JP2010021150A - Battery mixture powder, proportional preparation of powder such as toner, mixture, formation, filling-up method, its device, secondary battery, and toner - Google Patents

Battery mixture powder, proportional preparation of powder such as toner, mixture, formation, filling-up method, its device, secondary battery, and toner Download PDF

Info

Publication number
JP2010021150A
JP2010021150A JP2009198938A JP2009198938A JP2010021150A JP 2010021150 A JP2010021150 A JP 2010021150A JP 2009198938 A JP2009198938 A JP 2009198938A JP 2009198938 A JP2009198938 A JP 2009198938A JP 2010021150 A JP2010021150 A JP 2010021150A
Authority
JP
Japan
Prior art keywords
hole
piston
cylinder
diameter
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009198938A
Other languages
Japanese (ja)
Other versions
JP2010021150A5 (en
Inventor
Yasukuni Kishimoto
康邦 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009198938A priority Critical patent/JP2010021150A/en
Publication of JP2010021150A publication Critical patent/JP2010021150A/en
Publication of JP2010021150A5 publication Critical patent/JP2010021150A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Accessories For Mixers (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a battery electrode or the like which can precisely sieve and fill up battery mixture powder at large bulk density at unmanned, inexpensive, safe, and assured manners without giving stress such as friction and without damaging any characteristics. <P>SOLUTION: In the method and device for manufacturing a battery electrode, a plurality of battery mixture powders or the like are prepared, mixed, and filled up at a laminated shape by effectively and precisely subdividing sizes of particle diameters of the battery electrode powders. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は化学品、食品等の粉粒体等の比例充填、調合、混合、形成、充填方法及びその装置。及び極活質層、電池極、二次電池、燃料電池材の混合及びトナー等に関する。The present invention relates to a proportional filling, blending, mixing, forming, filling method and apparatus for powders and the like of chemicals and foods. And an active material layer, a battery electrode, a secondary battery, a mixture of fuel cell materials, a toner, and the like.

燃料電池自動車や電池自動車の量産化が検討されている現状、水素吸着材等の充填方法が航続距離を伸ばす起因の一つでもある。燃料電池、水素等タンクや電池極の水素吸着材等の充填は、粒子に担示しているため、オーガー等が使用出来ないので、自然落下による充填が余儀なくされ、長時間を要す。The current situation in which mass production of fuel cell vehicles and battery vehicles is being considered, and this is one of the reasons why the hydrogen adsorbent filling method increases the cruising range. Filling with fuel cells, hydrogen tanks, and hydrogen adsorbents at the battery electrode is carried by the particles, so an auger or the like cannot be used.

燃料電池自動車の水素等タンクの、水素吸着材の場合は、多孔性で攪拌、摩擦、練り、圧縮、衝突等の応力を与えると、吸着材の多孔性等の特性が潰れる。特殊な本来の特性が損傷する。今、燃料電池自動車や電池自動車は、航続距離が短いのを伸ばすことが最大の課題である。空隙間が生じ、その分水素吸着材や電池混合粉の嵩密度が小さく、航続距離が短くなる。又、真空脱気の水素吸着材、電池混合粉で無いため密度が小さく、その分水素、電池特性の吸収効率が悪く、航続距離が短い。そして、嵩密度が小さく、長時間充填、難工程、多工程及び高価格である。又、電池自動車のリチウムイオン電池の場合は、電池混合粉をスクリーン塗布方法等が多く用いられているが、充填量が少なく、大容量電池には不向きである。
ペースト方式は、塗工、乾燥、塗工、乾燥、塗工、乾燥を何度も繰り返し作業工程を繰り返す分粒別に積層形成する難工程、多工程、高価原材料、歩留まり等で高価である。
In the case of a hydrogen adsorbent in a hydrogen tank of a fuel cell vehicle, if the porous material is subjected to stress such as agitation, friction, kneading, compression, collision, etc., characteristics such as the porosity of the adsorbent are destroyed. Special intrinsic properties are damaged. Currently, the biggest challenge for fuel cell vehicles and battery vehicles is to increase the cruising range. An air gap is generated, and accordingly, the bulk density of the hydrogen adsorbent and the battery mixed powder is small, and the cruising distance is shortened. Further, since it is not a vacuum degassed hydrogen adsorbent or battery mixed powder, the density is small, and accordingly, the absorption efficiency of hydrogen and battery characteristics is poor and the cruising distance is short. And the bulk density is small, it is long time filling, difficult process, multi-process and high price. In the case of a lithium ion battery for a battery car, a screen coating method or the like is often used for the battery mixed powder, but the filling amount is small and it is not suitable for a large capacity battery.
The paste method is expensive due to difficult steps, multi-steps, expensive raw materials, yield, etc., in which layers are formed by sizing repeatedly by repeating the steps of coating, drying, coating, drying, coating, and drying.

電池混合粉は、飛び粉が出来、微粉体等が飛散し、環境に悪い。Battery mixed powder is spattered and fine powder is scattered, which is bad for the environment.

又、電池極等は格段の生産量が多く、高価の物が多く、高騰し読く材料費でロス金額が大きい。In addition, battery electrodes and the like have a great amount of production, many expensive items, soaring material costs that are soaring and reading are large.

発明が解消しょうとする課題Problems to be solved by the invention

電池自動車や燃料電池自動車の量産化が検討されている現状、水素吸着材等の充填方法に問題がある。特性を損傷しない、短時間充填、水素吸収効率高い、省略工程、コストダウンが要求される。電池特性を最良にするには、粒度の違う物を、粒度別に積層充填方法が、重要な起因を解決する、大量生産が出来ることと、容易に製造が出来、安全で安価に提供できる。Currently, mass production of battery cars and fuel cell cars is being studied, and there is a problem with the method of filling hydrogen adsorbents and the like. There is a need for short-time filling, high hydrogen absorption efficiency, omission processes, and cost reduction that do not damage the characteristics. In order to achieve the best battery characteristics, stacking and filling methods with different particle sizes can solve the important causes, can be mass-produced, can be easily manufactured, and can be provided safely and inexpensively.

リチウムイオン電池のペースト方式のスクリーン塗布方式等は、充填量が少なく、小型で大容量の極活物質層、電池極、二次電池又は水素吸蔵層が不向きである。塗工、乾燥、塗工、乾燥、塗工、乾燥を何度も繰り返し作業工程を繰り返す、分粒別に積層形成する難工程、多工程等を余儀なくするため高価である。A paste-type screen coating method or the like of a lithium ion battery has a small filling amount and is not suitable for a small and large-capacity active material layer, a battery electrode, a secondary battery, or a hydrogen storage layer. Coating, drying, coating, drying, coating, and drying are repeated many times, and it is expensive because it necessitates a difficult process of layering by sizing, multiple processes, and the like.

発明を解決するための手段Means for Solving the Invention

上記目的を達成する為、ケーシング内に密に内装されて、回転自在なシリンダに設けられている、シリンダの軸心に直交方向のピストン穴及びピストン穴に往復自由にゆるく嵌められた、ピストン穴長さより短寸のピストン穴と、偏心軸で構成し、偏心軸の円周部の摺動部を、ピストンスライダ径又はピストン径又は幅より大の長さで、偏心軸円周の摺動する面の外径面をカットすることと、シリンダの回転にともなって、ピストンの往復運動を可能に構成し、そして、シリンダの回転にともなって生じるシリンダの外周面とケーシングの内周の摺動面及びピストンの往復機構で形成される受容体積室に、受容された容積内の品物中の空気を真空で排気し、一定の密度にならしめ、停止位置が、吸込口と、受容体積室と、シリンダ排出穴の1個又は複数の穴、又は焼結合金多孔穴径と、ケーシング排出穴又は焼結合金多孔穴径と、外部収容手段のフイルターの穴径と導通して外部から真空脱気することと、真空度の調整を、大気圧(0)から真空圧(1MPa)の間で、任意に自在調整が可能であることと、ケーシング排出穴の1個又は複数の穴、又は焼結合金多孔穴径又はフイルターの穴径と、前記排気穴径を順次小さくし、前記排気穴径を、通過した物を、外部で収容手段することで、粒度がより高精度に分粒することを特徴とする分粒方法。で−開口した金属箔等の容器又は板状に、リチウムイオン化合物からなる正又は負極活物質粉又はペーストを、形成、充填手段し、極重積活物質板、電池極又は水素吸蔵層を製造する。焼結合金の穴径を順次大から小にすることで、電池混合粉のように金属粉の比重大の物も、気流式と違い粒度径の選別で、細分化分粒が容易である。そして、高精度のに分粒した物を、粒度の大きさ別に複数台で積層充填が容易で連続製造する。In order to achieve the above object, the piston hole is tightly housed in the casing and is provided in a rotatable cylinder. The piston hole in the direction perpendicular to the axis of the cylinder and the piston hole is loosely and freely fitted in the piston hole. Consists of a piston hole shorter than the length and an eccentric shaft, and the sliding portion of the eccentric shaft circumference slides on the eccentric shaft circumference with a length longer than the piston slider diameter or piston diameter or width. The outer diameter surface of the surface is cut and the reciprocating movement of the piston is possible with the rotation of the cylinder, and the sliding surface between the outer peripheral surface of the cylinder and the inner periphery of the casing that is generated with the rotation of the cylinder And the receiving volume chamber formed by the reciprocating mechanism of the piston, the air in the received volume is evacuated in a vacuum, the density is made constant, and the stop position is the suction port, the receiving volume chamber, 1 of cylinder discharge hole Or a plurality of holes, or a sintered alloy porous hole diameter, a casing discharge hole or a sintered alloy porous hole diameter, a hole diameter of a filter of an external housing means, and vacuum deaeration from the outside, and a degree of vacuum The adjustment can be freely adjusted between atmospheric pressure (0) and vacuum pressure (1 MPa), one or more holes in the casing discharge hole, or the diameter of the sintered alloy porous hole or the filter. A sizing method characterized in that the hole diameter and the exhaust hole diameter are sequentially reduced, and the material that has passed through the exhaust hole diameter is accommodated externally so that the particle size is more accurately sized. -A positive or negative electrode active material powder or paste made of a lithium ion compound is formed and filled in a container or plate such as a metal foil or the like that is opened, and a super active material plate, a battery electrode, or a hydrogen storage layer is produced. To do. By gradually reducing the hole diameter of the sintered alloy from large to small, the metal powder, such as battery mixed powder, can be easily divided and subdivided by selecting the particle size, unlike the airflow type. And the thing divided into the highly accurate thing is easy to carry out lamination | stacking filling with multiple units | sets according to the magnitude | size of a particle size, and manufacture continuously.

該発明は、カップに入れて品物中を真空脱気して、余分の空気を真空排気して、縮小、嵩密度大にして、ひっくり返し吐出すと同じ原理で、まったく電池特性等を損傷しない。尚、排気穴の部分を、部分的又はシリンダ全体を粒子が通過しない、穴径の焼結合金にしても良く、焼結合金で微粉体及び超微粉体等も可能にする。小容量の物は、ピストンスライダを省略することで、可能でピストン径が小さくなり、極小容量も容易となる。ピストンを複数にすることで、多連型にすることも出来る。複数のピストンを変位位置に設けることで、脈動を消すことで連続塗布充填が可能である。In the invention, the product is put in a cup and vacuum degassed, and the excess air is evacuated, reduced, bulk density is increased, and it is discharged in the same principle. . The exhaust hole portion may be a sintered alloy having a hole diameter in which particles do not pass partially or through the entire cylinder, and the sintered alloy enables fine powder and ultrafine powder. Small capacity objects are possible by omitting the piston slider, the piston diameter is reduced, and the minimum capacity is facilitated. Multiple pistons can be made by using multiple pistons. By providing a plurality of pistons at the displacement position, continuous application filling is possible by eliminating pulsation.

焼結合金の穴径を順次大から小にすることで、電池混合粉のように金属粉の比重大の物も、気流式と違い粒径選別し、細分化の分粒が容易である。そして、高精度の分粒した物を粒度の大きさ別に、複数台で順次積層充填が容易で連続製造できる。バインダを不要とする為、その分活物質を増量でき大容量になる、高度の定量精度が要求される、難作業の極活物質と導電材の比例定量供給と混合が、容易に連続的に出来る。1ショット毎に比例定量充填するため、片寄りが無く品質が安定し、ロスが無い。リチウムイオン電池等のスクリーン塗布方法等と違い充填量が多く出来るので、より電池特性が高い、小型、軽量で大容量の極活物質層、電池極、電池又は水素等の吸蔵層が容易に連続的に量産が可能になるため安価になる。By gradually reducing the hole diameter of the sintered alloy from large to small, the metal powder specific material such as the battery mixed powder can be sorted by the particle size unlike the air flow type, and can be divided into small pieces. Then, highly accurate sized products can be easily stacked and filled sequentially by a plurality of units according to the size of the particle size, and can be continuously manufactured. Since the binder is not required, the amount of the active material can be increased, the capacity is increased, and high quantitative accuracy is required. Proportional quantitative supply and mixing of difficult active materials and conductive materials can be performed easily and continuously. I can do it. Proportional quantitative filling is performed for each shot, so there is no deviation, the quality is stable, and there is no loss. Unlike screen coating methods such as lithium ion batteries, the filling amount can be increased, so that the battery characteristics are higher, and the compact, lightweight, large-capacity active material layer, battery electrode, battery, or hydrogen storage layer is easily continuous. It becomes inexpensive because mass production is possible.

発明の効果The invention's effect

該発明は、以上説明したように構成されているので、以下に記載されているような効果をうながす。Since the present invention is configured as described above, the following effects can be achieved.

焼結合金の穴径を順次大から小にすることで、高精度の分粒が、電池混合粉のように金属粉の比重大の物も、気流式と違い細分化分粒が容易である。そして、高精度の分粒した物を個別複数台で積層充填が容易で連続製造できる。塗工、乾燥、塗工、乾燥、塗工、乾燥を何度も繰り返し作業工程を繰り返す、分粒別に積層形成する難工程、多工程等を省略工程するため安価になる。バインダを不要とする為、その分活物質を増量でき大容量になる、高度の定量精度が要求される、難作業の極活物質と導電材の比例定量供給と混合が、連続的に出来ため、安価になる。By gradually reducing the hole diameter of the sintered alloy from large to small, high-precision sizing is easy to subdivide, even in the case of metal powder like powder mixed powder, unlike the airflow type. . And it is easy to carry out lamination filling with a plurality of individual units with high accuracy, and can be continuously manufactured. Coating, drying, coating, drying, coating, and drying are repeated many times, and the difficult process of forming a layer by sizing, the multi-process, etc. are omitted, and the cost is reduced. Since no binder is required, the amount of the active material can be increased, the capacity is increased, and high quantitative accuracy is required. Proportional quantitative supply and mixing of extremely difficult active materials and conductive materials can be performed continuously. Become cheaper.

該発明は、応力等をまったく与え無く、敏感な品物の特性に損傷を与えない、嵩密度を高くした物を、真空脱気と同時に縮小する。そこで、より嵩密度を高くするため、電池混合粉や水素等の貯蔵密度効率が高く、航続距離が伸張する。短時間充填、電池特性、水素等の吸収効率高、省工程、コストダウンになる。The invention shrinks a product with a high bulk density that gives no stress or the like and does not damage the characteristics of sensitive products at the same time as vacuum deaeration. Therefore, in order to further increase the bulk density, the storage density efficiency of battery mixed powder, hydrogen, etc. is high, and the cruising distance is extended. Short-time filling, battery characteristics, high absorption efficiency of hydrogen, etc., process saving, and cost reduction.

化学品工場では、粉粒体の飛散が解消され環境改善になる。In chemical factories, the scattering of powder is eliminated and the environment is improved.

電池混合粉等は希少材のため高価で、高度の定量精度が要求される。また高騰する原料費のロスを無くすことが出来る。1ショット毎に比例定量充填するため、片寄りが無く品質が安定し、ロスが無い。Battery mixed powder and the like are rare materials and are expensive and require high quantitative accuracy. In addition, the loss of soaring raw material costs can be eliminated. Proportional quantitative filling is performed for each shot, so there is no deviation, the quality is stable, and there is no loss.

又、人手に触れる事無く、定量分割、形成及び充填が容易となるので、安全、安心及び無人で提供出来る。In addition, quantitative division, formation, and filling are facilitated without touching human hands, so that it can be provided with safety, security, and unattended.

リチウムイオン電池等のスクリーン塗布方法等と違い充填量が多く出来るので、より電池特性が高い、小型、軽量で大容量の極活物質層、電池極、電池又は水素等の吸蔵層が容易に連続的に量産が可能になる。Unlike screen coating methods such as lithium ion batteries, the filling amount can be increased, so that the battery characteristics are higher, and the compact, lightweight, large-capacity active material layer, battery electrode, battery, or hydrogen storage layer is easily continuous. Mass production is possible.

そして、省人化でコストダウンとなる。And cost savings due to labor saving.

発明を実施する為の最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

ケーシング内に密に内装されて、回転自在なシリンダに設けられている、シリンダの軸心に直交方向のピストン穴及びピストン穴に往復自由にゆるく嵌められたピストン穴長さより短寸のピストン穴と、偏心軸で構成し、偏心軸の円周部の摺動部を、ピストンスライダ径又はピストン径又は幅より大の長さで、偏心軸円周の摺動する面の外径面をカットすることと、シリンダの回転にともなって、ピストンの往復運動を可能に構成し、そして、シリンダの回転にともなって生じるシリンダの外周面とケーシングの内周の摺動面及びピストンの往復機構で形成される受容体積室に、受容された容積内の品物中の空気を真空で排気し、一定の密度にならしめ、停止位置が吸込口と、受容体積室と、シリンダ排出穴の1個又は複数の穴、又は焼結合金多孔穴径又はフイルターの穴径と、前記排気穴と導通して外部から真空脱気することと、真空度の調整を、大気圧(0)から真空圧(1MPa)の間で、任意に自在調整が可能であることと、ケーシング排出穴の1個又は複数の穴、又は焼結合金多孔穴径又はフイルターの穴径、前記排気穴径を順次小さくし、そして、前記排気穴径の通過した物を、受容容器(底面積大の逆テーパー)又はフイルターで、収容手段することで、粒度がより高精度に分粒することを特徴とする分粒方法の装置を1台又は複数台を具備し、受容容器にキャリアを比例充填する定量供給ゾーン(定量供給工程)と、
交差するスベリ台状等の調合ゾーン(調合工程)と、
攪拌羽根、リボン、スパイラル等の混合ゾーン(混合工程)と、
貯蔵ゾーン(貯蔵工程)と、
を配備した、高度の定量精度が要求される、複数のキャリアを並行又は連動充填、比例調合、連続混合する比例調合、混合方法。難作業の極活物質と導電材の比例定量供給と混合が、容易に連続的に出来る。そして、−開口した金属箔等の容器又は板状に、リチウムイオン化合物からなる正極活物質粉又はペースト等を、形成、充填手段し、極積層活物質板、電池極又は水素吸蔵層を製造する。
A piston hole that is tightly housed in the casing and is provided in a rotatable cylinder, and a piston hole that is perpendicular to the axis of the cylinder and a piston hole that is shorter than the length of the piston hole that is loosely fitted back and forth in the piston hole. , Composed of an eccentric shaft, and cut the outer diameter surface of the sliding surface of the eccentric shaft circumference, with the sliding portion of the circumferential portion of the eccentric shaft being longer than the piston slider diameter or piston diameter or width And the reciprocating motion of the piston with the rotation of the cylinder, and is formed by the outer peripheral surface of the cylinder, the sliding surface of the inner periphery of the casing, and the reciprocating mechanism of the piston that occur with the rotation of the cylinder. The receiving volume chamber is evacuated with the air in the received volume in a vacuum, leveled to a constant density, and stopped at one or more of the inlet, receiving volume chamber, and cylinder discharge hole. Hole or burnt bond Perforation hole diameter or filter hole diameter, conducting to the exhaust hole and vacuum degassing from the outside, and the degree of vacuum can be freely adjusted between atmospheric pressure (0) and vacuum pressure (1 MPa) The adjustment is possible, and one or more holes of the casing discharge hole, or the sintered alloy porous hole diameter or the filter hole diameter, the exhaust hole diameter are successively reduced, and the exhaust hole diameter has passed. It is equipped with one or a plurality of sizing apparatus characterized in that the particles are sized with higher accuracy by receiving the material with a receiving container (reverse taper with a large bottom area) or a filter. A quantitative supply zone (quantitative supply process) for proportionally filling the carrier into the receiving container;
Intersecting zones such as sliding trapezoids (preparation process),
Mixing zones (mixing process) such as stirring blades, ribbons, spirals, etc.
A storage zone (storage process);
Proportional blending, mixing method in which a plurality of carriers are required in parallel or linked filling, proportional blending, continuous blending, where high quantitative accuracy is required. Proportional quantitative supply and mixing of extremely active materials and conductive materials that are difficult to work can be performed easily and continuously. Then, a positive electrode active material powder or paste made of a lithium ion compound is formed and filled in a container or a plate such as an open metal foil, and an electrode laminated active material plate, a battery electrode, or a hydrogen storage layer is manufactured. .

該発明は、カップに入れて品物中を真空脱気して、余分の空気を真空排気して、ひっくり返し吐出するのと同じ原理で、まったく電池特性等を損傷しない。尚、排気穴の部分を、部分的又はシリンダ全体を粒子が通過しない、穴径の焼結合金にしても良く、焼結合金で微粉体及び超微粉体等も可能にする。電池混合粉のように、比重大の物も、気流式と違い分粒が容易である。焼結合金の粒度を、順次大から小にすることで、高精度の精密分粒が容易となる。真空度の調整は、大気圧(0)から真空圧(1MPa)の間で任意に自在調整手段で、シャープに分粒し、形成、充填が容易である。小容量の物は、スライダーを省略することで、可能でピストン径が小さくなり、超小容量も容易となる。ピストンを複数にすることで、多連型にすることも出来る。The invention does not damage the battery characteristics or the like at all on the same principle as that when the product is put in a cup and vacuum deaerated in the product, and the excess air is evacuated and discharged over. The exhaust hole portion may be a sintered alloy having a hole diameter in which particles do not pass partially or through the entire cylinder, and the sintered alloy enables fine powder and ultrafine powder. Unlike the air current type, particles of specific importance, such as battery mixed powder, can be easily sized. By decreasing the grain size of the sintered alloy from large to small sequentially, high-precision precision sizing becomes easy. The degree of vacuum can be easily adjusted by arbitrarily adjusting the degree of vacuum between atmospheric pressure (0) and vacuum pressure (1 MPa) by means of freely adjusting means. Small capacity objects are possible by omitting the slider, the piston diameter is reduced, and ultra-small capacity is also facilitated. Multiple pistons can be made by using multiple pistons.

又、該粒子径の一定なる、粒子の含有率が一定である極活物質粒子を、請求項1、で形成、充填する。The active material particles having a constant particle diameter and a constant particle content are formed and filled in the first aspect.

1ショット毎に比例定量充填するため、片寄りが無く品質が安定し、ロスが無い。容易に連続的に、安価で量産が可能になる。Proportional quantitative filling is performed for each shot, so there is no deviation, the quality is stable, and there is no loss. Easy and continuous mass production is possible at low cost.

上記目的を達成する為、ケーシング1内に密に内装されて、回転自在なシリンダ3に設けられる、シリンダ3の軸心に直交方向のピストン穴4及びピストン穴4に往復自由にゆるく嵌められたピストン穴4長さより短寸することで、高精度の分粒が電池混合粉のように、気流式と違い比重大の物も、細分化分粒が容易である。真空度の調整は、大気圧(0)から真空圧(1MPa)の間で任意に、自在調整が可能であることで、シャープに分粒し充填が容易である。電池特性を最良にするには、粒度の違う物を、粒度別に積層充填方法が、重要な起因を解決でき、容易に製造が出来る為、安全で安価に提供できる。小容量の物は、ピストンスライダ7を省略することで、可能でピストン5径が小さくなり、のピストン5と、偏心軸9で構成し、シリンダ3の回転に従い受容体積室Aを形成手段することと、
偏心軸9をピストンスライダ7径又はピストン5径を許容する長さで、偏心軸9円周の外径面をカット19することと、停止位置が吸込口12と、受容体積室Aと、シリンダ排出穴又は焼結合金多孔穴14と、ケーシング排出穴又は焼結合金多孔穴15で導通し、外部から真空脱気することと、ケーシング排出穴又は焼結合金多孔穴径を順次小さくし、ケーシング排出穴又は焼結合金多孔穴を通過した物を外部で収容手段することで、粒がより高精度に分粒することを特徴とする分粒方法及び分粒装置。で−開口したアルミニュウム箔等の容器又は板状に、リチウムイオン化合物からなる正極活物質粉又はペースト等を、形成、充填手段し、極重積活物質板、電池極又は水素吸蔵層を製造する。
In order to achieve the above-described object, the piston hole 4 and the piston hole 4 in the direction orthogonal to the axial center of the cylinder 3 which is densely housed in the casing 1 and provided in the rotatable cylinder 3 are loosely and freely fitted back and forth. By making the size shorter than the length of the piston hole 4, finely divided particles can be easily divided even if the material is of high precision, such as battery mixed powder, unlike the air current type. The degree of vacuum can be arbitrarily adjusted between atmospheric pressure (0) and vacuum pressure (1 MPa), so that it can be sharply sized and filled easily. In order to achieve the best battery characteristics, it is possible to provide a safe and low-priced product that has different particle sizes by stacking and filling each particle size because it can solve important causes and can be easily manufactured. A small-capacity object can be obtained by omitting the piston slider 7, and the diameter of the piston 5 can be reduced. The piston 5 and the eccentric shaft 9 are configured to form the receiving volume chamber A according to the rotation of the cylinder 3. When,
The eccentric shaft 9 has a length that allows the diameter of the piston slider 7 or the diameter of the piston 5, the outer diameter surface of the circumference of the eccentric shaft 9 is cut 19, the stop position is the suction port 12, the receiving volume chamber A, the cylinder The discharge hole or sintered alloy perforated hole 14 and the casing discharge hole or sintered alloy perforated hole 15 are electrically connected to each other, vacuum degassing from the outside, and the casing discharge hole or sintered alloy perforated hole diameter are sequentially reduced, and the casing A sizing method and a sizing apparatus characterized in that the particles are sized with higher accuracy by accommodating the material that has passed through the discharge hole or the sintered alloy porous hole outside. -A positive electrode active material powder or paste made of a lithium ion compound is formed and filled in a container or a plate such as an aluminum foil or the like that is opened, and a pole active material plate, a battery electrode, or a hydrogen storage layer is manufactured. .

該発明は、カップに入れて品物中を真空脱気して、余分の空気を排気して、ひっくり返し吐出するのと同じ原理で、まったく電池特性等を損傷ない。尚、排気穴の部分を、部分的又はシリンダ3全体を粒子が通過しない、穴径の焼結合金にしても良く、焼結合金で微粉体及び超微粉体等も可能にする。焼結合金の多孔穴の大きさを替えることと、順次大から小にす、超小容量も容易となる。ピストン5を複数にすることで、多連型にすることも出来る。The present invention does not damage the battery characteristics or the like at all on the same principle as that when the product is put in a cup and vacuum deaerated in the product, the excess air is exhausted, and the product is discharged upside down. The exhaust hole portion may be a sintered alloy having a hole diameter, in which particles do not pass through the entire cylinder 3 or the entire diameter of the cylinder 3, and the sintered alloy enables fine powder and ultrafine powder. By changing the size of the porous hole of the sintered alloy, the ultra-small capacity is gradually reduced from large to small. By using a plurality of pistons 5, it is also possible to make a multiple type.

実施例1〜3図で説明すると、極活物質層、電池極の製造方法の場合、金属等の箔を、上面の一方を開口して、容器を形成する。Explaining with reference to FIGS. 1 to 3, in the case of the method for manufacturing an active material layer and a battery electrode, a container is formed by opening one side of an upper surface of a foil such as metal.

極活物質物、電池混合等の粉粒体の場合は、誤差がほとんど無く、飛び粉の飛散も無くなる。In the case of a powder or granular material such as a polar active material or a battery, there is almost no error and scattering of flying powder is eliminated.

当発明は、応力等をまったく与え無いので、敏感な品物の特性に損傷を与えない。嵩密度を大にするため、航続距離が大幅に伸張する。Since the present invention does not apply stress or the like at all, it does not damage the characteristics of sensitive items. In order to increase the bulk density, the cruising range is greatly extended.

リチウムイオン電池のスクリーン塗布方法等と違い充填量が多く出来るので、より電池特性が良い、大容量の極活物質層、電池極、セル、電池又は水素等の吸蔵層が容易に連続的に量産が可能になる。Unlike lithium ion battery screen coating methods, etc., the amount of filling can be increased, so battery characteristics are better and large capacity active material layers, battery electrodes, cells, batteries or storage layers such as hydrogen can be easily and continuously mass-produced. Is possible.

100極活物質材、101導電材の分粒、並行又は連動、比例充填、調合、混合、形成、充填の場合の、実施例を図3で説明すると、電池混合粉の場合は、100極活物質材と、101導電材とを、例定量を、受容容器内に並行(同時)に充填する、内装された、103交差するスベリ台状の混合又は攪拌羽根、リボン、スパイラル等の調合ゾーンで、調合される、1ショット毎に比例定量充填するため、片寄りが無く品質が安定し、ロスが無い。次いで104又は攪拌羽根、リボン、スパイラル等の混合ゾーンで混合する、次いで105貯蔵ゾーンに入り、107の分粒形成充填の吸込み口に導通し、111電池混合粉を定量受容し、
金属箔等に形成充填する。
An example in the case of 100-electrode active material material, 101 conductive material sizing, parallel or interlocking, proportional filling, blending, mixing, forming, and filling will be described with reference to FIG. In a blending zone such as mixing or stirring blades, ribbons, spirals, etc., with 103 crossed slide bases filled with material material and 101 conductive material, in parallel (simultaneously) filling a receiving container with a fixed amount. Since the proportioned quantitative filling is performed for each shot, the quality is stable and there is no loss. Next, mix in 104 or a mixing zone such as a stirring blade, ribbon, spiral, etc., then enter the 105 storage zone, conduct to the suction port for the sizing and filling of 107, and receive 111 battery mixed powder quantitatively,
Form and fill a metal foil or the like.

化学品等の粉粒体メーカー、自動車メーカー、電池メーカー、複写機メーカー等にとっては、必要不可欠である。It is indispensable for chemicals and other powder manufacturers, automobile manufacturers, battery manufacturers, and copier manufacturers.

この発明の実施例、分粒機を示す側面縦断面図である。It is a side longitudinal cross-sectional view which shows the Example of this invention and a sizer. は、B−B矢視の停止状態の、正面縦断面図である。These are front longitudinal cross-sectional views of the stop state of BB arrow. は粉体、ペーストの調合、混合、形成、充填方法のシステムのフローシート図。Figure 2 is a flow sheet diagram of a system for powder, paste preparation, mixing, forming and filling methods.

1、ケーシング 3、シリンダ 4、ピストン穴 5、ピストン 7、ピストンスライダ 9、偏心軸 12、吸込口 14、シリンダ排気穴又は焼結合金多孔穴 15、ケーシング排気穴又は焼結合金多孔穴 19、偏心軸カット部 A、受容体積室
100、分粒充填機(活物質) 101、分粒充填機、(導電材) 102、定量供給ゾーン(定量供給工程)、103、比例調合ゾーン(比例調合工程)、104、混合ゾーン(混合工程) 105、貯蔵ゾーン(貯蔵工程)、106、受容容器、107、分粒形成充填機、108、フィルター、110、真空ポンプ、111、電池混合粉。
1, casing 3, cylinder 4, piston hole 5, piston 7, piston slider 9, eccentric shaft 12, suction port 14, cylinder exhaust hole or sintered alloy porous hole 15, casing exhaust hole or sintered alloy porous hole 19, eccentric Axis cutting part A, receiving volume chamber 100, sizing and filling machine (active material) 101, sizing and filling machine, (conductive material) 102, quantitative supply zone (quantitative supply process), 103, proportional preparation zone (proportional preparation process) 104, mixing zone (mixing process) 105, storage zone (storage process), 106, receiving container, 107, sizing and filling machine, 108, filter, 110, vacuum pump, 111, battery mixed powder.

Claims (4)

ケーシング内に密に内装されて、回転自在なシリンダに設けられている、シリンダの軸心に直交方向のピストン穴及びピストン穴に往復自由にゆるく嵌められたピストン穴長さより短寸のピストン穴と、偏心軸で構成し、偏心軸の円周部の摺動部を、ピストンスライダ径又はピストン径又は幅より大の長さで、偏心軸円周の摺動する面の外径面をカットすることと、シリンダの回転にともなって、ピストンの往復運動を可能に構成し、そして、シリンダの回転にともなって生じるシリンダの外周面とケーシングの内周の摺動面及びピストンの往復機構で形成される受容体積室に、受容された容積内の品物中の空気を真空で排気し、一定の密度にならしめ、停止位置が吸込口と、受容体積室と、シリンダ排出穴の1個又は複数の穴、又は焼結合金多孔穴径又はフイルターの穴径と、前記排気穴と導通して外部から真空脱気することと、真空度の調整を、大気圧(0)から真空圧(1MPa)の間で、任意に自在調整が可能であることと、ケーシング排出穴の1個又は複数の穴、又は焼結合金多孔穴径又はフイルターの穴径、前記排気穴径を順次小さくし、そして、前記排気穴径の通過した物を、外部のホッパー(底面積大の逆テーパー)又はフイルターで、収容手段することで、粒度がより高精度に分粒することを特徴とする分粒方法の装置を1台又は複数台を具備し、受容容器にキャリアを比例充填する定量供給ゾーン(定量供給工程)と、
交差するスベリ台状等の調合ゾーン(調合工程)と、攪拌羽根、リボン、スパイラル等の混合ゾーン(混合工程)と、貯蔵ゾーン(貯蔵工程)と、
を配備した、高度の定量精度が要求される、複数のキャリアを並行又は連動充填、比例調合、連続混合する比例調合、混合方法。
A piston hole that is tightly housed in the casing and is provided in a rotatable cylinder, and a piston hole that is perpendicular to the axis of the cylinder and a piston hole that is shorter than the length of the piston hole that is loosely fitted back and forth in the piston hole. , Composed of an eccentric shaft, and cut the outer diameter surface of the sliding surface of the eccentric shaft circumference, with the sliding portion of the circumferential portion of the eccentric shaft being longer than the piston slider diameter or piston diameter or width And the reciprocating motion of the piston with the rotation of the cylinder, and is formed by the outer peripheral surface of the cylinder, the sliding surface of the inner periphery of the casing, and the reciprocating mechanism of the piston that occur with the rotation of the cylinder. The receiving volume chamber is evacuated with the air in the received volume in a vacuum, leveled to a constant density, and stopped at one or more of the inlet, receiving volume chamber, and cylinder discharge hole. Hole or burnt bond Perforation hole diameter or filter hole diameter, conducting to the exhaust hole and vacuum degassing from the outside, and the degree of vacuum can be freely adjusted between atmospheric pressure (0) and vacuum pressure (1 MPa) The adjustment is possible, and one or more holes of the casing discharge hole, or the sintered alloy porous hole diameter or the filter hole diameter, the exhaust hole diameter are successively reduced, and the exhaust hole diameter has passed. One or a plurality of sizing apparatus characterized by finely sizing the particle size by accommodating the object with an external hopper (reverse taper having a large bottom area) or a filter. A quantitative supply zone (quantitative supply process) for proportionally filling the receiving container with the carrier;
Crossing zones such as sliding trapezoids (mixing process), mixing zones (mixing process) such as stirring blades, ribbons, spirals, and storage zones (storage process),
Proportional blending, mixing method in which a plurality of carriers are required in parallel or linked filling, proportional blending, continuous blending, where high quantitative accuracy is required.
ケーシング内に密に内装されて、回転自在なシリンダに設けられている、シリンダの軸心に直交方向のピストン穴及びピストン穴に往復自由にゆるく嵌められたピストン穴長さより短寸のピストン穴と、偏心軸で構成し、偏心軸の円周部の摺動部を、ピストンスライダ径又はピストン径又は幅より大の長さで、偏心軸円周の摺動する面の外径面をカットすることと、シリンダの回転にともなって、ピストンの往復運動を可能に構成し、そして、シリンダの回転にともなって生じるシリンダの外周面とケーシングの内周の摺動面及びピストンの往復機構で形成される受容体積室に、受容された容積内の品物中の空気を真空で排気し、一定の密度にならしめ、停止位置が吸込口と、受容体積室と、シリンダ排出穴の1個又は複数の穴、又は焼結合金多孔穴径又はフイルターの穴径と、前記排気穴と導通して外部から真空脱気することと、真空度の調整を、大気圧(0)から真空圧(1MPa)の間で、任意に自在調整が可能であることと、ケーシング排出穴の1個又は複数の穴、又は焼結合金多孔穴径又はフイルターの穴径、前記排気穴径を順次小さくし、そして、前記排気穴径の通過した物を、外部のホッパー(底面積大の逆テーパー)又はフイルターで、収容手段することで、粒度がより高精度に分粒することを特徴とする分粒方法の装置を1台又は複数台を具備し、受容容器にキャリアを比例充填する定量供給ゾーン(定量供給工程)と、
交差するスベリ台状等の調合ゾーン(調合工程)と、
攪拌羽根、リボン、スパイラル等の混合ゾーン(混合工程)と、
貯蔵ゾーン(貯蔵工程)と、
を配備した、高度の定量精度が要求される、複数のキャリアを並行又は連動充填、比例調合、連続混合する比例調合、混合装置。受容容器にキャリアを比例充填する定量供給ゾーン(定量供給工程)と、交差するスベリ台状の混合又は攪拌羽根、リボン、スパイラル等の調合ゾーン(調合工程)、混合ゾーンと(混合工程)、貯蔵ゾーンと(貯蔵工程)を配備した、高度の定量精度が要求される複数のキャリアを並行又は連動充填、比例調合、連続混合する比例調合、混合装置。
A piston hole that is tightly housed in the casing and is provided in a rotatable cylinder, and a piston hole that is perpendicular to the axis of the cylinder and a piston hole that is shorter than the length of the piston hole that is loosely fitted back and forth in the piston hole. , Composed of an eccentric shaft, and cut the outer diameter surface of the sliding surface of the eccentric shaft circumference, with the sliding portion of the circumferential portion of the eccentric shaft being longer than the piston slider diameter or piston diameter or width And the reciprocating motion of the piston with the rotation of the cylinder, and is formed by the outer peripheral surface of the cylinder, the sliding surface of the inner periphery of the casing, and the reciprocating mechanism of the piston that occur with the rotation of the cylinder. The receiving volume chamber is evacuated with the air in the received volume in a vacuum, leveled to a constant density, and stopped at one or more of the inlet, receiving volume chamber, and cylinder discharge hole. Hole or burnt bond Perforation hole diameter or filter hole diameter, conducting to the exhaust hole and vacuum degassing from the outside, and the degree of vacuum can be freely adjusted between atmospheric pressure (0) and vacuum pressure (1 MPa) The adjustment is possible, and one or more holes of the casing discharge hole, or the sintered alloy porous hole diameter or the filter hole diameter, the exhaust hole diameter are successively reduced, and the exhaust hole diameter has passed. One or a plurality of sizing apparatus characterized by finely sizing the particle size by accommodating the object with an external hopper (reverse taper having a large bottom area) or a filter. A quantitative supply zone (quantitative supply process) for proportionally filling the receiving container with the carrier;
Intersecting zones such as sliding trapezoids (preparation process),
Mixing zones (mixing process) such as stirring blades, ribbons, spirals, etc.
A storage zone (storage process);
Proportional blending and mixing device that is equipped with a plurality of carriers that require high quantitative accuracy, parallel or linked filling, proportional blending, and continuous blending. Fixed quantity supply zone (fixed quantity supply process) for proportionally filling the receiving container with carrier, crossing slide-type mixing or mixing zone (mixing process) such as stirring blade, ribbon, spiral, mixing zone (mixing process), storage Proportional blending and blending device that is equipped with zones and (storage process), a plurality of carriers that require high quantitative accuracy in parallel or linked filling, proportional blending, and continuous blending.
請求項1,2記載で混合された物を形成、充填することを特徴とする装置。  An apparatus for forming and filling the mixed product according to claim 1 or 2. 請求項1、2、3、記載のいずれかの一項を用いたことを特徴とする、正負極活物質層、二次電池又はトナー。  A positive and negative electrode active material layer, a secondary battery, or a toner using any one of claims 1, 2, 3.
JP2009198938A 2009-08-06 2009-08-06 Battery mixture powder, proportional preparation of powder such as toner, mixture, formation, filling-up method, its device, secondary battery, and toner Withdrawn JP2010021150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198938A JP2010021150A (en) 2009-08-06 2009-08-06 Battery mixture powder, proportional preparation of powder such as toner, mixture, formation, filling-up method, its device, secondary battery, and toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198938A JP2010021150A (en) 2009-08-06 2009-08-06 Battery mixture powder, proportional preparation of powder such as toner, mixture, formation, filling-up method, its device, secondary battery, and toner

Publications (2)

Publication Number Publication Date
JP2010021150A true JP2010021150A (en) 2010-01-28
JP2010021150A5 JP2010021150A5 (en) 2011-10-06

Family

ID=41705798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198938A Withdrawn JP2010021150A (en) 2009-08-06 2009-08-06 Battery mixture powder, proportional preparation of powder such as toner, mixture, formation, filling-up method, its device, secondary battery, and toner

Country Status (1)

Country Link
JP (1) JP2010021150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102742048A (en) * 2010-02-09 2012-10-17 三菱重工业株式会社 Apparatus for production of electrode material
CN109095138A (en) * 2018-08-20 2018-12-28 镇江裕太防爆电加热器有限公司 A kind of overturning structure for conveying for triangle magnesium pipe agglomerating plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297305A (en) * 1999-04-14 2000-10-24 Ishikawajima Harima Heavy Ind Co Ltd Method and equipment for manufacturing fluorinated hydrogen storage alloy powder
JP2009143725A (en) * 2008-10-09 2009-07-02 Yasukuni Kishimoto Method and device or apparatus for quantitatively dividing, filling, forming, pumping or classifying food, chemical granule, daily dish or the like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297305A (en) * 1999-04-14 2000-10-24 Ishikawajima Harima Heavy Ind Co Ltd Method and equipment for manufacturing fluorinated hydrogen storage alloy powder
JP2009143725A (en) * 2008-10-09 2009-07-02 Yasukuni Kishimoto Method and device or apparatus for quantitatively dividing, filling, forming, pumping or classifying food, chemical granule, daily dish or the like

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102742048A (en) * 2010-02-09 2012-10-17 三菱重工业株式会社 Apparatus for production of electrode material
CN109095138A (en) * 2018-08-20 2018-12-28 镇江裕太防爆电加热器有限公司 A kind of overturning structure for conveying for triangle magnesium pipe agglomerating plant

Similar Documents

Publication Publication Date Title
Liu et al. Effects of various conductive additive and polymeric binder contents on the performance of a lithium-ion composite cathode
US20180309121A1 (en) Lithium secondary batteries with positive eletrode compositions and their methods of manufacturing
Liu et al. Optimization of acetylene black conductive additive and PVDF composition for high-power rechargeable lithium-ion cells
JP5229598B2 (en) Lithium secondary battery and manufacturing method thereof
Günter et al. State of the art of lithium-ion pouch cells in automotive applications: Cell teardown and characterization
KR101767304B1 (en) Lithium secondary battery, method for producing the same, and vehicle including the same
Tian et al. γ-Fe2O3 nanocrystalline microspheres with hybrid behavior of battery-supercapacitor for superior lithium storage
KR101621589B1 (en) Lithium secondary battery, method for producing the same, and vehicle including the same
Schreiner et al. Comparative evaluation of LMR-NCM and NCA cathode active materials in multilayer lithium-ion pouch cells: Part I. Production, electrode characterization, and formation
WO2013179924A1 (en) Electrode for lithium-ion secondary battery, and lithium-ion secondary battery using said electrode
JP5986573B2 (en) Method for producing positive electrode active material of lithium secondary battery
US20110274976A1 (en) Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
JP5614592B2 (en) Method for manufacturing electrode for secondary battery
WO2014061579A1 (en) Method for producing positive electrode active material for lithium secondary battery, and active material precursor powder used therein
KR20120059608A (en) Positive electrode active material for lithium secondary battery, and use thereof
JP6779052B2 (en) Separator powder, separator slurry, lithium-ion battery and its manufacturing method
WO2017188388A1 (en) Manufacturing methods for electrode material, electrode, battery, and capacitor, and manufacturing device for electrode material
WO2019202600A1 (en) Additive manufacturing using electrochemically active formulations
JP5472760B2 (en) Method for producing lithium ion secondary battery
JP2010021150A (en) Battery mixture powder, proportional preparation of powder such as toner, mixture, formation, filling-up method, its device, secondary battery, and toner
US20170373343A1 (en) Method of producing negative electrode plate
Chowdhury et al. Revisiting the promise of Bi-layer graded cathodes for improved Li-ion battery performance
JP2010021150A5 (en)
CN108028389A (en) The collector of electric energy storage device aluminium nonwoven material and its manufacture method, electrode and its manufacture method using the aluminium nonwoven material
KR101497624B1 (en) Positive active material for lithium secondary battery, method for manufacturing the same and lithium secondary battery using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120125