JP2009215375A - Hydrate-dispersed resin composition, and porous body and insulated electric wire using the same, and method for manufacturing insulated electric wire - Google Patents

Hydrate-dispersed resin composition, and porous body and insulated electric wire using the same, and method for manufacturing insulated electric wire Download PDF

Info

Publication number
JP2009215375A
JP2009215375A JP2008058318A JP2008058318A JP2009215375A JP 2009215375 A JP2009215375 A JP 2009215375A JP 2008058318 A JP2008058318 A JP 2008058318A JP 2008058318 A JP2008058318 A JP 2008058318A JP 2009215375 A JP2009215375 A JP 2009215375A
Authority
JP
Japan
Prior art keywords
hydrate
resin composition
dispersed resin
dispersed
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008058318A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kato
善久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008058318A priority Critical patent/JP2009215375A/en
Publication of JP2009215375A publication Critical patent/JP2009215375A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)
  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material easily forming a porous body. <P>SOLUTION: The material is a hydrate-dispersed resin composition obtained by dispersing a hydrate in a crosslink-curable resin composition, wherein the hydrate has five or more water molecules in its chemical formula and has an average particle diameter of ≤10 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水和物分散樹脂組成物およびこれを用いた多孔質物並びに絶縁電線およびその製造方法に関する。   The present invention relates to a hydrate-dispersed resin composition, a porous material using the same, an insulated wire, and a method for producing the same.

近年、医療分野をはじめとする精密電子機器類や通信機器類の小型化や高密度実装化が進むなかで、これらに使用される電線・ケーブルもますます細径化が図られている。   In recent years, with the progress of miniaturization and high-density mounting of precision electronic devices and communication devices such as medical fields, the diameters of electric wires and cables used for these devices have been further reduced.

さらに信号線等では、伝送信号の一層の高速化を求める傾向が顕著であり、これに使用される電線の絶縁体層を薄くかつ可能な限り低誘電率化することにより伝送信号の高速化を図ることが望まれている。   Furthermore, in signal lines and the like, the tendency to further increase the speed of transmission signals is remarkable, and the speed of transmission signals can be increased by reducing the dielectric constant as much as possible and making the insulator layer of the wires used for this thin. It is desired to plan.

この絶縁体には従来、ポリエチレンやフッ素樹脂などの誘電率の低い絶縁材料を発泡させたものが使われている。発泡絶縁体層の形成には、予め発泡させたフィルムを導体上に巻き付ける方法や押出方式が知られており、特に押出方式が広く用いられている。   For this insulator, conventionally, an insulating material having a low dielectric constant such as polyethylene or fluororesin is used. For forming the foamed insulator layer, a method of winding a film previously foamed on a conductor and an extrusion method are known, and the extrusion method is particularly widely used.

発泡を形成する方法としては、大きく物理的な発泡方法と化学的な発泡方法に分けられる。   Methods for forming foaming can be broadly divided into physical foaming methods and chemical foaming methods.

物理的な発泡方法としては、液体フロンのような揮発性発泡用液体を溶融樹脂中に注入し、その気化圧により発泡させる方法や窒素ガス、炭酸ガスなど押出機中の溶融樹脂に直接気泡形成用ガスを圧入させることにより一様に分布した細胞状の微細な独立気泡体を樹脂中に発生させる方法などがある。   As a physical foaming method, a volatile foaming liquid such as liquid chlorofluorocarbon is injected into the molten resin and foamed by its vaporization pressure, or bubbles are formed directly in the molten resin in the extruder such as nitrogen gas or carbon dioxide gas. For example, there is a method of generating fine closed cells in the form of cells uniformly distributed by injecting a working gas into the resin.

化学的な発泡方法としては、樹脂中に発泡剤を分散混合した状態で成形し、その後熱を加えることにより発泡剤の分解反応を発生させ、分解により発生するガスを利用して発泡させることが良く知られている。   As a chemical foaming method, a foaming agent is dispersed and mixed in a resin, and after that, heat is applied to cause a decomposition reaction of the foaming agent, and foaming is performed using a gas generated by the decomposition. Well known.

なお、この出願の発明に関連する先行技術文献情報としては、次のものがある。   The prior art document information related to the invention of this application includes the following.

特開平11−12385号公報Japanese Patent Laid-Open No. 11-12385 特開2004−174491号公報JP 2004-174491 A 特開2006−199797号公報JP 2006-199797 A 特開2006−274074号公報JP 2006-274074 A 特開2007−39634号公報JP 2007-39634 A

しかしながら、溶融樹脂中に揮発性発泡用液体を注入する方法では、気化圧が強く、気泡の微細形成が難しく薄肉成形に限界がある。また、揮発性発泡用液体の注入速度が遅いために、高速製造化が難しく、生産性に劣るという問題もある。さらに、押出機中で直接気泡形成用ガスを圧入する方法は、細径薄肉押出形成に限界があること、安全面で特別な設備や技術を必要とするため、生産性に劣ることや製造コストの上昇を招いてしまう問題がある。   However, in the method of injecting the volatile foaming liquid into the molten resin, the vaporization pressure is strong, and it is difficult to form fine bubbles, and there is a limit to thin-wall molding. Moreover, since the injection | pouring speed | velocity | rate of the volatile foaming liquid is slow, there also exists a problem that high-speed manufacture is difficult and it is inferior to productivity. Furthermore, the method of directly injecting the gas for forming bubbles in the extruder is limited in the formation of small-diameter and thin-walled extrusion, and requires special equipment and technology for safety, resulting in poor productivity and manufacturing costs. There is a problem that leads to an increase.

一方、化学発泡方法は、予め樹脂中に発泡剤を混練し、分散混合し、成形加工後に熱により発泡剤を反応分解させて発生したガスにより発泡をさせるため、樹脂の成形加工温度を、発泡剤の分解温度より低く保持しなければならない問題がある。さらに、素線の径が細くなると、押出被覆では樹脂圧により断線が起こりやすく、高速化が難しくなるという別の問題もある。   On the other hand, in the chemical foaming method, the foaming agent is kneaded in advance in the resin, dispersed and mixed, and after the molding process, the foaming agent is reacted with heat to cause foaming by the generated gas. There is a problem that it must be kept below the decomposition temperature of the agent. Furthermore, when the diameter of the wire becomes thin, there is another problem that the extrusion coating tends to cause disconnection due to the resin pressure, and it is difficult to increase the speed.

そこで、本発明の目的は、前記の問題点を解決するために、容易に製造可能な水和物分散樹脂組成物およびこれを用いた多孔質物並びに絶縁電線およびその製造方法を提供することにある。   Therefore, an object of the present invention is to provide a hydrate-dispersed resin composition that can be easily manufactured, a porous material using the same, an insulated wire, and a method for manufacturing the same, in order to solve the above-described problems. .

本発明は上記目的を達成するために創案されたものであり、架橋硬化型樹脂組成物に水和物を分散させた水和物分散樹脂組成物であって、前記水和物はその化学式中の水分子の数が5個以上であり、前記水和物の平均粒径が10μm以下である水和物分散樹脂組成物である。   The present invention was devised to achieve the above object, and is a hydrate-dispersed resin composition in which a hydrate is dispersed in a cross-linked curable resin composition, the hydrate having the chemical formula Is a hydrate-dispersed resin composition in which the number of water molecules is 5 or more and the average particle size of the hydrate is 10 μm or less.

また、前記架橋硬化型樹脂組成物が、紫外線又は熱によって硬化する組成物であるとよい。   The cross-linking curable resin composition may be a composition that is cured by ultraviolet rays or heat.

本発明は、前記水和物分散樹脂組成物を、架橋することにより硬化した後、加熱により水和物の水分を除去した多孔質物である。   The present invention is a porous product obtained by curing the hydrate-dispersed resin composition by crosslinking and then removing moisture from the hydrate by heating.

本発明は、前記水和物分散樹脂組成物を、導体の周囲に被覆して絶縁層とした後、前記絶縁層を架橋することにより前記水和物分散樹脂組成物を硬化し、加熱して水和物の水分を除去することで前記絶縁層の中に空孔を形成した絶縁電線である。   The present invention comprises coating the hydrate-dispersed resin composition around a conductor to form an insulating layer, and then curing the hydrate-dispersed resin composition by crosslinking the insulating layer, followed by heating. It is an insulated wire in which pores are formed in the insulating layer by removing moisture from the hydrate.

本発明は、前記水和物分散樹脂組成物を、導体の周囲に被覆して絶縁層とした後、前記絶縁層を架橋することにより前記水和物分散樹脂組成物を硬化し、加熱して水和物の水分を除去することで前記絶縁層の中に空孔を形成した絶縁電線の製造方法である。   The present invention comprises coating the hydrate-dispersed resin composition around a conductor to form an insulating layer, and then curing the hydrate-dispersed resin composition by crosslinking the insulating layer, followed by heating. This is a method for manufacturing an insulated wire in which pores are formed in the insulating layer by removing moisture from the hydrate.

また、前記加熱がマイクロ波加熱であるとよい。   The heating is preferably microwave heating.

本発明によれば、容易に多孔質物を形成できる材料を提供できる。   According to the present invention, a material capable of easily forming a porous material can be provided.

以下、本発明の好適な実施形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

本実施形態に係る水和物分散樹脂組成物は、架橋硬化型樹脂組成物に水和物を分散させてなる。この水和物は、その化学式中の水分子の数が5個以上、水和物の平均粒径が10μm以下であり、好ましくは平均粒径が5μm以下であると良い。   The hydrate-dispersed resin composition according to this embodiment is obtained by dispersing a hydrate in a cross-linked curable resin composition. This hydrate has 5 or more water molecules in its chemical formula, and the average particle size of the hydrate is 10 μm or less, preferably 5 μm or less.

水和物の水分子の数(化学式中の水分子の数)を5個以上とするのは、水和物の水分子の数が5個より少ないと、水和物の添加量に応じて水分子の脱水によって得られる空隙形成効果を得にくいためである。   The number of water molecules in the hydrate (the number of water molecules in the chemical formula) is set to 5 or more if the number of water molecules in the hydrate is less than 5, depending on the amount of hydrate added. This is because it is difficult to obtain a void forming effect obtained by dehydration of water molecules.

水和物の平均粒径を10μm以下とするのは、平均粒径が10μmより大きくなると、水和物を分散した架橋硬化型樹脂組成物からなる硬化物の機械的特性や薄膜形成時の外観などが著しく低下する問題があるためである。   The average particle size of the hydrate is set to 10 μm or less because when the average particle size is larger than 10 μm, the mechanical properties of the cured product composed of the cross-linked curable resin composition in which the hydrate is dispersed and the appearance when forming a thin film This is because there is a problem that the remarkably decreases.

架橋硬化型樹脂組成物とは、紫外線、熱、電子線、可視光などにより硬化するもので、特に限定するものではないが、好ましくは紫外線や熱、あるいは併用で架橋硬化する樹脂組成物が良く、さらに好ましくは紫外線架橋硬化型樹脂組成物が良い。架橋硬化型樹脂組成物としては、エチレン系、ウレタン系、シリコーン系、フッ素系、エポキシ系、ポリエステル系、ポリカーボネート系など公知の架橋硬化型樹脂組成物を選択できるが、架橋硬化型樹脂組成物の誘電率として4以下、好ましくは3以下のものが良い。   The cross-linking curable resin composition is cured by ultraviolet rays, heat, electron beam, visible light, etc., and is not particularly limited, but preferably a resin composition that is cross-linked and cured by ultraviolet rays, heat, or a combination thereof. More preferably, an ultraviolet crosslinking curable resin composition is used. As the cross-linking curable resin composition, known cross-linking curable resin compositions such as ethylene-based, urethane-based, silicone-based, fluorine-based, epoxy-based, polyester-based, and polycarbonate-based resins can be selected. The dielectric constant is 4 or less, preferably 3 or less.

水和物とは、水分子がほかの分子と結合して生成した形の構造を持つ分子化合物であり、化学式中に含まれる水分子の数に応じて、一水和物、二水和物などと呼ばれる。   Hydrates are molecular compounds with a structure in which water molecules are combined with other molecules, and depending on the number of water molecules contained in the chemical formula, monohydrates and dihydrates. And so on.

水分子を5個以上有する水和物としては、例えば、硝酸ビスマス、硝酸銅(II)、硫酸銅(II)、亜リン酸水素ナトリウム、珪酸マグネシウム、硫酸マンガン、チオ硫酸ナトリウムなどの五水和物、硫酸アンモニウムコバルト、硫酸アンモニウム銅、硫酸アンモニウム鉄、リン酸マグネシウムアンモニウム、ヨウ化コバルト(II)、硝酸ランタン、ヘキサフルオロ珪酸マグネシウム、チオ硫酸マグネシウム、硝酸セリウム、テトラフルオロホウ酸銅(II)、硫酸アンモニウムマンガン、硝酸ニッケル、硫酸ニッケル、テトラフルオロホウ酸ニッケル、ビベラジン、コハク酸ナトリウム、硝酸亜鉛、硝酸マンガンなどの六水和物、塩化セリウム(III)、硫酸コバルト(II)、硫酸第一鉄、硫酸鉄(II)、硫酸マグネシウム、リン酸水素二ナトリウム、亜硫酸ナトリウム、硫酸亜鉛、リン酸ナトリウム二塩基性などの七水和物、ホウ酸アンモニウム、水酸化バリウム、リン酸コバルト(II)、硫酸エルビウム(III)、リン酸マグネシウム第三、炭酸ネオジム、五ホウ酸カリウム、水酸化ストロンチウム、二塩化酸化ジルコニウム、フェノールスルホン酸亜鉛などの八水和物、硝酸アルミニウム、過塩素酸アルミニウム、硝酸第二鉄、硝酸鉄、メタケイ酸ナトリウム、硫化ナトリウム、硝酸鉄(III)、シュウ酸イットリウムなどの九水和物、シュウ酸エルビウム、シュウ酸サマリウム、炭酸ナトリウム、二リン酸ナトリウム、硫酸アトリウム、ピロリン酸ナトリウム、ヘキサシアノ鉄(II)酸ナトリウム、テトラホウ酸ナトリウム、セレン酸ナトリウム、シュウ酸ネオジム、シュウ酸テルビウムなどの十水和物、硫酸アルミニウムカリウム、硫酸アンモニウムクロム、硫酸アンモニウム鉄、リン酸ナトリウム三塩基性、硫酸第二鉄アンモニウム、リン酸ナトリウム、メソ−テトラ(4−スルフォナトフェニル)ポルフィン4ナトリウムなどの十二水和物があげられる。   Examples of hydrates having 5 or more water molecules include pentahydrate such as bismuth nitrate, copper (II) nitrate, copper (II) sulfate, sodium hydrogen phosphite, magnesium silicate, manganese sulfate, sodium thiosulfate, etc. Product, ammonium cobalt sulfate, copper ammonium sulfate, ammonium iron sulfate, magnesium ammonium phosphate, cobalt (II) iodide, lanthanum nitrate, magnesium hexafluorosilicate, magnesium thiosulfate, cerium nitrate, copper (II) tetrafluoroborate, manganese ammonium sulfate, Nickel nitrate, nickel sulfate, nickel tetrafluoroborate, viverazine, sodium succinate, zinc nitrate, manganese nitrate hexahydrate, cerium (III) chloride, cobalt (II) sulfate, ferrous sulfate, iron sulfate ( II), magnesium sulfate, disodium hydrogen phosphate Sodium sulfite, zinc sulfate, sodium phosphate dibasic heptahydrate, ammonium borate, barium hydroxide, cobalt (II) phosphate, erbium (III) sulfate, magnesium phosphate tertiary, neodymium carbonate, five Octahydrates such as potassium borate, strontium hydroxide, zirconium dichloride oxide, zinc phenolsulfonate, aluminum nitrate, aluminum perchlorate, ferric nitrate, iron nitrate, sodium metasilicate, sodium sulfide, iron nitrate ( III), non-hydrates such as yttrium oxalate, erbium oxalate, samarium oxalate, sodium carbonate, sodium diphosphate, atrium sulfate, sodium pyrophosphate, sodium hexacyanoferrate (II), sodium tetraborate, selenate Sodium, neodymium oxalate, terbium oxalate Any decahydrate, potassium aluminum sulfate, chromium ammonium sulfate, ammonium iron sulfate, tribasic sodium phosphate, ammonium ferric sulfate, sodium phosphate, meso-tetra (4-sulfonatophenyl) porphine tetrasodium, etc. Dihydrate.

これらは必要に応じて二種以上、選択的に組み合わせて用いても良い。   These may be used in combination of two or more as required.

本実施形態に係る水和物分散樹脂組成物によれば、水和物分散樹脂組成物を硬化させた際に、水和物を利用して空孔を形成できるため、容易に多孔質物や多孔質被覆電線が得られる。   According to the hydrate-dispersed resin composition according to the present embodiment, when the hydrate-dispersed resin composition is cured, pores can be formed using the hydrate, so that a porous material or a porous material can be easily formed. A quality coated electric wire is obtained.

多孔質物は、水和物分散樹脂組成物を架橋することにより硬化させた後、その硬化させた水和物分散樹脂組成物を加熱して水和物の水分を除去して形成される。   The porous material is formed by curing the hydrate-dispersed resin composition by crosslinking and then heating the cured hydrate-dispersed resin composition to remove moisture from the hydrate.

次に、水和物分散樹脂組成物を用いた絶縁電線について説明する。   Next, an insulated wire using the hydrate-dispersed resin composition will be described.

図1に示すように、本実施形態に係る絶縁電線1は、導体2と、導体2の周囲に被覆された絶縁層3とからなる。   As shown in FIG. 1, the insulated wire 1 according to the present embodiment includes a conductor 2 and an insulating layer 3 covered around the conductor 2.

絶縁層3は、導体2に被覆された水和物分散樹脂組成物が、架橋することにより硬化された後、加熱により水和物の水分を除去され形成された空孔4を有する多孔質物で形成される。   The insulating layer 3 is a porous material having pores 4 formed by removing moisture from the hydrate by heating after the hydrate-dispersed resin composition coated on the conductor 2 is cured by crosslinking. It is formed.

次に、本実施形態に係る絶縁電線1の製造方法を説明する。   Next, the manufacturing method of the insulated wire 1 which concerns on this embodiment is demonstrated.

導体2の外周に、架橋硬化型樹脂組成物に水和物を分散した水和物分散樹脂組成物を被覆して絶縁層3を形成する。この絶縁層3を加熱架橋することにより前記水和物分散樹脂組成物を硬化し、さらにマイクロ波加熱することにより、水和物の水分を除去することで絶縁層3の中に空孔4を形成すると絶縁電線1が得られる。   The insulating layer 3 is formed by coating the outer periphery of the conductor 2 with a hydrate-dispersed resin composition in which a hydrate is dispersed in a cross-linked curable resin composition. The insulating layer 3 is heated and cross-linked to cure the hydrate-dispersed resin composition, and further heated by microwaves to remove moisture from the hydrate, thereby forming pores 4 in the insulating layer 3. When formed, the insulated wire 1 is obtained.

導体2の外周に架橋硬化型樹脂組成物を被覆して架橋硬化した後、加熱により脱水させるのは、脱水による体積収縮によって空隙率の低下が防止できるほか、膜厚や外径の変化を防止し、安定した絶縁電線を得ることができるためである。   The outer periphery of the conductor 2 is coated with a cross-linkable curable resin composition, cross-linked and cured, and then dehydrated by heating. In addition to preventing volume reduction due to dehydration, the porosity can be prevented from being decreased, and changes in film thickness and outer diameter can be prevented. This is because a stable insulated wire can be obtained.

水和物の水を加熱脱水するのにマイクロ波加熱を利用するのは、水はマイクロ波により、急速に加熱されるため周囲の樹脂などに影響をあたえることなく、短時間で加熱脱水ができ効率よく空孔形成ができるためである。また、導波管型マイクロ波加熱炉を用いることで、連続的に加熱脱水ができる。   Microwave heating is used to heat and dehydrate hydrated water because water is rapidly heated by microwaves, so heat dehydration can be performed in a short time without affecting the surrounding resin. This is because holes can be formed efficiently. Further, by using a waveguide type microwave heating furnace, heat dehydration can be performed continuously.

絶縁電線1によれば、電線の細径化や、伝送信号の高速化が図れる。   According to the insulated wire 1, the wire diameter can be reduced and the transmission signal speed can be increased.

また、絶縁電線1の製造方法によれば、水和物分散樹脂組成物を硬化させた後、マイクロ波加熱により脱水することで、容易に多孔質被覆電線が得られる。   Moreover, according to the manufacturing method of the insulated wire 1, after hardening a hydrate dispersion resin composition, it spin-dry | dehydrates by a microwave heating, and a porous covering electric wire is easily obtained.

(実施例1)
ポリブタジエンアクリレートオリゴマ(TEAI−1000、日本曹達(株)製)100質量部、ジシクロペンタニルメタクリレート50質量部、イソボニルメタクリレート30質量部、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド(DAROCUR TP0、チバスペシャルティケミカルズ製)5質量部、1−ヒドロキシシクロヘキシルフェニルケトン(IRGACURE 184、チバスペシャルティケミカルズ製)1質量部からなる架橋硬化型樹脂組成物に、リン酸マグネシウムアンモニウム六水和物(NH4MgPO4・6H2O、和光純薬製)の平均粒径3μmとしたものを124質量部撹拌分散した水和物分散樹脂組成物−実施例1(樹脂組成物−実施例1)を得た。なお、マイクロトラック粒度分布測定装置MT3000II(Microtrac Inc.製)を用いて粒度分布の50%値を平均粒径とした。
Example 1
100 parts by mass of polybutadiene acrylate oligomer (TEAI-1000, manufactured by Nippon Soda Co., Ltd.), 50 parts by mass of dicyclopentanyl methacrylate, 30 parts by mass of isobornyl methacrylate, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (DAROCUR TP0 , Ciba Specialty Ltd. Chemicals) 5 parts by weight, 1-hydroxycyclohexyl phenyl ketone (IRGACURE 184, manufactured by Ciba Specialty Chemicals) to the cross-linkable resin composition comprising 1 part by weight of magnesium ammonium phosphate hexahydrate (NH 4 MgPO A hydrate-dispersed resin composition-Example 1 (resin composition-Example 1) obtained by stirring and dispersing 124 parts by mass of 4 · 6H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.) having an average particle size of 3 μm was obtained. A 50% value of the particle size distribution was defined as an average particle size using a microtrack particle size distribution measuring device MT3000II (manufactured by Microtrac Inc.).

樹脂組成物−実施例1を、ガラス板上に4MILのブレードを用いて、幅100mm、長さ200mmの塗膜を形成し、窒素雰囲気下で、紫外線照射コンベア装置を用いて紫外線照射量500mJ/cm2を照射し硬化させ、膜厚約50μmのフィルムを作製した。 Resin composition-Example 1 was formed by using a 4 MIL blade on a glass plate to form a coating film having a width of 100 mm and a length of 200 mm, and using an ultraviolet irradiation conveyor device in a nitrogen atmosphere, an ultraviolet irradiation amount of 500 mJ / A film having a thickness of about 50 μm was prepared by irradiating and curing cm 2 .

次に樹脂組成物−実施例1を、加圧塗布槽でより導体48AWG(7/0.013 S−MF−AG合金線、日立電線製)上に速度50m/minで被覆し、これを紫外線照射炉(アイグラフィックス製、6kW)2灯に通して硬化させた後、導波管型マイクロ加熱炉を通して加熱脱水処理して、被覆厚50μmの電線を作製した。   Next, the resin composition-Example 1 was coated on a conductor 48AWG (7 / 0.013 S-MF-AG alloy wire, manufactured by Hitachi Cable Co., Ltd.) at a speed of 50 m / min with a pressure coating tank, and this was coated with ultraviolet rays. After passing through two irradiation furnaces (made by iGraphics, 6 kW) and curing, heat dehydration treatment was performed through a waveguide type micro heating furnace to produce an electric wire with a coating thickness of 50 μm.

(実施例2)
ポリブタジエンアクリレートオリゴマ(TEAI−1000、日本曹達(株)製)100質量部、ジシクロペンタニルメタクリレート50質量部、イソボニルメタクリレート30質量部、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド(DAROCUR TP0、チバスペシャルティケミカルズ製)5質量部、1−ヒドロキシシクロヘキシルフェニルケトン(IRGACURE 184、チバスペシャルティケミカルズ製)1質量部からなる架橋硬化型樹脂組成物に、メタケイ酸ナトリウム九水和物(Na2SiO3・9H2O、和光純薬製)の平均粒径3μmとしたものを124重量部撹拌分散した水和物分散樹脂組成物−実施例2(樹脂組成物−実施例2)を得た。
(Example 2)
100 parts by mass of polybutadiene acrylate oligomer (TEAI-1000, manufactured by Nippon Soda Co., Ltd.), 50 parts by mass of dicyclopentanyl methacrylate, 30 parts by mass of isobornyl methacrylate, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (DAROCUR TP0 , Manufactured by Ciba Specialty Chemicals) and 1 mass part of 1-hydroxycyclohexyl phenyl ketone (IRGACURE 184, manufactured by Ciba Specialty Chemicals) in a cross-linked curable resin composition, sodium metasilicate nonahydrate (Na 2 SiO 3) A hydrate-dispersed resin composition-Example 2 (resin composition-Example 2) obtained by stirring and dispersing 124 parts by weight of 9H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.) having an average particle size of 3 μm was obtained.

樹脂組成物−実施例2を用いて実施例1と同様にフィルムおよび電線を作製した。   Using the resin composition-Example 2, a film and an electric wire were produced in the same manner as in Example 1.

(実施例3)
両末端スチレン変性オリゴフェニレンエーテル(OPE−2St、三菱ガス化学製)100質量部、ジシクロペンタニルメタクリレート30質量部、N−ビニルピロリドン20質量部、イソボニルメタクリレート30質量部、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド5質量部、1−ヒドロキシシクロヘキシルフェニルケトン1質量部からなる架橋硬化型樹脂組成物に、炭酸ナトリウム十水和物(Na2CO3・10H2O、和光純薬製)の平均粒径8μmとしたものを124質量部撹拌分散した水和物分散樹脂組成物−実施例3(樹脂組成物−実施例3)を得た。
(Example 3)
100 parts by mass of styrene-modified oligophenylene ether at both ends (OPE-2St, manufactured by Mitsubishi Gas Chemical), 30 parts by mass of dicyclopentanyl methacrylate, 20 parts by mass of N-vinylpyrrolidone, 30 parts by mass of isobornyl methacrylate, 2, 4, 6 -A crosslinked curable resin composition consisting of 5 parts by weight of trimethylbenzoyldiphenylphosphine oxide and 1 part by weight of 1-hydroxycyclohexyl phenyl ketone, sodium carbonate decahydrate (Na 2 CO 3 · 10H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) Hydrate dispersion resin composition-Example 3 (resin composition-Example 3) was obtained by stirring and dispersing 124 parts by mass of an average particle diameter of 8 μm).

樹脂組成物−実施例3を用いて実施例1と同様にフィルムおよび電線を作製した。   A film and an electric wire were produced in the same manner as in Example 1 using the resin composition-Example 3.

(実施例4)
ポリブタジエンアクリレートオリゴマ(TEAI−1000、日本曹達(株)製)100質量部、ジシクロペンタニルメタクリレート50質量部、イソボニルメタクリレート30質量部、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド(DAROCUR TP0、チバスペシャルティケミカルズ製)5質量部、1−ヒドロキシシクロヘキシルフェニルケトン(IRGACURE 184、チバスペシャルティケミカルズ製)1質量部からなる架橋硬化型樹脂組成物に、珪酸マグネシウム五水和物(Mg2Si38・5H2O、和光純薬製)の平均粒径10μmとしたものを124質量部撹拌分散した水和物分散樹脂組成物−実施例4(樹脂組成物−実施例4)を得た。
Example 4
100 parts by mass of polybutadiene acrylate oligomer (TEAI-1000, manufactured by Nippon Soda Co., Ltd.), 50 parts by mass of dicyclopentanyl methacrylate, 30 parts by mass of isobornyl methacrylate, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (DAROCUR TP0 , Manufactured by Ciba Specialty Chemicals) and 5 parts by mass of 1-hydroxycyclohexyl phenyl ketone (IRGACURE 184, manufactured by Ciba Specialty Chemicals), a crosslinked curable resin composition containing magnesium silicate pentahydrate (Mg 2 Si 3 O A hydrate-dispersed resin composition-Example 4 (resin composition-Example 4) obtained by stirring and dispersing 124 parts by mass of an average particle size of 10 Hm (8.5H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) was obtained.

樹脂組成物−実施例4を用いて実施例1と同様にフィルムおよび電線を作製した。   A film and an electric wire were produced in the same manner as in Example 1 using the resin composition-Example 4.

(比較例1)
ポリブタジエンアクリレートオリゴマ(TEAI‐1000、日本曹達(株)製)100質量部、ジシクロペンタニルメタクリレート50質量部、イソボニルメタクリレート30質量部、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド(DAROCUR TP0、チバスペシャルティケミカルズ製)5質量部、1−ヒドロキシシクロヘキシルフェニルケトン(IRGACURE 184、チバスペシャルティケミカルズ製)1質量部からなる架橋硬化型樹脂組成物に、リン酸水素カルシウム二水和物(CaHPO4・2H2O、和光純薬製)の平均粒径5μmとしたものを124質量部撹拌分散した水和物分散樹脂組成物−比較例1(樹脂組成物−比較例1)を得た。
(Comparative Example 1)
100 parts by mass of polybutadiene acrylate oligomer (TEAI-1000, manufactured by Nippon Soda Co., Ltd.), 50 parts by mass of dicyclopentanyl methacrylate, 30 parts by mass of isobornyl methacrylate, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (DAROCUR TP0 , Manufactured by Ciba Specialty Chemicals Co., Ltd.) and 5 parts by mass of 1-hydroxycyclohexyl phenyl ketone (IRGACURE 184, manufactured by Ciba Specialty Chemicals Co., Ltd.), a crosslinked curable resin composition containing calcium hydrogen phosphate dihydrate (CaHPO 4. A hydrate-dispersed resin composition-comparative example 1 (resin composition-comparative example 1) obtained by stirring and dispersing 124 parts by mass of 2H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.) having an average particle size of 5 μm was obtained.

樹脂組成物−比較例1を用いて実施例と同様にフィルムおよび電線を作製した。   Using the resin composition-Comparative Example 1, films and electric wires were produced in the same manner as in the Examples.

(比較例2)
ポリブタジエンアクリレートオリゴマ(TEAI−1000、日本曹達(株)製)100質量部、ジシクロペンタニルメタクリレート50質量部、イソボニルメタクリレート30質量部、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド(DAROCUR TP0、チバスペシャルティケミカルズ製)5質量部、1−ヒドロキシシクロヘキシルフェニルケトン(IRGACURE 184、チバスペシャルティケミカルズ製)1質量部からなる架橋硬化型樹脂組成物に、リン酸マンガン(II)塩基性四水和物(Mn(H2PO42・4H20、和光純薬製)の平均粒径11μmとしたものを124質量部撹拌分散した水和物分散樹脂組成物−比較例2(樹脂組成物−比較例2)を得た。
(Comparative Example 2)
100 parts by mass of polybutadiene acrylate oligomer (TEAI-1000, manufactured by Nippon Soda Co., Ltd.), 50 parts by mass of dicyclopentanyl methacrylate, 30 parts by mass of isobornyl methacrylate, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (DAROCUR TP0 , Manufactured by Ciba Specialty Chemicals Co., Ltd.) and 5 parts by mass of 1-hydroxycyclohexyl phenyl ketone (IRGACURE 184, manufactured by Ciba Specialty Chemicals Co., Ltd.). (Mn (H 2 PO 4) 2 · 4H 2 0, manufactured by Wako pure Chemical Industries, Ltd.) average particle size 11μm and the ones 124 parts by stirring the dispersed hydrate dispersed resin composition - Comparative example 2 (resin composition - Comparative Example 2) was obtained.

樹脂組成物−比較例2を用いて実施例と同様にフィルムおよび電線を作製した。   Using the resin composition-Comparative Example 2, films and electric wires were produced in the same manner as in the Examples.

(比較例3)
両末端スチレン変性オリゴフェニレンエーテル(OPE−2St、三菱ガス化学製)100質量部、ジシクロペンタニルメタクリレート30質量部、N−ビニルピロリドン20質量部、イソボニルメタクリレート30質量部、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド5質量部、1−ヒドロキシシクロヘキシルフェニルケトン1質量部からなる架橋硬化型樹脂組成物に、炭酸ナトリウム十水和物(Na2CO3・10H2O、和光純薬製)の平均粒径20μmとしたものを124質量部撹拌分散した水和物分散樹脂組成物−比較例3(樹脂組成物−比較例3)を得た。
(Comparative Example 3)
100 parts by mass of styrene-modified oligophenylene ether at both ends (OPE-2St, manufactured by Mitsubishi Gas Chemical), 30 parts by mass of dicyclopentanyl methacrylate, 20 parts by mass of N-vinylpyrrolidone, 30 parts by mass of isobornyl methacrylate, 2, 4, 6 -A crosslinked curable resin composition consisting of 5 parts by weight of trimethylbenzoyldiphenylphosphine oxide and 1 part by weight of 1-hydroxycyclohexyl phenyl ketone, sodium carbonate decahydrate (Na 2 CO 3 · 10H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) ) Dispersion having a mean particle size of 20 μm was obtained by stirring and dispersing 124 parts by mass of the hydrate-dispersed resin composition-Comparative Example 3 (resin composition-Comparative Example 3).

樹脂組成物−比較例3を用いて実施例と同様にフィルムおよび電線を作製した。   Using the resin composition-Comparative Example 3, films and electric wires were produced in the same manner as in the Examples.

Figure 2009215375
Figure 2009215375

実施例1〜4および比較例1〜3で作製したフィルムおよび電線について、評価した結果を表1に示す。空隙率は、マイクロ波加熱前後の硬化膜の質量および体積を求め算出した。   Table 1 shows the evaluation results of the films and electric wires produced in Examples 1 to 4 and Comparative Examples 1 to 3. The porosity was calculated by determining the mass and volume of the cured film before and after microwave heating.

表1に示すように、実施例1〜4に対し、水和物の水分子の数が少ない比較例1又は2は、得られる空隙率が小さく、水和物の添加量による空隙形成効率が低いことが分かる。水和物の平均粒径が10μmの実施例4に対して、平均粒径が10μmを超える比較例2又は3は、フィルムや電線において、平滑な表面が得られないほか、比較例3では電線被覆において、加圧塗布槽内のダイス部に水和物が詰まりやすく、断線が発生してしまうのに対して、実施例3ではそうした問題は全くない。   As shown in Table 1, with respect to Examples 1 to 4, Comparative Example 1 or 2 in which the number of water molecules in the hydrate is small has a small porosity, and the void formation efficiency due to the amount of hydrate added is small. It turns out that it is low. In contrast to Example 4 in which the average particle size of the hydrate is 10 μm, in Comparative Example 2 or 3 in which the average particle size exceeds 10 μm, a smooth surface cannot be obtained in a film or an electric wire. In the coating, the hydrate is likely to be clogged in the die part in the pressure application tank, and disconnection occurs. In Example 3, there is no such problem.

本実施形態に係る絶縁電線を示す横断面図である。It is a cross-sectional view showing an insulated wire according to the present embodiment.

符号の説明Explanation of symbols

1 絶縁電線
2 導体
3 絶縁層
4 空孔
1 Insulated wire 2 Conductor 3 Insulating layer 4 Hole

Claims (6)

架橋硬化型樹脂組成物に水和物を分散させた水和物分散樹脂組成物であって、前記水和物はその化学式中の水分子の数が5個以上であり、前記水和物の平均粒径が10μm以下であることを特徴とする水和物分散樹脂組成物。   A hydrate-dispersed resin composition in which a hydrate is dispersed in a cross-linked curable resin composition, wherein the hydrate has 5 or more water molecules in its chemical formula, A hydrate-dispersed resin composition having an average particle size of 10 μm or less. 前記架橋硬化型樹脂組成物が、紫外線又は熱によって硬化する組成物である請求項1に記載の水和物分散樹脂組成物。   The hydrate-dispersed resin composition according to claim 1, wherein the cross-linking curable resin composition is a composition that is cured by ultraviolet rays or heat. 請求項1又は2に記載の水和物分散樹脂組成物を、架橋することにより硬化した後、加熱により水和物の水分を除去したものであることを特徴とする多孔質物。   A porous product, wherein the hydrate-dispersed resin composition according to claim 1 or 2 is cured by crosslinking, and then the moisture of the hydrate is removed by heating. 請求項1又は2に記載の水和物分散樹脂組成物を、導体の周囲に被覆して絶縁層とした後、前記絶縁層を架橋することにより前記水和物分散樹脂組成物を硬化し、加熱して水和物の水分を除去することで前記絶縁層の中に空孔を形成したことを特徴とする絶縁電線。   The hydrate-dispersed resin composition according to claim 1 or 2 is coated around a conductor to form an insulating layer, and then the insulating layer is crosslinked to cure the hydrate-dispersed resin composition. An insulated wire, wherein pores are formed in the insulating layer by heating to remove moisture from the hydrate. 請求項1に記載の水和物分散樹脂組成物を、導体の周囲に被覆して絶縁層とした後、前記絶縁層を架橋することにより前記水和物分散樹脂組成物を硬化し、加熱して水和物の水分を除去することで前記絶縁層の中に空孔を形成したことを特徴とする絶縁電線の製造方法。   The hydrate-dispersed resin composition according to claim 1 is coated around a conductor to form an insulating layer, and then the insulating layer is crosslinked to cure and heat the hydrate-dispersed resin composition. A method for producing an insulated wire, wherein pores are formed in the insulating layer by removing moisture from the hydrate. 前記加熱がマイクロ波加熱である請求項5に記載の絶縁電線の製造方法。   The method for manufacturing an insulated wire according to claim 5, wherein the heating is microwave heating.
JP2008058318A 2008-03-07 2008-03-07 Hydrate-dispersed resin composition, and porous body and insulated electric wire using the same, and method for manufacturing insulated electric wire Pending JP2009215375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058318A JP2009215375A (en) 2008-03-07 2008-03-07 Hydrate-dispersed resin composition, and porous body and insulated electric wire using the same, and method for manufacturing insulated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058318A JP2009215375A (en) 2008-03-07 2008-03-07 Hydrate-dispersed resin composition, and porous body and insulated electric wire using the same, and method for manufacturing insulated electric wire

Publications (1)

Publication Number Publication Date
JP2009215375A true JP2009215375A (en) 2009-09-24

Family

ID=41187574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058318A Pending JP2009215375A (en) 2008-03-07 2008-03-07 Hydrate-dispersed resin composition, and porous body and insulated electric wire using the same, and method for manufacturing insulated electric wire

Country Status (1)

Country Link
JP (1) JP2009215375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532763A (en) * 2012-08-10 2015-11-12 ジェネラル・ケーブル・テクノロジーズ・コーポレーション Surface modified overhead conductor
JP2018076466A (en) * 2016-11-11 2018-05-17 日立化成株式会社 Curable resin composition, and cured product and resin foam produced therewith

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532763A (en) * 2012-08-10 2015-11-12 ジェネラル・ケーブル・テクノロジーズ・コーポレーション Surface modified overhead conductor
US10586633B2 (en) 2012-08-10 2020-03-10 General Cable Technologies Corporation Surface modified overhead conductor
JP2018076466A (en) * 2016-11-11 2018-05-17 日立化成株式会社 Curable resin composition, and cured product and resin foam produced therewith

Similar Documents

Publication Publication Date Title
KR101840917B1 (en) Copper-fine-particle dispersion liquid, conductive-film formation method, and circuit board
TWI757450B (en) Method for manufacturing electrically conductive structures on a carrier material
KR20220062562A (en) liquid crystal polymer composition
FI96803B (en) Isolated management and its manufacturing process
CN104031336A (en) Flame-retardant cable material for communication cable
CN105524466A (en) Porous graphene electromagnetic wave absorbing composite material, preparation method and applications thereof
JP5262187B2 (en) Water-containing water-absorbing polymer-containing resin composition
CN103345960B (en) A kind of high transfer rate semi-flexible coaxial cable and preparation method thereof
JP2009215375A (en) Hydrate-dispersed resin composition, and porous body and insulated electric wire using the same, and method for manufacturing insulated electric wire
JP2012082367A (en) Hydrous water-absorbent polymer-dispersed ultraviolet-curable resin composition, insulated electric wire using the same, method for producing the wire, and coaxial cable
US20120090865A1 (en) Method of manufacturing porous ultraviolet curable resin coated wire, porous ultraviolet curable resin coated wire and coaxial cable
JP2018120966A (en) Insulating magnetic powder, production method of the same, and powder treatment liquid
CN112724686A (en) Carbon fiber wave-absorbing material and preparation method thereof
CN101812241B (en) Method for fabricating resin composition containing aqueous absorptive polymer
TW202248354A (en) Low dielectric loss resin composition, method for producing same, molded body for high frequency devices, and high frequency device
WO2021100816A1 (en) Boron nitride particles and resin composition
JP5346543B2 (en) Method for producing water-containing water-absorbing polymer-containing resin composition, water-containing water-absorbing polymer-containing resin composition, method for producing porous material and porous material using the same, method for producing insulated wire, insulated wire, and coaxial cable
JP2012172116A (en) Method for producing porous ultraviolet-curing resin composition-covered wire
KR102293269B1 (en) Manufacturing method of polyimide composite film having low dielectric loss and flexible circuit board using them
CN115652618B (en) Carbon fiber and heat conduction interface material with wave absorbing function and preparation method thereof
JP2010095653A (en) Manufacturing method for water-containing thermoplastic water-absorbent polymer-dispersed resin composition and water-containing thermoplastic water-absorbent polymer-dispersed resin composition, manufacturing method for porous substance using this and porous substance, manufacturing method for insulated electric wire and insulated electric wire, and coaxial cable
JPH07278333A (en) Resin composition expansible by irradiation with ultraviolet rays, molding and electrical wire
JP2010189574A (en) Method for producing aqueous dispersion liquid crosslink-curable resin composition, aqueous dispersion liquid crosslink-curable resin composition, method for producing porous material, and porous material
JPH07282662A (en) Manufacture of foam insulation wire
JPH03275177A (en) Production of foamed body