JP2009221343A - Method and apparatus for treating cracked gas of combustion furnace - Google Patents

Method and apparatus for treating cracked gas of combustion furnace Download PDF

Info

Publication number
JP2009221343A
JP2009221343A JP2008067087A JP2008067087A JP2009221343A JP 2009221343 A JP2009221343 A JP 2009221343A JP 2008067087 A JP2008067087 A JP 2008067087A JP 2008067087 A JP2008067087 A JP 2008067087A JP 2009221343 A JP2009221343 A JP 2009221343A
Authority
JP
Japan
Prior art keywords
combustion furnace
air
pyrolysis gas
fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008067087A
Other languages
Japanese (ja)
Inventor
Tomoyuki Katagiri
智之 片桐
Tomoya Muramoto
知哉 村本
Hisanori Nukumi
寿範 温見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008067087A priority Critical patent/JP2009221343A/en
Publication of JP2009221343A publication Critical patent/JP2009221343A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for treating a cracked gas of a combustion furnace, thereby a very drastic chemical reaction of cracked gas, that is caused by filling of cracked gas in the combustion furnace and by mingling of air from outside at the time when a forced draft fan stops, can be prevented beforehand without providing any N<SB>2</SB>-making apparatus and gas analyzer, etc. and irrespective of type of the forced draft fan. <P>SOLUTION: The apparatus is so constructed that a cracked gas is burned by remaining fuel by introducing air filled in an air tank 15 into the combustion furnace 5 through the air-supplying line 17 at the time when the forced draft fan 14 stops. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃焼炉の熱分解ガス処理方法及び装置に関するものである。   The present invention relates to a pyrolysis gas treatment method and apparatus for a combustion furnace.

従来より、燃料として、石炭、バイオマス、タイヤチップ等の原料を用い、ガス化ガスを生成するガス化設備の開発が進められている。   2. Description of the Related Art Conventionally, gasification equipment that generates gasification gas using raw materials such as coal, biomass, and tire chips as fuel has been developed.

図6は従来のガス化設備の一例を示すものであって、該ガス化設備は、蒸気により流動媒体(硅砂、石灰石等)の流動層1を形成して投入される原料(石炭、バイオマス、タイヤチップ等)のガス化を行いガス化ガスと可燃性固形分とを生成するガス化炉2と、該ガス化炉2で生成された可燃性固形分が流動媒体と共に導入管3から導入され且つ空気又は酸素等の流動用ガスにより流動層4を形成して前記可燃性固形分の燃焼を行う燃焼炉5と、該燃焼炉5から排ガス管6を介して導入される燃焼排ガスより流動媒体を分離し該分離した流動媒体をダウンカマー7を介して前記ガス化炉2に供給するホットサイクロン等の媒体分離装置8と、前記ガス化炉2で生成されたガス化ガスより流動媒体を分離するホットサイクロン等の媒体分離装置9と、該媒体分離装置9で分離された流動媒体を回収する回収容器10とを備えてなる構成を有している。   FIG. 6 shows an example of a conventional gasification facility. The gasification facility forms raw materials (coal, biomass, A gasification furnace 2 for generating gasification gas and combustible solids by gasifying a tire chip, etc., and combustible solids generated in the gasification furnace 2 are introduced from the introduction pipe 3 together with a fluidized medium. In addition, a fluidized bed 4 is formed by a fluidizing gas such as air or oxygen to burn the combustible solid content, and a fluid medium from the combustion exhaust gas introduced from the combustion furnace 5 through the exhaust gas pipe 6. And the separated fluid medium is separated from the medium separator 8 such as a hot cyclone that supplies the separated fluid medium to the gasifier 2 via the downcomer 7 and the gasified gas generated in the gasifier 2. Separators for hot cyclones, etc. If has a structure obtained by a collecting container 10 for collecting the fluidized medium separated by said medium separating device 9.

尚、図6中、11は前記ガス化炉2の底部へ導入される蒸気を流動層1内へ均一に吹き込むための分散板、12は前記ガス化炉2内部における導入管3が接続される部分を下方のみが開放されるように覆うことにより、ガス化炉2内のガス化ガスが導入管3を介して燃焼炉5側へ流出したり、逆に燃焼炉5内の空気又は酸素等の流動用ガスが導入管3を介してガス化炉2側へ流入したりすることを防止するための仕切壁、13は前記燃焼炉5の底部へ導入される流動用ガスを流動層4内へ均一に吹き込むための分散板、14は燃焼炉5へ流動用ガスを圧送する押込通風機である。   In FIG. 6, 11 is a dispersion plate for uniformly blowing steam introduced into the bottom of the gasification furnace 2 into the fluidized bed 1, and 12 is connected to the introduction pipe 3 inside the gasification furnace 2. By covering the portion so that only the lower part is opened, the gasification gas in the gasification furnace 2 flows out to the combustion furnace 5 side through the introduction pipe 3, or conversely the air or oxygen in the combustion furnace 5 or the like A partition wall for preventing the flowing gas from flowing into the gasification furnace 2 side through the introduction pipe 3, 13 is a flow gas introduced into the bottom of the combustion furnace 5 in the fluidized bed 4. A dispersion plate 14 for uniformly blowing air into the combustion furnace 14 is a forced air blower that pumps the flowing gas to the combustion furnace 5.

前述の如きガス化設備においては、通常運転時、ガス化炉2において、蒸気により流動層1が形成されており、ここに石炭、バイオマス、タイヤチップ等の原料を投入すると、該原料は水蒸気ガス化してガス化され、ガス化ガスと可燃性固形分とが生成され、前記ガス化炉2で生成された可燃性固形分は流動媒体と共に導入管3から、前記流動用ガスにより流動層4が形成されている燃焼炉5へ導入され、該可燃性固形分の燃焼が行われ、該燃焼炉5からの燃焼排ガスは、排ガス管6を介してホットサイクロン等の媒体分離装置8へ導入され、該媒体分離装置8において、前記燃焼排ガスより流動媒体が分離され、該分離された流動媒体はダウンカマー7を介して前記ガス化炉2に戻され、循環される。   In the gasification facility as described above, during normal operation, the fluidized bed 1 is formed by steam in the gasification furnace 2, and when raw materials such as coal, biomass, tire chips, etc. are input thereto, the raw material is steam gas. The gasified gas and combustible solids are produced, and the combustible solids produced in the gasification furnace 2 are transferred from the introduction pipe 3 together with the fluidized medium to the fluidized bed 4 by the fluidizing gas. The combustible solid content is combusted by being introduced into the formed combustion furnace 5, and the combustion exhaust gas from the combustion furnace 5 is introduced into a medium separator 8 such as a hot cyclone through the exhaust gas pipe 6, In the medium separator 8, a fluid medium is separated from the combustion exhaust gas, and the separated fluid medium is returned to the gasification furnace 2 through a downcomer 7 and circulated.

ここで、前記燃焼炉5で可燃性固形分の燃焼に伴い高温になった流動媒体が燃焼排ガスと共に排ガス管6を通り前記媒体分離装置8で分離され、前記ダウンカマー7を介してガス化炉2に供給されることにより、ガス化炉2の高温が保持されると共に、原料の熱分解によって生成したガスや、その残渣原料が蒸気と反応することによって、水性ガス化反応[C+H2O=H2+CO]や水素転換反応[CO+H2O=H2+CO2]が起こり、H2やCO等の可燃性のガス化ガスが生成される。 Here, the fluidized medium that has become high in temperature due to combustion of combustible solids in the combustion furnace 5 passes through the exhaust gas pipe 6 together with the combustion exhaust gas, and is separated by the medium separator 8, and is gasified through the downcomer 7. 2, the high temperature of the gasification furnace 2 is maintained, and the gas generated by thermal decomposition of the raw material and the residual raw material react with the vapor, thereby causing the water gasification reaction [C + H 2 O = H 2 + CO] or hydrogen conversion reaction [CO + H 2 O = H 2 + CO 2 ] occurs, and combustible gasification gas such as H 2 and CO is generated.

前記ガス化炉2で生成されたガス化ガスは、ホットサイクロン等の媒体分離装置9で流動媒体が分離され、該媒体分離装置9で分離された流動媒体は、回収容器10に回収される。   The gasified gas generated in the gasification furnace 2 is separated into a fluid medium by a medium separator 9 such as a hot cyclone, and the fluid medium separated by the medium separator 9 is recovered in a recovery container 10.

ところで、前記ガス化設備における通常運転中の熱不足時、即ち前記ガス化炉2において原料のガス化のための充分な熱が得られないような場合には、図6中、仮想線で示される如く、前記ガス化炉2へ供給される原料と同じ石炭、バイオマス、タイヤチップ等の燃料が補助的に前記燃焼炉5へ投入されて燃焼が行われ、不足する熱を補うようになっている。一方、前記ガス化設備における起動時等の循環予熱運転時には、前記ガス化炉2への原料の投入は行わずに、該ガス化炉2の底部から蒸気の代わりに流動用の空気を供給した状態で、図6中、仮想線で示される如く、前記石炭、バイオマス、タイヤチップ等の燃料が予熱用として前記燃焼炉5へ投入されて燃焼が行われ、該燃焼炉5での燃料の燃焼に伴い高温になった流動媒体が燃焼排ガスと共に排ガス管6を通り前記媒体分離装置8で分離され、前記ダウンカマー7を介してガス化炉2に供給されることにより、ガス化設備の循環予熱が行われるようになっている。   By the way, when heat is insufficient during normal operation in the gasification facility, that is, when sufficient heat for gasification of the raw material cannot be obtained in the gasification furnace 2, it is indicated by a virtual line in FIG. As described above, the same fuel as the raw material supplied to the gasification furnace 2 such as coal, biomass, tire chips, etc. is supplementarily introduced into the combustion furnace 5 to be combusted to compensate for the insufficient heat. Yes. On the other hand, during the circulation preheating operation such as when the gasification facility is started up, the raw material is not charged into the gasification furnace 2 but air for flow is supplied from the bottom of the gasification furnace 2 instead of steam. In this state, as shown by phantom lines in FIG. 6, fuel such as coal, biomass, tire chips, etc. is charged into the combustion furnace 5 for preheating and burned, and combustion of fuel in the combustion furnace 5 is performed. Accordingly, the fluidized medium that has become high temperature is separated together with the combustion exhaust gas by the medium separation device 8 through the exhaust gas pipe 6 and supplied to the gasification furnace 2 through the downcomer 7, thereby circulating preheating of the gasification equipment. Is to be done.

そして、前記ガス化設備における通常運転中の熱不足時や循環予熱運転時に、前記燃焼炉5内に投入する燃料として石炭を使用した場合、図7に示される如く、ある時点で燃焼炉5内に投入された石炭は、先ず最初のT1[sec](十秒程度)で揮発分が全量燃え尽きて完全燃焼し、この後、固定炭素分が徐々に燃えて行き、石炭投入からおよそT2[sec](数十秒程度)で完全燃焼することが一般的な文献から知られている。図7では、例えば停電や前記押込通風機14の故障等により該押込通風機14が停止した場合に、斜線部の面積に相当する未燃焼の揮発分が燃焼炉5内に残留する石炭に含まれていると推定できる。又、停電や前記押込通風機14の故障等により、該押込通風機14が停止してしまった場合、燃焼炉5内に石炭等の燃料が残留してその揮発分が燃焼せずに残り、該石炭の熱分解により発生した可燃性を有する熱分解ガスが燃焼炉5内に充満してしまい、外部から空気が燃焼炉5内に混入すると、前記熱分解ガスの化学反応が急激に進行してしまう可能性があった。尚、前記ガス化設備における通常運転中の熱不足時や循環予熱運転時に、前記燃焼炉5内にバイオマス、タイヤチップ等の燃料を投入する場合においても、前記石炭の場合と同様に、揮発分の燃焼後に固定炭素分の燃焼が進行する傾向を示すものと予測される。 When coal is used as the fuel to be fed into the combustion furnace 5 at the time of heat shortage during normal operation or circulation preheating operation in the gasification facility, as shown in FIG. coal thrown into the first of the T 1 [sec] in (about ten seconds) burned volatiles total volume complete combustion, thereafter, fixed carbon content gradually burning, approximately T 2 from coal charged It is known from general literature that complete combustion occurs in [sec] (several tens of seconds). In FIG. 7, for example, when the forced air blower 14 is stopped due to a power failure or the failure of the forced air blower 14, unburned volatile matter corresponding to the area of the hatched portion is included in the coal remaining in the combustion furnace 5. Can be estimated. In addition, when the forced air blower 14 is stopped due to a power failure or the failure of the forced air blower 14, the fuel such as coal remains in the combustion furnace 5 and the volatile matter remains without burning. When the combustible pyrolysis gas generated by the pyrolysis of the coal fills the combustion furnace 5 and air is mixed into the combustion furnace 5 from the outside, the chemical reaction of the pyrolysis gas proceeds rapidly. There was a possibility. Note that when fuel such as biomass and tire chips is introduced into the combustion furnace 5 at the time of heat shortage during normal operation or circulation preheating operation in the gasification facility, as in the case of the coal, It is predicted that the combustion of fixed carbon content tends to progress after the combustion of.

こうした不具合を解消するために、従来においては、N2等で燃焼炉5内の熱分解ガスをパージすることが行われていた。 In order to eliminate such problems, conventionally, the pyrolysis gas in the combustion furnace 5 is purged with N 2 or the like.

一方、ボイラや加熱炉等の平衡通風式燃焼装置において、インバータ制御の機能を有する遠心式の送風機の軸にフライホイールを取り付け、その慣性力によって燃焼装置へ供給される空気を確保することにより、インバータの瞬時的な停止に対しても燃焼装置を正常な状態に維持させるものとしては、例えば、特許文献1がある。   On the other hand, in a balanced ventilation combustion apparatus such as a boiler or a heating furnace, a flywheel is attached to the shaft of a centrifugal blower having a function of inverter control, and by ensuring the air supplied to the combustion apparatus by its inertial force, For example, Patent Document 1 discloses that the combustion apparatus is maintained in a normal state even when the inverter is instantaneously stopped.

又、原子炉格納容器内の水素等の可燃性ガス濃度を分析して酸素ボンベから酸素を供給することにより、水素等の可燃性ガスを再結合処理するものとしては、例えば、特許文献2がある。
特許第3579995号公報 特許第3596843号公報
Further, as a method for recombining flammable gas such as hydrogen by analyzing the concentration of flammable gas such as hydrogen in the reactor containment vessel and supplying oxygen from an oxygen cylinder, for example, Patent Document 2 is there.
Japanese Patent No. 3579995 Japanese Patent No. 3596843

しかしながら、前述の如く、N2等で燃焼炉5内の熱分解ガスをパージするのでは、N2等の不活性ガスが大量に必要となると共に高価なN2製造装置も必要となり、あまり好ましい方法であるとは言えなかった。 However, as described above, than to purge the pyrolysis gas in the combustion furnace 5 with N 2 or the like, an inert gas such as N 2 is also required expensive N 2 production equipment with large amounts needed, less preferred It could not be said that it was a method.

一方、特許文献1に開示されているもののように、遠心式の送風機の軸にフライホイールを取り付けるのでは、前記押込通風機14が遠心式ではなくルーツブロワ形式であった場合、構造上、フライホイールを取り付けることができず、実施不可能となる。   On the other hand, when the flywheel is attached to the shaft of a centrifugal blower as disclosed in Patent Document 1, when the indenter 14 is not a centrifugal type but a roots blower type, the flywheel is structurally Can not be installed, it becomes impossible to implement.

又、特許文献2に開示されているもののように、原子炉格納容器内の水素等の可燃性ガス濃度を分析して酸素ボンベから酸素を供給するのでは、ガス分析計がどうしても必要となり、停電時等には対応が困難となる虞もあった。   Further, as disclosed in Patent Document 2, in order to analyze the concentration of flammable gas such as hydrogen in the reactor containment vessel and supply oxygen from an oxygen cylinder, a gas analyzer is absolutely necessary, and power failure At times, it may be difficult to respond.

本発明は、斯かる実情に鑑み、N2製造装置やガス分析計等を設けることなく、且つ押込通風機の形式に左右されることなく、押込通風機の停止時における熱分解ガスの燃焼炉内での充満と外部からの空気の混入とによる熱分解ガスの化学反応の急激な進行を未然に防止し得る燃焼炉の熱分解ガス処理方法及び装置を提供しようとするものである。 In view of such circumstances, the present invention provides a pyrolysis gas combustion furnace when the forced air blower is stopped without providing an N 2 production apparatus, a gas analyzer, or the like and without depending on the type of the forced air fan. It is an object of the present invention to provide a pyrolysis gas treatment method and apparatus for a combustion furnace that can prevent rapid progress of chemical reaction of pyrolysis gas due to internal filling and external air mixing.

本発明は、押込通風機から圧送される流動用ガスにより流動層を形成して燃料を燃焼させる燃焼炉の熱分解ガス処理方法であって、
前記押込通風機の停止時、空気タンクに封入された空気を燃焼炉へ導入することにより、残留した燃料による熱分解ガスを燃焼させることを特徴とする燃焼炉の熱分解ガス処理方法にかかるものである。
The present invention is a pyrolytic gas treatment method for a combustion furnace in which a fluidized bed is formed by a flowing gas pumped from a forced air blower to burn fuel.
A method for treating a pyrolysis gas in a combustion furnace, wherein the pyrolysis gas from the remaining fuel is burned by introducing air enclosed in an air tank into the combustion furnace when the forced air blower is stopped. It is.

前述の如き燃焼炉の熱分解ガス処理方法を実施すると、停電や前記押込通風機の故障等により、該押込通風機が停止してしまった場合、燃焼炉内に残留した燃料の熱分解により発生した可燃性を有する熱分解ガスは、空気タンクから導入される空気によって燃焼し燃焼炉内に充満せず、外部から空気が燃焼炉内に混入したとしても、前記熱分解ガスの化学反応が急激に進行してしまう心配がなくなり、しかも、N2製造装置やガス分析計等を設けたり、押込通風機にフライホイールを取り付けたりする必要もない。 When the pyrolysis gas treatment method for a combustion furnace as described above is carried out, it occurs due to the thermal decomposition of the fuel remaining in the combustion furnace when the forced air blower stops due to a power failure or failure of the forced air blower. The combustible pyrolysis gas is burned by the air introduced from the air tank and does not fill the combustion furnace, and even if air enters the combustion furnace from the outside, the chemical reaction of the pyrolysis gas is abrupt. In addition, there is no need to install an N 2 production device, a gas analyzer or the like, or to attach a flywheel to the forced draft fan.

前記燃焼炉の熱分解ガス処理方法においては、前記燃焼炉内における流動層へ空気を導入することができ、このようにすると、燃焼炉内における流動層内に残留した燃料をも完全に燃焼させることが可能となる。   In the pyrolysis gas treatment method of the combustion furnace, air can be introduced into the fluidized bed in the combustion furnace, and in this way, the fuel remaining in the fluidized bed in the combustion furnace is also completely combusted. It becomes possible.

又、前記燃焼炉の熱分解ガス処理方法は、前記燃料が石炭、バイオマス、或いはタイヤチップである場合に特に有効となる。   The pyrolysis gas treatment method for a combustion furnace is particularly effective when the fuel is coal, biomass, or tire chips.

一方、本発明は、押込通風機から圧送される流動用ガスにより流動層を形成して燃料を燃焼させる燃焼炉の熱分解ガス処理装置であって、
前記押込通風機の停止時、燃焼炉内に残留した燃料による熱分解ガスを燃焼させるための空気が封入された空気タンクと、
該空気タンクと燃焼炉とをつなぐ空気供給ラインと
を備えたことを特徴とする燃焼炉の熱分解ガス処理装置にかかるものである。
On the other hand, the present invention is a pyrolysis gas treatment apparatus for a combustion furnace in which a fluidized bed is formed by a flowing gas pumped from a forced air blower to burn fuel.
An air tank filled with air for burning the pyrolysis gas by the fuel remaining in the combustion furnace when the forced air blower is stopped;
The present invention relates to a pyrolysis gas treatment apparatus for a combustion furnace, comprising an air supply line for connecting the air tank and the combustion furnace.

前述の如き燃焼炉の熱分解ガス処理装置では、停電や前記押込通風機の故障等により、該押込通風機が停止してしまった場合、燃焼炉内に残留した燃料の熱分解により発生した可燃性を有する熱分解ガスは、空気タンクから空気供給ラインを経て導入される空気によって燃焼し燃焼炉内に充満せず、外部から空気が燃焼炉内に混入したとしても、前記熱分解ガスの化学反応が急激に進行してしまう心配がなくなり、しかも、N2製造装置やガス分析計等を設けたり、押込通風機にフライホイールを取り付けたりする必要もない。 In the pyrolysis gas treatment apparatus for a combustion furnace as described above, if the insufflator is stopped due to a power failure or a failure of the insufflator, the combustibles generated by the thermal decomposition of the fuel remaining in the combustion furnace The pyrolysis gas having the property is burned by the air introduced from the air tank through the air supply line and does not fill the combustion furnace, and even if air is mixed into the combustion furnace from the outside, There is no need to worry about the rapid progress of the reaction, and there is no need to provide an N 2 production device, a gas analyzer, etc., or to attach a flywheel to the forced air blower.

前記燃焼炉の熱分解ガス処理装置においては、前記燃焼炉内における流動層へ空気を導入するよう、前記空気タンクと燃焼炉とを空気供給ラインでつなぐことができ、このようにすると、空気供給ラインから燃焼炉内における流動層へ導入される空気により、該燃焼炉内における流動層内に残留した燃料をも完全に燃焼させることが可能となる。   In the pyrolysis gas processing apparatus of the combustion furnace, the air tank and the combustion furnace can be connected by an air supply line so as to introduce air into the fluidized bed in the combustion furnace. By the air introduced from the line into the fluidized bed in the combustion furnace, the fuel remaining in the fluidized bed in the combustion furnace can be completely combusted.

又、前記燃焼炉の熱分解ガス処理装置においては、前記空気供給ライン途中に、通常時には閉じ且つ停電時には前記押込通風機の停止と連動して開く電磁開閉弁を設けることができ、このようにすると、停電時にはそれまで閉じていた電磁開閉弁が開き、空気タンクから空気が空気供給ラインを経て自動的に燃焼炉内へ導入されるため、フェイル・セイフ的な機能が発揮され、停電時でのより確実な対応が可能となる。   Further, in the pyrolysis gas processing apparatus of the combustion furnace, an electromagnetic on-off valve can be provided in the middle of the air supply line, which is normally closed and opened in conjunction with the stop of the forced air blower in the event of a power failure. Then, when a power failure occurs, the electromagnetic on-off valve that was closed until then opens, and air is automatically introduced from the air tank into the combustion furnace via the air supply line, so that a fail-safe function is demonstrated. It is possible to respond more reliably.

又、前記燃焼炉の熱分解ガス処理装置は、前記燃料が石炭、バイオマス、或いはタイヤチップである場合に特に有効となる。   The pyrolysis gas treatment apparatus for the combustion furnace is particularly effective when the fuel is coal, biomass, or tire chips.

本発明の燃焼炉の熱分解ガス処理方法及び装置によれば、N2製造装置やガス分析計等を設けることなく、且つ押込通風機の形式に左右されることなく、押込通風機の停止時における熱分解ガスの燃焼炉内での充満と外部からの空気の混入とによる熱分解ガスの化学反応の急激な進行を未然に防止し得るという優れた効果を奏し得る。 According to the pyrolytic gas treatment method and apparatus for a combustion furnace of the present invention, when the forced air blower is stopped without providing an N 2 production apparatus, a gas analyzer, etc., and without being influenced by the type of the forced air fan It is possible to achieve an excellent effect that the rapid progress of the chemical reaction of the pyrolysis gas due to the filling of the pyrolysis gas in the combustion furnace and the mixing of air from the outside can be prevented.

又、本発明の燃焼炉の熱分解ガス処理方法及び装置において、燃焼炉内における流動層の下部へ空気を導入するようにすれば、上記効果に加え更に、燃焼炉内における流動層内に残留した燃料をも完全に燃焼させ得るという優れた効果を奏し得る。   In addition, in the pyrolysis gas treatment method and apparatus for a combustion furnace according to the present invention, if air is introduced into the lower part of the fluidized bed in the combustion furnace, in addition to the above effects, the remaining in the fluidized bed in the combustion furnace. The excellent effect that the burned fuel can be completely burned can be obtained.

更に又、本発明の燃焼炉の熱分解ガス処理装置において、空気供給ライン途中に、通常時には閉じ且つ停電時には前記押込通風機の停止と連動して開く電磁開閉弁を設けるようにすれば、上記効果に加え更に、フェイル・セイフ的な機能を発揮し、停電時でのより確実な対応を行い得るという優れた効果を奏し得る。   Furthermore, in the pyrolysis gas treatment apparatus for a combustion furnace according to the present invention, if an electromagnetic on-off valve is provided in the middle of the air supply line, it is normally closed and opened in conjunction with the stop of the forced air blower at the time of a power failure. In addition to the effects, it also exhibits a fail-safe function, and can produce an excellent effect of being able to respond more reliably during a power failure.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の第一の例であって、図中、図6と同一の符号を付した部分は同一物を表わしており、基本的な構成は図6に示す従来のものと同様であるが、本図示例の特徴とするところは、図1に示す如く、ガス化設備における通常運転中の熱不足時や循環予熱運転時に、押込通風機14が停止した際、燃焼炉5内に残留した燃料による熱分解ガスを燃焼させるための空気が封入された空気タンク15を配置し、該空気タンク15と燃焼炉5内における流動層4の上方空間16とをつなぐ空気供給ライン17を設け、前記押込通風機14の停止時、前記空気タンク15に封入された空気を空気供給ライン17から燃焼炉5内における流動層4の上方空間16へ導入することにより、残留した燃料による熱分解ガスを燃焼させるよう構成した点にある。   FIG. 1 is a first example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 6 denote the same components, and the basic configuration is the conventional configuration shown in FIG. Although it is the same as that of this example, as shown in FIG. 1, the feature of the illustrated example is that when the forced air blower 14 is stopped when the gasification facility is short of heat during normal operation or during circulation preheating operation, An air tank 15 filled with air for burning pyrolysis gas from fuel remaining in the furnace 5 is disposed, and an air supply for connecting the air tank 15 and the upper space 16 of the fluidized bed 4 in the combustion furnace 5 is provided. A line 17 is provided, and when the forced air blower 14 is stopped, the air sealed in the air tank 15 is introduced from the air supply line 17 into the space 16 above the fluidized bed 4 in the combustion furnace 5, thereby remaining fuel. Pyrolysis gas generated by combustion It lies in the fact that cormorants configuration.

本図示例の場合、前記空気供給ライン17途中には開閉弁18を設けてあり、該開閉弁18としては、手動開閉弁を用いることも可能ではあるが、通常時には閉じ且つ停電時には前記押込通風機14の停止と連動して開く電磁開閉弁とすることが有効となる。   In the case of this illustrated example, an on-off valve 18 is provided in the middle of the air supply line 17. As the on-off valve 18, a manual on-off valve can be used, but it is normally closed and the forced draft is at power failure. It is effective to use an electromagnetic on-off valve that opens in conjunction with the stop of the machine 14.

ここで、図2は単位重量当りの燃料としての石炭に含まれる揮発分及び実際に発生する熱分解ガスの生成量の一例を横軸に時間をとって示す線図であり、この線図のように、熱分解ガスの生成量は、測定開始から最初のT[min](およそ一分以内)で急速に増え、その後は、ごく緩やかな傾斜角度で徐々に増加していく傾向を示すことが、本発明者等の実験結果により確認されている。このような線図を対象となる燃焼炉5において実際の計測結果を元に予め作成しておき、この線図及び図7に基づいて前記残留した燃料による熱分解ガスを燃焼させるのに必要となる前記空気タンク15の容量並びに空気の投入速度を決定すれば良い。   Here, FIG. 2 is a diagram showing an example of the amount of volatile components contained in coal as fuel per unit weight and the actual amount of pyrolysis gas generated with time taken on the horizontal axis. Thus, the amount of pyrolysis gas generated increases rapidly at the first T [min] (within approximately one minute) from the start of measurement, and thereafter shows a tendency to gradually increase at a very gentle inclination angle. However, it has been confirmed by the results of experiments by the present inventors. Such a diagram is prepared in advance based on the actual measurement results in the target combustion furnace 5, and it is necessary to burn the pyrolysis gas from the remaining fuel based on this diagram and FIG. What is necessary is just to determine the capacity | capacitance of the said air tank 15, and the input speed of air.

次に、上記図示例の作用を説明する。   Next, the operation of the illustrated example will be described.

前述の如く構成すると、ガス化設備における通常運転中の熱不足時や循環予熱運転時に、停電や前記押込通風機14の故障等により、該押込通風機14が停止してしまった場合、燃焼炉5内に残留した石炭、バイオマス、タイヤチップ等の燃料の熱分解により発生した可燃性を有する熱分解ガスは、開閉弁18を開くことにより空気タンク15から空気供給ライン17を経て導入される空気によって燃焼し燃焼炉5内に充満せず、外部から空気が燃焼炉5内に混入したとしても、前記熱分解ガスの化学反応が急激に進行してしまう心配がなくなり、しかも、N2製造装置やガス分析計等を設けたり、押込通風機14にフライホイールを取り付けたりする必要もない。 When configured as described above, if the forced air blower 14 is stopped due to a power failure, a failure of the forced air blower 14, or the like during a heat shortage during normal operation or a circulation preheating operation in the gasification facility, the combustion furnace Combustible pyrolysis gas generated by pyrolysis of fuel such as coal, biomass, tire chips, etc. remaining in the air is introduced from the air tank 15 through the air supply line 17 by opening the on-off valve 18. Even if the combustion furnace 5 burns and does not fill the combustion furnace 5 and air is mixed into the combustion furnace 5 from the outside, there is no fear that the chemical reaction of the pyrolysis gas will proceed rapidly, and the N 2 production apparatus There is no need to provide a gas analyzer or a gas analyzer, or to attach a flywheel to the forced draft fan 14.

ここで、前記開閉弁18として通常時には閉じ且つ停電時には前記押込通風機14の停止と連動して開く電磁開閉弁を用いるようにしておけば、停電時にはそれまで閉じていた開閉弁18としての電磁開閉弁が開き、空気タンク15から空気が空気供給ライン17を経て自動的に燃焼炉5内へ導入されるため、フェイル・セイフ的な機能が発揮され、停電時でのより確実な対応が可能となる。   Here, if an electromagnetic on-off valve that is normally closed and is opened in conjunction with the stop of the push-in ventilator 14 at the time of a power failure is used as the on-off valve 18, the electromagnetic as the on-off valve 18 that has been closed at the time of a power failure. The on-off valve opens and air is automatically introduced from the air tank 15 through the air supply line 17 into the combustion furnace 5, so that a fail-safe function is demonstrated and a more reliable response in the event of a power failure is possible. It becomes.

尚、更なるバックアップとして燃焼炉5内の酸素濃度を計測するようにしても良い。   Note that the oxygen concentration in the combustion furnace 5 may be measured as a further backup.

こうして、N2製造装置やガス分析計等を設けることなく、且つ押込通風機14の形式に左右されることなく、押込通風機14の停止時における熱分解ガスの燃焼炉5内での充満と外部からの空気の混入とによる熱分解ガスの化学反応の急激な進行を未然に防止し得る。 In this way, the charging of the pyrolysis gas in the combustion furnace 5 when the forced air ventilator 14 is stopped without providing an N 2 production device, a gas analyzer, etc., and without depending on the type of the forced air ventilator 14. It is possible to prevent a rapid chemical reaction of the pyrolysis gas due to air contamination from the outside.

図3は本発明を実施する形態の第二の例であって、図中、図1と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1に示すものと同様であるが、本図示例の特徴とするところは、図3に示す如く、前記燃焼炉5内における流動層4の下部へ空気を導入するよう、前記空気タンク15と燃焼炉5とを空気供給ライン17でつないだ点にある。   FIG. 3 is a second example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same components, and the basic configuration is as shown in FIG. Although the same, the characteristic feature of this illustrated example is that the air tank 15 and the combustion furnace 5 are connected to the air so as to introduce air into the lower part of the fluidized bed 4 in the combustion furnace 5 as shown in FIG. It is in the point connected by the supply line 17.

図3に示す例のように構成すると、容量並びに圧力の大きな空気タンク15が必要にはなるものの、ガス化設備における通常運転中の熱不足時や循環予熱運転時に、停電や前記押込通風機14の故障等により、該押込通風機14が停止してしまった場合、開閉弁18が開いて空気供給ライン17から燃焼炉5内における流動層4の下部へ導入される空気により、該燃焼炉5内における流動層4内に残留した燃料としての石炭、バイオマス、タイヤチップ等の燃料をも完全に燃焼させることが可能となる。   When configured as in the example shown in FIG. 3, an air tank 15 having a large capacity and pressure is required, but a power failure or the forced draft fan 14 occurs when the gasification facility is short of heat during normal operation or during circulation preheating operation. When the forced air blower 14 is stopped due to a malfunction of the combustion furnace 5 or the like, the on-off valve 18 is opened, and the air introduced into the lower part of the fluidized bed 4 in the combustion furnace 5 from the air supply line 17 causes the combustion furnace 5 to open. It is possible to completely burn fuel such as coal, biomass, tire chips, etc. as fuel remaining in the fluidized bed 4 inside.

こうして、図3に示す例の場合、図1に示す例の場合と同様、N2製造装置やガス分析計等を設けることなく、且つ押込通風機14の形式に左右されることなく、押込通風機14の停止時における熱分解ガスの燃焼炉5内での充満と外部からの空気の混入とによる熱分解ガスの化学反応の急激な進行を未然に防止し得ることに加え更に、燃焼炉5内における流動層4内に残留した燃料としての石炭をも完全に燃焼させ得る。 Thus, in the case of the example shown in FIG. 3, as in the case of the example shown in FIG. 1, the forced draft is not provided without providing an N 2 manufacturing apparatus, a gas analyzer, etc. In addition to preventing the rapid progress of the chemical reaction of the pyrolysis gas due to the filling of the pyrolysis gas in the combustion furnace 5 and the mixing of air from the outside when the machine 14 is stopped, the combustion furnace 5 The coal as the fuel remaining in the fluidized bed 4 can be completely burned.

図4は本発明を実施する形態の第三の例であって、循環流動層燃焼炉(CFBC:Circulating Fluidized Bed Combustor)を備えたボイラ設備、即ち、燃焼炉5において、押込通風機14から圧送される空気又は酸素等の流動用ガスにより流動層4を形成し、ここに石炭、バイオマス、タイヤチップ等の燃料を投入して燃焼させ、前記燃焼炉5からの燃焼排ガスを排ガス管6を介してホットサイクロン等の媒体分離装置8へ導入し、該媒体分離装置8において前記排ガスより流動媒体を分離し、該分離された流動媒体をダウンカマー7を介し前記燃焼炉5に戻して循環させ、同時に、前記燃焼炉5の炉壁管(図示せず)内を流れる水を燃料の燃焼に伴う熱で加熱すると共に、前記媒体分離装置8で流動媒体が分離された燃焼排ガスの熱を熱交換器19で回収することにより、蒸気を発生させるボイラ設備に適用した例を示し、
該ボイラ設備における通常運転時に、押込通風機14が停止した際、燃焼炉5内に残留した燃料による熱分解ガスを燃焼させるための空気が封入された空気タンク15を配置し、該空気タンク15と燃焼炉5内における流動層4の上方空間16とをつなぐ空気供給ライン17を設け、前記押込通風機14の停止時、前記空気タンク15に封入された空気を空気供給ライン17から燃焼炉5内における流動層4の上方空間16へ導入することにより、残留した燃料による熱分解ガスを燃焼させるよう構成したものである。
FIG. 4 shows a third example of the embodiment of the present invention. In the boiler facility equipped with a circulating fluidized bed combustor (CFBC), that is, the combustion furnace 5, it is pumped from the forced air blower 14. The fluidized bed 4 is formed by a flowing gas such as air or oxygen, and fuel such as coal, biomass, tire chips, etc. is introduced and burned therein, and the combustion exhaust gas from the combustion furnace 5 is passed through the exhaust gas pipe 6. Are introduced into a medium separator 8 such as a hot cyclone, the fluid separator is separated from the exhaust gas in the medium separator 8, and the separated fluid is returned to the combustion furnace 5 through the downcomer 7 and circulated. At the same time, the water flowing in the furnace wall tube (not shown) of the combustion furnace 5 is heated by the heat accompanying the combustion of the fuel, and the heat of the combustion exhaust gas from which the fluidized medium is separated by the medium separation device 8 is exchanged. In vessel 19 By yield, it shows an example applied to a boiler facility for generating steam,
An air tank 15 filled with air for burning the pyrolysis gas from the fuel remaining in the combustion furnace 5 when the forced air blower 14 is stopped during normal operation in the boiler equipment is disposed, and the air tank 15 And an air supply line 17 that connects the upper space 16 of the fluidized bed 4 in the combustion furnace 5. When the forced air blower 14 is stopped, the air enclosed in the air tank 15 is supplied from the air supply line 17 to the combustion furnace 5. By introducing into the upper space 16 of the fluidized bed 4 inside, the pyrolysis gas from the remaining fuel is combusted.

図4に示す例のように構成すると、ボイラ設備における通常運転時に、停電や前記押込通風機14の故障等により、該押込通風機14が停止してしまった場合、燃焼炉5内に残留した石炭、バイオマス、タイヤチップ等の燃料の熱分解により発生した可燃性を有する熱分解ガスは、開閉弁18を開くことにより空気タンク15から空気供給ライン17を経て導入される空気によって燃焼し燃焼炉5内に充満せず、外部から空気が燃焼炉5内に混入したとしても、前記熱分解ガスの化学反応が急激に進行してしまう心配がなくなり、しかも、N2製造装置やガス分析計等を設けたり、押込通風機14にフライホイールを取り付けたりする必要もない。 When configured as in the example shown in FIG. 4, when the forced air blower 14 is stopped due to a power failure, a failure of the forced air blower 14, or the like during normal operation in the boiler facility, it remains in the combustion furnace 5. Combustible pyrolysis gas generated by pyrolysis of fuel such as coal, biomass, tire chips, etc. is combusted by air introduced from the air tank 15 through the air supply line 17 by opening the on-off valve 18, and a combustion furnace Even if the inside of the combustion chamber 5 is not filled and air is mixed into the combustion furnace 5 from the outside, there is no fear that the chemical reaction of the pyrolysis gas will proceed rapidly, and an N 2 production apparatus, a gas analyzer, etc. There is no need to provide a flywheel or to attach a flywheel to the forced draft fan 14.

ここで、図4に示す例の場合も、前記開閉弁18として通常時には閉じ且つ停電時には前記押込通風機14の停止と連動して開く電磁開閉弁を用いるようにしておけば、停電時にはそれまで閉じていた開閉弁18としての電磁開閉弁が開き、空気タンク15から空気が空気供給ライン17を経て自動的に燃焼炉5内へ導入されるため、フェイル・セイフ的な機能が発揮され、停電時でのより確実な対応が可能となる。   In the case of the example shown in FIG. 4 as well, if an electromagnetic on-off valve that is normally closed and opened in conjunction with the stop of the push-in ventilator 14 at the time of a power failure is used as the on-off valve 18, Since the electromagnetic on-off valve as the closed on-off valve 18 is opened and air is automatically introduced from the air tank 15 into the combustion furnace 5 through the air supply line 17, a fail-safe function is exhibited and a power failure occurs. A more reliable response in time is possible.

尚、図4に示す例の場合も、更なるバックアップとして燃焼炉5内の酸素濃度を計測するようにしても良い。   In the case of the example shown in FIG. 4, the oxygen concentration in the combustion furnace 5 may be measured as a further backup.

こうして、図4に示す例の場合も、図1及び図3に示す例の場合と同様、N2製造装置やガス分析計等を設けることなく、且つ押込通風機14の形式に左右されることなく、押込通風機14の停止時における熱分解ガスの燃焼炉5内での充満と外部からの空気の混入とによる熱分解ガスの化学反応の急激な進行を未然に防止し得る。 Thus, in the case of the example shown in FIG. 4 as well, as in the case of the examples shown in FIGS. 1 and 3, it is dependent on the type of the forced air blower 14 without providing an N 2 manufacturing apparatus, a gas analyzer, or the like. In addition, the rapid progress of the chemical reaction of the pyrolysis gas due to the filling of the pyrolysis gas in the combustion furnace 5 and the mixing of air from the outside when the forced air blower 14 is stopped can be prevented.

図5は本発明を実施する形態の第四の例であって、図中、図4と同一の符号を付した部分は同一物を表わしており、基本的な構成は図4に示すものと同様であるが、本図示例の特徴とするところは、図5に示す如く、前記燃焼炉5内における流動層4の下部へ空気を導入するよう、前記空気タンク15と燃焼炉5とを空気供給ライン17でつないだ点にある。   FIG. 5 shows a fourth example of the embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 4 denote the same components, and the basic configuration is as shown in FIG. Although the same, the feature of the illustrated example is that, as shown in FIG. 5, the air tank 15 and the combustion furnace 5 are connected to the air so as to introduce air into the lower part of the fluidized bed 4 in the combustion furnace 5. It is in the point connected by the supply line 17.

図5に示す例のように構成すると、容量並びに圧力の大きな空気タンク15が必要にはなるものの、ボイラ設備における通常運転時に、停電や前記押込通風機14の故障等により、該押込通風機14が停止してしまった場合、開閉弁18が開いて空気供給ライン17から燃焼炉5内における流動層4の下部へ導入される空気により、該燃焼炉5内における流動層4内に残留した燃料としての石炭、バイオマス、タイヤチップ等の燃料をも完全に燃焼させることが可能となる。   When configured as in the example shown in FIG. 5, an air tank 15 having a large capacity and pressure is required. However, during normal operation in a boiler facility, the forced air blower 14 is caused by a power failure or a failure of the forced air blower 14. Is stopped, the on-off valve 18 is opened, and the fuel remaining in the fluidized bed 4 in the combustion furnace 5 by the air introduced from the air supply line 17 to the lower part of the fluidized bed 4 in the combustion furnace 5. It is possible to completely burn fuel such as coal, biomass and tire chips.

こうして、図5に示す例の場合、図1、図3及び図4に示す例の場合と同様、N2製造装置やガス分析計等を設けることなく、且つ押込通風機14の形式に左右されることなく、押込通風機14の停止時における熱分解ガスの燃焼炉5内での充満と外部からの空気の混入とによる熱分解ガスの化学反応の急激な進行を未然に防止し得ることに加え更に、燃焼炉5内における流動層4内に残留した燃料としての石炭をも完全に燃焼させ得る。 Thus, in the case of the example shown in FIG. 5, as in the case of the examples shown in FIGS. 1, 3, and 4, there is no need to provide an N 2 production apparatus, a gas analyzer, etc., and it depends on the type of the forced draft fan 14. Without suddenly, the rapid progress of the chemical reaction of the pyrolysis gas due to the filling of the pyrolysis gas in the combustion furnace 5 and the mixing of air from the outside when the forced air blower 14 is stopped can be prevented. In addition, coal as fuel remaining in the fluidized bed 4 in the combustion furnace 5 can be completely burned.

尚、本発明の燃焼炉の熱分解ガス処理方法及び装置は、上述の図示例にのみ限定されるものではなく、押込通風機から圧送される流動用ガスにより燃料を燃焼させる燃焼炉であれば、ガス化炉と燃焼炉とを備えたガス化設備や燃焼炉単体のボイラ設備に限らず、どのような設備の燃焼炉にも適用可能なこと等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The pyrolysis gas treatment method and apparatus for a combustion furnace according to the present invention is not limited to the illustrated example described above, and may be any combustion furnace that burns fuel with a flowing gas pumped from a forced air blower. In addition, the present invention is not limited to gasification equipment including a gasification furnace and a combustion furnace or a boiler equipment of a single combustion furnace, and can be applied to any kind of combustion furnace. Of course, various changes can be made.

本発明を実施する形態の第一の例を示す全体概要構成図である。1 is an overall schematic configuration diagram showing a first example of an embodiment for carrying out the present invention; 単位重量当りの燃料としての石炭に含まれる揮発分及び実際に発生する熱分解ガスの生成量の一例を横軸に時間をとって示す線図である。FIG. 3 is a diagram illustrating an example of the amount of volatile matter contained in coal as fuel per unit weight and the amount of pyrolysis gas actually generated, taking time on the horizontal axis. 本発明を実施する形態の第二の例を示す全体概要構成図である。It is a whole schematic block diagram which shows the 2nd example of embodiment which implements this invention. 本発明を実施する形態の第三の例を示す全体概要構成図である。It is a whole schematic block diagram which shows the 3rd example of embodiment which implements this invention. 本発明を実施する形態の第四の例を示す全体概要構成図である。It is a whole schematic block diagram which shows the 4th example of embodiment which implements this invention. 従来例を示す全体概要構成図である。It is a whole schematic block diagram which shows a prior art example. ある時点で燃焼炉内に投入された燃料としての石炭に含まれる揮発分が完全燃焼するまでの時間及び固定炭素分が完全燃焼するまでの時間を示す線図である。It is a diagram which shows the time until the volatile matter contained in coal as the fuel thrown into the combustion furnace at a certain time completely burns and the time until the fixed carbon content completely burns.

符号の説明Explanation of symbols

4 流動層
5 燃焼炉
6 排ガス管
14 押込通風機
15 空気タンク
16 上方空間
17 空気供給ライン
18 開閉弁(電磁開閉弁)
4 Fluidized Bed 5 Combustion Furnace 6 Exhaust Gas Pipe 14 Pressed Ventilator 15 Air Tank 16 Upper Space 17 Air Supply Line 18 On-off Valve (Electromagnetic On-off Valve)

Claims (7)

押込通風機から圧送される流動用ガスにより流動層を形成して燃料を燃焼させる燃焼炉の熱分解ガス処理方法であって、
前記押込通風機の停止時、空気タンクに封入された空気を燃焼炉へ導入することにより、残留した燃料による熱分解ガスを燃焼させることを特徴とする燃焼炉の熱分解ガス処理方法。
A pyrolytic gas treatment method for a combustion furnace in which a fluidized bed is formed by a flowing gas pumped from a forced air blower to burn fuel,
A pyrolysis gas treatment method for a combustion furnace, characterized in that, when the forced air blower is stopped, by introducing air sealed in an air tank into the combustion furnace, the pyrolysis gas from the remaining fuel is combusted.
前記燃焼炉内における流動層へ空気を導入するようにした請求項1記載の燃焼炉の熱分解ガス処理方法。   The method for treating pyrolysis gas in a combustion furnace according to claim 1, wherein air is introduced into a fluidized bed in the combustion furnace. 前記燃料が石炭、バイオマス、或いはタイヤチップである請求項1又は2記載の燃焼炉の熱分解ガス処理方法。   The thermal decomposition gas treatment method for a combustion furnace according to claim 1 or 2, wherein the fuel is coal, biomass, or tire chips. 押込通風機から圧送される流動用ガスにより流動層を形成して燃料を燃焼させる燃焼炉の熱分解ガス処理装置であって、
前記押込通風機の停止時、燃焼炉内に残留した燃料による熱分解ガスを燃焼させるための空気が封入された空気タンクと、
該空気タンクと燃焼炉とをつなぐ空気供給ラインと
を備えたことを特徴とする燃焼炉の熱分解ガス処理装置。
A pyrolysis gas treatment apparatus for a combustion furnace that forms a fluidized bed by a gas for flow fed from a forced air blower and burns fuel,
An air tank filled with air for burning the pyrolysis gas by the fuel remaining in the combustion furnace when the forced air blower is stopped;
An apparatus for treating pyrolysis gas of a combustion furnace, comprising: an air supply line that connects the air tank and the combustion furnace.
前記燃焼炉内における流動層へ空気を導入するよう、前記空気タンクと燃焼炉とを空気供給ラインでつないだ請求項4記載の燃焼炉の熱分解ガス処理装置。   The pyrolysis gas treatment apparatus for a combustion furnace according to claim 4, wherein the air tank and the combustion furnace are connected by an air supply line so as to introduce air into a fluidized bed in the combustion furnace. 前記空気供給ライン途中に、通常時には閉じ且つ停電時には前記押込通風機の停止と連動して開く電磁開閉弁を設けた請求項4又は5記載の燃焼炉の熱分解ガス処理装置。   The pyrolytic gas treatment apparatus for a combustion furnace according to claim 4 or 5, wherein an electromagnetic on-off valve is provided in the middle of the air supply line, which is normally closed and opened in conjunction with the stop of the forced air blower in the event of a power failure. 前記燃料が石炭、バイオマス、或いはタイヤチップである請求項4〜6のいずれか一つに記載の燃焼炉の熱分解ガス処理装置。   The pyrolysis gas treatment apparatus for a combustion furnace according to any one of claims 4 to 6, wherein the fuel is coal, biomass, or tire chips.
JP2008067087A 2008-03-17 2008-03-17 Method and apparatus for treating cracked gas of combustion furnace Pending JP2009221343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067087A JP2009221343A (en) 2008-03-17 2008-03-17 Method and apparatus for treating cracked gas of combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067087A JP2009221343A (en) 2008-03-17 2008-03-17 Method and apparatus for treating cracked gas of combustion furnace

Publications (1)

Publication Number Publication Date
JP2009221343A true JP2009221343A (en) 2009-10-01

Family

ID=41238458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067087A Pending JP2009221343A (en) 2008-03-17 2008-03-17 Method and apparatus for treating cracked gas of combustion furnace

Country Status (1)

Country Link
JP (1) JP2009221343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113122335A (en) * 2021-04-21 2021-07-16 新奥科技发展有限公司 Biomass and coal co-gasification system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250727A (en) * 1996-03-19 1997-09-22 Mitsui Eng & Shipbuild Co Ltd Waste disposing device
JP2007277376A (en) * 2006-04-05 2007-10-25 Ihi Corp Pyrolysis gasifying apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250727A (en) * 1996-03-19 1997-09-22 Mitsui Eng & Shipbuild Co Ltd Waste disposing device
JP2007277376A (en) * 2006-04-05 2007-10-25 Ihi Corp Pyrolysis gasifying apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113122335A (en) * 2021-04-21 2021-07-16 新奥科技发展有限公司 Biomass and coal co-gasification system and method

Similar Documents

Publication Publication Date Title
CA2377774C (en) A method and an apparatus for the pyrolysis and gasification of organic substances or mixtures of organic substances
DK2593530T3 (en) PROCEDURE FOR HANDLING CHARACTERISTICS IN A PYROLYSE SYSTEM
JP4923934B2 (en) Fluidized bed gasification method and apparatus
AU2013375286B2 (en) Method and device for gasifying feedstock
JPS6092393A (en) Reactor for producer gas
US20200040268A1 (en) Method for Gasifying Feedstock with High Yield Production of Biochar
JP2006143983A (en) Method of operating gasifier and gasifier
EP3077487B1 (en) Torrefaction/gassification system
JP5180917B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP6595073B1 (en) Waste treatment method and system
JP4378360B2 (en) Power generation method and apparatus using waste
JP4620620B2 (en) Waste gasifier and operating method thereof
JP5321785B2 (en) Circulating fluidized bed gasifier and its air flow rate control method and apparatus
CN101696799B (en) Device for preventing circulating fluidized bed boiler from coking
JP2009221343A (en) Method and apparatus for treating cracked gas of combustion furnace
JP3868315B2 (en) Combustion control device and combustion control method for pyrolysis gasification melting furnace
CN104650981B (en) Method for heating the fuel bed in fixed bed pressure gasification reactor
BR122021017230A2 (en) THERMAL DECOMPOSITION PROCESS AND METHOD FOR THERMALLY CONVERTING A RAW MATERIAL
JP5212033B2 (en) Abnormal combustion state detection method and apparatus for gasification equipment
WO2013068052A1 (en) Method and system for producing a producer gas
JP5621238B2 (en) Unreacted raw material processing method and apparatus when circulating fluidized bed gasifier is stopped
JP6055586B2 (en) Reformer
EP3583193B1 (en) Separated chambers pyrolysis furnace
JP6640771B2 (en) Gasifier
JP6299466B2 (en) Waste gasification and melting apparatus and waste gasification and melting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514