JP2009222060A - Exchanging (scavenging) method for combustion gas of two stroke engine - Google Patents

Exchanging (scavenging) method for combustion gas of two stroke engine Download PDF

Info

Publication number
JP2009222060A
JP2009222060A JP2009058162A JP2009058162A JP2009222060A JP 2009222060 A JP2009222060 A JP 2009222060A JP 2009058162 A JP2009058162 A JP 2009058162A JP 2009058162 A JP2009058162 A JP 2009058162A JP 2009222060 A JP2009222060 A JP 2009222060A
Authority
JP
Japan
Prior art keywords
dead center
exhaust
scavenging
pressure level
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009058162A
Other languages
Japanese (ja)
Inventor
Anton Stadler
アントン・スタッドラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Diesel SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel SE filed Critical MAN Diesel SE
Publication of JP2009222060A publication Critical patent/JP2009222060A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • F02B25/145Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke with intake and exhaust valves exclusively in the cylinder head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/20Means for reducing the mixing of charge and combustion residues or for preventing escape of fresh charge through outlet ports not provided for in, or of interest apart from, subgroups F02B25/02 - F02B25/18
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/20Means for reducing the mixing of charge and combustion residues or for preventing escape of fresh charge through outlet ports not provided for in, or of interest apart from, subgroups F02B25/02 - F02B25/18
    • F02B25/24Inlet or outlet openings being timed asymmetrically relative to bottom dead-centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method effectively scavenging by a method for discharging a combustion gas from a cylinder, and effectively using energy generated at the time of combustion, namely, a method for improving efficiency of two cycle engines of the same group. <P>SOLUTION: In the combustion gas exchanging (scavenging) method for a supercharging two cycle engine wherein at least one intake valve 3 and one exhaust valve 4 arranged on a cylinder head 10 are arranged on each cylinder 1, a piston 2 in the cylinder 1 tightly closes up a cylinder inside space 11 against the cylinder head 10 while changing its volume, gas exchanging (scavenging) is controlled by the intake and exhaust valves 3, 4, and an intake pressure level is raised by a supercharging system rather than an exhaust pressure level. The combustion gas exchanging method effective performs scavenging, and the energy generated at the time of combustion is effectively utilized to the utmost. Namely, its efficiency is improved. Gas exchange (scavenging) is completed in an upper half of a lifting motion 9 from the bottom dead center UT to the top dead center OT of the piston. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、2サイクルエンジンにおける燃焼ガスの交換(掃気)方法に関する。当該エンジンにおいては、シリンダヘッドに設置された少なくとも1つの吸気弁および排気弁が各シリンダに配設されており、シリンダ内ではピストンが上死点(OT)と下死点(UT)との間で往復運動を行い、当該ピストンはシリンダヘッドに対して、体積を変化させながらシリンダ内部空間を密閉し、ガス交換(掃気)は吸排気弁によって制御され、吸気圧レベルは過給システムによって、排気圧レベルよりも引き上げられる。   The present invention relates to a method for exchanging (scavenging) combustion gas in a two-cycle engine. In the engine, at least one intake valve and exhaust valve installed in the cylinder head are provided in each cylinder, and the piston is located between the top dead center (OT) and the bottom dead center (UT) in the cylinder. The piston reciprocates with respect to the cylinder head, sealing the cylinder interior space while changing the volume, gas exchange (scavenging) is controlled by the intake and exhaust valves, and the intake pressure level is exhausted by the supercharging system. Raised above the atmospheric pressure level.

2サイクルエンジンは、通常用いられる4サイクルエンジンに比べて、行程数が半分、もしくは1行程におけるピストンの往復運動が半分であるため、摩耗による損失分ははるかに少ない(エンジン出力に関して)。したがって、2サイクルエンジンは上記の理由により、燃料消費の最適化を図る際、有意義で有利な駆動方法の選択肢でありうる。   The two-stroke engine has half the number of strokes or half the piston reciprocating movement in one stroke, compared to a commonly used four-stroke engine, and therefore has much less loss due to wear (with respect to engine output). Therefore, a two-cycle engine can be a meaningful and advantageous driving method option for optimization of fuel consumption for the above reasons.

通常の2サイクルエンジンで行われているスリットによる吸排気の制御を、スリットの代わりに弁を用いて行うことも、すでに知られるところとなった。その結果、この種の2サイクルエンジンの基本的な構造は、もはや4サイクルエンジンの構造と大幅に異なるものではなくなった。   It has already been known that intake and exhaust control using a slit, which is performed in a normal two-cycle engine, is performed using a valve instead of a slit. As a result, the basic structure of this type of two-stroke engine is no longer significantly different from that of a four-stroke engine.

必然的に弁の開閉時間が非常に短い場合でも、十分に良好なガス交換を行い、満足の行く掃気を行うためには、いずれにしても、過給システムによって吸気圧レベルを排気圧レベルよりも引き上げることが必要である。   Inevitably, even if the valve opening and closing time is very short, in order to have a sufficiently good gas exchange and satisfactory scavenging, the supercharging system will in any case make the intake pressure level higher than the exhaust pressure level. It is also necessary to raise it.

この種の2サイクルエンジンでは、とりわけ作業室もしくはシリンダ内部空間の効果的な掃気を実現することも問題となるが、それは圧力下で流入する未燃焼ガスが、吸気弁と排気弁とがオーバーラップするわずかの時間に、燃焼ガスを排気弁を介して押し出そうとするときである。つまり、掃気プロセスでは燃焼ガスを可能な限り多くシリンダから除去することが必要であるが、それと同時に未燃焼ガスの損失、すなわち掃気ガスの損失を極力少なくとどめるように配慮する必要がある。   In this type of two-cycle engine, in particular, effective scavenging of the working chamber or the internal space of the cylinder is also a problem. However, unburned gas flowing under pressure overlaps the intake valve and the exhaust valve. This is when the combustion gas is about to be pushed out through the exhaust valve in a short time. In other words, in the scavenging process, it is necessary to remove as much combustion gas from the cylinder as possible, but at the same time, it is necessary to take care to minimize the loss of unburned gas, that is, the scavenging gas loss.

上記の2サイクルエンジンの例として、特許文献1に記載のエンジンが知られている。特許文献1に記載のガス交換の場合、燃焼ガスはピストンの膨張行程終了時およびピストンの圧縮行程開始時に交換される。この場合、確かに燃焼ガスの完全な交換は可能かもしれないが、シリンダ内部空間のジオメトリ構成上、前記ガス交換を行う際、特に掃気ガスの損失を最小にとどめると同時に前記要求を満たすことが可能かどうかについては疑問が残るところである。   As an example of the above-described two-cycle engine, an engine described in Patent Document 1 is known. In the gas exchange described in Patent Document 1, the combustion gas is exchanged at the end of the expansion stroke of the piston and at the start of the compression stroke of the piston. In this case, it may be possible to completely replace the combustion gas. However, due to the geometry configuration of the cylinder internal space, when performing the gas replacement, the loss of the scavenging gas should be minimized while satisfying the requirement. The question remains as to whether it is possible.

そこで、有害物質の排出量を削減し、燃料消費を低減し、許容できるアイドリング挙動を実現するためにも、シリンダ内部空間の良好な掃気、すなわち吸気弁からの外気フローが排気フローを、排気弁を介して効果的にシリンダ内部空間から掃気できることが絶対に必要である。   Therefore, in order to reduce emissions of harmful substances, reduce fuel consumption, and achieve an acceptable idling behavior, good scavenging of the internal space of the cylinder, that is, the outside air flow from the intake valve, It is absolutely necessary to be able to scavenge effectively from the cylinder internal space via

独国特許発明第2701272号明細書German Patent Invention No. 2701272

上記の点に鑑み、本発明の課題は、シリンダから燃焼ガスを排出する方法で、効果的な掃気を可能とし、燃焼時に発生するエネルギーを効果的に用いる方法、すなわち同属の2サイクルエンジンの効率を向上させる方法を提供することにある。   In view of the above points, an object of the present invention is a method of exhausting combustion gas from a cylinder, enabling effective scavenging, and effectively using energy generated during combustion, that is, efficiency of a two-cycle engine of the same genus It is in providing the method of improving.

本課題は請求項1に記載の特徴によって解決される。   This problem is solved by the features of claim 1.

従来技術では上記のように2サイクル式の場合、燃焼ガスの交換はさらにクランクシャフトを回転させることなく行われ、当該燃焼ガスは膨張行程の終了時および圧縮行程の開始時に交換される。それゆえピストンの膨張行程、つまりピストンの上死点から下死点への下降運動は非常に短く、燃焼時に発生するエネルギーは限定的にのみ利用可能である。   In the prior art, in the case of the two-cycle system as described above, the combustion gas is exchanged without rotating the crankshaft, and the combustion gas is exchanged at the end of the expansion stroke and at the start of the compression stroke. Therefore, the expansion stroke of the piston, that is, the downward movement from the top dead center to the bottom dead center of the piston is very short, and the energy generated during combustion can be used only in a limited manner.

本発明に係る燃焼ガス交換(掃気)方法では従来技術とは異なり、ピストンの下死点から上死点への上昇運動(つまり圧縮行程において)が専ら上半分で終了することによって、膨張行程を圧縮行程よりもかなり長く構成できる。それによって、効率が向上する。シリンダ内部空間のジオメトリは効果的な掃気プロセスに関して大幅に改善されている。すなわち、ジオメトリが単純になったため、掃気の質が明らかに改善され、外気フローおよび排気フローの形成に関して費用のかかる措置を講じる必要がなくなった。   In the combustion gas exchange (scavenging) method according to the present invention, unlike the prior art, the upward movement from the bottom dead center to the top dead center of the piston (that is, in the compression stroke) is completed only in the upper half. It can be configured much longer than the compression stroke. Thereby, the efficiency is improved. The geometry of the cylinder interior is greatly improved with respect to an effective scavenging process. That is, the simplicity of the geometry has clearly improved the quality of the scavenging and eliminates the need to take expensive steps with respect to the formation of outside air flow and exhaust flow.

従来技術とは異なり、好適には燃焼ガス交換(掃気)はやはり、ピストンの下死点から上死点への上昇運動(つまり圧縮行程において)の上半分で開始する。さらに好適な構成では、シリンダ内部空間はガス交換(掃気)の間、ピストン軸に関して高さよりも幅が大きい。   Unlike the prior art, the combustion gas exchange (scavenging) preferably again starts in the upper half of the piston from the bottom dead center to the top dead center (i.e. in the compression stroke). In a further preferred configuration, the cylinder interior space is wider than its height with respect to the piston axis during gas exchange (scavenging).

個々の従属請求項には、本発明の適切なさらなる構成が記載されている。本発明の実施例については、以下に図を用いて詳細に説明するが、全体の発明思想が限定されることはない。   Appropriate further configurations of the invention are described in the individual dependent claims. Embodiments of the present invention will be described in detail below with reference to the drawings, but the overall inventive idea is not limited.

2サイクルエンジンにおける本発明に係るガス交換(掃気)方法の各ステップは、図1に左から右へ1から5の順で記載されている。   Each step of the gas exchange (scavenging) method according to the present invention in a two-cycle engine is described in the order of 1 to 5 from left to right in FIG.

2サイクルエンジンにおける本発明に係るガス交換(掃気)方法の各ステップを示す図である。It is a figure which shows each step of the gas exchange (scavenging) method which concerns on this invention in a 2-cycle engine.

参照符号2は、通常、コネティングロッドを介してクランクシャフトに連結されたピストンを示している。当該ピストンはシリンダ1内を上下に滑りながら移動し、シリンダヘッド10に対して、体積を変化させながらシリンダ内部空間11を密閉する。当該シリンダ内部空間11には、吸気弁3によって制御された吸気管ならびに排気弁4によって制御された排気管が通じている。弁3および4は、それ自身知られた方法で、カムシャフトによって動作させられるが、4サイクルエンジンのカムシャフトとは異なり、クランクシャフトと同じ回転数で回転する。   Reference numeral 2 generally indicates a piston connected to the crankshaft via a connecting rod. The piston moves while sliding up and down in the cylinder 1 and seals the cylinder internal space 11 with respect to the cylinder head 10 while changing the volume. The cylinder internal space 11 communicates with an intake pipe controlled by the intake valve 3 and an exhaust pipe controlled by the exhaust valve 4. The valves 3 and 4 are actuated by camshafts in a manner known per se, but unlike the camshafts of 4-cycle engines, they rotate at the same speed as the crankshaft.

吸気弁3を介して流入する未燃焼ガスもしくは外気を、可能な限り良好にシリンダ内部空間11を貫流させるため、かつ、排気弁4が開放されている場合に、先行行程(図1の1番)で燃焼したガスの排気と多くは混合させずに、当該排気を可能な限り完全にシリンダ内部空間11から強制排出するためには、特別な措置を講じなければならない。特別な措置としては、例えば過給システムによって吸気圧を上昇させることが考えられる。当該過給システムは排気ターボチャージャ、あるいはコンプレッサーとして構成され得るが、ここではこれ以上の説明を行わない。   In order to allow unburned gas or outside air flowing in through the intake valve 3 to flow through the cylinder internal space 11 as well as possible and when the exhaust valve 4 is opened, the preceding stroke (No. 1 in FIG. In order to forcibly exhaust the exhaust gas from the cylinder inner space 11 as completely as possible without mixing much with the exhaust gas of the gas burned in step), special measures must be taken. As a special measure, for example, it is conceivable to increase the intake pressure by a supercharging system. The supercharging system can be configured as an exhaust turbocharger or a compressor, but will not be described further here.

このとき、エンジンの大きさに応じて、それぞれ複数の吸排気弁3,4をシリンダヘッド10に設置することが可能であり、当該複数の吸排気弁によって、相応に広範囲で吸排気が行われる。   At this time, a plurality of intake / exhaust valves 3 and 4 can be installed in the cylinder head 10 according to the size of the engine, and intake and exhaust are performed in a correspondingly wide range by the plurality of intake / exhaust valves. .

OTはピストン2の上死点、UTは下死点を示している。   OT indicates the top dead center of the piston 2, and UT indicates the bottom dead center.

図1には本発明をより明確にするために、直径32cmのピストンの許容行程が44cmであるシリンダ1を有する2サイクルエンジンを例示した。   In order to make the present invention clearer, FIG. 1 illustrates a two-cycle engine having a cylinder 1 in which an allowable stroke of a piston having a diameter of 32 cm is 44 cm.

図1の1番は、膨張行程(矢印8)もしくはいわゆる爆発行程を示している。当該行程においては、ピストン2は上死点から下死点に移動し、吸排気弁3,4は閉止したままである。   No. 1 in FIG. 1 indicates an expansion stroke (arrow 8) or a so-called explosion stroke. In the stroke, the piston 2 moves from the top dead center to the bottom dead center, and the intake / exhaust valves 3 and 4 remain closed.

図1の2番は下死点に位置するピストン2を示している。しかしながら矢印9は、ピストン2の下死点から上死点への上昇運動が開始するということを示しており、上昇運動9の間、排気弁4は開放されており(A)、吸気弁3はいまだ閉止したままである。このとき、排気ガスはその圧力が背圧近くになるまで膨張する。   The number 2 in FIG. 1 indicates the piston 2 located at the bottom dead center. However, the arrow 9 indicates that the upward movement from the bottom dead center to the top dead center of the piston 2 starts. During the upward movement 9, the exhaust valve 4 is opened (A), and the intake valve 3 Yes it is still closed. At this time, the exhaust gas expands until its pressure is close to the back pressure.

図1の3番は、シリンダ内部空間11を区切るピストン2の上面を示したもので、このとき上昇運動9は上死点から9.2cmの位置にある。すなわち、シリンダ内部空間は9.2cmの高さを有する。当該位置において、ピストン2は吸気弁3を開放(B)する。つまり、ピストン2の下死点から上死点への上昇運動9が約25%を残している位置は、下死点から上死点への上昇運動9(上死点から下死点への下降運動8も同様)が180°のクランク角を有するということを考えると、上死点から約54°のクランク角に相当する良い近似であり、当該位置において吸気弁3は、すでに開放されている排気弁4と同じく開放される。圧力下で流入する外気もしくは未燃焼ガスは排気ガスを押し出し、部分的に未燃焼ガスと排気との混合が生じ、外気もしくは混合ガスの一部は排気弁を介して漏出する。外気フロー6と排気フロー7は、吸気弁6から排気弁7へ向かって、シリンダ内部空間11の全幅に渡りU字のフローを形成する。   No. 3 in FIG. 1 shows the upper surface of the piston 2 that divides the cylinder internal space 11. At this time, the ascending motion 9 is at a position 9.2 cm from the top dead center. That is, the cylinder internal space has a height of 9.2 cm. In this position, the piston 2 opens (B) the intake valve 3. That is, the position where the upward movement 9 from the bottom dead center to the top dead center of the piston 2 remains about 25% is the upward movement 9 from the bottom dead center to the top dead center (from the top dead center to the bottom dead center). Considering that the descending motion 8 has a crank angle of 180 °, it is a good approximation corresponding to a crank angle of about 54 ° from the top dead center, and the intake valve 3 is already opened at that position. The same as the exhaust valve 4 is opened. The outside air or unburned gas flowing in under pressure pushes out the exhaust gas, and the unburned gas and the exhaust gas are partially mixed, and part of the outside air or mixed gas leaks through the exhaust valve. The outside air flow 6 and the exhaust flow 7 form a U-shaped flow from the intake valve 6 toward the exhaust valve 7 over the entire width of the cylinder internal space 11.

図1の4番は、上昇運動9を行うピストン2を示したもので、ピストン2の上面は上死点から7.2cmの位置にある。すなわち、シリンダ内部空間11は7.2cmの高さを有する。当該位置において、ピストン2は排気弁4を閉止(C)する。つまり、ピストン2の下死点から上死点までの上昇運動を約16%残した位置、上述の例と同様に上死点から約48°のクランク角に相当する良い近似において、吸気弁3はいまだ開放されているが、排気弁4は閉止される。その結果、上昇した給気圧を受けた外気は流入を続け、シリンダ内部空間11に充満する。いまだ開放されている吸気弁3を介して、予備圧縮されたガスがさらにシリンダ内に押し込められ、それによってシリンダでは強力な過給が生じる。   No. 4 in FIG. 1 shows the piston 2 that performs the ascending motion 9, and the upper surface of the piston 2 is at a position 7.2 cm from the top dead center. That is, the cylinder inner space 11 has a height of 7.2 cm. In this position, the piston 2 closes the exhaust valve 4 (C). That is, in a good approximation corresponding to a crank angle of about 48 ° from the top dead center in the same manner as in the above-described example, the intake valve 3 is located at a position where about 16% of the upward movement from the bottom dead center to the top dead center is left. Yes, it is still open, but the exhaust valve 4 is closed. As a result, the outside air that has received the increased supply air pressure continues to flow and fills the cylinder internal space 11. Via the intake valve 3 which is still open, the precompressed gas is pushed further into the cylinder, which causes a strong supercharging in the cylinder.

図1の5番は、上昇運動9を行うピストン2を示したもので、ピストン2の上面は上死点から4.2cmの位置にある。すなわち、シリンダ内部空間11は4.2cmの高さを有する。ピストン2の当該位置において、吸気弁3も閉止(D)する。すなわち、ピストン2の下死点から上死点までの上昇運動を約10%残した位置、上述の例と同様に上死点から約36°のクランク角に相当する位置において、吸気弁3は再び閉止される。   No. 5 in FIG. 1 shows the piston 2 that performs the ascending motion 9, and the upper surface of the piston 2 is 4.2 cm from the top dead center. That is, the cylinder inner space 11 has a height of 4.2 cm. At the corresponding position of the piston 2, the intake valve 3 is also closed (D). That is, the intake valve 3 is located at a position where approximately 10% of the upward movement from the bottom dead center to the top dead center of the piston 2 remains, ie, at a position corresponding to a crank angle of about 36 ° from the top dead center as in the above example. It is closed again.

図1右端の1番は、圧縮行程が実際に再開されるステップを示している。すなわち、吸気弁3は上死点の直前で閉止すると、ピストン2は、点火プラグあるいはディーゼル燃料の噴射によって、下死点で点火が行われるまでガスを圧縮し続ける。右端の1番では左端の1番と同じく、上死点から下死点への下降運動8が示されている。下降運動8が行われている間、吸排気弁3,4は閉止したままである。   1 at the right end of FIG. 1 shows a step in which the compression stroke is actually resumed. That is, when the intake valve 3 is closed immediately before top dead center, the piston 2 continues to compress gas until ignition is performed at bottom dead center by injection of a spark plug or diesel fuel. The number 1 on the right end shows the downward movement 8 from the top dead center to the bottom dead center, similarly to the number 1 on the left end. While the downward movement 8 is performed, the intake and exhaust valves 3 and 4 remain closed.

これら全てのステップ、すなわち吸排気弁3,4の特別な制御は、外気フロー6を形成するのに資するものである。前記外気フロー6は短い時間で、つまり掃気に利用できるクランク角の領域内で、シリンダ11内に存在する排気を、開放された排気弁4を介して、排気フロー7によって、排気管に押し出すことが可能である。   All these steps, ie the special control of the intake and exhaust valves 3, 4, contribute to the formation of the outside air flow 6. The outside air flow 6 pushes the exhaust gas existing in the cylinder 11 to the exhaust pipe by the exhaust gas flow 7 through the open exhaust valve 4 in a short time, that is, in the region of the crank angle that can be used for scavenging. Is possible.

開示された実施例では、ガス交換(掃気)は全てシリンダ内部空間11において行われる。当該シリンダ内部空間11の全幅は常に32cmだが、高さは9.2cmと7.2cmとの間で変化している。つまり、シリンダ内部空間11は、ガス交換(掃気)が行われている間、ピストン軸に関して常に高さよりも幅が大きい。   In the disclosed embodiment, all gas exchange (scavenging) takes place in the cylinder interior space 11. The overall width of the cylinder internal space 11 is always 32 cm, but the height varies between 9.2 cm and 7.2 cm. In other words, the cylinder inner space 11 is always larger than the height with respect to the piston shaft during gas exchange (scavenging).

さらに、前記ガス交換(掃気)は、ピストン2の下死点から上死点への上昇運動9の上から3分の1の部分で開始し、終了する。   Furthermore, the gas exchange (scavenging) starts and ends at the upper third of the upward movement 9 from the bottom dead center to the top dead center of the piston 2.

本発明のさらなる好適な実施例では、複数のセンサから成る制御回路と、少なくとも1つのアクチュエータとを用いて、吸気圧レベルに応じて排気圧レベルが制御される。   In a further preferred embodiment of the invention, the exhaust pressure level is controlled in response to the intake pressure level using a control circuit comprising a plurality of sensors and at least one actuator.

単純な構成では、前記エンジンには、吸気弁3の前および排気弁4の後に、圧力レベルを検知するためのセンサをそれぞれ少なくとも1つ有している、十分に知られた制御回路が備えられており、前記複数のセンサは、特性曲線の比較と制御回路とによって、アクチュエータと情報交換を行う。当該アクチュエータは、知られている方法で、制御プロセスによって作動可能である。つまり、実施例においては、圧力は掃気を一定に保つために、特定の大きさになるように制御される。   In a simple configuration, the engine is provided with a well-known control circuit having at least one sensor for detecting the pressure level before the intake valve 3 and after the exhaust valve 4. The plurality of sensors exchange information with the actuator by comparing characteristic curves and a control circuit. The actuator can be actuated by a control process in a known manner. In other words, in the embodiment, the pressure is controlled to be a specific magnitude in order to keep scavenging constant.

好適には、吸気圧レベルと排気圧レベルとの比は一定に保たれる。   Preferably, the ratio between the intake pressure level and the exhaust pressure level is kept constant.

アクチュエータとしては、吸気圧レベルを制御するための吸気弁3に向かうフローに配設される絞り弁、あるいは可変タービンジオメトリ、あるいは排気圧レベルを制御するための過給システムの排気逃し弁が使用可能である。   As an actuator, a throttle valve arranged in the flow toward the intake valve 3 for controlling the intake pressure level, a variable turbine geometry, or an exhaust relief valve of the supercharging system for controlling the exhaust pressure level can be used. It is.

好適には、負荷制御は排気圧レベルの制御によって行われうる。負荷制御によって、エンジンの出力が半分の場合に、全負荷の場合と同じ圧縮比が有効となる。もちろん、排気圧レベルを制御するためのアクチュエータとして、排気管に絞り弁を使用することも可能である。   Preferably, the load control can be performed by controlling the exhaust pressure level. With the load control, when the engine output is half, the same compression ratio as in the case of full load becomes effective. Of course, it is also possible to use a throttle valve in the exhaust pipe as an actuator for controlling the exhaust pressure level.

さらなる好適な実施例では、シリンダ1内部におけるエンジンの排気再循環(EGR)は、吸気圧レベルに応じた排気圧レベルの制御によって影響を受ける可能性があるため、排気再循環(EGR)は負荷制御あるいは燃料ガスの予熱に利用され、それによって、制御された排気圧レベルに応じて、高温の排気も意図的にシリンダ内部空間11に残されることが可能である。   In a further preferred embodiment, the exhaust gas recirculation (EGR) within the cylinder 1 can be influenced by the control of the exhaust pressure level in response to the intake pressure level, so that the exhaust gas recirculation (EGR) is a load. Depending on the controlled exhaust pressure level, high temperature exhaust can also be intentionally left in the cylinder interior space 11 for control or preheating of the fuel gas.

ガス交換(掃気)時には約40%の排気がシリンダ内部空間11に残存している。すなわち、外気フロー6によって掃気される排気フロー7は、排気全体積の約60%を含んでいる。それゆえ、内部での排気再循環(EGR)は、エンジン出力に関して、圧力レベル制御の影響を受ける可能性がある。このとき基準となるのは、排気ガス圧力の未燃焼ガス圧力に対する比である。上記の方法によって、掃気時の損失が低減される。   At the time of gas exchange (scavenging), about 40% of exhaust remains in the cylinder inner space 11. That is, the exhaust flow 7 scavenged by the outside air flow 6 includes about 60% of the total exhaust volume. Therefore, internal exhaust gas recirculation (EGR) can be affected by pressure level control with respect to engine power. At this time, the reference is the ratio of the exhaust gas pressure to the unburned gas pressure. By the above method, loss during scavenging is reduced.

1 シリンダ
2 ピストン
3 吸気弁
4 排気弁
5 噴射ノズルもしくは点火装置
6 外気フロー
7 排気フロー
8 ピストンの上死点から下死点への下降運動
9 ピストンの下死点から上死点への上昇運動
10 シリンダヘッド
11 シリンダ内部空間
OT 上死点
UT 下死点
A 排気弁の開放
B 吸気弁の開放
C 排気弁の閉止
D 吸気弁の閉止
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Piston 3 Intake valve 4 Exhaust valve 5 Injection nozzle or ignition device 6 Outside air flow 7 Exhaust flow 8 The downward movement from the top dead center of the piston to the bottom dead center 9 The upward movement from the bottom dead center of the piston to the top dead center 10 Cylinder head 11 Cylinder internal space OT Top dead center UT Bottom dead center A Open exhaust valve B Open intake valve C Close exhaust valve D Close intake valve

Claims (13)

シリンダヘッド(10)に設置された少なくとも1つの吸気弁および排気弁(3,4)が各シリンダ(1)に配設されている過給式2サイクルエンジンにおける燃焼ガス交換(掃気)方法であって、
当該方法では、前記シリンダ(1)内のピストン(2)は上死点(OT)と下死点(UT)との間で往復運動を行い、前記シリンダヘッド(10)に対して、体積を変化させながらシリンダ内部空間(11)を密閉し、前記ガス交換(掃気)は前記吸排気弁(3,4)によって制御され、吸気圧レベルは過給システムによって、排気圧レベルよりも引き上げられる方法において、
前記ガス交換(掃気)が、前記ピストンの下死点(UT)から上死点(OT)への上昇運動(9)の上半分で終了することを特徴とする方法。
This is a combustion gas exchange (scavenging) method in a supercharged two-cycle engine in which at least one intake valve and exhaust valve (3, 4) installed in a cylinder head (10) are arranged in each cylinder (1). And
In this method, the piston (2) in the cylinder (1) reciprocates between the top dead center (OT) and the bottom dead center (UT), and the volume is increased with respect to the cylinder head (10). The cylinder internal space (11) is sealed while changing, the gas exchange (scavenging) is controlled by the intake / exhaust valves (3, 4), and the intake pressure level is raised by the supercharging system above the exhaust pressure level. In
Method according to claim 1, characterized in that the gas exchange (scavenging) ends in the upper half of the upward movement (9) from the bottom dead center (UT) to the top dead center (OT) of the piston.
前記ガス交換(掃気)が、前記ピストンの下死点(UT)から上死点(OT)への上昇運動(9)の上半分で開始することを特徴とする請求項1に記載の方法。   The method according to claim 1, characterized in that the gas exchange (scavenging) starts in the upper half of the ascending movement (9) from the bottom dead center (UT) to the top dead center (OT) of the piston. 前記ガス交換(掃気)が、前記ピストンの下死点(UT)から上死点(OT)への上昇運動(9)の上から3分の1で終了することを特徴とする請求項1に記載の方法。   2. The gas exchange (scavenging) is completed in one third from the top of the upward movement (9) from the bottom dead center (UT) to the top dead center (OT) of the piston. The method described. 前記ガス交換(掃気)が、前記ピストンの下死点(UT)から上死点(OT)への上昇運動(9)の上から3分の1で開始することを特徴とする請求項3に記載の方法。   4. The gas exchange (scavenging) starts at the top third of the upward movement (9) from the bottom dead center (UT) to the top dead center (OT) of the piston. The method described. 前記シリンダ内部空間(11)は、前記ガス交換(掃気)の間、ピストン軸に関して高さよりも幅が大きいことを特徴とする請求項1から4のいずれか一項に記載の方法。   5. The method according to claim 1, wherein the cylinder interior space has a width greater than a height with respect to a piston axis during the gas exchange (scavenging). 前記ピストン(2)の下死点(UT)から上死点(OT)への上昇運動(9)を約25%残した位置において、前記吸気弁(3)は、すでに開放されている排気弁(4)と同じく開放され、
前記ピストン(2)の下死点(UT)から上死点(OT)への上昇運動(9)を約16%残した位置において、前記吸気弁(3)は開放されたままで前記排気弁(4)は閉止され、前記吸気弁(3)は、前記ピストン(2)の下死点(UT)から上死点(OT)への上昇運動(9)を約10%残した位置において再び閉止され、吸排気弁(3,4)は、前記ピストン(2)の上死点(OT)から下死点(UT)への下降運動(8)が行われている間、閉止されたままであることを特徴とする請求項1に記載の方法。
The exhaust valve (3) is already opened at a position where approximately 25% of the upward movement (9) from the bottom dead center (UT) to the top dead center (OT) is left. It is opened like (4),
In the position where the upward movement (9) from the bottom dead center (UT) to the top dead center (OT) remains about 16%, the intake valve (3) remains open and the exhaust valve (3) remains open. 4) is closed, and the intake valve (3) is closed again at a position where about 10% of the upward movement (9) from the bottom dead center (UT) to the top dead center (OT) of the piston (2) remains. The intake / exhaust valves (3, 4) remain closed during the downward movement (8) from the top dead center (OT) to the bottom dead center (UT) of the piston (2). The method according to claim 1.
センサから成る制御回路およびアクチュエータによって、前記排気圧レベルは前記吸気圧レベルに応じて制御されることを特徴とする請求項1から6のいずれか一項に記載の方法。   The method according to any one of claims 1 to 6, wherein the exhaust pressure level is controlled in accordance with the intake pressure level by a control circuit comprising a sensor and an actuator. 吸気圧レベルと排気圧レベルとの比が一定に保たれることを特徴とする請求項7に記載の方法。   8. The method of claim 7, wherein the ratio between the intake pressure level and the exhaust pressure level is kept constant. アクチュエータとして、吸気弁(3)に向かうフローに配設される絞り弁が使用されることを特徴とする請求項7または8に記載の方法。   9. A method according to claim 7 or 8, characterized in that a throttle valve arranged in a flow towards the intake valve (3) is used as the actuator. 前記エンジンの負荷制御が、前記排気圧レベルの制御によって行われることを特徴とする請求項7または8に記載の方法。   9. The method according to claim 7, wherein the load control of the engine is performed by controlling the exhaust pressure level. アクチュエータとして、可変タービンジオメトリ、あるいは排気圧レベルを制御するためのターボチャージャという形式をとる過給システムの排気逃し弁が使用されることを特徴とする請求項7、8または10に記載の方法。   11. The method according to claim 7, 8 or 10, characterized in that the actuator is an exhaust relief valve of a supercharging system in the form of a variable turbine geometry or a turbocharger for controlling the exhaust pressure level. 前記排気圧レベルを制御するためのアクチュエータとして、排気管に絞り弁を使用することを特徴とする請求項7、8または10に記載の方法。   The method according to claim 7, wherein a throttle valve is used in an exhaust pipe as an actuator for controlling the exhaust pressure level. 前記シリンダ内部空間(11)における排気再循環(EGR)は、前記吸気圧レベルに応じた前記排気圧レベルの制御によって影響を受ける可能性があるため、前記内部における排気再循環(EGR)は負荷制御あるいは燃料ガスの予熱に利用可能であることを特徴とする請求項7から12のいずれか一項に記載の方法。   Since the exhaust gas recirculation (EGR) in the cylinder internal space (11) may be affected by the control of the exhaust pressure level according to the intake pressure level, the exhaust gas recirculation (EGR) in the interior is a load. 13. A method according to any one of claims 7 to 12, characterized in that it can be used for control or for preheating fuel gas.
JP2009058162A 2008-03-13 2009-03-11 Exchanging (scavenging) method for combustion gas of two stroke engine Pending JP2009222060A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008014249A DE102008014249A1 (en) 2008-03-13 2008-03-13 Process for the combustion gas exchange (purging) in a two-stroke internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009222060A true JP2009222060A (en) 2009-10-01

Family

ID=40510215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058162A Pending JP2009222060A (en) 2008-03-13 2009-03-11 Exchanging (scavenging) method for combustion gas of two stroke engine

Country Status (6)

Country Link
JP (1) JP2009222060A (en)
KR (1) KR20090098667A (en)
CN (1) CN101532419A (en)
AT (1) AT506447B1 (en)
DE (1) DE102008014249A1 (en)
FI (1) FI20095214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392734A (en) * 2011-10-21 2012-03-28 李永红 Method for controlling motion of cylinder piston of piston engine and device for implementing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041481A (en) 2018-09-11 2020-03-19 川崎重工業株式会社 Power generation system and propulsion device with the same
CN111896067B (en) * 2020-08-05 2022-04-12 中车青岛四方车辆研究所有限公司 Air cylinder, volume measurement system and volume measurement method
EP4253738B1 (en) 2022-03-31 2024-04-24 Martin Buchberger Method for operating a cyclically driven piston motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201312A (en) * 1987-02-16 1988-08-19 Toyota Motor Corp Two-cycle internal combustion engine
JPS63168221U (en) * 1987-04-24 1988-11-01
JPH06173724A (en) * 1992-12-14 1994-06-21 Mazda Motor Corp Scavenging device for engine
JPH0784847B2 (en) * 1985-11-06 1995-09-13 メルシオ−ル、ジャン、フレデリック Two-cycle internal combustion engine and operating method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE320397C (en) * 1914-01-20 1920-04-16 Louis Renault Two-stroke internal combustion engine with a pump cylinder arranged parallel to the combustion cylinder without harmful space
FR2308792A2 (en) * 1975-04-24 1976-11-19 France Etat IMPROVEMENTS TO INSTALLATIONS WITH SUPERCHARGED INTERNAL COMBUSTION ENGINE, ESPECIALLY WITH SUPERCHARGED DIESEL ENGINE
FR2338385A1 (en) 1976-01-15 1977-08-12 Melchior Jean TWO STROKE INTERNAL COMBUSTION ENGINE IMPROVEMENTS
EP0169209A1 (en) * 1983-12-13 1986-01-29 LENAHAM, James Internal combustion engine
CA2194196A1 (en) * 1996-12-31 1998-06-30 Douglas Ayres Internal combustion engines utilizing complete unit charge air/fuel injection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784847B2 (en) * 1985-11-06 1995-09-13 メルシオ−ル、ジャン、フレデリック Two-cycle internal combustion engine and operating method thereof
JPS63201312A (en) * 1987-02-16 1988-08-19 Toyota Motor Corp Two-cycle internal combustion engine
JPS63168221U (en) * 1987-04-24 1988-11-01
JPH06173724A (en) * 1992-12-14 1994-06-21 Mazda Motor Corp Scavenging device for engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392734A (en) * 2011-10-21 2012-03-28 李永红 Method for controlling motion of cylinder piston of piston engine and device for implementing method

Also Published As

Publication number Publication date
DE102008014249A1 (en) 2009-09-24
CN101532419A (en) 2009-09-16
FI20095214A (en) 2009-09-14
FI20095214A0 (en) 2009-03-04
AT506447B1 (en) 2010-08-15
AT506447A1 (en) 2009-09-15
KR20090098667A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
US7201121B2 (en) Combustion engine including fluidically-driven engine valve actuator
US20120227397A1 (en) Gaseous fuel-powered engine system having turbo-compounding
EP2354499B1 (en) Method for scavenging residual burnt gas in a supercharged direct-injection internal combustion engine operating at partial loads.
JP2009216084A (en) Residual burnt gas scavenging method with double intake valve lift in direct-injection supercharged internal-combusion engine, notably of diesel type
JP2013510261A (en) Two-stroke internal combustion engine with variable compression ratio and exhaust port shutter and method of operating such an engine
WO2016150231A1 (en) Internal combustion engine having variable volume combustion chamber and auxiliary piston
US7730874B2 (en) Method for controlling a supercharged engine, particularly an indirect injection engine, and engine using such a method
EP3596329B1 (en) Internal combustion engine and method for controlling such an internal combustion engine
JP4944131B2 (en) Two-cycle internal combustion engine with variable compression ratio and exhaust port shutter
JP2009222060A (en) Exchanging (scavenging) method for combustion gas of two stroke engine
WO2013111648A1 (en) Six-cycle engine having scavenging stroke
JP2013238246A (en) Operating method for two-stroke and large-sized diesel engine scavenging air in longitudinal direction, and large-sized diesel engine scavenging air in longitudinal direction
EP2077380B1 (en) Engine system having valve actuated particle filter regeneration
US7318314B2 (en) Method of controlling a supercharged internal-combustion engine with at least two cylinders and engine using such a method
JP2820793B2 (en) Reciprocating engine with pump cylinder and power cylinder
KR101475834B1 (en) Method for operating a large, crosshead reciprocating piston internal combustion engine and suitable such engine
GB2425808A (en) Supercharged two-stroke engine with separate direct injection of air and fuel
RU2316658C1 (en) Diesel engine
JP3261328B2 (en) Variable cycle internal combustion engine
GB2264333A (en) Compound expansion i.c.piston engine.
KR102638479B1 (en) Method in 2-stroke engine and 2-stroke engine
CN111094724B (en) Internal combustion engine and method for controlling such an internal combustion engine
WO2015015508A2 (en) Fixed piston, moving cylinder 2 stroke i c engine. with super charging annular chamber
WO2021198551A1 (en) A two-stroke engine
KR20190120369A (en) Optional cycle engine with side valve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802