and other granular materials, regardless of the shape of the fuel cell equipment, battery mixed powder container, etc., it is possible to finely divide and mix, divide, form, and fill the degassed battery mixed powder. It becomes. Already vacuum deaerated battery mixed powder or the like can be filled in a foil container or plate of aluminum or the like under vacuum pressure, and the storage efficiency of the battery mixed powder or hydrogen becomes higher.

該発明は、応力等をまったく与え無く、敏感な品物の特性に損傷を与えない、嵩密度を高くした物を、真空脱気と同時に加圧、縮小する。そこで、より嵩密度を高くするため、電池混合粉や水素等の貯蔵密度効率が高く、航続距離が伸張する。短時間充填、電池特性、水素等の吸収効率高、省工程、コストダウンになる。The invention pressurizes and reduces simultaneously with vacuum degassing an article having a high bulk density that gives no stress or the like and does not damage the characteristics of sensitive articles. Therefore, in order to further increase the bulk density, the storage density efficiency of battery mixed powder, hydrogen, etc. is high, and the cruising distance is extended. Short-time filling, battery characteristics, high absorption efficiency of hydrogen, etc., process saving, and cost reduction.

化学品工場では、粉粒体の飛散が解消され環境改善になる。In chemical factories, the scattering of powder is eliminated and the environment is improved.

電池混合粉等は高価なため、高度の定量精度が要求される。また高騰する原料費のロスを無くすことが出来る。Since battery mixed powder and the like are expensive, high quantitative accuracy is required. In addition, the loss of soaring raw material costs can be eliminated.

又、人手に触れる事無く、定量分割、形成及び充填が容易となるので、安全、安心及び無人で提供出来る。In addition, quantitative division, formation, and filling are facilitated without touching human hands, so that it can be provided with safety, security, and unattended.

リチウムイオン電池等のスクリーン塗布方法等と違い充填量が多く出来るので、より電池特性が高い、小型、軽量で大容量の極活物質層、電池極、電池又は水素等の吸蔵層が容易に連続的に量産が可能になる。Unlike screen coating methods such as lithium ion batteries, the filling amount can be increased, so that the battery characteristics are higher, and the compact, lightweight, large-capacity active material layer, battery electrode, battery, or hydrogen storage layer is easily continuous. Mass production is possible.

凹凸面(線状又は点状)が形成保型されているので、燃料電池の場合は、積層構造で、凹凸面が空気の通り道となり対流、流動性が良く、発電効率が高い、電池が小型の軽量で長時間使用が出来る。Since the uneven surface (linear or dotted) is formed and maintained, in the case of a fuel cell, it has a laminated structure, the uneven surface becomes a passage for air, has good convection and fluidity, high power generation efficiency, and a small battery. Lightweight and can be used for a long time.

そして、省人化でコストダウンとなる。And cost savings due to labor saving.

発明を実施する為の最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

上記目的を達成する為、特願2009−63514の改良発明で、停止位置が吸込口と、受容体積室と、シリンダ排出穴又は焼結合金多孔穴と、ケーシング排出穴又は焼結合金多孔穴で導通し、外部から真空脱気することと、ケーシング排出穴又は焼結合金多孔穴径を順次小さくし、ケーシング排出穴又は焼結合金多孔穴を通過した物を外部で収容手段することで、粒がより高精度に分粒することを特徴とする分粒方法及び分粒装置。で一開口したアルミニュウム箔等の容器又は板状に、リチウムイオン化合物からなる正極活物質粉又はペースト等を、形成、充填手段し、極重積活物質板、電池極又は水素吸蔵層を製造する。In order to achieve the above object, in the improved invention of Japanese Patent Application No. 2009-63514, the stop position is a suction port, a receiving volume chamber, a cylinder discharge hole or a sintered alloy porous hole, a casing discharge hole or a sintered alloy porous hole. Conduction, vacuum degassing from the outside, the diameter of the casing discharge hole or sintered alloy perforated hole is made smaller in order, and the material that has passed through the casing discharge hole or sintered alloy perforated hole is accommodated on the outside. Sizing is performed with higher accuracy. A positive electrode active material powder or paste made of a lithium ion compound is formed and filled in a container or a plate of aluminum foil or the like that is opened at 1 to produce a super active material plate, a battery electrode, or a hydrogen storage layer. .

該発明は、カップに入れて品物中を真空脱気して、余分の空気を真空排気して、ひっくり返し吐出するのと同じ原理で、まったく電池特性等を損傷しない。尚、排気穴の部分を、部分的又はシリンダ全体を粒子が通過しない、穴径の焼結合金にしても良く、焼結合金で微粉体及び超微粉体等も可能にする。電池混合粉のように、比重大の物も、気流式と違い分粒が容易である。焼結合金の粒度を、順次大から小にすることで、高精度の精密分粒が容易となる。真空度の調整は、大気圧(0)から真空圧(1MPa)の間で任意に自在調整手段で、シャープに分粒し、形成、充填が容易である。小容量の物は、スライダーを省略することで、可能でピストン径が小さくなり、超小容量も容易となる。ピストンを複数にすることで、多連型にすることも出来る。The invention does not damage the battery characteristics or the like at all on the same principle as that when the product is put in a cup and vacuum deaerated in the product, and the excess air is evacuated and discharged over. The exhaust hole portion may be a sintered alloy having a hole diameter in which particles do not pass partially or through the entire cylinder, and the sintered alloy enables fine powder and ultrafine powder. Unlike the air current type, particles of specific importance, such as battery mixed powder, can be easily sized. By decreasing the grain size of the sintered alloy from large to small sequentially, high-precision precision sizing becomes easy. The degree of vacuum can be easily adjusted by arbitrarily adjusting the degree of vacuum between atmospheric pressure (0) and vacuum pressure (1 MPa) by means of freely adjusting means. Small capacity objects are possible by omitting the slider, the piston diameter is reduced, and ultra-small capacity is also facilitated. Multiple pistons can be made by using multiple pistons.

又、該粒子径の一定なる、粒子の含有率が一定である極活物質粒子を、請求項1、で形成、充填する。The active material particles having a constant particle diameter and a constant particle content are formed and filled in the first aspect.

又は、該粒子径の一定なる、粒子の含有率が一定である極活物質粒子である物を、1個又は複数個を、重積して、隔室内で、平面又は凹凸面(線状又は点状)を具備し、加圧手段をし、と同時に真空脱気して、縮小する製造する方法で、アルミニュウム等の箔、の上面等の隙間又は多孔面から外部に設けた、真空ポンプで真空脱気手段する。真空度の調整は、大気圧(0)から真空圧(1MPa)の間で任意に自在調整手段で、正極活物質層、を重積した重積活物質の電池極で、より電池特性が良くする。Alternatively, one or a plurality of extremely active material particles having a constant particle diameter and a constant particle content are stacked, and a plane or an uneven surface (linear or A vacuum pump provided outside from a gap or a porous surface such as the top surface of a foil such as aluminum. Vacuum degassing means. The degree of vacuum can be freely adjusted between atmospheric pressure (0) and vacuum pressure (1 MPa), and the battery electrode of the stacked active material in which the positive electrode active material layer is stacked has better battery characteristics. To do.

又は、該粒子径の異なる、粒子の含有率が一定である、極活物質粒子を順次に請求項1、で重積して、隔室内で、平面又は凹凸面(線状又は点状)を具備し、加圧手段をし、と同時に真空脱気して、縮小する製造する方法で、アルミニュウム等の箔、の上面等の隙間又は多孔面から外部に設けた、真空ポンプで真空脱気手段し、正極活物質層、を重積した重積活物質の電池極、セルで、より電池特性が良くする。Alternatively, the active material particles having different particle diameters and having a constant particle content are sequentially stacked in accordance with claim 1, and a plane or an uneven surface (linear or dotted) is formed in the compartment. The vacuum degassing means is provided by a vacuum pump provided outside from a gap or a porous surface of the foil or the like of aluminum, etc. In addition, the battery electrode and the cell of the stacked active material obtained by stacking the positive electrode active material layers further improve the battery characteristics.

又、該粒子径の一定なる、固形分濃度が、濃度勾配に重積層して、極活物質粒子を順次に請求項1、で重積層充填して、隔室内で平面又は凹凸面(線状又は点状)を具備し加圧手段し、と同時に真空脱気して、縮小する製造する方法で、アルミニュウム等の箔、の上面等の隙間又は多孔面から外部に設けた、真空ポンプで真空脱気手段し、正極活物質層、を重積した重積活物質の電池極、セルで、より電池特性が良くする。In addition, the solid content concentration having a constant particle diameter is stacked in a concentration gradient, and the active material particles are sequentially stacked and filled in claim 1 to form a plane or uneven surface (linear shape) in the compartment. (Or dot-like) and pressurizing means, and simultaneously vacuum degassing to reduce the size, vacuuming with a vacuum pump provided outside from the gap or porous surface of the upper surface of the foil such as aluminum. Battery characteristics are further improved by the battery electrode and the cell of the stacked active material obtained by degassing and stacking the positive electrode active material layer.

加圧方法として、真空隔室内で、平面又は凹凸面(線状又は点状)を具備し、平プレス方法又は真空手段を設けた平プレス方法やローラー及びサンドベルト等による加圧、縮小、方法等が考えられる。As a pressurizing method, a flat press method or a flat press method provided with a flat press or an uneven surface (linear or dot-like) in a vacuum compartment or provided with a vacuum means, or pressurization, reduction by a roller, a sand belt, etc. Etc. are considered.

サンドベルトによる加圧方法の場合は、電池極の製造方法の場合、アルミニュウム等の箔を、上面の一方を開口して、容器を形成する。In the case of a pressure method using a sand belt, in the case of a method for manufacturing a battery electrode, a container is formed by opening a foil of aluminum or the like on one side of the upper surface.

請求項1記載で、電池混合粉を、アルミニュウム箔等の容器に形成及び充填手段し、極活物質層、電池極を製造する。The battery mixed powder is formed and filled in a container such as an aluminum foil according to claim 1 to produce an active material layer and a battery electrode.

上面の一方の開口部を、折り曲げ等の閉口手段をする。One opening on the upper surface is closed and closed.

幅方向寸法規制のコンベアで移行する。It moves on the conveyor in the width direction regulation.

上部の閉口部に真空脱気手段を設けた平面又は凹凸面(線状又は点状)を具備した、サンドベルト等で、規制高さに、サンドベルト等で加圧成形する。A sand belt or the like provided with a flat surface or an uneven surface (linear or dotted) provided with a vacuum deaeration means at the upper closing portion is pressure-formed to a regulated height with a sand belt or the like.

アルミニュウム等の箔、の上面等の隙間又は多孔面から、真空脱気しながら、補修形成され移行する。It is repaired and transferred from a gap such as the top surface of a foil such as aluminum or a porous surface while vacuum degassing.

容易に連続的に、安価で量産が可能になる。Easy and continuous mass production is possible at low cost.

又、該粒子径の異なる極活物質層を複数個を重積層して、隔室内で、平面又は凹凸面(線状又は点状)を具備し、加圧手段をし、同時に真空脱気する製造方法で、極活物質層、電池極、セル、電池が、より電池特性が良くなる。In addition, a plurality of polar active material layers having different particle diameters are stacked, and a flat surface or an uneven surface (linear or dot-like) is provided in the compartment, and a pressurizing means is used to simultaneously vacuum deaerate. In the production method, the active material layer, the battery electrode, the cell, and the battery have better battery characteristics.

又、該粒子径の異なる固形分濃度が大きくなる様に、濃度勾配に積層して、隔室内で、平面又は凹凸面(線状又は点状)を具備し、加圧手段をし、同時に真空脱気する製造する方法で、より電池特性が良い、極活物質層、電池極、セル、電池が出来る。In addition, it is laminated in a concentration gradient so that the solid content concentration having different particle diameters is increased, and is provided with a flat surface or an uneven surface (linear or dotted) in the compartment, and a pressurizing means is used simultaneously with vacuum. By the manufacturing method which deaerates, an active material layer, a battery electrode, a cell, and a battery with better battery characteristics can be produced.

リチウムイオン電池等のスクリーン塗布方法等と違い、充填量が多く出来るので、小型で大容量の極活物質層、電池極、セル、電池又は水素等の吸蔵層が容易に連続的に量産が可能になる。Unlike screen coating methods such as lithium ion batteries, etc., the filling amount can be increased, so that small and large-capacity active material layers, battery electrodes, cells, batteries or hydrogen storage layers can be easily and continuously mass-produced. become.

凹凸面(線状又は点状)が形成保型されているので、燃料電池の場合は、積層構造で、凹凸面が空気の通り道となり対流、流動性が良く、発電効率が高い、電池が小型の軽量で大容量の長時間使用が出来る。Since the uneven surface (linear or dotted) is formed and maintained, in the case of a fuel cell, it has a laminated structure, the uneven surface becomes a passage for air, has good convection and fluidity, high power generation efficiency, and a small battery. Lightweight and large capacity can be used for a long time.

上記目的を達成する為、当発明者の特願2009−63514を改良発明する。ケーシング1内に密に内装されて、回転自在なシリンダ3に設けられる、シリンダ3の軸心に直交方向のピストン穴4及びピストン穴4に往復自由にゆるく嵌められたピストン穴4長さより短寸のピストン5と、偏心軸9で構成し、シリンダ3の回転に従い受容体積室Aを形成手段することと、偏心軸9をピストンスライダ7径又はピストン5径を許容する長さで、偏心軸9円周の外径面をカット19することと、停止位置が吸込口12と、受容体積室Aと、シリンダ排出穴又は焼結合金多孔穴14と、ケーシング排出穴又は焼結合金多孔穴15で導通し、外部から真空脱気することと、ケーシング排出穴又は焼結合金多孔穴径を順次小さくし、ケーシング排出穴又は焼結合金多孔穴を通過した物を外部で収容手段することで、粒がより高精度に分粒することを特徴とする分粒方法及び分粒装置。で一開口したアルミニュウム箔等の容器又は板状に、リチウムイオン化合物からなる正極活物質粉又はペースト等を、形成、充填手段し、極重積活物質板、電池極又は水素吸蔵層を製造する。In order to achieve the above object, the present inventors have improved the Japanese Patent Application No. 2009-63514. Shortly than the length of the piston hole 4 which is tightly housed in the casing 1 and is provided in the rotatable cylinder 3 and which is loosely fitted back and forth freely in the piston hole 4 in the direction orthogonal to the axial center of the cylinder 3. The piston 5 and the eccentric shaft 9 are configured to form a receiving volume chamber A according to the rotation of the cylinder 3, and the eccentric shaft 9 has a length allowing the piston slider 7 diameter or the piston 5 diameter, and the eccentric shaft 9 Cutting the outer circumferential surface of the circumference 19, the stop position is the suction port 12, the receiving volume chamber A, the cylinder discharge hole or sintered alloy porous hole 14, and the casing discharge hole or sintered alloy porous hole 15. Conduction, vacuum degassing from the outside, the diameter of the casing discharge hole or sintered alloy perforated hole is made smaller in order, and the material that has passed through the casing discharge hole or sintered alloy perforated hole is accommodated on the outside. Is more sophisticated Sizing methods and sizing device, characterized in that binary particle. A positive electrode active material powder or paste made of a lithium ion compound is formed and filled in a container or a plate of aluminum foil or the like that is opened at 1 to produce a super active material plate, a battery electrode, or a hydrogen storage layer. .

該発明は、カップに入れて品物中を真空脱気して、余分の空気を排気して、ひっくり返し吐出するのと同じ原理で、まったく電池特性等を損傷ない。尚、排気穴の部分を、部分的又はシリンダ3全体を粒子が通過しない、穴径の焼結合金にしても良く、焼結合金で微粉体及び超微粉体等も可能にする。焼結合金の多孔穴の大きさを替えることと、順次大から小にすることで、高精度の分粒が電池混合粉のように、気流式と違い比重大の物も、細分化分粒が容易である。真空度の調整は、大気圧(0)から真空圧(1MPa)の間で任意に、自在調整が可能であることで、シャープに分粒し充填が容易である。電池特性を最良にするには、粒度の違う物を、粒度別に積層充填方法が、重要な起因を解決でき、容易に製造が出来る為、安全で安価に提供できる。小容量の物は、ピストンスライダ7を省略することで、可能でピストン5径が小さくなり、超小容量も容易となる。ピストン5を複数にすることで、多連型にすることも出来る。The present invention does not damage the battery characteristics or the like at all on the same principle as that when the product is put in a cup and vacuum deaerated in the product, the excess air is exhausted, and the product is discharged upside down. The exhaust hole portion may be a sintered alloy having a hole diameter, in which particles do not pass through the entire cylinder 3 or the entire diameter of the cylinder 3, and the sintered alloy enables fine powder and ultrafine powder. By changing the size of the porous holes in the sintered alloy and gradually increasing the size from small to large, high-precision sizing, such as battery mixed powder, can be used for subdivided sizing, which is different from the air current type. Is easy. The degree of vacuum can be arbitrarily adjusted between atmospheric pressure (0) and vacuum pressure (1 MPa), so that it can be sharply sized and filled easily. In order to achieve the best battery characteristics, it is possible to provide a safe and low-priced product that has different particle sizes by stacking and filling each particle size because it can solve important causes and can be easily manufactured. Small capacity objects are possible by omitting the piston slider 7, the diameter of the piston 5 is reduced, and ultra-small capacity is also facilitated. By using a plurality of pistons 5, it is also possible to make a multiple type.

実施例1〜9図で説明すると、極活物質層、電池極の製造方法の場合、アルミニュウム等の箔を、上面の一方を開口して、容器を形成する。Examples 1 to 9 In the case of the method for producing an active material layer and a battery electrode, a container is formed by opening a foil of aluminum or the like on one of the upper surfaces.

請求項1記載で、電池混合粉をアルミニュウム等の箔の容器に形成、充填手段し、極活物質層、電池極を製造する。In claim 1, the battery mixed powder is formed and filled in a foil container such as aluminum to produce an active material layer and a battery electrode.

次いで、上面の一方の開口部を、折り曲げ等で閉口手段をするNext, one of the openings on the upper surface is closed by bending or the like.

上部の閉口部に真空脱気手段を設けた、平面又は凹凸面(線状又は点状)37を具備した、規制高さに、隔室30内で、平プレス押し具33で加圧成形する、と同時に外部から真空脱気35する。Pressure forming with a flat press pusher 33 within the compartment 30 to a regulated height, which is provided with a flat or uneven surface (linear or dotted) 37, provided with a vacuum deaeration means in the upper closed portion. At the same time, vacuum deaeration 35 is performed from the outside.

アルミニュウム等の箔32、の上面等の隙間又は多孔面36から、真空脱気35しながら、凹凸面(線状又は点状)が形成保型される。An uneven surface (linear or dot-shaped) is formed and maintained while vacuum degassing 35 from a gap such as the upper surface of the foil 32 such as aluminum or the porous surface 36.

容易に連続的に、安価で量産が可能になる。Easy and continuous mass production is possible at low cost.

極活物質物、電池混合等の粉粒体の場合は、誤差がほとんど無く、飛び粉の飛散も無くなる。In the case of a powder or granular material such as a polar active material or a battery, there is almost no error and scattering of flying powder is eliminated.

当発明は、応力等をまったく与え無いので、敏感な品物の特性に損傷を与えない。嵩密度を大にするため、航続距離が大幅に伸張する。Since the present invention does not apply stress or the like at all, it does not damage the characteristics of sensitive items. In order to increase the bulk density, the cruising range is greatly extended.

又、該粒子径の異なる極活物質層31を複数重積層して、隔室30内で、平面又は凹凸面(線状又は点状)37を具備し、加圧手段をし、同時に真空脱気35する。真空度の調整は、大気圧(0)から真空圧(1MPa)の間で任意に、自在調整が可能である製造方法で、極活物質層、電池極、セル、電池が、より電池特性が良くなる。In addition, a plurality of polar active material layers 31 having different particle diameters are stacked, and a flat or uneven surface (linear or dot-like) 37 is provided in the compartment 30, and a pressurizing means is used for simultaneous vacuum release. I feel 35. Adjustment of the degree of vacuum is a manufacturing method that can be freely adjusted between atmospheric pressure (0) and vacuum pressure (1 MPa). The active material layer, the battery electrode, the cell, and the battery have more battery characteristics. Get better.

又、該粒子径の異なる固形分濃度が大きくなる様に、濃度勾配に積層する。1個又は複数個を隔室内で、平面又は凹凸面(線状又は点状)37を具備し、加圧手段33をし、同時に真空脱気35する等製造する方法で、より電池特性が良い、極活物質層、電池極、セル、電池が出来る。In addition, the layers are stacked in a concentration gradient so that the solid content concentrations having different particle diameters are increased. One or a plurality of cells are provided with a flat or uneven surface (linear or dot-like) 37 in a compartment, a pressurizing means 33, and vacuum deaeration 35 at the same time. , Electrode material layer, battery electrode, cell, battery.

リチウムイオン電池のスクリーン塗布方法等と違い充填量が多く出来るので、より電池特性が良い、大容量の極活物質層、電池極、セル、電池又は水素等の吸蔵層が容易に連続的に量産が可能になる。Unlike lithium ion battery screen coating methods, etc., the amount of filling can be increased, so battery characteristics are better and large capacity active material layers, battery electrodes, cells, batteries or storage layers such as hydrogen can be easily and continuously mass-produced. Is possible.

凹凸面(線状又は点状)が形成保型されているので、燃料電池の場合は、積層構造で、凹凸面が空気の通り道となり対流、流動性が良く、発電効率が高い、電池が小型で長時間使用が出来る。Since the uneven surface (linear or dotted) is formed and maintained, in the case of a fuel cell, it has a laminated structure, the uneven surface becomes a passage for air, has good convection and fluidity, high power generation efficiency, and a small battery. Can be used for a long time.

極活物質材20等の分粒、形成、充填の場合の、実施例を図8、9で説明すると、タンク21に収容させた、極活物質材20等を、真空ポンプ28、の負圧で収容器27、分粒機24、ホッパー23、吸込み管22、を介して吸引され、ホッパー23、内に受容される。最初の分粒機24、のケーシング排出穴又は焼結合金多孔15、穴径を大にする。そして、次の分粒機24の多孔穴15、径をより小さくし、ケーシング排出穴又は焼結合金多孔15、穴径を順次より小さくし、外部で収容手段27、する。ことで、高精度の分粒ができる。吐出側は供給ガイド25を介して、容器26等に、形成、充填する。An example in the case of sizing, formation, and filling of the active material material 20 will be described with reference to FIGS. 8 and 9. The active material material 20, etc. accommodated in the tank 21 is supplied with the negative pressure of the vacuum pump 28. Then, the air is sucked through the container 27, the sizer 24, the hopper 23, and the suction pipe 22, and is received in the hopper 23. The first particle sizer 24 has a casing discharge hole or a sintered alloy porous hole 15 and a large hole diameter. And the porous hole 15 of the next sizer 24, the diameter is made smaller, the casing discharge hole or the sintered alloy porous 15 and the hole diameter are made smaller successively, and the accommodating means 27 is provided outside. Thus, highly accurate sizing can be performed. The discharge side is formed and filled into the container 26 and the like via the supply guide 25.

極活物質材20等のペースト充填の場合、実施例を図9で説明すると、分粒機24の下方にガイドローラー29、に支持され、アルミニュウム32、箔等の板状を駆動手段38で、タクト移載する。停止時に、極活物質材20等の下面がアルミニュウム32、箔等の板状上面に、形成、塗布、充填する。
又、連続移載中に充填する事もできる。
極重積活物質板、電池極又は水素吸蔵層を容易に連続的に製造する方法で、量産が可能になり、従来の製法より格段に安価になる。
In the case of paste filling of the active material material 20 or the like, an embodiment will be described with reference to FIG. 9. The guide roller 29 is supported below the particle sizer 24, and a plate shape such as aluminum 32 and foil is formed by the driving means 38. Tact transfer. At the time of stopping, the lower surface of the polar active material 20 or the like is formed, applied, and filled on the plate-like upper surface of the aluminum 32, foil or the like.
It can also be filled during continuous transfer.
Mass production is possible by a method of easily and continuously producing a very stacked active material plate, a battery electrode, or a hydrogen storage layer, and is much cheaper than the conventional production method.

化学品等の粉粒体メーカー、自動車メーカー、電池メーカー、複写機メーカー等にとっては、必要不可欠である。It is indispensable for chemicals and other powder manufacturers, automobile manufacturers, battery manufacturers, and copier manufacturers.

この発明の実施例、分粒機を示す側面縦断面図である。It is a side longitudinal cross-sectional view which shows the Example of this invention and a particle sizer. は、B−B矢視の停止状態の、正面縦断面図である。These are front longitudinal cross-sectional views of the stop state of BB arrow. この発明の実施例を示す、極活物質層、電池極の一例の、正面縦断面図である。It is a front longitudinal cross-sectional view of an example of an active material layer and a battery electrode which shows the Example of this invention. は図3記載で、同密度の場合の重積層した一例の、正面縦断面図である。FIG. 4 is a front longitudinal sectional view of an example in which multiple layers are stacked in the case of the same density in FIG. 3. は図3記載で、密度違い物の場合の重積層した一例の、正面縦断面図である。FIG. 4 is a front longitudinal cross-sectional view of an example of stacked layers in the case of different density products in FIG. 3. は図3記載で、密度濃度勾配に積層した場合一例の、正面縦断面図である。FIG. 4 is a front longitudinal sectional view of an example of a case where layers are stacked in a density concentration gradient in FIG. 3. は図3記載で、密度違い物の場合の積層した一例の、正面縦断面図である。[Fig. 3] is a front longitudinal sectional view of an example of lamination in the case of FIG. は分粒、充填方法のシステムフローシート図。Is a system flow sheet diagram of the sizing and filling method. はペースト等の、充填方法のシステムフローシート図。Figure 2 is a system flow sheet diagram of a filling method such as paste.

1、ケーシング 3、シリンダ 4、ピストン穴 5、ピストン 7、ピストンスライダ 9、偏心軸 12、吸込口 14、シリンダ排気穴又は焼結合金多孔穴 15、ケーシング排気穴又は焼結合金多孔穴 19、偏心軸カット部 20、極活物質材 21、タンク 22、吸込み管 23、ホッパー 24、分粒機 25、供給ガイド 26、容器 27、収容器 28、真空タンク 29、ガイドローラー A、受容体積室 30、隔室 31、極活物質層 32、アルミニュウム箔等 33、押し具板 34、真空隔室 35、真空ポンプ 36、隙間等 37、平面又は凹凸面(線状又は点状) 38、駆動手段。1, casing 3, cylinder 4, piston hole 5, piston 7, piston slider 9, eccentric shaft 12, suction port 14, cylinder exhaust hole or sintered alloy porous hole 15, casing exhaust hole or sintered alloy porous hole 19, eccentric Shaft cut portion 20, polar active material 21, tank 22, suction pipe 23, hopper 24, sizing machine 25, supply guide 26, container 27, container 28, vacuum tank 29, guide roller A, receiving volume chamber 30, Compartment 31, electrode material layer 32, aluminum foil or the like 33, pressing plate 34, vacuum compartment 35, vacuum pump 36, gap etc. 37, flat or uneven surface (linear or dotted) 38, driving means.

リチウムイオン電池のペースト式のスクリーン塗布方式等は、充填量が少なく、小型で大容量の極活物質層、電池極、電池又は水素吸蔵層が不向きである。何度も繰り返し、塗 布、乾燥、加圧の難工程、多工程等を余儀なくするため高価である。 The paste-type screen coating method of a lithium ion battery has a small filling amount and is not suitable for a small and large-capacity active material layer, a two- battery electrode, a battery, or a hydrogen storage layer. Repeatedly, coated fabrics, drying, flame process of pressurization, is expensive for forced multiple steps like.

上記目的を達成する為、該発明者の記載、2009−63514を改良発明する。ケーシング内に密に内装されて、回転自在なシリンダに設けられている、シリンダの軸心に直交方向のピストン穴及びピストン穴に往復自由にゆるく嵌められた、ピストン穴長さより短寸のピストン穴と、偏心軸で構成し、偏心軸の周部の摺動部を、ピストンスライダ径又はピストン径又は幅より大の長さで、偏心軸円周の摺動する面の外径面をカットすることと、シリンダの回転にともなって、ピストンの往復運動を可能に構成し、そして、シリン ダの回転にともなって生じるシリンダの外周面とケーシングの内周の摺動面及びピストン の往復機構で形成される受容体積室に、受容された容積内の品物中の空気を真空で排気し 、一定の密度にならしめ、停止位置が、吸込口と、受容体積室と、シリンダ排出穴の1個又は複数の穴、又は焼結合金多孔穴径と、ケーシング排出穴又は焼結合金多孔穴径と、外 部収容手段のフイルターの穴径と導通して外部から真空脱気することと、真空度の調整を、大気圧(0)から真空圧(1MPa)の間で、任意に自在調整が可能であることと、ケーシング排出穴の1個又は複数の穴、又は焼結合金多孔穴径又はフイルターの穴径と、前記排気穴径を順次小さくし、前記排気穴径を、通過した物を、外部で収容手段することで、粒度がより高精度に分粒することを特徴とする分粒方法。で一開口した金属箔等の容器又は板状に、リチウムイオン化合物からなる正又は負極活物質粉又はペーストを、形成、充填手段し、極重積活物質板、電池極又は水素吸蔵層を製造する。焼結合金の穴径を順次大から小にすることで、電池混合粉のように金属粉の比重大の物も、気流式と違い粒度径 の選別で、細分化分粒が容易である。そして、高精度のに分粒した物を、粒度の大きさ別 複数台で積層充填が容易で連続製造する。In order to achieve the above object, the inventor's description 2009-63514 is improved. Piston hole shorter than the length of the piston hole that is tightly housed in the casing and is loosely fitted back and forth in the piston hole perpendicular to the cylinder axis and the piston hole. If, constituted by an eccentric shaft, a sliding portion of the circular periphery of the eccentric shaft, the piston slider diameter or larger in length than the piston diameter or width, cutting the radially outer surface of the sliding surfaces of the eccentric shaft circumference and that, with the rotation of the cylinder, and configured to be capable of reciprocating motion of the piston, and the sliding surface of the inner periphery of the outer peripheral surface and the casing of the cylinder caused by the rotation of cylinders and piston reciprocating mechanism The receiving volume chamber to be formed is evacuated with the air in the received volume within the volume, so that it has a constant density, and the stop position is one of the suction port, the receiving volume chamber, and the cylinder discharge hole. Or multiple holes or firing Alloy porous diameter, and the casing discharge hole or sintered alloy porous diameter, the method comprising: vacuum deaeration from the outside conducts the hole diameter of the filter of the external housing means, the adjustment of the degree of vacuum, atmospheric pressure (0 ) To vacuum pressure (1 MPa), and can be arbitrarily adjusted, one or a plurality of casing discharge holes, or a sintered alloy porous hole diameter or a filter hole diameter, and the exhaust hole. A sizing method characterized in that the particle size is sized more precisely by sequentially reducing the diameter and accommodating the outside through the exhaust hole diameter. A positive or negative electrode active material powder or paste made of a lithium ion compound is formed and filled into a container or a plate such as a metal foil or the like that is opened at 1 to produce an extremely active material plate, a battery electrode, or a hydrogen storage layer. To do. By gradually reducing the hole diameter of the sintered alloy from large to small, the metal powder, such as battery mixed powder, can be easily divided and subdivided by selecting the particle size , unlike the airflow type. Then, a material obtained by bisection grain precision, are stacked filled by a plurality for each size of the particle size to facilitate continuous production.

焼結合金の穴径を順次大から小にすることで、電池混合粉のように金属粉の比重大の物も 、気流式と違い粒径選別し、細分化の分粒が容易である。そして、高精度の分粒した物を 粒度の大きさ別に、複数台で順次積層充填が容易で連続製造できる。リチウムイオン電池等のスクリーン塗布方法等と違い充填量が多く出来るので、より電池特性が高い、小型、軽量で大容量の極活物質層、電池極、電池又は水素等の吸蔵層が容易に連続的に量産が可能になる。 By gradually reducing the hole diameter of the sintered alloy from large to small, the metal powder specific material such as the battery mixed powder can be sorted by the particle size unlike the air flow type, and can be divided into small pieces . Then, highly accurate sized products can be easily stacked and filled sequentially by a plurality of units according to the size of the particle size, and can be continuously manufactured. Unlike screen coating methods such as lithium ion batteries, the filling amount can be increased, so that the battery characteristics are higher, and the compact, lightweight, large-capacity active material layer, battery electrode, battery, or hydrogen storage layer is easily continuous. Mass production is possible.

焼結合金の穴径を順次大から小にすることで、電池混合粉のように金属粉の比重大の物も、気流式と違い粒径選別で、細分化分粒が容易である。そして、高精度の分粒した物を 度の大きさ別に、複数台で順次積層充填が容易で連続製造できる。By gradually reducing the hole diameter of the sintered alloy from large to small, the metal powder, such as battery mixed powder, can be easily subdivided by particle size selection , unlike the airflow type. Then, a material obtained by sizing precision separately the magnitude of the particle size, are sequentially stacked packing can easily be continuous production in a plurality.

上記目的を達成する為、特願2009−63514の改良発明で、停止位置が吸込口と、受容体積室と、シリンダ排出穴又は焼結合金多孔穴と、ケーシング排出穴又は焼結合金多孔穴で導通し、外部から真空脱気することと、ケーシング排出穴又は焼結合金多孔穴径を順次小さくし、ケーシング排出穴又は焼結合金多孔穴を通過した物を外部で収容手段することで、粒がより高精度に分粒することを特徴とする分粒方法及び分粒装置。で一開口した正、負極集電体(多孔性金属箔)の容器又は板状に、リチウムイオン化合物からなる正極活物質粉又はペースト等を、形成、充填手段し、極重積活物質板、電池極又は水素吸蔵層を製造する。In order to achieve the above object, in the improved invention of Japanese Patent Application No. 2009-63514, the stop position is a suction port, a receiving volume chamber, a cylinder discharge hole or a sintered alloy porous hole, a casing discharge hole or a sintered alloy porous hole. Conduction, vacuum degassing from the outside, the diameter of the casing discharge hole or sintered alloy perforated hole is made smaller in order, and the material that has passed through the casing discharge hole or sintered alloy perforated hole is accommodated on the outside. Sizing is performed with higher accuracy. A positive active material powder or paste made of a lithium ion compound is formed and filled in a container or a plate of positive and negative current collectors (porous metal foil) that is open at 1 to form an extremely stacked active material plate, A battery electrode or a hydrogen storage layer is manufactured.

Claims (10)

ケーシング内に密に内装されて、回転自在なシリンダに設けられる、シリンダの軸心に直交方向のピストン穴及びピストン穴に往復自由にゆるく嵌められたピストン穴長さより短寸のピストンと、偏心軸で構成し、シリンダの回転に従い受容体積室を形成手段することと、偏心軸をピストンスライダ径又はピストン径を許容する長さで、偏心軸円周の外径面をカットすることと、
停止位置が吸込口と、受容体積室と、シリンダ排出穴の1個又は複数の穴、又は焼結合金多孔穴径又はフイルターの穴径と、前記排気穴と導通して外部から真空脱気することと、
真空度の調整を、大気圧(0)から真空圧(1MPa)の間で、任意に自在調整が可能であることと、
ケーシング排出穴の1個又は複数の穴、又は焼結合金多孔穴径又はフイルターの穴径と、前記排気穴径を順次小さくし、前記排気穴径を、通過した物を、外部で収容手段することで、粒度がより高精度に分粒することを特徴とする分粒方法及び分粒装置。
A piston that is tightly housed in the casing and provided in a rotatable cylinder, a piston hole perpendicular to the axis of the cylinder and a piston shorter than the length of the piston hole loosely fitted back and forth in the piston hole, and an eccentric shaft And forming a receiving volume chamber according to the rotation of the cylinder, cutting the outer diameter surface of the eccentric shaft circumference with a length allowing the eccentric shaft to the piston slider diameter or the piston diameter,
The stop position is connected to the suction port, the receiving volume chamber, one or more holes of the cylinder discharge hole, or the sintered alloy porous hole diameter or the filter hole diameter, and the exhaust hole for vacuum deaeration from the outside. And
The degree of vacuum can be arbitrarily adjusted between atmospheric pressure (0) and vacuum pressure (1 MPa),
One or a plurality of casing discharge holes, or a sintered alloy porous hole diameter or a filter hole diameter, and the exhaust hole diameter are sequentially reduced, and the exhaust hole diameter is stored outside. Thus, a sizing method and a sizing apparatus characterized in that the particle size is sized more accurately.
請求項1記載で、一開口したアルミニュウム箔等の容器又は板状に、リチウムイオン化合物等の極活物質粉等又はペースト等を、形成、充填手段し、極重積活物質板、電池極,セル又は水素吸蔵層を製造する方法。  In claim 1, an electrode material such as lithium ion compound or a paste or the like is formed and filled in a container or a plate such as an aluminum foil having a single opening, and a very active material plate, a battery electrode, A method for producing a cell or a hydrogen storage layer. 請求項1、2記載で、開口部を閉口手段し、隔室内で平面又は、凹凸面(線状又は点状)を具備し、加圧手段する。アルミニュウム等の箔、の上面等の隙間又は多孔面から、脱気手段し、極重積活物質板、電池極、板又は水素吸蔵層を製造する方法。  According to Claims 1 and 2, the opening is closed, and a flat surface or an uneven surface (linear or dotted) is provided in the compartment, and the pressure is applied. A method for producing an extremely stacked active material plate, a battery electrode, a plate, or a hydrogen storage layer by deaeration means from a gap or a porous surface such as an upper surface of a foil such as aluminum. 請求項1、2記載、で開口部を閉口手段し、隔室内で平面又は、凹凸面(線状又は点状)を具備し、加圧手段する。と同時にアルミニュウム等の箔、の上面等の隙間又は多孔面から、外部に設けた、真空ポンプで真空脱気手段する。真空度の調整は、大気圧(0)から真空圧(1MPa)の間の任意に自在調整手段で、極重積活物質板、電池極又は水素吸蔵層を製造する方法。  According to the first and second aspects, the opening portion is closed, and a flat surface or an uneven surface (linear or dotted) is provided in the compartment, and the pressing portion is used. At the same time, vacuum deaeration means is provided by a vacuum pump provided outside from a gap or a porous surface such as an upper surface of a foil such as aluminum. The adjustment of the degree of vacuum is a method for producing an extremely stacked active material plate, a battery electrode, or a hydrogen storage layer by arbitrarily adjusting means between atmospheric pressure (0) and vacuum pressure (1 MPa). 請求項1、2記載で、真空脱気手段を設け、平面又は、凹凸面(線状又は点状)を具備した、押し具板等で加圧する。と同時にアルミニュウム等の箔、の上面等の隙間又は多孔面から、外部に設けた、真空ポンプで真空脱気手段し、極重積活物質板、電池極又は水素吸蔵層を製造する方法。  In Claim 1, 2, a vacuum deaeration means is provided, and it pressurizes with the pressing plate etc. which comprised the flat surface or the uneven | corrugated surface (linear shape or dot shape). At the same time, a method of producing an extremely stacked active material plate, a battery electrode, or a hydrogen storage layer by vacuum degassing means with a vacuum pump provided outside from a gap or a porous surface such as an upper surface of an aluminum foil or the like. 請求項1、2記載、で開口部を閉口手段し、真空脱気手段を設け、平面又は、凹凸面(線状又は点状)を具備した、サンドベルト等で加圧する。と同時にアルミニュウム等の箔、の上面等の隙間又は多孔面から、外部に設けた、真空ポンプで真空脱気手段し、極重積活物質板、電池極又は水素吸蔵層を製造する方法。  According to the first and second aspects, the opening is closed, a vacuum deaeration is provided, and pressure is applied with a sand belt or the like provided with a flat surface or an uneven surface (linear or dotted). At the same time, a method of producing an extremely stacked active material plate, a battery electrode, or a hydrogen storage layer by vacuum degassing means with a vacuum pump provided outside from a gap or a porous surface such as an upper surface of an aluminum foil or the like. 請求項1、2記載、で開口部を閉口手段し、真空脱気手段を設け、平面又は、凹凸面(線状又は点状)を具備した、ロールで加圧する。と同時にアルミニュウム等の箔、の上面等の隙間又は多孔面から、外部に設けた、真空ポンプで真空脱気手段し、極重積活物質板、電池極又は水素吸蔵層を製造する方法。  According to the first and second aspects, the opening is closed, a vacuum degassing means is provided, and pressure is applied with a roll having a flat surface or an uneven surface (linear or dotted). At the same time, a method of producing an extremely stacked active material plate, a battery electrode, or a hydrogen storage layer by vacuum degassing means with a vacuum pump provided outside from a gap or a porous surface such as an upper surface of an aluminum foil or the like. 該粒子径の異なる、粒子の含有率が一定である、極活物質粒子を順次に請求項1、で1個又は複数個重積層充填して、隔室内で、平面又は凹凸面(線状又は点状)を具備し、加圧手段をし、と同時に真空脱気して、縮小する製造する方法で、アルミニュウム等の箔、の上面等の隙間又は多孔面から外部に設けた、真空ポンプで真空脱気手段し、極重積活物質板、電池極又は水素吸蔵層を製造する方法。  The active material particles having different particle diameters and having a constant particle content are sequentially packed in one or more layers according to claim 1, and are divided into planes or uneven surfaces (linear or A vacuum pump provided outside from a gap or a porous surface such as the top surface of a foil such as aluminum. A method for producing a double stacked active material plate, a battery electrode or a hydrogen storage layer by vacuum degassing means. 該粒子径の一定なる、固形分が、濃度勾配に重積層して、極活物質粒子を順次に請求項1、で1個又は複数個を積層充填して、隔室内で平面又は凹凸面(線状又は点状)を具備し加圧手段し、と同時に真空脱気して、縮小する製造する方法で、アルミニュウム等の箔、の上面等の隙間又は多孔面から外部に設けた、真空ポンプで真空脱気手段し、極重積活物質板、電池極又は水素吸蔵層を製造する方法。  The solid content having a constant particle diameter is laminated in a concentration gradient, and the active material particles are sequentially stacked and filled with one or more of the active material particles according to claim 1 to form a flat or uneven surface ( A vacuum pump provided externally from a gap or a porous surface such as an upper surface of a foil of aluminum or the like by a manufacturing method in which the pressure means is provided and pressure depressurization is performed simultaneously with vacuum deaeration and reduction. And vacuum deaeration means, and a method for producing a pole stacked active material plate, a battery electrode or a hydrogen storage layer. 請求項1、2、3、4、5、6、7、8及び9に記載のいずれかの一項、を用いることを特徴とする、二次電池及び燃料電池又は水素等のタンク機器。  A tank apparatus, such as a secondary battery and a fuel cell or hydrogen, characterized by using any one of claims 1, 2, 3, 4, 5, 6, 7, 8, and 9.
JP2009107006A 2009-02-20 2009-04-03 Method for sizing powder and its device, and method for manufacturing electrode active material layer, battery electrode, and storage layer for hydrogen or others, and battery, secondary battery, or tank Pending JP2009224334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107006A JP2009224334A (en) 2009-02-20 2009-04-03 Method for sizing powder and its device, and method for manufacturing electrode active material layer, battery electrode, and storage layer for hydrogen or others, and battery, secondary battery, or tank

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009063514 2009-02-20
JP2009063514 2009-02-20
JP2009107006A JP2009224334A (en) 2009-02-20 2009-04-03 Method for sizing powder and its device, and method for manufacturing electrode active material layer, battery electrode, and storage layer for hydrogen or others, and battery, secondary battery, or tank

Publications (1)

Publication Number Publication Date
JP2009224334A true JP2009224334A (en) 2009-10-01

Family

ID=41240857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107006A Pending JP2009224334A (en) 2009-02-20 2009-04-03 Method for sizing powder and its device, and method for manufacturing electrode active material layer, battery electrode, and storage layer for hydrogen or others, and battery, secondary battery, or tank

Country Status (1)

Country Link
JP (1) JP2009224334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057486A1 (en) * 2015-09-28 2017-04-06 Jsr株式会社 Method for manufacturing electrode material, cell, and capacitor; and device for manufacturing electrode material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057486A1 (en) * 2015-09-28 2017-04-06 Jsr株式会社 Method for manufacturing electrode material, cell, and capacitor; and device for manufacturing electrode material
JPWO2017057486A1 (en) * 2015-09-28 2018-08-16 Jsr株式会社 Electrode material, battery, capacitor manufacturing method, and electrode material manufacturing apparatus
US10580592B2 (en) 2015-09-28 2020-03-03 Jsr Corporation Method for manufacturing electrode material, cell, and capacitor; and device for manufacturing electrode material

Similar Documents

Publication Publication Date Title
CA2772768A1 (en) Methods and systems for making electrodes having at least one functional gradient therein and devices resulting therefrom
EP3800706A1 (en) Negative electrode, and secondary battery and device having same
Galashev et al. Computer test of a new silicene anode for lithium‐ion batteries
JP5974424B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor using the same
WO2017188388A1 (en) Manufacturing methods for electrode material, electrode, battery, and capacitor, and manufacturing device for electrode material
Yu et al. Customizable nonplanar printing of lithium‐ion batteries
JP6931464B2 (en) Method of manufacturing the electrode body
JP2009224334A (en) Method for sizing powder and its device, and method for manufacturing electrode active material layer, battery electrode, and storage layer for hydrogen or others, and battery, secondary battery, or tank
JP5382134B2 (en) Battery and manufacturing method thereof
KR102116676B1 (en) Method for Preparing Electrode for Secondary Battery and Device for Manufacturing the Same
CN101635351B (en) Method for producing one-sided film pole piece for lithium secondary battery
JP6209706B2 (en) Aluminum nonwoven fiber material for current collector of power storage device, method for producing the same, electrode using the aluminum nonwoven fiber material, and method for producing the same
JP2010021150A (en) Battery mixture powder, proportional preparation of powder such as toner, mixture, formation, filling-up method, its device, secondary battery, and toner
KR20180000307A (en) Method of producing negative electrode plate
CN111370648A (en) Electrode pole piece, preparation method thereof and lithium ion battery
JP2010021150A5 (en)
JP2010080448A (en) Method and device for mixing slurry of battery mixed powder, and secondary battery using the method and the device
JP7385611B2 (en) Electrode material and electrode made of wet powder, method for manufacturing the same, and secondary battery equipped with the electrode
WO2017130493A1 (en) Powder for separators, slurry for separators, lithium ion battery and method for manufacturing same
CN110931723A (en) Preparation method of 0D/2D nano-layered structure Si-RGO composite material
CN1409419A (en) Alkaline accumulator and its producing method
CN216762237U (en) Automatic packaging machine for coagulated beads
WO2022211073A1 (en) Active material treatment device, battery electrode manufacturing device, active material treatment method, and battery electrode manufacturing method
CN202159738U (en) Carbon paper material clamping device
CN210547597U (en) Discharging device of forming press

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101102

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120303

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20130806