JP5346543B2 - Method for producing water-containing water-absorbing polymer-containing resin composition, water-containing water-absorbing polymer-containing resin composition, method for producing porous material and porous material using the same, method for producing insulated wire, insulated wire, and coaxial cable - Google Patents

Method for producing water-containing water-absorbing polymer-containing resin composition, water-containing water-absorbing polymer-containing resin composition, method for producing porous material and porous material using the same, method for producing insulated wire, insulated wire, and coaxial cable Download PDF

Info

Publication number
JP5346543B2
JP5346543B2 JP2008268655A JP2008268655A JP5346543B2 JP 5346543 B2 JP5346543 B2 JP 5346543B2 JP 2008268655 A JP2008268655 A JP 2008268655A JP 2008268655 A JP2008268655 A JP 2008268655A JP 5346543 B2 JP5346543 B2 JP 5346543B2
Authority
JP
Japan
Prior art keywords
water
absorbing polymer
absorbing
resin composition
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008268655A
Other languages
Japanese (ja)
Other versions
JP2010095652A (en
Inventor
善久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008268655A priority Critical patent/JP5346543B2/en
Publication of JP2010095652A publication Critical patent/JP2010095652A/en
Application granted granted Critical
Publication of JP5346543B2 publication Critical patent/JP5346543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Communication Cables (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Organic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a water-containing/absorbent polymer-containing resin composition being environmentally friendly and capable of easily forming a foamed insulation body layer thin film with a low dielectric constant. <P>SOLUTION: A water-absorbent polymer is dispersed into water of a saturated water-absorption amount or more of the water-absorbent polymer, the water-absorbent polymer water-absorbed/swelled with water is pulverized, and the pulverized water-absorbent polymer is dispersed in a liquid-like crosslinking cured type resin. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、含水吸水性ポリマ含有樹脂組成物の製造方法及び含水吸水性ポリマ含有樹脂組成物、これを用いた多孔質物の製造方法及び多孔質物、絶縁電線の製造方法及び絶縁電線並びに同軸ケーブルに関する。   The present invention relates to a method for producing a water-containing water-absorbing polymer-containing resin composition, a water-containing water-absorbing polymer-containing resin composition, a method for producing a porous material using the same, a porous material, a method for producing an insulated wire, an insulated wire, and a coaxial cable. .

近年、医療分野をはじめとする精密電子機器類や通信機器類の小型化や高密度実装化が進むなかで、これらに使用される電線・ケーブルもますます細径化が図られている。   In recent years, with the progress of miniaturization and high-density mounting of precision electronic devices and communication devices such as medical fields, the diameters of electric wires and cables used for these devices have been further reduced.

さらに信号線等では、伝送信号の一層の高速化を求める傾向が顕著であり、これに使用される電線の絶縁体層を薄くかつ可能な限り低誘電率化することにより伝送信号の高速化を図ることが望まれている。   Furthermore, in signal lines and the like, the tendency to further increase the speed of transmission signals is remarkable, and the speed of transmission signals can be increased by reducing the dielectric constant as much as possible and making the insulator layer of the wires used for this thin. It is desired to plan.

この絶縁体には従来、ポリエチレンやフッ素樹脂などの誘電率の低い絶縁材料を発泡させたものが使われている。発泡絶縁体層の形成には、予め発泡させたフィルムを導体上に巻き付ける方法や押出方式が知られており、特に押出方式が広く用いられている。   For this insulator, conventionally, an insulating material having a low dielectric constant such as polyethylene or fluororesin is used. For forming the foamed insulator layer, a method of winding a film previously foamed on a conductor and an extrusion method are known, and the extrusion method is particularly widely used.

発泡を形成する方法としては、大きく物理的な発泡方法と化学的な発泡方法に分けられる。   Methods for forming foaming can be broadly divided into physical foaming methods and chemical foaming methods.

物理的な発泡方法としては、液体フロンのような揮発性発泡用液体を溶融樹脂中に注入し、その気化圧により発泡させる方法や窒素ガス、炭酸ガスなど押出機中の溶融樹脂に直接気泡形成用ガスを圧入させることにより一様に分布した細胞状の微細な独立気泡体を樹脂中に発生させる方法などがある。   As a physical foaming method, a volatile foaming liquid such as liquid chlorofluorocarbon is injected into the molten resin and foamed by its vaporization pressure, or bubbles are formed directly in the molten resin in the extruder such as nitrogen gas or carbon dioxide gas. For example, there is a method of generating fine closed cells in the form of cells uniformly distributed by injecting a working gas into the resin.

化学的な発泡方法としては、樹脂中に発泡剤を分散混合した状態で成形し、その後熱を加えることにより発泡剤の分解反応を発生させ、分解により発生するガスを利用して発泡させることがよく知られている。   As a chemical foaming method, a foaming agent is dispersed and mixed in a resin, and after that, heat is applied to cause a decomposition reaction of the foaming agent, and foaming is performed using a gas generated by the decomposition. well known.

なお、この出願の発明に関連する先行技術文献情報としては、次のものがある。   The prior art document information related to the invention of this application includes the following.

特開昭62−135504号公報JP-A-62-135504 特開平10−7830号公報Japanese Patent Laid-Open No. 10-7830 特開平10−130324号公報JP-A-10-130324

しかしながら、溶融樹脂中に揮発性発泡用液体を注入する方法では、気化圧が強く、気泡の微細形成が難しく薄肉成形に限界がある。また、揮発性発泡用液体の注入速度が遅いために、高速製造化が難しく、生産性に劣るという問題もある。さらに、押出機中で直接気泡形成用ガスを圧入する方法は、細径薄肉押出形成に限界があること、安全面で特別な設備や技術を必要とするため、生産性に劣ることや製造コストの上昇を招いてしまう問題がある。   However, in the method of injecting the volatile foaming liquid into the molten resin, the vaporization pressure is strong, and it is difficult to form fine bubbles, and there is a limit to thin-wall molding. Moreover, since the injection | pouring speed | velocity | rate of the volatile foaming liquid is slow, there also exists a problem that high-speed manufacture is difficult and it is inferior to productivity. Furthermore, the method of directly injecting the gas for forming bubbles in the extruder is limited in the formation of small-diameter and thin-walled extrusion, and requires special equipment and technology for safety, resulting in poor productivity and manufacturing costs. There is a problem that leads to an increase.

一方、化学発泡方法は、予め樹脂中に発泡剤を混練し、分散混合し、成形加工後に熱により発泡剤を反応分解させて発生したガスにより発泡をさせるため、樹脂の成形加工温度を、発泡剤の分解温度より低く保持しなければならない問題がある。さらに、素線の径が細くなると、押出被覆では樹脂圧により断線が起こりやすく、高速化が難しくなるという別の問題もある。   On the other hand, in the chemical foaming method, the foaming agent is kneaded in advance in the resin, dispersed and mixed, and after the molding process, the foaming agent is reacted with heat to cause foaming by the generated gas. There is a problem that it must be kept below the decomposition temperature of the agent. Furthermore, when the diameter of the wire becomes thin, there is another problem that the extrusion coating tends to cause disconnection due to the resin pressure, and it is difficult to increase the speed.

また、フロン、ブタン、炭酸ガス等を用いる物理発泡は環境負荷が大きい問題や、化学発泡に用いる発泡剤は価格が高いといった問題がある。   In addition, physical foaming using chlorofluorocarbon, butane, carbon dioxide gas and the like has a problem of a large environmental load, and a foaming agent used for chemical foaming has a problem of high cost.

水や吸水性ポリマを用いた方法では、樹脂中に水や吸水性ポリマを球状に微分散させることが困難であるため、空孔形状が球状に近く且つ微細な空孔を有する薄膜層を形成することが困難であった。   In the method using water or a water-absorbing polymer, it is difficult to finely disperse the water or water-absorbing polymer into a spherical shape in the resin, so a thin-film layer having a pore shape close to a spherical shape and having fine pores is formed. It was difficult to do.

そこで、本発明の目的は、上記の問題点を解決するために、低誘電率で薄膜な発泡絶縁体層を、環境にやさしく容易に形成できる含水吸水性ポリマ含有樹脂組成物の製造方法及び含水吸水性ポリマ含有樹脂組成物、これを用いた多孔質物の製造方法及び多孔質物、絶縁電線の製造方法及び絶縁電線並びに同軸ケーブルを提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems, and a method for producing a water-containing water-absorbing polymer-containing resin composition capable of easily and easily forming a foamed insulating layer having a low dielectric constant and a thin film, and water-containing It is an object of the present invention to provide a water-absorbing polymer-containing resin composition, a method for producing a porous material using the same, a porous material, a method for producing an insulated wire, an insulated wire, and a coaxial cable.

本発明は、上記目的を達成するために創案されたものであり、請求項1の発明は、吸水性ポリマの飽和吸水量以上の水に前記吸水性ポリマを分散させ、前記水を吸水膨潤させた含水吸水性ポリマを裁断するか、又は前記吸水膨潤させた含水吸水性ポリマを凍結した後粉砕して微粒化し、微粒化した前記含水吸水性ポリマを液状架橋硬化型樹脂に分散させる含水吸水性ポリマ含有樹脂組成物の製造方法である。 The present invention has been made in order to achieve the above object, a first aspect of the invention, the water-absorbing polymer to the saturated water absorption amount or more of water absorbent polymer is dispersed, it is imbibition the water The water- absorbing water- absorbing polymer is cut into the water- absorbing water- absorbing polymer , or the water-absorbing water-swelling polymer swelled and swelled is pulverized and atomized, and the water- absorbing water- absorbing polymer is dispersed in a liquid cross-linked curable resin. It is a manufacturing method of a polymer containing resin composition.

請求項2の発明は、前記含水吸水性ポリマ含有樹脂組成物の含水率は20〜70%である請求項1に記載の含水吸水性ポリマ含有樹脂組成物の製造方法である。 Invention of Claim 2 is a manufacturing method of the water-containing water absorbing polymer containing resin composition of Claim 1 whose moisture content of the said water containing water absorbing polymer containing resin composition is 20 to 70% .

請求項3の発明は、前記含水吸水性ポリマの粒径dを50μm以下に微粒化する請求項1又は2に記載の含水吸水性ポリマ含有樹脂組成物の製造方法である。 Invention of Claim 3 is a manufacturing method of the water-containing water-absorbing polymer containing resin composition of Claim 1 or 2 which atomizes the particle size d of the said water-containing water-absorbing polymer to 50 micrometers or less.

請求項4発明は、前記吸水性ポリマの吸水量が10〜100g/gである請求項1〜3いずれかに記載の含水吸水性ポリマ含有樹脂組成物の製造方法である。   A fourth aspect of the present invention is the method for producing a water-containing water-absorbing polymer-containing resin composition according to any one of the first to third aspects, wherein the water-absorbing polymer has a water absorption amount of 10 to 100 g / g.

請求項5の発明は、請求項1〜4のいずれかに記載の方法により製造された含水吸水性ポリマ含有樹脂組成物である。 The invention of claim 5 is a water-absorbing polymer-containing resin composition produced by the method according to any one of claims 1 to 4.

請求項6の発明は、吸水性ポリマの飽和吸水量以上の水に前記吸水性ポリマを分散させ、前記水を吸水膨潤させた含水吸水性ポリマを裁断するか、又は前記吸水膨潤させた含水吸水性ポリマを凍結した後粉砕して微粒化し、微粒化した前記含水吸水性ポリマを液状架橋硬化型樹脂に分散させた含水吸水性ポリマ含有樹脂組成物の前記液状架橋硬化型樹脂を架橋硬化した後、さらに加熱することにより、前記硬化させた液状架橋硬化型樹脂中の前記含水吸水性ポリマの水分を除去することで吸水性ポリマを収縮させ前記硬化させた液状架橋硬化型樹脂内に空隙を形成する多孔質物の製造方法である。 According to a sixth aspect of the present invention, the water-absorbing polymer is dispersed in water that is equal to or higher than the saturated water absorption amount of the water-absorbing polymer, and the water-absorbing water-absorbing polymer in which the water is swollen is cut or the water-absorbing water-absorbing water swollen. After cross-linking and curing the liquid cross-linking curable resin of the water-absorbing water-absorbing polymer-containing resin composition in which the water-soluble water-absorbing polymer dispersed in the liquid cross-linking curable resin is pulverized after being frozen Further, by heating, the water- absorbing polymer in the cured liquid cross-linkable curable resin is removed to shrink the water-absorbent polymer to form voids in the cured liquid cross-linked curable resin. This is a method for producing a porous material.

請求項7の発明は、前記加熱にマイクロ波加熱を用いる請求項6に記載の多孔質物の製造方法である。
請求項8の発明は、前記含水吸水性ポリマの粒径dを50μm以下に微粒化する請求項6又は7に記載の多孔質物の製造方法である。
請求項9の発明は、前記吸水性ポリマの吸水量が10〜100g/gである請求項6〜8のいずれかに記載の多孔質物の製造方法である。
The invention according to claim 7 is the method for producing a porous material according to claim 6, wherein microwave heating is used for the heating.
The invention according to claim 8 is the method for producing a porous material according to claim 6 or 7, wherein the water-containing water-absorbing polymer has a particle size d of 50 μm or less.
Invention of Claim 9 is a manufacturing method of the porous material in any one of Claims 6-8 whose water absorption of the said water absorbing polymer is 10-100 g / g.

請求項10の発明は、請求項6〜9のいずれかに記載の方法により製造された多孔質物である。 The invention of claim 10 is a porous material produced by the method according to any one of claims 6 to 9 .

請求項11の発明は、吸水性ポリマの飽和吸水量以上の水に前記吸水性ポリマを分散させ、前記水を吸水膨潤させた含水吸水性ポリマを裁断するか、又は前記吸水膨潤させた含水吸水性ポリマを凍結した後粉砕して微粒化し、微粒化した前記含水吸水性ポリマを液状架橋硬化型樹脂に分散させた含水吸水性ポリマ含有樹脂組成物を導体の外周に被覆して絶縁層を形成し、前記絶縁層を架橋硬化した後、さらに加熱することにより、前記硬化させた絶縁層中の含水吸水性ポリマの水分を除去することで吸水性ポリマを収縮させ前記絶縁層の中に泡構造(空隙)を形成する絶縁電線の製造方法である。 The invention according to claim 11 is characterized in that the water-absorbing polymer is dispersed in water having a water absorption amount equal to or higher than the saturated water absorption amount of the water-absorbing polymer, and the water-absorbing polymer in which the water is absorbed and swollen is cut, or The insulating polymer is formed by coating the outer periphery of the conductor with a water-absorbing polymer-containing resin composition in which the water-absorbing polymer is dispersed in a liquid cross-linkable curable resin. and, after said insulating layer turned into cross-linking hardness, by further heating, in said insulating layer a water-absorbing polymer is contracted by removing the water of wet water absorbent polymer in the insulating layer formed by curing It is a manufacturing method of the insulated wire which forms a bubble structure (gap).

請求項12の発明は、前記加熱にマイクロ波加熱を用いる請求項11に記載の絶縁電線の製造方法である。
請求項13の発明は、前記含水吸水性ポリマの粒径dを50μm以下に微粒化する請求項11又は12に記載の絶縁電線の製造方法である。
請求項14の発明は、前記吸水性ポリマの吸水量が10〜100g/gである請求項11〜13のいずれかに記載の絶縁電線の製造方法である。
The invention of claim 12 is the method for manufacturing an insulated wire according to claim 11, wherein microwave heating is used for the heating.
The invention of claim 13 is the method for producing an insulated wire according to claim 11 or 12, wherein the particle size d of the water-absorbing water-absorbing polymer is atomized to 50 μm or less.
Invention of Claim 14 is a manufacturing method of the insulated wire in any one of Claims 11-13 whose water absorption of the said water absorbing polymer is 10-100 g / g.

請求項15の発明は、請求項11〜14のいずれかに記載の方法により製造された絶縁電線である。 A fifteenth aspect of the invention is an insulated wire manufactured by the method according to any one of the eleventh to fourteenth aspects .

請求項16の発明は、前記絶縁層の厚さtが100μm以下であり、前記絶縁層の空隙率が20%以上61.5%以下であり、前記絶縁層の空隙を形成する空孔が球状であり、その最大径部と最小径部との比が2以下であり、選択される前記吸水膨潤させた吸水性ポリマの粒径dが前記絶縁層の厚さtに対してd<1/2tであり、厚さ方向の空孔径Dが前記絶縁層の厚さtに対してD<1/2tで形成される請求項15に記載の絶縁電線である。 According to a sixteenth aspect of the present invention, the thickness t of the insulating layer is 100 μm or less, the porosity of the insulating layer is 20% or more and 61.5 % or less, and pores forming the voids of the insulating layer are provided. It has a spherical shape, the ratio of the maximum diameter portion to the minimum diameter portion is 2 or less, and the selected water-swelled water-absorbing polymer particle size d is d <1 with respect to the thickness t of the insulating layer. The insulated wire according to claim 15 , wherein the hole diameter D in the thickness direction is D <½t with respect to the thickness t of the insulating layer.

請求項17の発明は、請求項15又は16に記載の絶縁電線の外周に金属シールド層を設けた同軸ケーブルである。 The invention of claim 17 is a coaxial cable in which a metal shield layer is provided on the outer periphery of the insulated wire according to claim 15 or 16 .

本発明によれば、フロン、ブタン、炭酸ガス等を用いた物理発泡を要しないので環境にやさしく、容易に低誘電率かつ薄膜な発泡絶縁体層を形成できる含水吸水性ポリマ含有樹脂組成物が得られる。   According to the present invention, there is provided a water-containing water-absorbing polymer-containing resin composition that is environmentally friendly and does not require physical foaming using chlorofluorocarbon, butane, carbon dioxide gas, etc., and can easily form a low-dielectric constant, thin-film foam insulator layer. can get.

以下、本発明の好適な実施形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明の含水吸水性ポリマ含有樹脂組成物は、吸水膨潤させた吸水性ポリマを微粒化し、これを液状架橋硬化型樹脂組成物に分散させたものである。   The water-containing water-absorbing polymer-containing resin composition of the present invention is obtained by atomizing a water-absorbing polymer swollen with water and dispersing it in a liquid cross-linking curable resin composition.

吸水性ポリマとは、非常に良く水を吸い込み、保水力が強いため多少の圧力を加えても吸水した水を放出しない高分子物質で、例えばデンプン−アクリロニトリルグラフト重合体の加水分解物、デンプン−アクリル酸グラフト重合体、酢酸ビニル−アクリル酸エステル共重合体の加水分解物、ポリアクリル酸塩架橋体、カルボキシメチル化セルロース、ポリアルキレンオキサイド系樹脂、ポリアクリルアミド系樹脂等があり、好ましくはポリアルキレンオキサイド系樹脂、ポリアクリルアミド系樹脂が電気絶縁性面で良いが、用途、使用量によってはこの限りではなく、2種以上を組み合わせて用いても良い。   The water-absorbing polymer is a polymer substance that absorbs water very well and does not release the absorbed water even if a certain pressure is applied due to its strong water retention ability. For example, a starch-acrylonitrile graft polymer hydrolyzate, starch- Examples include acrylic acid graft polymer, hydrolyzate of vinyl acetate-acrylic ester copolymer, crosslinked polyacrylate, carboxymethylated cellulose, polyalkylene oxide resin, polyacrylamide resin, and preferably polyalkylene Oxide-based resins and polyacrylamide-based resins may be electrically insulative, but are not limited to this depending on the application and usage, and two or more types may be used in combination.

液状架橋硬化型樹脂組成物とは、紫外線、熱、電子線、可視光などにより硬化するもので、特に限定するものではないが、好ましくは紫外線や熱、あるいは併用で架橋硬化する樹脂組成物が良く、さらに好ましくは紫外線架橋硬化型樹脂組成物が良い。液状架橋硬化型樹脂組成物としては、エチレン系、ウレタン系、シリコーン系、フッ素系、エポキシ系、ポリエステル系、ポリカーボネート系など公知の液状架橋硬化型樹脂組成物を選択できるが、液状架橋硬化型樹脂組成物の誘電率として4以下、好ましくは3以下のものが良い。   The liquid cross-linking curable resin composition is hardened by ultraviolet rays, heat, electron beam, visible light, etc., and is not particularly limited, but preferably a resin composition that is cross-linked and cured by ultraviolet rays, heat, or combined use. More preferably, an ultraviolet crosslinking curable resin composition is preferable. As the liquid cross-linking curable resin composition, known liquid cross-linking curable resin compositions such as ethylene, urethane, silicone, fluorine, epoxy, polyester and polycarbonate can be selected. The dielectric constant of the composition is 4 or less, preferably 3 or less.

含水吸水性ポリマ含有樹脂組成物の含水率としては、20〜70%、好ましくは25〜65%がよい。これは、含水率が20%より少ないと、低誘電率化効果が得られにくくなるためであり、70%より多くなると安定した多孔質物の形成が著しく困難になるためである。   The water content of the water-absorbing polymer-containing resin composition is 20 to 70%, preferably 25 to 65%. This is because if the moisture content is less than 20%, it is difficult to obtain the effect of reducing the dielectric constant, and if it exceeds 70%, it is difficult to form a stable porous material.

吸水膨潤させた吸水性ポリマを分散させるのは、空孔のサイズや形状が、吸水性ポリマの粒径と吸水量で制御できることや、吸水膨潤によりゲル状となった吸水性ポリマが水を多く含み、水と液状架橋硬化型樹脂組成物とは非相溶なので、撹拌分散の際に、独立分散しやすく、且つ球状となって分散しやすくなるからである。このため硬化後の脱水によって得られる空孔形状を球に近い形状とすることができ、つぶれに対して強いものが得られやすくなる。   The water-absorbing polymer that has been swollen with water can be dispersed because the size and shape of the pores can be controlled by the particle size and water absorption of the water-absorbing polymer, and the water-absorbing polymer that has become a gel due to water-absorbing swelling has a large amount of water. In addition, since water and the liquid cross-linkable curable resin composition are incompatible with each other, they are easily dispersed independently during stirring and dispersion and become spherical and easily dispersed. For this reason, the hole shape obtained by dehydration after curing can be made into a shape close to a sphere, and it becomes easy to obtain a strong one against crushing.

含水吸水性ポリマ含有樹脂組成物には、必要に応じて分散剤、レベリング剤、カップリング剤、着色剤、難燃剤、酸化防止剤、電気絶縁性向上剤、充填剤など公知のものを加えて用いることができる。   The water-containing water-absorbing polymer-containing resin composition may be added with known ones such as dispersants, leveling agents, coupling agents, colorants, flame retardants, antioxidants, electrical insulation improvers, and fillers as necessary. Can be used.

本発明の含水吸水性ポリマ含有樹脂組成物によれば、液状架橋硬化型樹脂組成物に分散させた吸水性ポリマの水分を除去することにより容易に多孔質物を形成することができる。また、フロン、ブタン、炭酸ガス等を用いないため、環境にもやさしい。   According to the water-containing water-absorbing polymer-containing resin composition of the present invention, a porous material can be easily formed by removing water from the water-absorbing polymer dispersed in the liquid cross-linkable curable resin composition. In addition, since it does not use Freon, butane, carbon dioxide, etc., it is environmentally friendly.

さらに、本発明の含水吸水性ポリマ含有樹脂組成物を導体に被覆して絶縁電線を形成する場合には、予め空孔となる部分をもって被覆を形成できるため、発泡させる必要が無く、従来のガス注入や発泡剤によるガス発泡に生じやすい導体と発泡層間のふくれや剥離による密着力低下が全くなく安定した絶縁電線が得られる。   Furthermore, in the case of forming an insulated wire by coating the water-containing water-absorbing polymer-containing resin composition of the present invention on a conductor, the coating can be formed with a portion that becomes a hole in advance, so there is no need to foam, and the conventional gas A stable insulated wire can be obtained without any reduction in adhesion due to blistering or peeling between the conductor and the foam layer, which are likely to occur in gas foaming due to injection or foaming agent.

次に、この含水吸水性ポリマ含有樹脂組成物の製造方法を説明する。   Next, the manufacturing method of this water-containing water absorbing polymer containing resin composition is demonstrated.

本発明の含水吸水性ポリマ含有樹脂組成物は、吸水性ポリマの飽和吸水量以上の水に吸水性ポリマを分散させ、水を吸水膨潤させた吸水性ポリマを微粒化し、微粒化した吸水性ポリマを液状架橋硬化型樹脂に分散させると得られる。   The water-containing water-absorbing polymer-containing resin composition of the present invention is obtained by dispersing a water-absorbing polymer in water equal to or higher than the saturated water-absorbing amount of the water-absorbing polymer, atomizing the water-absorbing polymer in which water is absorbed and swollen, and atomizing the water-absorbing polymer. Is dispersed in a liquid cross-linking curable resin.

吸水膨潤させた吸水性ポリマの微粒化は、吸水性ポリマの飽和吸水量以上の水に吸水性ポリマを分散させて吸水膨潤させた吸水性ポリマを裁断、又は凍結後粉砕することにより行う。このとき、吸水膨潤させた吸水性ポリマの粒径dが50μm以下、好ましくは30μm以下となるように裁断・粉砕するとよい。   The atomization of the water-absorbing polymer swollen with water is performed by dispersing the water-absorbing polymer in water equal to or higher than the saturated water absorption amount of the water-absorbing polymer and cutting the water-absorbing polymer swollen by water absorption or pulverizing after freezing. At this time, the water-absorbing polymer swollen with water may be cut and pulverized so that the particle size d of the water-absorbing polymer is 50 μm or less, preferably 30 μm or less.

吸水膨潤させた吸水性ポリマ(含水吸水性ポリマ)の粒径dを50μm以下とするのは、それより大きくなると脱水後にほぼ粒径と同等の空隙が形成されるため、低誘電率化のためより多くの空隙を形成する場合に、潰れやすくなることや、100μm以下の薄膜形成、微細な多孔質物の形成が難しくなるためである。   The reason why the particle size d of the water-absorbing water-swelling polymer (water-containing water-absorbing polymer) is 50 μm or less is that if it is larger than that, voids substantially equal to the particle size are formed after dehydration. This is because when more voids are formed, it becomes easier to be crushed, and it is difficult to form a thin film of 100 μm or less and to form a fine porous material.

また、吸水性ポリマとしては、吸水量が10〜100g/gのものを用いるとよい。これは、吸水性ポリマの吸水量が10g/gより少ないと、含水率を高める場合、吸水性ポリマの占める割合が多くなるため、脆くなりやすいためであり、100g/gより多いと、自由水が生じやすくなり、薄膜形成が困難になることや、含水吸水性ポリマ同士が絡み合いやすく独立空孔が得にくくなるためである。   Moreover, as a water absorbing polymer, a thing with a water absorption of 10-100 g / g is good. This is because, if the water absorption amount of the water-absorbing polymer is less than 10 g / g, the water-absorbing polymer occupies a large proportion when the water content is increased, and the water-absorbing polymer tends to become brittle. This is because the formation of a thin film becomes difficult, and the water-absorbing water-absorbing polymers are easily entangled with each other, making it difficult to obtain independent vacancies.

飽和吸水量とは、使用する吸水性ポリマが吸収する最大の水の量で、飽和吸水量以上の水に吸水性ポリマを分散させ吸水膨潤させるのは、全ての吸水性ポリマに均質に水を吸収させ膨潤させるためである。吸水量とは、吸水性ポリマ1gあたりに吸水される水の量(g)である。吸水性ポリマを飽和吸水量以上の水に分散させ、高速撹拌することにより、水を吸水膨潤させることができる。   Saturated water absorption is the maximum amount of water that can be absorbed by the water-absorbing polymer to be used. This is for absorption and swelling. The amount of water absorption is the amount (g) of water absorbed per gram of water-absorbing polymer. Water is absorbed and swollen by dispersing the water-absorbing polymer in water having a saturated water absorption amount or more and stirring at high speed.

高速撹拌して吸水膨潤させた吸水性ポリマを裁断する方法としては、特に規定するものではないが、市販の乳化分散機、ミキサー、ホモジナイザー等を用いることができる。   A method for cutting the water-absorbing polymer swollen by high-speed stirring is not particularly limited, but a commercially available emulsifying disperser, mixer, homogenizer, or the like can be used.

高速撹拌して吸水膨潤させた吸水性ポリマを裁断するのは、吸水膨潤により吸水性ポリマがゲル状となるため裁断がしやすくなるためである。   The reason why the water-absorbing polymer swollen by high-speed agitation is cut is that the water-absorbing polymer is gelled by the water-absorbing swelling, so that it is easy to cut.

また、裁断に代えて含水吸水性ポリマを冷凍後粉砕してもよい。含水吸水性ポリマを凍結粉砕するのは、水を含むことにより凍結が早く、より微細に粉砕することができるためである。また、その後解凍することにより、そのまま含水吸水性ポリマとして使用できる。   In place of cutting, the water-absorbing polymer may be crushed after freezing. The reason why the water-containing water-absorbing polymer is freeze-pulverized is that it contains water so that it can be quickly frozen and finely pulverized. Further, it can be used as it is as a water-absorbing polymer by being thawed thereafter.

本発明の含水吸水性ポリマ含有樹脂組成物の製造方法によれば、フロン、ブタン、炭酸ガス等を用いずに、多孔質物を形成することのできる含水吸水性ポリマ含有樹脂組成物を得られる。   According to the method for producing a water-containing water-absorbing polymer-containing resin composition of the present invention, a water-containing water-absorbing polymer-containing resin composition capable of forming a porous material can be obtained without using chlorofluorocarbon, butane, carbon dioxide gas or the like.

以上説明した含水吸水性ポリマ含有樹脂組成物を架橋させて硬化した後に、吸水性ポリマの水分を除去(脱水)することで吸水性ポリマを収縮させ泡構造(空隙)を容易に形成することができる。すなわち、容易に多孔質物を形成することができる。これが本発明の多孔質物である。   After the water-absorbing polymer-containing resin composition described above is cross-linked and cured, the water-absorbing polymer can be shrunk by removing (dehydrating) the water-absorbing polymer to easily form a foam structure (void). it can. That is, a porous material can be easily formed. This is the porous material of the present invention.

架橋硬化後、加熱により脱水させるのが好ましい。これは、脱水による体積収縮による空隙率の低下が防止できるほか、膜厚や外径の変化を防止し、安定した多孔質物を得ることができるためである。   It is preferable to dehydrate by heating after crosslinking and curing. This is because the porosity can be prevented from decreasing due to volume shrinkage due to dehydration, and the change in film thickness and outer diameter can be prevented, and a stable porous material can be obtained.

この加熱には、マイクロ波加熱を用いるとよい。マイクロ波加熱を用いるのは、水はマイクロ波により、急速に加熱されるため吸水性ポリマや周囲の樹脂等に影響をあたえることなく、図4に示すように、120℃オーブン加熱脱水と比べ、極めて短時間で加熱脱水ができ効率よく空孔形成ができるからである。また、導波管マイクロ波加熱炉を用いることで、連続的に加熱脱水ができる。さらに通常の加熱炉と組み合わせてもよい。   Microwave heating is preferably used for this heating. Using microwave heating, water is rapidly heated by microwaves, so as not to affect the water-absorbing polymer or surrounding resin, as shown in FIG. This is because heat dehydration can be performed in an extremely short time and pores can be formed efficiently. Further, by using a waveguide microwave heating furnace, heat dehydration can be performed continuously. Furthermore, you may combine with a normal heating furnace.

次に、含水吸水性ポリマ含有樹脂組成物を用いた絶縁電線について説明する。   Next, the insulated wire using the water-containing water-absorbing polymer-containing resin composition will be described.

図1に示すように、本実施形態に係る絶縁電線1は、導体2と、含水吸水性ポリマ含有樹脂組成物を導体2の外周に被覆し、その含水吸水性ポリマ含有樹脂組成物を硬化させた後、その硬化させた含水吸水性ポリマ含有樹脂組成物をマイクロ波加熱して吸水性ポリマの水分を除去して形成された絶縁層3とからなる。   As shown in FIG. 1, the insulated wire 1 according to the present embodiment covers a conductor 2 and a water-containing water-absorbing polymer-containing resin composition on the outer periphery of the conductor 2, and cures the water-absorbing water-absorbing polymer-containing resin composition. After that, the cured water-containing water-absorbing polymer-containing resin composition is microwave-heated to remove moisture from the water-absorbing polymer, and the insulating layer 3 is formed.

絶縁層3の厚さtは、100μm以下であり、絶縁層3の空隙率が20%以上61.5%以下である。また、絶縁層3の空隙を形成する空孔4は球状であり、その最大径部と最小径部との比は2以下である。また、選択される吸水性ポリマ(絶縁層3の材料である含水吸水性ポリマ含有樹脂組成物に含まれる含水吸水性ポリマ)の粒径dが絶縁層3の厚さtに対してd<1/2tであり、厚さ方向の空孔径Dは絶縁層3の厚さtに対して、D<1/2tで形成される。 The thickness t of the insulating layer 3 is 100 μm or less, and the porosity of the insulating layer 3 is 20% or more and 6 1.5 % or less. Moreover, the void | hole 4 which forms the space | gap of the insulating layer 3 is spherical, The ratio of the largest diameter part and the smallest diameter part is 2 or less. Further, the particle size d of the selected water-absorbing polymer (the water-containing water-absorbing polymer contained in the water-containing water-absorbing polymer-containing resin composition that is the material of the insulating layer 3) is d <1 with respect to the thickness t of the insulating layer 3. The hole diameter D in the thickness direction is formed with D <1 / 2t with respect to the thickness t of the insulating layer 3.

絶縁層3の厚さを100μm以下とするのは、医療用プローブケーブルなどを代表とする同軸ケーブルでは、細径化、伝送信号高速化が進められており、絶縁層3の薄肉化、低誘電率化が必須であるためである。   The reason why the thickness of the insulating layer 3 is 100 μm or less is that the coaxial cable typified by a medical probe cable has been reduced in diameter and increased in transmission signal speed. This is because rate is essential.

絶縁層3の低誘電率化には空孔形成が有効であるが、空隙率が高すぎたり、空孔径が大きすぎたりすると絶縁層3がつぶれやすく安定した信号伝送が得られない問題が生じるが、空隙を形成する空孔4が球状で、最大・最小径部の比を2以下、選択される吸水性ポリマの粒径dを絶縁層3の厚さtに対してd<1/2t、厚さ方向の空孔径Dを絶縁層3の厚さtに対してD<1/2tとすると、薄肉、低誘電率でしかも耐つぶれに優れた絶縁電線1を得ることができる。   Porosity formation is effective for lowering the dielectric constant of the insulating layer 3, but if the porosity is too high or the pore diameter is too large, there is a problem that the insulating layer 3 is easily crushed and stable signal transmission cannot be obtained. However, the voids 4 forming the voids are spherical, the ratio of the maximum / minimum diameter portion is 2 or less, and the particle size d of the selected water-absorbing polymer is d <1 / 2t with respect to the thickness t of the insulating layer 3. If the hole diameter D in the thickness direction is D <1 / 2t with respect to the thickness t of the insulating layer 3, the insulated wire 1 having a thin wall, a low dielectric constant, and excellent crush resistance can be obtained.

絶縁層3の空隙率を20%以上61.5%以下とするのは、空隙率が20%より小さいと、低誘電率化効果が低く、空隙率が61.5%より大きくなると、絶縁層3の成形性、耐つぶれ性などが低下しやすくなるためである。 The reason why the porosity of the insulating layer 3 is 20% or more and 61.5 % or less is that when the porosity is smaller than 20%, the effect of lowering the dielectric constant is low, and when the porosity is larger than 61.5 %, This is because the moldability, crush resistance, etc. of the insulating layer 3 are likely to be lowered.

空孔4の最大・最小径部の比を2以下とするのは、2より大きくなると、つぶれが生じやすくなるためである。選択される吸水性ポリマの粒径dを絶縁層3の厚さtに対してd<1/2t、厚さ方向の空孔径Dが絶縁層3の厚さtに対してD<1/2tとするのは、1/2tより大きくなると、空隙率が高いほどつぶれが生じやすい問題があるためである。   The reason why the ratio between the maximum and minimum diameter portions of the air holes 4 is set to 2 or less is that when the ratio is larger than 2, crushing tends to occur. The particle diameter d of the water-absorbing polymer selected is d <1 / 2t with respect to the thickness t of the insulating layer 3, and the pore diameter D in the thickness direction is D <1 / 2t with respect to the thickness t of the insulating layer 3. This is because, when it is larger than ½t, there is a problem that the higher the porosity is, the more likely to be crushed.

絶縁電線1によれば、含水吸水性ポリマ含有樹脂組成物で絶縁層3を形成することで低誘電率で薄膜な絶縁層3を形成できるため、医療用プローブケーブルなどの細径化、伝送信号高速化を実現できる。   According to the insulated wire 1, since the insulating layer 3 can be formed with a low dielectric constant by forming the insulating layer 3 with a water-containing water-absorbing polymer-containing resin composition, the diameter of the medical probe cable and the like can be reduced. High speed can be realized.

次に、本実施形態に係る絶縁電線1の製造方法を説明する。   Next, the manufacturing method of the insulated wire 1 which concerns on this embodiment is demonstrated.

本発明の含水吸水性ポリマ含有樹脂組成物を導体2の外周に被覆して絶縁層3を形成し、その絶縁層3を架橋することにより含水吸水性ポリマ含有樹脂組成物を硬化し、さらにマイクロ波加熱することにより、含水吸水性ポリマ含有樹脂組成物中の吸水性ポリマの水分を除去することで吸水性ポリマを収縮させ絶縁層3の中に泡構造(空隙)を形成すると本発明の絶縁電線1が得られる。   The insulating layer 3 is formed by coating the outer periphery of the conductor 2 with the water-absorbing polymer-containing resin composition of the present invention, and the insulating layer 3 is crosslinked to cure the water-absorbing polymer-containing resin composition. When the water-absorbing polymer in the water-containing water-absorbing polymer-containing resin composition is removed by wave heating, the water-absorbing polymer is contracted to form a bubble structure (void) in the insulating layer 3. The electric wire 1 is obtained.

絶縁電線1の製造方法によれば、含水吸水性ポリマ含有樹脂組成物を硬化させた後、加熱により脱水することで、薄膜、細径の絶縁電線1を断線等の問題なく容易に得ることができる。   According to the method for manufacturing the insulated wire 1, the thin water- and thin-diameter insulated wire 1 can be easily obtained without problems such as disconnection by curing the water-containing water-absorbing polymer-containing resin composition and then dehydrating it by heating. it can.

図2に示すように、図1の絶縁電線1の外周にスキン層や被覆層5を設けることで、図1の絶縁電線1を多層被覆ケーブル6に用いることもできる。   As shown in FIG. 2, the insulated wire 1 of FIG. 1 can also be used for the multilayer coated cable 6 by providing the skin layer and the coating layer 5 on the outer periphery of the insulated wire 1 of FIG.

また、図3に示すように、図1の絶縁電線1の外周を、金属からなるシールド線8で覆い、さらにその外周を被覆層9で覆うと同軸ケーブル7を得られる。シールドとして、シールド線8の代わりに金属シールド層を形成しても良い。   As shown in FIG. 3, the coaxial cable 7 can be obtained by covering the outer periphery of the insulated wire 1 of FIG. 1 with a shield wire 8 made of metal and further covering the outer periphery with a covering layer 9. As a shield, a metal shield layer may be formed instead of the shield wire 8.

含水吸水性ポリマ含有樹脂組成物により得られる多孔質物(発泡状物)は、緩衝剤、衝撃吸収フィルム(シート)、光反射板等への利用もできる。   The porous material (foamed material) obtained from the water-containing water-absorbing polymer-containing resin composition can also be used for buffers, impact absorbing films (sheets), light reflectors and the like.

また、液状架橋硬化型樹脂組成物であることから、異形状物表面に多孔質層の形成ができる。   Moreover, since it is a liquid cross-linking curable resin composition, a porous layer can be formed on the surface of the irregular shape.

Figure 0005346543
Figure 0005346543

液状架橋硬化型樹脂組成物として表1に示す樹脂組成物3種(A〜C)を用いた。それぞれの樹脂組成物について、15MILブレードを用いて厚さ約200μmのフィルムを窒素雰囲気下にて紫外線照射量500mJ/cm2により硬化させて作製し、空洞共振法(@10GHz)により求めた誘電率はそれぞれ2.4,2.7,2.6であった。 Three types of resin compositions (A to C) shown in Table 1 were used as the liquid cross-linking curable resin composition. For each resin composition, a dielectric constant obtained by a cavity resonance method (@ 10 GHz) was prepared by curing a film having a thickness of about 200 μm using a 15 MIL blade in a nitrogen atmosphere at an ultraviolet irradiation amount of 500 mJ / cm 2. Were 2.4, 2.7, and 2.6, respectively.

また、押出成形用熱可塑性樹脂として、代表的な低誘電材料であるテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)を用いた。   Further, a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), which is a typical low dielectric material, was used as a thermoplastic resin for extrusion molding.

後述する実施例1〜6及び比較例1〜6の評価は以下のようにして行った。   Evaluation of Examples 1 to 6 and Comparative Examples 1 to 6, which will be described later, was performed as follows.

(フィルム成形性)
樹脂組成物を、ガラス板上に4MIL,7MIL,15MILのブレードを用いて、幅100mm、長さ200mmの塗膜を形成し、窒素雰囲気下で紫外線照射コンベア装置を用いて紫外線照射量500mJ/cm2を照射して硬化させ、膜厚約50,100,200μmの平滑なフィルム成形ができるかどうか確認した。
(Film formability)
The resin composition is formed on a glass plate using a 4MIL, 7MIL, and 15MIL blade to form a coating film having a width of 100 mm and a length of 200 mm, and an ultraviolet irradiation amount of 500 mJ / cm using an ultraviolet irradiation conveyor device in a nitrogen atmosphere. 2 was irradiated and cured, and it was confirmed whether or not smooth film formation with a film thickness of about 50, 100, and 200 μm was possible.

(空隙率)
次式により空隙率を求めた。
(Porosity)
The porosity was determined by the following formula.

Figure 0005346543
Figure 0005346543

(誘電率)
フィルム試料を幅2mm、長さ100mmの短冊状にし、空洞共振法により、周波数10GHzにて誘電率を3本測定し、その平均値を求めた。
(Dielectric constant)
A film sample was formed into a strip shape having a width of 2 mm and a length of 100 mm, and three dielectric constants were measured at a frequency of 10 GHz by a cavity resonance method, and an average value thereof was obtained.

(a/b)
電線絶縁層断面の電子顕微鏡を用いた5箇所の断面写真より観察される10μm以上の空孔について、空孔断面の最大径部aと最小径部bを測定し、a/bを求めた。
(A / b)
The maximum diameter portion a and the minimum diameter portion b of the cross section of the hole were measured for a hole having a diameter of 10 μm or more observed from five cross-sectional photographs using an electron microscope of the wire insulation layer cross section, and a / b was obtained.

(変形率)
作製した絶縁電線を長さ50mmにカットした試料5本を準備し、JIS C3005「ゴム・プラスチック絶縁電線試験方法」の加熱変形試験に準拠し、それぞれについて、常温(23±2℃)にて荷重500gを30分間加えたときの変形率を測定した。変形率は次式により求めた。
(Deformation rate)
Prepare five samples of the manufactured insulated wire cut to a length of 50 mm, and comply with the heat deformation test of JIS C3005 “Rubber / Plastic Insulated Wire Test Method”, and load each at normal temperature (23 ± 2 ° C). The deformation rate when 500 g was added for 30 minutes was measured. The deformation rate was obtained from the following equation.

変形率(%)=(t0−t1)/t0×100
0:初期の絶縁層の厚さ
1:荷重を加えた後の絶縁層の厚さ
なお、実施例及び比較例に記載の平均粒径は、粒度分布測定装置(Microtrac Inc.製 MT3000II)を用いて測定した。
Deformation rate (%) = (t 0 −t 1 ) / t 0 × 100
t 0 : initial thickness of the insulating layer t 1 : thickness of the insulating layer after applying a load Note that the average particle size described in the examples and comparative examples is a particle size distribution measuring device (MT3000II manufactured by Microtrac Inc.). It measured using.

以下、表2をもとに実施例1〜6、比較例1〜6について具体的に説明する。   Hereinafter, Examples 1 to 6 and Comparative Examples 1 to 6 will be described in detail based on Table 2.

Figure 0005346543
Figure 0005346543

(実施例1)
平均粒径20μm、吸水量59g/gのアクリル酸塩ナトリウム部分架橋物(アクアキープ 10SH−NF 住友精化(株)製)100gに、蒸留水5900gを加えて吸水膨潤させた後、乳化分散機を用いて高速撹拌裁断した平均粒径20μmの含水アクリル酸塩ナトリウム部分架橋物(含水吸水性ポリマ)を、樹脂組成物A100質量部に、150質量部撹拌分散した含水率59%の含水吸水性ポリマ含有樹脂組成物−実施例1(樹脂組成物−実施例1)を得た。
Example 1
100 g of sodium acrylate partially crosslinked product (Aquakeep 10SH-NF, Sumitomo Seika Co., Ltd.) having an average particle size of 20 μm and a water absorption of 59 g / g was added 5900 g of distilled water to swell the water, and then emulsified and dispersed. Water-absorbing water-absorbing material having a water content of 59%, in which 100 parts by mass of resin composition A is stirred and dispersed in a resin composition A with 100 parts by mass of a water-containing sodium acrylate hydrate having an average particle size of 20 μm that has been cut with high-speed stirring. Polymer-containing resin composition-Example 1 (resin composition-Example 1) was obtained.

樹脂組成物−実施例1について、フィルム成形性が良好なことを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、多数の空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と質量から求めた空隙率はそれぞれ57,58,58.2%で含水率とほぼ一致することを確認した。   The resin composition-Example 1 was confirmed to have good film moldability. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), as a result of observing the cross section with an electron microscope, it was confirmed that a large number of holes were formed. It was confirmed that the porosity determined from the film volume and mass after complete dehydration was 57, 58, and 58.2%, respectively, which almost coincided with the moisture content.

また、50μmのフィルムにおいて空洞共振法により誘電率を測定したところ1.5(@10GHz)であった。   Moreover, when the dielectric constant was measured by the cavity resonance method in a 50 μm film, it was 1.5 (@ 10 GHz).

次に樹脂組成物−実施例1を、加圧塗布槽でより導体48AWG(7/0.013 S−MF−AG合金線 日立電線(株)製)上に速度50m/minで被覆し、これを紫外線照射炉(アイグラフィックス(株)製6kW)2灯に通して硬化させた後、導波管型マイクロ加熱炉及び赤外線加熱炉を通して加熱脱水処理して、被覆厚50μmと100μmの電線を得た。   Next, the resin composition-Example 1 was coated on a conductor 48AWG (7 / 0.013 S-MF-AG alloy wire manufactured by Hitachi Cable Ltd.) at a speed of 50 m / min in a pressure coating tank. Is cured by passing through 2 lamps of an ultraviolet irradiation furnace (6 kW manufactured by I-Graphics Co., Ltd.), followed by heat dehydration treatment through a waveguide type micro heating furnace and an infrared heating furnace, and wires having a coating thickness of 50 μm and 100 μm are obtained. Obtained.

その後、断面観察により絶縁層には多数の空孔が形成されていることを確認、また1mあたりの絶縁層の体積及び質量から空隙率を換算したところそれぞれ56.4,57.5%で含水率とほぼ一致することを確認した。   After that, it was confirmed by observation of the cross section that a large number of pores were formed in the insulating layer, and the porosity was converted from the volume and mass of the insulating layer per meter, and the water content was 56.4% and 57.5%, respectively. It was confirmed that the rate was almost the same.

また、電子顕微鏡を用いた5箇所の絶縁層断面写真より観察される空孔について、a/bを測定したところ、いずれも2以下であり、厚さ方向の空孔径Dがいずれも絶縁層の厚さtに対して1/2tより小さいことを確認した。   Moreover, when a / b was measured about the void | hole observed from the insulating layer cross-sectional photograph of five places using an electron microscope, all were 2 or less, and the void | hole diameter D of the thickness direction was all of an insulating layer. It was confirmed that the thickness was smaller than 1/2 t with respect to the thickness t.

さらに、それぞれの絶縁層の変形率を測定した結果、16%と11%であった。   Further, the deformation rate of each insulating layer was measured and found to be 16% and 11%.

(実施例2)
平均粒径60μm、吸水量730g/gのアクリル酸塩ナトリウム部分架橋物(サンフレッシュ(登録商標) ST−500MPSA サンダイヤポリマー(株)製)100gに、蒸留水9000gを加えて吸水量90g/gとして吸水膨潤させた後、乳化分散機を用いて高速撹拌裁断した平均粒径40μmの含水アクリル酸塩ナトリウム部分架橋物(含水吸水性ポリマ)を、樹脂組成物A100質量部に、35質量部撹拌分散した含水率25.6%の含水吸水性ポリマ含有樹脂組成物−実施例2(樹脂組成物−実施例2)を得た。
(Example 2)
9000 g of distilled water is added to 100 g of sodium acrylate partially crosslinked product (Sunfresh (registered trademark) ST-500MPSA manufactured by Sundia Polymer Co., Ltd.) having an average particle size of 60 μm and a water absorption of 730 g / g to obtain a water absorption of 90 g / g. After water-absorbing and swelling, water-containing sodium acrylate partially crosslinked product (water-containing water-absorbing polymer) having an average particle size of 40 μm, which has been subjected to high-speed stirring using an emulsifying disperser, is stirred and dispersed in 100 parts by weight of resin composition A. A water-containing water-absorbing polymer-containing resin composition having a water content of 25.6% -Example 2 (resin composition-Example 2) was obtained.

樹脂組成物−実施例2について、フィルム成形性が良好なことを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、多数の空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と質量から求めた空隙率はそれぞれ25.5,25.3,25.5%で含水率とほぼ一致することを確認した。   For the resin composition-Example 2, it was confirmed that the film moldability was good. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), as a result of observing the cross section with an electron microscope, it was confirmed that a large number of holes were formed. The porosity determined from the film volume and mass after complete dehydration was 25.5, 25.3, and 25.5%, respectively, and it was confirmed that the water content was almost the same.

また、50μmのフィルムにおいて空洞共振法により誘電率を測定したところ1.67(@10GHz)であった。   The dielectric constant of the 50 μm film measured by the cavity resonance method was 1.67 (@ 10 GHz).

次に樹脂組成物−実施例2を、加圧塗布槽でより導体48AWG(7/0.013 S−MF−AG合金線 日立電線(株)製)上に速度50m/minで被覆し、これを紫外線照射炉(アイグラフィックス(株)製6kW)2灯に通して硬化させた後、導波管型マイクロ加熱炉及び赤外線加熱炉を通して加熱脱水処理して、被覆厚50μmと100μmの電線を得た。   Next, the resin composition-Example 2 was coated on a conductor 48AWG (7 / 0.013 S-MF-AG alloy wire manufactured by Hitachi Cable Ltd.) at a speed of 50 m / min in a pressure coating tank. Is cured by passing through 2 lamps of an ultraviolet irradiation furnace (6 kW manufactured by I-Graphics Co., Ltd.), followed by heat dehydration treatment through a waveguide type micro heating furnace and an infrared heating furnace, and wires having a coating thickness of 50 μm and 100 μm are obtained. Obtained.

その後、断面観察により絶縁層には多数の空孔が形成されていることを確認、また1mあたりの絶縁層の体積及び質量から空隙率を換算したところそれぞれ25,25.3%で含水率とほぼ一致することを確認した。   After that, it was confirmed by cross-sectional observation that a large number of pores were formed in the insulating layer, and when the porosity was converted from the volume and mass of the insulating layer per 1 m, the moisture content was 25, 25.3%, respectively. It was confirmed that they were almost identical.

また、電子顕微鏡を用いた5箇所の絶縁層断面写真より観察される空孔について、a/bを測定したところ、いずれも2以下であり、厚さ方向の空孔径Dがいずれも絶縁層の厚さtに対して1/2tより小さいことを確認した。   Moreover, when a / b was measured about the void | hole observed from the insulating layer cross-sectional photograph of five places using an electron microscope, all were 2 or less, and the void | hole diameter D of the thickness direction was all of an insulating layer. It was confirmed that the thickness was smaller than 1/2 t with respect to the thickness t.

さらに、それぞれの絶縁層の変形率を測定した結果、14%と11%であった。   Furthermore, the deformation rate of each insulating layer was measured and found to be 14% and 11%.

(実施例3)
平均粒径50μm、吸水量31g/gのポリアルキレンオキサイド樹脂(アクアコーク(登録商標) TWB−PF 住友精化(株)製)100gをエチルアルコール1000mlに入れ撹拌しながら、蒸留水1000gを加えて選択的に吸水させ吸水量10g/gとして吸水膨潤させた後、濾過してエチルアルコールを分離除去した。
(Example 3)
100 g of polyalkylene oxide resin (Aqua Coke (registered trademark) TWB-PF manufactured by Sumitomo Seika Co., Ltd.) having an average particle size of 50 μm and a water absorption of 31 g / g was placed in 1000 ml of ethyl alcohol, and 1000 g of distilled water was added while stirring. Water was selectively absorbed to swell the water absorption amount of 10 g / g, and then filtered to separate and remove ethyl alcohol.

次にこれを液体窒素を用いて凍結させたものを粉砕し、解凍して得た平均粒径10μmの含水ポリアルキレンオキサイド樹脂(含水吸水性ポリマ)を、樹脂組成物A100質量部に、100質量部撹拌分散した含水率45.5%の含水吸水性ポリマ含有樹脂組成物−実施例3(樹脂組成物−実施例3)を得た。   Next, what was frozen with liquid nitrogen was pulverized and thawed to obtain a hydrous polyalkylene oxide resin (hydrous water-absorbing polymer) having an average particle size of 10 μm in 100 parts by mass of the resin composition A. A water-containing water-absorbing polymer-containing resin composition having a water content of 45.5% with stirring and dispersion by part-Example 3 (resin composition-Example 3) was obtained.

樹脂組成物−実施例3について、フィルム成形性が良好なことを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、多数の空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と質量から求めた空隙率はそれぞれ45,44.9,45.1%で含水率とほぼ一致することを確認した。   For the resin composition-Example 3, it was confirmed that the film moldability was good. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), as a result of observing the cross section with an electron microscope, it was confirmed that a large number of holes were formed. The porosity determined from the film volume and mass after complete dehydration was 45, 44.9, and 45.1%, respectively, and it was confirmed that the moisture content almost coincided with the moisture content.

また、50μmのフィルムにおいて空洞共振法により誘電率を測定したところ1.77(@10GHz)であった。   The dielectric constant of the 50 μm film measured by the cavity resonance method was 1.77 (@ 10 GHz).

次に樹脂組成物−実施例3を、加圧塗布槽でより導体48AWG(7/0.013 S−MF−AG合金線 日立電線(株)製)上に速度50m/minで被覆し、これを紫外線照射炉(アイグラフィックス(株)製6kW)2灯に通して硬化させた後、導波管型マイクロ加熱炉及び赤外線加熱炉を通して加熱脱水処理して、被覆厚50μmと100μmの電線を得た。   Next, the resin composition-Example 3 was coated on a conductor 48AWG (7 / 0.013 S-MF-AG alloy wire manufactured by Hitachi Cable Ltd.) at a speed of 50 m / min with a pressure coating tank. Is cured by passing through 2 lamps of an ultraviolet irradiation furnace (6 kW manufactured by I-Graphics Co., Ltd.), followed by heat dehydration treatment through a waveguide type micro heating furnace and an infrared heating furnace, and wires having a coating thickness of 50 μm and 100 μm are obtained. Obtained.

その後、断面観察により絶縁層には多数の空孔が形成されていることを確認、また1mあたりの絶縁層の体積及び質量から空隙率を換算したところそれぞれ44.3,44.6%で含水率とほぼ一致することを確認した。   After that, it was confirmed by observation of the cross section that a large number of pores were formed in the insulating layer, and the porosity was converted from the volume and mass of the insulating layer per meter, and the water content was 44.3 and 44.6%, respectively. It was confirmed that the rate was almost the same.

また、電子顕微鏡を用いた5箇所の絶縁層断面写真より観察される空孔について、a/bを測定したところ、いずれも2以下であり、厚さ方向の空孔径Dがいずれも絶縁層の厚さtに対して1/2tより小さいことを確認した。   Moreover, when a / b was measured about the void | hole observed from the insulating layer cross-sectional photograph of five places using an electron microscope, all were 2 or less, and the void | hole diameter D of the thickness direction was all of an insulating layer. It was confirmed that the thickness was smaller than 1/2 t with respect to the thickness t.

さらに、それぞれの絶縁層の変形率を測定した結果、6%と5%であった。   Further, the deformation rate of each insulating layer was measured and found to be 6% and 5%.

(実施例4)
平均粒径50μm、吸水量31g/gのポリアルキレンオキサイド樹脂(アクアコーク(登録商標) TWB−PF 住友精化(株)製)100gに、蒸留水3100gを加えて吸水膨潤させた後、液体窒素を用いて凍結させたものを粉砕し、解凍して得た平均粒径20μmの含水ポリアルキレンオキサイド樹脂(含水吸水性ポリマ)を、樹脂組成物B100質量部に、100質量部撹拌分散した含水率48.4%の含水吸水性ポリマ含有樹脂組成物−実施例4(樹脂組成物−実施例4)を得た。
Example 4
After adding 3100 g of distilled water to 100 g of a polyalkylene oxide resin (Aqua Coke (registered trademark) TWB-PF, manufactured by Sumitomo Seika Co., Ltd.) having an average particle size of 50 μm and a water absorption of 31 g / g, liquid nitrogen is added. A water content obtained by pulverizing and thawing a product frozen with a water-containing polyalkylene oxide resin (water-containing water-absorbing polymer) having an average particle diameter of 20 μm in 100 parts by mass of the resin composition B and stirring and dispersing it. A 48.4% water-absorbing polymer-containing resin composition-Example 4 (resin composition-Example 4) was obtained.

樹脂組成物−実施例4について、フィルム成形性が良好なことを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、多数の空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と質量から求めた空隙率はそれぞれ47.5,47.5,47.7%で含水率とほぼ一致することを確認した。   For the resin composition-Example 4, it was confirmed that the film moldability was good. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), as a result of observing the cross section with an electron microscope, it was confirmed that a large number of holes were formed. The porosity determined from the film volume and mass after complete dehydration was 47.5, 47.5, and 47.7%, respectively, and it was confirmed that the moisture content almost coincided with the moisture content.

また、50μmのフィルムにおいて空洞共振法により誘電率を測定したところ1.76(@10GHz)であった。   Further, when the dielectric constant of the 50 μm film was measured by the cavity resonance method, it was 1.76 (@ 10 GHz).

次に樹脂組成物−実施例4を、加圧塗布槽でより導体48AWG(7/0.013 S−MF−AG合金線 日立電線(株)製)上に速度50m/minで被覆し、これを紫外線照射炉(アイグラフィックス(株)製6kW)2灯に通して硬化させた後、導波管型マイクロ加熱炉及び赤外線加熱炉を通して加熱脱水処理して、被覆厚50μmと100μmの電線を得た。   Next, the resin composition-Example 4 was coated on a conductor 48AWG (7 / 0.013 S-MF-AG alloy wire manufactured by Hitachi Cable Ltd.) at a speed of 50 m / min in a pressure coating tank. Is cured by passing through 2 lamps of an ultraviolet irradiation furnace (6 kW manufactured by I-Graphics Co., Ltd.), followed by heat dehydration treatment through a waveguide type micro heating furnace and an infrared heating furnace, and wires having a coating thickness of 50 μm and 100 μm are obtained. Obtained.

その後、断面観察により絶縁層には多数の空孔が形成されていることを確認、また1mあたりの絶縁層の体積及び質量から空隙率を換算したところそれぞれ46.3,46.7%で含水率とほぼ一致することを確認した。   After that, it was confirmed by observation of the cross section that many holes were formed in the insulating layer, and the porosity was converted from the volume and mass of the insulating layer per meter, and the water content was 46.3 and 46.7%, respectively. It was confirmed that the rate was almost the same.

また、電子顕微鏡を用いた5箇所の絶縁層断面写真より観察される空孔について、a/bを測定したところ、いずれも2以下であり、厚さ方向の空孔径Dがいずれも絶縁層の厚さtに対して1/2tより小さいことを確認した。   Moreover, when a / b was measured about the void | hole observed from the insulating layer cross-sectional photograph of five places using an electron microscope, all were 2 or less, and the void | hole diameter D of the thickness direction was all of an insulating layer. It was confirmed that the thickness was smaller than 1/2 t with respect to the thickness t.

さらに、それぞれの絶縁層の変形率を測定した結果、11%と6%であった。   Furthermore, as a result of measuring the deformation rate of each insulating layer, they were 11% and 6%.

(実施例5)
平均粒径50μm、吸水量31g/gのポリアルキレンオキサイド樹脂(アクアコーク(登録商標) TWB−PF 住友精化(株)製)を冷凍粉砕により平均粒径10μmとした100gに、蒸留水3100gを加えて吸水膨潤させた後、液体窒素を用いて凍結させたものを粉砕し、解凍して得た平均粒径10μmの含水ポリアルキレンオキサイド樹脂(含水吸水性ポリマ)を、樹脂組成物B100質量部に、200質量部撹拌分散した含水率64.6%の含水吸水性ポリマ含有樹脂組成物−実施例5(樹脂組成物−実施例5)を得た。
(Example 5)
Polyalkylene oxide resin (Aqua Coke (registered trademark) TWB-PF manufactured by Sumitomo Seika Co., Ltd.) having an average particle size of 50 μm and a water absorption of 31 g / g was frozen and ground to 100 g with an average particle size of 10 μm, and 3100 g of distilled water was added. In addition, after water-swelling and swelling with water nitrogen, the water-containing polyalkylene oxide resin (water-containing water-absorbing polymer) having an average particle diameter of 10 μm obtained by pulverizing and thawing the liquid nitrogen is used as a resin composition B100 parts by mass. Then, a water-absorbing polymer-containing resin composition having a water content of 64.6%, which was stirred and dispersed in 200 parts by mass, -Example 5 (resin composition-Example 5) was obtained.

樹脂組成物−実施例5について、フィルム成形性が良好なことを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、多数の空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と質量から求めた空隙率はそれぞれ63,64,63.8%で含水率とほぼ一致することを確認した。   For the resin composition-Example 5, it was confirmed that the film moldability was good. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), as a result of observing the cross section with an electron microscope, it was confirmed that a large number of holes were formed. It was confirmed that the porosity determined from the film volume and mass after complete dehydration was 63, 64, and 63.8%, respectively, which almost coincided with the water content.

また、50μmのフィルムにおいて空洞共振法により誘電率を測定したところ1.5(@10GHz)であった。   Moreover, when the dielectric constant was measured by the cavity resonance method in a 50 μm film, it was 1.5 (@ 10 GHz).

次に樹脂組成物−実施例5を、加圧塗布槽でより導体48AWG(7/0.013 S−MF−AG合金線 日立電線(株)製)上に速度50m/minで被覆し、これを紫外線照射炉(アイグラフィックス(株)製6kW)2灯に通して硬化させた後、導波管型マイクロ加熱炉及び赤外線加熱炉を通して加熱脱水処理して、被覆厚50μmと100μmの電線を得た。   Next, the resin composition-Example 5 was coated at a speed of 50 m / min on a conductor 48AWG (7 / 0.013 S-MF-AG alloy wire manufactured by Hitachi Cable Co., Ltd.) in a pressure coating tank. Is cured by passing through 2 lamps of an ultraviolet irradiation furnace (6 kW manufactured by I-Graphics Co., Ltd.), followed by heat dehydration treatment through a waveguide type micro heating furnace and an infrared heating furnace, and wires having a coating thickness of 50 μm and 100 μm are obtained. Obtained.

その後、断面観察により絶縁層には多数の空孔が形成されていることを確認、また1mあたりの絶縁層の体積及び質量から空隙率を換算したところそれぞれ61.3,61.5%で含水率とほぼ一致することを確認した。   Thereafter, it was confirmed by observation of the cross section that a large number of pores were formed in the insulating layer, and the porosity was converted from the volume and mass of the insulating layer per meter, and the water content was 61.3 and 61.5%, respectively. It was confirmed that the rate was almost the same.

また、電子顕微鏡を用いた5箇所の絶縁層断面写真より観察される空孔について、a/bを測定したところ、いずれも2以下であり、厚さ方向の空孔径Dがいずれも絶縁層の厚さtに対して1/2tより小さいことを確認した。   Moreover, when a / b was measured about the void | hole observed from the insulating layer cross-sectional photograph of five places using an electron microscope, all were 2 or less, and the void | hole diameter D of the thickness direction was all of an insulating layer. It was confirmed that the thickness was smaller than 1/2 t with respect to the thickness t.

さらに、それぞれの絶縁層の変形率を測定した結果、17%と8%であった。   Further, the deformation rate of each insulating layer was measured and found to be 17% and 8%.

(実施例6)
平均粒径20μm、吸水量59g/gのアクリル酸塩ナトリウム部分架橋物(アクアキープ 10SH−NF 住友精化(株)製)100gに、蒸留水5900gを加えて吸水膨潤させた後、乳化分散機を用いて高速撹拌裁断した平均粒径40μmの含水アクリル酸塩ナトリウム部分架橋物(含水吸水性ポリマ)を、樹脂組成物C100質量部に、50質量部撹拌分散した含水率32.8%の含水吸水性ポリマ含有樹脂組成物−実施例6(樹脂組成物−実施例6)を得た。
(Example 6)
100 g of sodium acrylate partially crosslinked product (Aquakeep 10SH-NF, Sumitomo Seika Co., Ltd.) having an average particle size of 20 μm and a water absorption of 59 g / g was added 5900 g of distilled water to swell the water, and then emulsified and dispersed. Hydrous sodium acrylate partially crosslinked product (hydrous water-absorbing polymer) having an average particle size of 40 μm, which has been cut with high-speed stirring using the above, is mixed with 100 parts by weight of resin composition C, and 50 parts by weight of the water content is 32.8%. A water-absorbing polymer-containing resin composition-Example 6 (resin composition-Example 6) was obtained.

樹脂組成物−実施例6について、フィルム成形性が良好なことを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、多数の空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と質量から求めた空隙率はそれぞれ31.6,32,32%で含水率とほぼ一致することを確認した。   About resin composition-Example 6, it was confirmed that film moldability was favorable. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), as a result of observing the cross section with an electron microscope, it was confirmed that a large number of holes were formed. The porosity determined from the film volume and mass after complete dehydration was 31.6, 32, and 32%, respectively, and it was confirmed that the moisture content almost coincided with the moisture content.

また、50μmのフィルムにおいて空洞共振法により誘電率を測定したところ1.99(@10GHz)であった。   The dielectric constant of the 50 μm film measured by the cavity resonance method was 1.99 (@ 10 GHz).

次に樹脂組成物−実施例6を、加圧塗布槽でより導体48AWG(7/0.013 S−MF−AG合金線 日立電線(株)製)上に速度50m/minで被覆し、これを紫外線照射炉(アイグラフィックス(株)製6kW)2灯に通して硬化させた後、導波管型マイクロ加熱炉及び赤外線加熱炉を通して加熱脱水処理して、被覆厚50μmと100μmの電線を得た。   Next, the resin composition-Example 6 was coated on a conductor 48AWG (7 / 0.013 S-MF-AG alloy wire manufactured by Hitachi Cable Ltd.) at a speed of 50 m / min in a pressure coating tank. Is cured by passing through 2 lamps of an ultraviolet irradiation furnace (6 kW manufactured by I-Graphics Co., Ltd.), followed by heat dehydration treatment through a waveguide type micro heating furnace and an infrared heating furnace. Obtained.

その後、断面観察により絶縁層には多数の空孔が形成されていることを確認、また1mあたりの絶縁層の体積及び質量から空隙率を換算したところそれぞれ31.5,32%で含水率とほぼ一致することを確認した。   After that, it was confirmed by cross-sectional observation that a large number of pores were formed in the insulating layer, and when the porosity was converted from the volume and mass of the insulating layer per meter, the moisture content was 31.5 and 32%, respectively. It was confirmed that they were almost identical.

また、電子顕微鏡を用いた5箇所の絶縁層断面写真より観察される空孔について、a/bを測定したところ、いずれも2以下であり、厚さ方向の空孔径Dがいずれも絶縁層の厚さtに対して1/2tより小さいことを確認した。   Moreover, when a / b was measured about the void | hole observed from the insulating layer cross-sectional photograph of five places using an electron microscope, all were 2 or less, and the void | hole diameter D of the thickness direction was all of an insulating layer. It was confirmed that the thickness was smaller than 1/2 t with respect to the thickness t.

さらに、それぞれの絶縁層の変形率を測定した結果、23%と10%であった。   Furthermore, as a result of measuring the deformation rate of each insulating layer, they were 23% and 10%.

(比較例1)
平均粒径50μm、吸水量31g/gのポリアルキレンオキサイド樹脂(アクアコーク(登録商標) TWB−PF 住友精化(株)製)を冷凍粉砕により平均粒径10μmとした100gに、蒸留水3100gを加えて吸水膨潤させた後、乳化分散機を用いて、高速撹拌裁断した平均粒径100μmの含水ポリアルキレンオキサイド樹脂(含水吸水性ポリマ)を、樹脂組成物A100質量部に、100質量部撹拌分散した含水率48.4%の含水吸水性ポリマ含有樹脂組成物−比較例1(樹脂組成物−比較例1)を得た。
(Comparative Example 1)
Polyalkylene oxide resin (Aqua Coke (registered trademark) TWB-PF manufactured by Sumitomo Seika Co., Ltd.) having an average particle size of 50 μm and a water absorption of 31 g / g was frozen and ground to 100 g with an average particle size of 10 μm, and 3100 g of distilled water was added. In addition, after water-absorbing and swelling, a water-containing polyalkylene oxide resin (water-containing water-absorbing polymer) having an average particle size of 100 μm, which has been subjected to high-speed stirring cutting using an emulsifying disperser, is stirred and dispersed in 100 parts by weight of the resin composition A. A water-absorbing polymer-containing resin composition having a water content of 48.4% -Comparative Example 1 (resin composition-Comparative Example 1) was obtained.

樹脂組成物−比較例1について、実施例と同様にフィルムは成形できることを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、200μmフィルムでは多数の空孔形成が確認されたが、50μmフィルムではほとんど空孔がなく、100μmフィルムを空孔が少ないものであった。各フィルムについて完全脱水後のフィルム体積と質量から求めた空隙率は、200μmフィルム以外は含水率と全く異なるものであった。   About resin composition-comparative example 1, it was confirmed that a film can be shape | molded similarly to an Example. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), the cross section was observed with an electron microscope. As a result, a large number of pores were confirmed in the 200 μm film, but in the 50 μm film, There were almost no holes, and the 100 μm film had few holes. The porosity determined from the film volume and mass after complete dehydration for each film was completely different from the moisture content except for the 200 μm film.

また、50μmフィルムにおいて空洞共振法空洞共振法により誘電率を測定したところ2.4(@10GHz)で、樹脂組成物Aと変わらないものであった。   Further, when the dielectric constant of the 50 μm film was measured by the cavity resonance method and the cavity resonance method, it was 2.4 (@ 10 GHz), which was the same as the resin composition A.

次に樹脂組成物−比較例1を、実施例と同様に被覆厚50μmと100μmの電線を得ることを試みたが、50μmでは断線が多発し電線を得ることができなかった。100μmでは電線を得ることはできたが、断面観察により絶縁層にはわずかしか空孔が形成されていないものであった。   Next, the resin composition-Comparative Example 1 was tried to obtain an electric wire having a coating thickness of 50 μm and 100 μm in the same manner as in the example. However, at 50 μm, disconnection occurred frequently and an electric wire could not be obtained. Although an electric wire could be obtained at 100 μm, only a few pores were formed in the insulating layer by cross-sectional observation.

(比較例2)
平均粒径50μm、吸水量31g/gのポリアルキレンオキサイド樹脂(アクアコーク(登録商標) TWB−PF 住友精化(株)製)100gをエチルアルコール1000mlに入れ撹拌しながら、蒸留水500gを加えて選択的に吸水させ吸水量5g/gとして吸水膨潤させ、これを乳化分散機を用いて、高速撹拌裁断を行った後、濾過してエチルアルコールを分離除去して得た平均粒径40μmの含水ポリアルキレンオキサイド樹脂(含水吸水性ポリマ)を、樹脂組成物A100質量部に、80質量部撹拌分散した含水率37%の含水吸水性ポリマ含有樹脂組成物−比較例2(樹脂組成物−比較例2)を得た。
(Comparative Example 2)
Add 100 g of polyalkylene oxide resin (Aqua Coke (registered trademark) TWB-PF, manufactured by Sumitomo Seika Co., Ltd.) having an average particle size of 50 μm and a water absorption of 31 g / g to 1000 ml of ethyl alcohol and add 500 g of distilled water while stirring. Water was selectively swelled and swelled with a water absorption of 5 g / g, and this was subjected to high-speed stirring cutting using an emulsifying disperser, and then filtered to separate and remove ethyl alcohol. A water-absorbing polymer-containing resin composition having a water content of 37% obtained by stirring and dispersing a polyalkylene oxide resin (water-containing water-absorbing polymer) in 100 parts by mass of the resin composition A-Comparative Example 2 (resin composition-comparative example) 2) was obtained.

樹脂組成物−比較例2について、実施例と同様にフィルム作製を行ったが、吸水性ポリマの吸水量が少ないため吸水性ポリマの添加量を多くする必要があり、これにより脆くなりやすく、いずれもフィルムとして得ることができなかった。次に実施例と同様に電線の作製を試みたが、絶縁層が形成できず電線を得ることができなかった。   For the resin composition-Comparative Example 2, a film was produced in the same manner as in the example. However, since the water absorption amount of the water absorbent polymer is small, it is necessary to increase the amount of the water absorbent polymer, which tends to make it brittle. Could not be obtained as a film. Next, an attempt was made to produce an electric wire in the same manner as in the example, but an insulating layer could not be formed and an electric wire could not be obtained.

(比較例3)
平均粒径60μm、吸水量730g/gのアクリル酸塩ナトリウム部分架橋物(サンフレッシュ(登録商標) ST−500MPSA サンダイヤポリマー(株)製)100gに、蒸留水11000gを加えて吸水量110g/gとして吸水膨潤させた後、液体窒素を用いて凍結させたものと粉砕し、解凍して得た平均粒径10μmの含水アクリル酸塩ナトリウム部分架橋物(含水吸水性ポリマ)を、樹脂組成物B100質量部に、200質量部撹拌分散した含水率66.1%の含水吸水性ポリマ含有樹脂組成物−比較例3(樹脂組成物−比較例3)を得た。
(Comparative Example 3)
To 100 g of sodium acrylate partially crosslinked product (Sunfresh (registered trademark) ST-500MPSA manufactured by Sundia Polymer Co., Ltd.) having an average particle size of 60 μm and a water absorption of 730 g / g, 11000 g of distilled water is added to obtain a water absorption of 110 g / g. Water-swelled, then frozen with liquid nitrogen, pulverized and thawed, hydrated sodium acrylate partially crosslinked product (hydrated water-absorbing polymer) having an average particle size of 10 μm was added to resin composition B100 mass A water-absorbing polymer-containing resin composition-comparative example 3 (resin composition-comparative example 3) having a water content of 66.1% dispersed in 200 parts by mass with stirring was obtained.

樹脂組成物−比較例3について、実施例と同様にフィルムの作製を試みたが、吸水性ポリマの吸水量が多いため、いずれも硬化ができずにフィルムとして得ることができなかった。次に実施例1と同様に電線の作製を試みたが、絶縁層が形成できず電線を得ることができなかった。   Regarding the resin composition-Comparative Example 3, production of a film was attempted in the same manner as in the Examples. However, since the water-absorbing polymer had a large amount of water absorption, none of them could be cured and obtained as a film. Next, production of an electric wire was attempted in the same manner as in Example 1, but an insulating layer could not be formed and an electric wire could not be obtained.

(比較例4)
平均粒径50μm、吸水量31g/gのポリアルキレンオキサイド樹脂(アクアコーク(登録商標) TWB−PF 住友精化(株)製)100gをエチルアルコール1000mlに入れ撹拌しながら、蒸留水900gを加えて選択的に吸水させ吸水量9g/gとして吸水膨潤させ、濾過してエチルアルコールを分離除去して得た平均粒径60μmの含水ポリアルキレンオキサイド樹脂(含水吸水性ポリマ)を、樹脂組成物B100質量部に、20質量部撹拌分散した含水率15%の含水吸水性ポリマ含有樹脂組成物−比較例4(樹脂組成物−比較例4)を得た。
(Comparative Example 4)
Add 100 g of polyalkylene oxide resin (Aqua Coke (registered trademark) TWB-PF manufactured by Sumitomo Seika Co., Ltd.) having an average particle size of 50 μm and a water absorption of 31 g / g into 1000 ml of ethyl alcohol, and add 900 g of distilled water while stirring. A water-containing polyalkylene oxide resin (water-containing water-absorbing polymer) having an average particle diameter of 60 μm obtained by selectively absorbing water to swell with water absorption of 9 g / g and filtering to separate and remove ethyl alcohol was added to resin composition B100 mass. A water-absorbing polymer-containing resin composition with a water content of 15%, which was stirred and dispersed in 20 parts by mass, was obtained as Comparative Example 4 (resin composition-Comparative Example 4).

樹脂組成物−比較例4について、実施例と同様にフィルムを作製しフィルム成形性が良好なことを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と質量から求めた空隙率はそれぞれ7.5,14.6,14.5%で、含水吸水性ポリマの粒径が60μmと大きいため、50μmフィルムでは含水率の半分以下であった。   About resin composition-comparative example 4, the film was produced similarly to the Example and it was confirmed that film moldability is favorable. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), the cross section was observed with an electron microscope. As a result, it was confirmed that pores were formed, and each film was completely dehydrated. The porosity determined from the volume and mass of the film later was 7.5, 14.6 and 14.5%, respectively, and the particle size of the water-absorbing polymer was as large as 60 μm. It was.

また、50μmのフィルムにおいて空洞共振法により誘電率を測定したところ2.54(@10GHz)と低誘電率化硬化が小さいものであった。   Further, when the dielectric constant was measured by a cavity resonance method in a 50 μm film, the low dielectric constant hardening was 2.54 (@ 10 GHz).

次に樹脂組成物−比較例4を、実施例と同様に被覆厚50μmと100μmの電線を得ることを試みたが、50μmでは含水吸水性ポリマの粒径が大きいためダイスに詰り断線が多発し電線を得ることができなかった。電線が得られた100μmの断面観察により絶縁層には空孔が形成されていることを確認、また1mあたりの絶縁層の体積及び質量から空隙率を換算したところそれぞれ14.2%で含水率に近いことを確認した。   Next, the resin composition-Comparative Example 4 was tried to obtain an electric wire having a coating thickness of 50 μm and 100 μm in the same manner as in the Examples. The electric wire could not be obtained. It was confirmed that pores were formed in the insulating layer by observing a cross section of 100 μm from which the electric wire was obtained, and the moisture content was 14.2% when converted from the volume and mass of the insulating layer per 1 m. Confirmed that it is close to.

また、電子顕微鏡を用いた5箇所の絶縁層断面写真より観察される空孔について、a/bを測定したところ、いずれも2以下であり、厚さ方向の空孔径Dがいずれも絶縁層の厚さtに対して1/2tより小さいことを確認した。   Moreover, when a / b was measured about the void | hole observed from the insulating layer cross-sectional photograph of five places using an electron microscope, all were 2 or less, and the void | hole diameter D of the thickness direction was all of an insulating layer. It was confirmed that the thickness was smaller than 1/2 t with respect to the thickness t.

さらに、それぞれの絶縁層の変形率を測定した結果、10%であった。   Furthermore, the deformation rate of each insulating layer was measured and found to be 10%.

(比較例5)
平均粒径60μm、吸水量730g/gのアクリル酸塩ナトリウム部分架橋物(サンフレッシュ(登録商標) ST−500MPSA サンダイヤポリマー(株)製)100gに、蒸留水11000gを加えて吸水量110g/gとして吸水膨潤させた後、液体窒素を用いて凍結させたものと粉砕し、解凍して得た平均粒径20μmの含水アクリル酸塩ナトリウム部分架橋物(含水吸水性ポリマ)を、樹脂組成物C100質量部に、10質量部撹拌分散した含水率9%の含水吸水性ポリマ含有樹脂組成物−比較例5(樹脂組成物−比較例5)を得た。
(Comparative Example 5)
To 100 g of sodium acrylate partially crosslinked product (Sunfresh (registered trademark) ST-500MPSA manufactured by Sundia Polymer Co., Ltd.) having an average particle size of 60 μm and a water absorption of 730 g / g, 11000 g of distilled water is added to obtain a water absorption of 110 g / g. Water-swelled, then frozen with liquid nitrogen, pulverized and thawed, a hydrous sodium acrylate partially crosslinked product (hydrous water-absorbing polymer) having an average particle size of 20 μm was obtained as a resin composition C100 mass A water-absorbing polymer-containing resin composition having a water content of 9%, which was stirred and dispersed in 10 parts by mass, was obtained as Comparative Example 5 (resin composition-Comparative Example 5).

樹脂組成物−比較例5について、実施例と同様にフィルムの作製し、フィルム成形性が良好なことを確認した。これを、マイクロ波加熱装置(発振周波数2.45GHz)を用いて、5分間加熱した後、断面を電子顕微鏡で観察した結果、空孔が形成されていることを確認し、各フィルムについて完全脱水後のフィルム体積と質量から求めた空隙率はそれぞれ8.4,8.5,8.2%で含水率とほぼ一致することを確認した。   About resin composition-comparative example 5, the film was produced similarly to the Example and it was confirmed that film moldability is favorable. After heating this for 5 minutes using a microwave heating device (oscillation frequency 2.45 GHz), the cross section was observed with an electron microscope. As a result, it was confirmed that pores were formed, and each film was completely dehydrated. It confirmed that the porosity calculated | required from the latter film volume and mass was 8.4, 8.5, and 8.2%, respectively, and corresponded substantially with a moisture content.

しかし、50μmのフィルムにおいて空洞共振法により誘電率を測定したところ2.44(@10GHz)と、含水率が低く得られる空隙率も低いため、低誘電率化硬化が小さいものであった。これは、吸水性ポリマの吸水量が多いため、フィルム成形性の点から吸水性ポリマの添加量を少なくする必要があり、そのため含水率が低くなってしまったためである。   However, when the dielectric constant of the 50 μm film was measured by the cavity resonance method, it was 2.44 (@ 10 GHz), and since the porosity obtained with a low water content was low, the low dielectric constant hardening was small. This is because the water-absorbing polymer has a large amount of water absorption, so the amount of the water-absorbing polymer needs to be reduced from the viewpoint of film moldability, and the water content has been lowered.

次に樹脂組成物−比較例5を、実施例と同様に被覆厚50μmと100μmの電線を得た後、断面観察により絶縁層には空孔が形成されていることを確認、また1mあたりの絶縁層の体積及び質量から空隙率を換算したところいずれも8%で含水率に近いものであることを確認した。   Next, the resin composition-comparative example 5 was obtained in the same manner as in the examples, after obtaining an electric wire with a coating thickness of 50 .mu.m and 100 .mu.m, it was confirmed that pores were formed in the insulating layer by cross-sectional observation. When the porosity was converted from the volume and mass of the insulating layer, it was confirmed that both were 8% and close to the water content.

また、電子顕微鏡を用いた5箇所の絶縁層断面写真より観察される空孔について、a/bを測定したところ、いずれも2以下であり、厚さ方向の空孔径Dがいずれも絶縁層の厚さtに対して1/2tより小さいことを確認した。   Moreover, when a / b was measured about the void | hole observed from the insulating layer cross-sectional photograph of five places using an electron microscope, all were 2 or less, and the void | hole diameter D of the thickness direction was all of an insulating layer. It was confirmed that the thickness was smaller than 1/2 t with respect to the thickness t.

さらに、それぞれの絶縁層の変形率を測定した結果、いずれも5%であった。   Furthermore, as a result of measuring the deformation rate of each insulating layer, all were 5%.

(比較例6)
低誘電性熱可塑性ポリマのテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合樹脂(PFA)を用い、28mm押田機で、液化炭酸ガスを圧入しながらより導体48AWG(7/0.013 S−MF−AG合金線 日立電線(株)製)上に被覆厚50μmの押出被覆を試みたが、速度数m/minでも断線が多発し、多孔質(発泡)電線を得ることができなかった。
(Comparative Example 6)
Conductor 48AWG (7 / 0.013 S-MF-AG) using low-dielectric thermoplastic polymer tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin (PFA) and 28mm Oshida machine while injecting liquefied carbon dioxide. (Alloy wire manufactured by Hitachi Cable, Ltd.) Attempts were made to perform extrusion coating with a coating thickness of 50 μm, but breakage occurred frequently even at a speed of several m / min, and a porous (foamed) wire could not be obtained.

以上、実施例1〜6及び比較例1〜6で説明したとおり、実施例では吸水性ポリマに予め吸水膨潤させてから、粒径を調整した含水吸水性ポリマを液状架橋硬化型樹脂に分散したものを硬化させた後、加熱により脱水させることで、容易に多孔質物や多孔質絶縁電線が得られる。   As described above, as described in Examples 1 to 6 and Comparative Examples 1 to 6, in the example, the water-absorbing polymer was preliminarily swollen by water absorption, and then the water-containing water-absorbing polymer having an adjusted particle size was dispersed in the liquid cross-linked curable resin. A porous material or a porous insulated wire can be easily obtained by curing and then dehydrating by heating.

また、液状架橋硬化型樹脂とし、吸水性ポリマの粒径、吸水量を適正化することにより、薄膜、細径の多孔質絶縁電線を断線等の問題なく容易に得ることができる。   Further, by using a liquid cross-linking curable resin and optimizing the particle size and water absorption amount of the water-absorbing polymer, a thin film and a thin porous insulating wire can be easily obtained without problems such as disconnection.

一方、含水吸水性ポリマの粒径が大きい比較例1、4では、薄肉化が困難であり、吸水量、含水率が多い比較例3、吸水性ポリマの添加量が多い比較例2では、成形性が著しく劣り、吸水量が少なく、含水率が低い比較例5では、成形性は問題ないが、空隙率が低いため低誘電率効果が得られないものであった。また、従来押出方式の比較例6ではまったく高速化は困難であった。   On the other hand, in Comparative Examples 1 and 4 in which the particle size of the water-absorbing polymer is large, it is difficult to reduce the wall thickness, and in Comparative Example 3 in which the water absorption amount and water content are large, in Comparative Example 2 in which the water absorption polymer addition amount is large, molding In Comparative Example 5 in which the properties were extremely inferior, the amount of water absorption was small, and the moisture content was low, there was no problem with moldability, but the low dielectric constant effect could not be obtained because the porosity was low. In Comparative Example 6 of the conventional extrusion method, it was difficult to increase the speed at all.

本発明の絶縁電線の横断面図である。It is a cross-sectional view of the insulated wire of the present invention. 図1の絶縁電線を用いた多層被覆ケーブルを示す横断面図である。It is a cross-sectional view which shows the multilayer covered cable using the insulated wire of FIG. 図1の絶縁電線を用いた同軸ケーブルを示す横断面図である。It is a cross-sectional view which shows the coaxial cable using the insulated wire of FIG. マイクロ波加熱と120℃オーブン加熱による脱水効率の比較図である。It is a comparison figure of the dehydration efficiency by microwave heating and 120 degreeC oven heating.

符号の説明Explanation of symbols

1 絶縁電線
2 導体
3 絶縁層
4 空孔
5 被覆層
6 多層被覆ケーブル
7 同軸ケーブル
8 シールド線
9 被覆層
DESCRIPTION OF SYMBOLS 1 Insulated electric wire 2 Conductor 3 Insulating layer 4 Hole 5 Covering layer 6 Multilayered cable 7 Coaxial cable 8 Shielded wire 9 Covering layer

Claims (17)

吸水性ポリマの飽和吸水量以上の水に前記吸水性ポリマを分散させ、前記水を吸水膨潤させた含水吸水性ポリマを裁断するか、又は前記吸水膨潤させた含水吸水性ポリマを凍結した後粉砕して微粒化し、微粒化した前記含水吸水性ポリマを液状架橋硬化型樹脂に分散させることを特徴とする含水吸水性ポリマ含有樹脂組成物の製造方法。   Disperse the water-absorbing polymer in water equal to or higher than the saturated water-absorbing amount of the water-absorbing polymer and cut the water-absorbing water-absorbing polymer obtained by water-absorbing and swelling the water, or pulverizing after freezing the water-absorbing water-absorbing polymer. Then, the water-absorbing polymer-containing resin composition is characterized in that the water-absorbing water-absorbing polymer atomized and dispersed is dispersed in a liquid cross-linking curable resin. 前記含水吸水性ポリマ含有樹脂組成物の含水率は20〜70%であることを特徴とする請求項1に記載の含水吸水性ポリマ含有樹脂組成物の製造方法。   The method for producing a water-containing water-absorbing polymer-containing resin composition according to claim 1, wherein the water-containing water-absorbing polymer-containing resin composition has a water content of 20 to 70%. 前記含水吸水性ポリマの粒径dを50μm以下に微粒化する請求項1又は2に記載の含水吸水性ポリマ含有樹脂組成物の製造方法。   The method for producing a water-containing water-absorbing polymer-containing resin composition according to claim 1 or 2, wherein the particle size d of the water-absorbing water-absorbing polymer is atomized to 50 µm or less. 前記吸水性ポリマの吸水量が10〜100g/gである請求項1〜3のいずれかに記載
の含水吸水性ポリマ含有樹脂組成物の製造方法。
The method for producing a water-containing water-absorbing polymer-containing resin composition according to any one of claims 1 to 3, wherein the water-absorbing polymer has a water absorption amount of 10 to 100 g / g.
請求項1〜4のいずれかに記載の方法により製造されたことを特徴とする含水吸水性ポリマ含有樹脂組成物。   A water-containing water-absorbing polymer-containing resin composition produced by the method according to claim 1. 吸水性ポリマの飽和吸水量以上の水に前記吸水性ポリマを分散させ、前記水を吸水膨潤させた含水吸水性ポリマを裁断するか、又は前記吸水膨潤させた含水吸水性ポリマを凍結した後粉砕して微粒化し、微粒化した前記含水吸水性ポリマを液状架橋硬化型樹脂に分散させた含水吸水性ポリマ含有樹脂組成物の前記液状架橋硬化型樹脂を架橋硬化した後、さらに加熱することにより、前記硬化させた液状架橋硬化型樹脂中の前記含水吸水性ポリマの水分を除去することで吸水性ポリマを収縮させ前記硬化させた液状架橋硬化型樹脂内に空隙を形成することを特徴とする多孔質物の製造方法。   Disperse the water-absorbing polymer in water equal to or higher than the saturated water-absorbing amount of the water-absorbing polymer and cut the water-absorbing water-absorbing polymer obtained by water-absorbing and swelling the water, or pulverizing after freezing the water-absorbing water-absorbing polymer. Then, after the liquid cross-linking curable resin of the water-absorbing water-absorbing polymer-containing resin composition in which the water-absorbing water-absorbing polymer atomized is dispersed in the liquid cross-linking curable resin is further cured by heating, A porous structure characterized in that the water-absorbing polymer is contracted by removing the water content of the water-containing water-absorbing polymer in the cured liquid cross-linking curable resin to form voids in the cured liquid cross-linking curable resin. A method for producing a quality material. 前記加熱にマイクロ波加熱を用いる請求項6に記載の多孔質物の製造方法。   The method for producing a porous material according to claim 6, wherein microwave heating is used for the heating. 前記含水吸水性ポリマの粒径dを50μm以下に微粒化する請求項6又は7に記載の多孔質物の製造方法。 The method for producing a porous material according to claim 6 or 7, wherein the particle size d of the water-containing water-absorbing polymer is atomized to 50 µm or less. 前記吸水性ポリマの吸水量が10〜100g/gである請求項6〜8のいずれかに記載の多孔質物の製造方法。 The method for producing a porous material according to any one of claims 6 to 8, wherein the water-absorbing polymer has a water absorption amount of 10 to 100 g / g. 請求項6〜9のいずれかに記載の方法により製造されたことを特徴とする多孔質物。   A porous material produced by the method according to claim 6. 吸水性ポリマの飽和吸水量以上の水に前記吸水性ポリマを分散させ、前記水を吸水膨潤させた含水吸水性ポリマを裁断するか、又は前記吸水膨潤させた含水吸水性ポリマを凍結した後粉砕して微粒化し、微粒化した前記含水吸水性ポリマを液状架橋硬化型樹脂に分散させた含水吸水性ポリマ含有樹脂組成物を導体の外周に被覆して絶縁層を形成し、前記絶縁層を架橋硬化した後、さらに加熱することにより、前記硬化させた絶縁層中の含水吸水性ポリマの水分を除去することで吸水性ポリマを収縮させ前記絶縁層の中に泡構造(空隙)を形成することを特徴とする絶縁電線の製造方法。   Disperse the water-absorbing polymer in water equal to or greater than the saturated water-absorbing amount of the water-absorbing polymer and cut the water-absorbing water-absorbing polymer obtained by water-absorbing and swelling the water-absorbing and swollen water-absorbing water-absorbing polymer after pulverizing Then, the water-absorbing water-absorbing polymer-containing resin composition in which the water-absorbing water-absorbing polymer is dispersed in a liquid cross-linking curable resin is coated on the outer periphery of the conductor to form an insulating layer, and the insulating layer is cross-linked After curing, further heating to remove the water content of the water-absorbing polymer in the cured insulating layer to shrink the water-absorbing polymer and form a bubble structure (void) in the insulating layer The manufacturing method of the insulated wire characterized by these. 前記加熱にマイクロ波加熱を用いる請求項11に記載の絶縁電線の製造方法。   The method for manufacturing an insulated wire according to claim 11, wherein microwave heating is used for the heating. 前記含水吸水性ポリマの粒径dを50μm以下に微粒化する請求項11又は12に記載の絶縁電線の製造方法。 The manufacturing method of the insulated wire of Claim 11 or 12 which atomizes the particle size d of the said water-containing water absorption polymer to 50 micrometers or less. 前記吸水性ポリマの吸水量が10〜100g/gである請求項11〜13のいずれかに記載の絶縁電線の製造方法。 The method for producing an insulated wire according to claim 11, wherein the water-absorbing polymer has a water absorption of 10 to 100 g / g. 請求項11〜14のいずれかに記載の方法により製造されたことを特徴とする絶縁電線。   The insulated wire manufactured by the method in any one of Claims 11-14. 前記絶縁層の厚さtが100μm以下であり、前記絶縁層の空隙率が20%以上61.5%以下であり、前記絶縁層の空隙を形成する空孔が球状であり、その最大径部と最小径部との比が2以下であり、選択される前記吸水膨潤させた吸水性ポリマの粒径dが前記絶縁層の厚さtに対してd<1/2tであり、厚さ方向の空孔径Dが前記絶縁層の厚さtに対してD<1/2tで形成される請求項15に記載の絶縁電線。   The thickness t of the insulating layer is 100 μm or less, the porosity of the insulating layer is 20% or more and 61.5% or less, and the pores forming the voids of the insulating layer are spherical, and the maximum diameter portion thereof And the minimum diameter portion ratio is 2 or less, and the particle diameter d of the water-absorbing polymer selected by water absorption and swelling is d <1 / 2t with respect to the thickness t of the insulating layer, and the thickness direction The insulated wire according to claim 15, wherein the hole diameter D is D <½t with respect to the thickness t of the insulating layer. 請求項15又は16に記載の絶縁電線の外周に金属シールド層を設けたことを特徴とする同軸ケーブル。   A coaxial cable comprising a metal shield layer on the outer periphery of the insulated wire according to claim 15 or 16.
JP2008268655A 2008-10-17 2008-10-17 Method for producing water-containing water-absorbing polymer-containing resin composition, water-containing water-absorbing polymer-containing resin composition, method for producing porous material and porous material using the same, method for producing insulated wire, insulated wire, and coaxial cable Expired - Fee Related JP5346543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008268655A JP5346543B2 (en) 2008-10-17 2008-10-17 Method for producing water-containing water-absorbing polymer-containing resin composition, water-containing water-absorbing polymer-containing resin composition, method for producing porous material and porous material using the same, method for producing insulated wire, insulated wire, and coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268655A JP5346543B2 (en) 2008-10-17 2008-10-17 Method for producing water-containing water-absorbing polymer-containing resin composition, water-containing water-absorbing polymer-containing resin composition, method for producing porous material and porous material using the same, method for producing insulated wire, insulated wire, and coaxial cable

Publications (2)

Publication Number Publication Date
JP2010095652A JP2010095652A (en) 2010-04-30
JP5346543B2 true JP5346543B2 (en) 2013-11-20

Family

ID=42257557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268655A Expired - Fee Related JP5346543B2 (en) 2008-10-17 2008-10-17 Method for producing water-containing water-absorbing polymer-containing resin composition, water-containing water-absorbing polymer-containing resin composition, method for producing porous material and porous material using the same, method for producing insulated wire, insulated wire, and coaxial cable

Country Status (1)

Country Link
JP (1) JP5346543B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074311A (en) * 2009-10-01 2011-04-14 Hitachi Cable Ltd Ultraviolet-curable resin composition with hydrous water-absorbing polymer dispersed therein, porous material, and insulated electric cable using the porous material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068684B1 (en) * 1981-06-12 1986-08-13 National Research Development Corporation Preparation of particulate gels
JPH0267336A (en) * 1988-09-01 1990-03-07 Sumitomo Bakelite Co Ltd Manufacture of highly water-absorbing foamed molded item
JPH09180546A (en) * 1995-12-27 1997-07-11 Sumitomo Electric Ind Ltd Insulated wire and manufacture thereof
US6278826B1 (en) * 1999-09-15 2001-08-21 Lucent Technologies Inc. Cables with water-blocking and flame-retarding foam
JP5262187B2 (en) * 2008-02-29 2013-08-14 日立電線株式会社 Water-containing water-absorbing polymer-containing resin composition

Also Published As

Publication number Publication date
JP2010095652A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
JP5262187B2 (en) Water-containing water-absorbing polymer-containing resin composition
US20070009727A1 (en) Mixed polytetrafluoroethylene powder, polytetrafluoroethylene porous shaped body, methods for producing those, polytetrafluoroethylene porous foam shaped body, and product for high-frequency signal transmission
JP2001031792A (en) Foaming composition and foamed coaxial insulating cable
JP2012082367A (en) Hydrous water-absorbent polymer-dispersed ultraviolet-curable resin composition, insulated electric wire using the same, method for producing the wire, and coaxial cable
CN102190763A (en) Ultraviolet curable resin composition, wire cable using the composition and method for fabricating the same.
WO2005002841A1 (en) Composite dielectric materials
JP2011074311A (en) Ultraviolet-curable resin composition with hydrous water-absorbing polymer dispersed therein, porous material, and insulated electric cable using the porous material
CN106432721A (en) Method for preparing carbon nano-tubes/polypyrrole nano-particles with performance of metamaterials
JP5168253B2 (en) Method for producing water-containing water-absorbing polymer-containing resin composition, water-containing water-absorbing polymer-containing resin composition, method for producing porous material and porous material using the same, method for producing insulated wire, insulated wire and coaxial cable
JP5346543B2 (en) Method for producing water-containing water-absorbing polymer-containing resin composition, water-containing water-absorbing polymer-containing resin composition, method for producing porous material and porous material using the same, method for producing insulated wire, insulated wire, and coaxial cable
CN109776847B (en) Low-dielectric poly (arylene ether nitrile) foam material with bimodal cell structure, preparation method and application
JP2012104470A (en) Method of manufacturing porous ultraviolet curable resin coated wire, porous ultraviolet curable resin coated wire and coaxial cable
JP2010095653A (en) Manufacturing method for water-containing thermoplastic water-absorbent polymer-dispersed resin composition and water-containing thermoplastic water-absorbent polymer-dispersed resin composition, manufacturing method for porous substance using this and porous substance, manufacturing method for insulated electric wire and insulated electric wire, and coaxial cable
JP2013095822A (en) Porous formed product and manufacturing method for the same, hydrous water-absorbing polymer particle and manufacturing method for the same, method for adjusting water-absorbing rate of hydrous water-absorbing polymer particle, and porous sheathed electric wire
JP5561387B2 (en) Method for manufacturing insulated wire and coaxial cable
JP2006249232A (en) Resin composition and method for producing same
JP2011174040A (en) Hydrated moisture-absorbing polymer dispersion-ultraviolet ray-curable resin composition and porous substance using this, insulated electric wire and manufacturing method therefor, insulated coating electric wire, and coaxial cable
JP2010189574A (en) Method for producing aqueous dispersion liquid crosslink-curable resin composition, aqueous dispersion liquid crosslink-curable resin composition, method for producing porous material, and porous material
JP2012172116A (en) Method for producing porous ultraviolet-curing resin composition-covered wire
RU2243980C1 (en) Composite material for shielding electromagnetic emission and a method for manufacture thereof
JP2011168645A (en) Method for producing porous body, and insulated electric wire and method for producing the same
Petrossian et al. Preparation of highly loaded piezo-composite foams with high expansion and low permittivity
JP2012174610A (en) Method for manufacturing wire covered with porous ultraviolet curable resin composition
CN116284911A (en) Polyimide wave-absorbing material and preparation method thereof
JPH03233815A (en) Manufacture of foam insulated electric cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5346543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees