EP0169209A1 - Internal combustion engine - Google Patents

Internal combustion engine

Info

Publication number
EP0169209A1
EP0169209A1 EP19840902571 EP84902571A EP0169209A1 EP 0169209 A1 EP0169209 A1 EP 0169209A1 EP 19840902571 EP19840902571 EP 19840902571 EP 84902571 A EP84902571 A EP 84902571A EP 0169209 A1 EP0169209 A1 EP 0169209A1
Authority
EP
European Patent Office
Prior art keywords
cylinder
transfer
crankshaft
engine
fuel mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19840902571
Other languages
German (de)
French (fr)
Inventor
James Lenaham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0169209A1 publication Critical patent/EP0169209A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • F02B33/22Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with pumping cylinder situated at side of working cylinder, e.g. the cylinders being parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Definitions

  • This invention relates to improvements in internal combustion engines.
  • the present invention resides in a two-cylinder internal combustion engine including: a crankcase having a crankshaft rotatably mounted therein and fitted with a cylinder head assembly; a first (or “pumping") cylinder and a second
  • the first cylinder may have a greater capacity than the second cylinder to "supercharge" the air/fuel mixture entering the second cylinder.
  • the transfer port may be closed at each end by respective transfer valves, where the transfer valve adjacent the first cylinder may close before the valve adjacent the second cylinder.
  • the present invention resides in a multi-cylinder engine having two or more pairs of cylinders as hereinbefore described.
  • FIG. 1 is a sectional side view of a first embodiment, being a two-cylinder engine
  • FIGS. 2 to 6 are schematic views showing the relative positions of the pistons and valves as the crankshaft completes one revolution
  • FIG. 7 is a schematic side view of an eight cylinder engine, having four pairs of cylinders.
  • the engine 10 is of the overhead cam shaft type having an engine block with a crankcase 11 supporting a crankshaft 12, with aligned crankpins 13, in suitable bearings 14.
  • a flywheel 15 is mounted on one end of the crankshaft 12, while a cambelt pulley 16 and crankpulley 17 are mounted at the other end of the crankshaft.
  • a pair of cylidners 18, 19 are provided in the engine block and each is provided with a piston 20, 21 connected to respective crankpins 13 by connecting rods 22. As can be clearly seen, the pistons move up and down in the cylinders in unison as the crankshaft 12 is rotated.
  • a cylinder head assembly 23 is mounted on top of the engine block to close the cylinders 18, 19.
  • a camshaft 24 is mounted in bearings 25 in the head assembly and is driven by a cam belt 26 via a pulley 27, the cam belt being tensioned by an idler pulley 28.
  • the cam shaft operates to open and close a pair of valves in each cylinder 18, 19, via cam followers 29 and valve springs 30.
  • An intake port 31 in the head assembly 23 is connected at one end to an intake manifold (not shown) provided with a carburettor or fuel injection unit (not shown) which provides an air/fuel mixture to be burnt in the engine.
  • An intake valve 32 controlled by the camshaft 24, selectively allows the mixture to enter the first cylinder 18.
  • An exhaust port 33 is connected at one end to an exhaust manifold (not shown).
  • An exhaust valve 34 also controlled by the camshaft 24, selectively allows the exhaust gases to be expelled from the second cylinder 19.
  • a transfer port 35 interconnects the two cylinders, the port being selectively closed by first and second transfer valves 36, 37 controlled by the camshaft 24.
  • intake valve 32 opens the intake port 31 to enable the air/fuel mixture to be drawn into the cylinder as the piston moves towards bottom dead centre (BDC). Transfer valve 36 remains closed.
  • BDC bottom dead centre
  • the intake valve closes.
  • the transfer valves 36, 37 open to allow the non compressed mixture to be transferred to the second cylinder 19 via transfer port 35.
  • the transfer valves 36, 37 close, with valve 36 closing just before valve 37.
  • an eight cylinder engine has four pairs of cylinders 18, 19 indicated by pairs 1-4.
  • Each pair of cylinders has pistons 18, 19 connected by connecting rods 12 to a crankshaft 12a, supported in bearings 14, in the manner hereinbefore described.
  • the crankshaft has four pairs of aligned crankpins 13 where the crankpins 13 for one pair of cylinders are offset 90° from the crankpins 13 of the preceding and succeeding pairs of cylinders. Therefore, each pair of cylinders will compress and fire the air/ fuel mixture (in the manner hereinbefore described) for every revolution of the crankshaft and the overlapping firing strokes of the second cylinders 19 will ensure a smooth delivery of power.
  • the cylinder pairs operate in the order 1, 3, 4, 2 but this may be changed to e.g. 1, 2, 3, 4 if preferred.
  • the invention can also be applied to "Diesel” engines, where a fuel injection nozzle replaces the sparkplug 38 in the second cylinder 19.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

Un moteur à combustion interne (10) possède un vilebrequin (12) avec des manetons alignés (13) qui sont reliés aux pistons (20, 21) dans des cylindres respectifs (18, 19). Une soupape d'admission (32) assure la communication entre une lumière d'admission (31) et le cylindre "de pompage" (18) et une soupape d'échappement (34) fait communiquer le cylindre "de puissance" (19) avec la lumière d'échappement (33). Une lumière de transfert (35), commandée par des soupapes de transfert (36, 37) met en communication les deux cylindres (18, 19). A chaque tour du vilebrequin (12), le mélanger air/combustible est comprimé dans le cylindre "de pompage" (18) et est transféré au cylindre "de puissance" (19), via la lumière de transfert (35), pour l'allumage au moyen de la bougie (38) lors de la course de puissance du cylindre de puissance (19) lors du tour suivant du vilebrequin (12).An internal combustion engine (10) has a crankshaft (12) with aligned crank pins (13) which are connected to the pistons (20, 21) in respective cylinders (18, 19). An intake valve (32) provides communication between an intake lumen (31) and the "pumping" cylinder (18) and an exhaust valve (34) communicates the "power" cylinder (19) with the exhaust light (33). A transfer light (35), controlled by transfer valves (36, 37) connects the two cylinders (18, 19). At each revolution of the crankshaft (12), the air / fuel mixture is compressed in the "pumping" cylinder (18) and is transferred to the "power" cylinder (19), via the transfer light (35), for the ignition by means of the spark plug (38) during the power stroke of the power cylinder (19) during the next turn of the crankshaft (12).

Description

Title; "INTERNAL COMBUSTION ENGINE"
BACKGROUND OF THE INVENTION
(1) Field of the Invention
This invention relates to improvements in internal combustion engines.
(2) Prior Art
Many proposals have been advanced in the past to improve the efficiency of normally aspirated (i.e. non-turbocharged /non-supercharged) four stroke internal combustion engines. For example, Australian Patent Application No. 91386/82 (Thompson) and Australian Patent No. 512069 (Kee) both disclose parallel-twin engines where the air/fuel mixture is compressed in the crankcase similar to a two-stroke engine. Australian Patent No. 213330 (Hammick) discloses a two-cylinder engine where the second piston is connected to a crankshaft geared at a ratio of 2 : 1 to the crankshaft of the first piston to give a complex stroke pattern for the two cylinders. Australian Patent No. 19315/34 (Groves) discloses a two-cylinder engine with common combustion chambers with the pistons connected to offset crankpins to extend the overall time of the power stroke. All these engines are fairly complex and none appear to have ever reached commercial manufacture.
SUMMARY OF THE PRESENT INVENTION It is an object of the present invention to provide an engine having at least one pair of cylinders where a firing stroke occurs for every revolution of the crankshaft.
It is a preferred object to provide an engine where the incoming air/fuel mixture is compressed in one cylinder and is ignited (or fired) in the second cylinder. It is a further preferred object to provide an engine where the first cylinder can have a greater capacity than the second cylinder to pressurize (or "supercharge") the second cylinder.
Other preferred objects of the present invention will become apparent from the following description.
In one aspect the present invention resides in a two-cylinder internal combustion engine including: a crankcase having a crankshaft rotatably mounted therein and fitted with a cylinder head assembly; a first (or "pumping") cylinder and a second
(or "power") cylinder in the crankcase; a piston in each cylinder connected to aligned crankpins on the crankshaft; an intake port in the cylinder head assembly connected to the first cylinder and closable by an intake valve; an exhaust port in the cylinder head connected to the second cylinder and closable by an exhaust valve; and a transfer port in the cylinder head assembly interconnecting the first and second cylinder and closable by a transfer valve; and spark ignition means in the second cylinder; so arranged that : on each revolution of the crankshaft, the incoming air/fuel mixture enters and is compressed in the first cylinder and is transferred to the second cylinder for ignition and exhaust on the next revolution of the crankshaft. The first cylinder may have a greater capacity than the second cylinder to "supercharge" the air/fuel mixture entering the second cylinder.
The transfer port may be closed at each end by respective transfer valves, where the transfer valve adjacent the first cylinder may close before the valve adjacent the second cylinder.
In a second aspect, the present invention resides in a multi-cylinder engine having two or more pairs of cylinders as hereinbefore described. BRIEF DESCRIPTION OF THE DRAWINGS
To enable the invention to be fully understood preferred embodiments will now be described with reference to the accompanying drawings in which:
FIG. 1 is a sectional side view of a first embodiment, being a two-cylinder engine;
FIGS. 2 to 6 are schematic views showing the relative positions of the pistons and valves as the crankshaft completes one revolution; and
FIG. 7 is a schematic side view of an eight cylinder engine, having four pairs of cylinders.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, the engine 10 is of the overhead cam shaft type having an engine block with a crankcase 11 supporting a crankshaft 12, with aligned crankpins 13, in suitable bearings 14. A flywheel 15 is mounted on one end of the crankshaft 12, while a cambelt pulley 16 and crankpulley 17 are mounted at the other end of the crankshaft.
A pair of cylidners 18, 19 are provided in the engine block and each is provided with a piston 20, 21 connected to respective crankpins 13 by connecting rods 22. As can be clearly seen, the pistons move up and down in the cylinders in unison as the crankshaft 12 is rotated. A cylinder head assembly 23 is mounted on top of the engine block to close the cylinders 18, 19. A camshaft 24 is mounted in bearings 25 in the head assembly and is driven by a cam belt 26 via a pulley 27, the cam belt being tensioned by an idler pulley 28. The cam shaft operates to open and close a pair of valves in each cylinder 18, 19, via cam followers 29 and valve springs 30.
An intake port 31 in the head assembly 23 is connected at one end to an intake manifold (not shown) provided with a carburettor or fuel injection unit (not shown) which provides an air/fuel mixture to be burnt in the engine. An intake valve 32, controlled by the camshaft 24, selectively allows the mixture to enter the first cylinder 18. An exhaust port 33 is connected at one end to an exhaust manifold (not shown). An exhaust valve 34, also controlled by the camshaft 24, selectively allows the exhaust gases to be expelled from the second cylinder 19. A transfer port 35 interconnects the two cylinders, the port being selectively closed by first and second transfer valves 36, 37 controlled by the camshaft 24.
The operation of the engine will now be described.
The first cylinder 18
At, or just before top dead centre (TDC) of the piston 20 (FIG. 2), intake valve 32 opens the intake port 31 to enable the air/fuel mixture to be drawn into the cylinder as the piston moves towards bottom dead centre (BDC). Transfer valve 36 remains closed. At (FIG. 3), or just before BDC (FIG 4), the intake valve closes. As the piston now moves up towards TDC (FIG. 5), the air/fuel mixture is compressed until, just before TDC (FIG. 6), the transfer valves 36, 37 open to allow the non compressed mixture to be transferred to the second cylinder 19 via transfer port 35. At, or just after TDC the transfer valves 36, 37 close, with valve 36 closing just before valve 37. (Overlap between the opening of the intake valve 32 and transfer valve 36 ensures complete filling of the first cylinder 18 with the incoming air/ fuel mixture and assists the transfer of the compressed mixture through the transfer port 35). The second cylinder 19 As the piston 21 moves down from TDC (FIG. 2) the compressed air/fuel mixture enters the cylinder and is ignited by a sparkplug 38 (FIG. 3). The burning air/fuel pushes the piston down on a power stroke to BDC (FIG. 4). At or just after BDC (FIG. 5), the exhaust valve 34 opens and the now burnt gas is expelled out through the exhaust port 33 as the piston approaches TDC (FIG. 6), where the exhaust valve 34 closes and the transfer valves 36, 37 open to enable a fresh change to be transferred from the first cylinder 18. (Overlap between the opening of transfer valve 37 and closing of exhaust valve 34 to ensure the incoming air/fuel mixture assists the scavenging of the exhaust gases from cylinder 19). For each rotation of the crankshaft, the first cylinder 18 undergoes an intake stroke and a compression stroke and the second cylinder undergoes a power stroke and exhaust stroke of the mixture compressed in the first cylinder in the previous rotation of the cranshaft. By making first cylinder 18 larger than the second cylinder 19, the air/fuel mixture will be "supercharged" to further improve the efficiency of the engine.
While a pair of transfer valves 36, 37 are shown, only one is required, this being preferably provided at the second-cylinder end of the transfer port to reduce the combustion chamber capacity (and thereby increase the compression ratio of the second cylinder) than if provided at the first cylinder end of the transfer port. Referring now to FIG. 7, an eight cylinder engine has four pairs of cylinders 18, 19 indicated by pairs 1-4. Each pair of cylinders has pistons 18, 19 connected by connecting rods 12 to a crankshaft 12a, supported in bearings 14, in the manner hereinbefore described. The crankshaft has four pairs of aligned crankpins 13 where the crankpins 13 for one pair of cylinders are offset 90° from the crankpins 13 of the preceding and succeeding pairs of cylinders. Therefore, each pair of cylinders will compress and fire the air/ fuel mixture (in the manner hereinbefore described) for every revolution of the crankshaft and the overlapping firing strokes of the second cylinders 19 will ensure a smooth delivery of power.
In the engine 50, the cylinder pairs operate in the order 1, 3, 4, 2 but this may be changed to e.g. 1, 2, 3, 4 if preferred.
It will be readily apparent to the skilled addressee that the invention can be applied to any engines having 2n cylinders (where n = integral number) and to overhead valve (OHV) as well as overhead cam (OHC) engines. The invention can also be applied to "Diesel" engines, where a fuel injection nozzle replaces the sparkplug 38 in the second cylinder 19.
Various changes and modifications may be made to the embodiments described without departing from the scope of the present invention.

Claims

1. A two-cylinder internal combustion engine including : a crankcase having a crankshaft rotatably mounted therein and fitted with a cylinder head assembly; a first (or "pumping") cylinder and a second (or "power") cylinder in the crankcase; a piston in each cylinder connected to aligned crankpins on the crankshaft; an intake port in the cylinder head assembly connected to the first cylinder and closable by an intake valve; an exhaust port in the cylinder head connected to the second cylinder and closable by an exhaust valve; and a transfer port in the cylinder head assembly interconnecting the first and second cylinder and closable by a transfer valve; and spark ignition means in the second cylinder; so arranged that : on each revolution of the crankshaft, the incoming air/fuel mixture enters and is compressed in the first cylinder and is transferred to the second cylinder for ignition and exhaust on the next revolution of the crankshaft.
2. An engine as claimed in claim 1 wherein: the first cylinder has a greater capacity than the second cylinder to "supercharge" the air/fuel mixture entering the second cylinder.
3. An engine as claimed in Claim 1 or Claim 2 wherein : the transfer port is closed at each end by respective transfer valves, where the transfer valve adjacent the first cylinder closes before the transfer valve adjacent the second cylinder.
4. An engine as claimed in Claim 3 wherein: the opening of the intake valve and the transfer valve adjacent the first cylinder overlap to ensure complete filling of the first cylinder by the incoming air/fuel mixture and to assist the transfer of the already compressed air /fuel mixture from the first cylinder through the transfer port to the second cylinder.
5. An engine as claimed in Claim 3 wherein : the opening of the exhaust valve and the transfer valve adjacent the second cylinder overlap to enable the compressed air/fuel mixture entering the second cylinder to assist the scavenging of the exhaust gases from the second cylinder.
6. A multiple cylinder engine having two or more pairs of cylinders as claimed in any one of Claims
1 to 5 wherein the aligned pairs of crankpins are equally angularly spaced to provide an equal period between the firing of the second cylinders in each pair of cylinders for each revolution of the crankshaft.
EP19840902571 1983-12-13 1984-06-26 Internal combustion engine Withdrawn EP0169209A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU283083 1983-12-13
AU2830/83 1983-12-13

Publications (1)

Publication Number Publication Date
EP0169209A1 true EP0169209A1 (en) 1986-01-29

Family

ID=3693325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840902571 Withdrawn EP0169209A1 (en) 1983-12-13 1984-06-26 Internal combustion engine

Country Status (2)

Country Link
EP (1) EP0169209A1 (en)
WO (1) WO1985002655A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2194196A1 (en) * 1996-12-31 1998-06-30 Douglas Ayres Internal combustion engines utilizing complete unit charge air/fuel injection
ES2163970B1 (en) * 1998-03-24 2003-02-16 Toro Aguilera Antonio Del ASSISTED CYCLE EXPLOSION MOTOR.
DE102008014249A1 (en) * 2008-03-13 2009-09-24 Man Diesel Se Process for the combustion gas exchange (purging) in a two-stroke internal combustion engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE320397C (en) * 1914-01-20 1920-04-16 Louis Renault Two-stroke internal combustion engine with a pump cylinder arranged parallel to the combustion cylinder without harmful space
US1372216A (en) * 1919-03-12 1921-03-22 James O Casaday Internal-combustion engine
US1473486A (en) * 1922-03-03 1923-11-06 Ambrose E Elliott Internal-combustion engine
FR550314A (en) * 1922-04-19 1923-03-03 Explosion or combustion engine
US1609371A (en) * 1923-08-17 1926-12-07 Leissner Harry Ferdinand Internal-combustion engine
FR573900A (en) * 1923-11-28 1924-07-02 Two-stroke engine
US1583668A (en) * 1924-01-14 1926-05-04 Morgan W Davidson 2-cycle internal-combustion engine
US1819825A (en) * 1928-10-22 1931-08-18 Guy R Poyer Internal combustion engine
DE559214C (en) * 1930-04-10 1932-09-17 Eduardo Ceballos Two-stroke explosion engine
FR712160A (en) * 1931-01-10 1931-09-26 Combustion engine
FR801861A (en) * 1936-02-13 1936-08-20 Two-stroke engine
US3623463A (en) * 1969-09-24 1971-11-30 Gerrit De Vries Internal combustion engine
US3675630A (en) * 1970-07-02 1972-07-11 Cleo C Stratton Engine
US3880126A (en) * 1973-05-10 1975-04-29 Gen Motors Corp Split cylinder engine and method of operation
AU2228483A (en) * 1982-12-10 1984-06-14 Berlingeri, Placido Peter Internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8502655A1 *

Also Published As

Publication number Publication date
WO1985002655A1 (en) 1985-06-20

Similar Documents

Publication Publication Date Title
US3485221A (en) Omnitorque opposed piston engine
US2639699A (en) Two-cycle engine and improved crankcase induction means therefor
US4169435A (en) Internal combustion engine and method
US5007384A (en) L-head two stroke engines
AU638720B2 (en) Reciprocating piston engine with pumping and power cylinders
US4658776A (en) Rotary valve internal combustion engine
US6467440B1 (en) Two stroke internal combustion engine
JP2820793B2 (en) Reciprocating engine with pump cylinder and power cylinder
US6098578A (en) Internal combustion engine with improved gas exchange
US2345056A (en) Internal combustion engine
EP0169209A1 (en) Internal combustion engine
US4321904A (en) Internal combustion engine with auxiliary combustion chamber
WO1987005073A1 (en) Supercharged two-stroke engine
GB2130641A (en) Crankcase charged four-stroke I.C. engine
GB2114218A (en) Crankcase compression four-stroke engine
JPH0216324A (en) Two cycle engine
JPH07269368A (en) Internal combustion engine
JPS6088810A (en) Internal-combustion engine
CA1188938A (en) Internal combustion engine
JPH02119635A (en) Six-cycle engine
JPS6214324Y2 (en)
JPS6237926Y2 (en)
RU2221152C2 (en) Two-stroke valve-type internal combustion engine without scavenging cycle and valve-actuating shaft with auxiliary cylinder
JPS6124528B2 (en)
JPS6311288Y2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19851211