JP2009211818A - Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same, and manufacturing method for both of same - Google Patents

Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same, and manufacturing method for both of same Download PDF

Info

Publication number
JP2009211818A
JP2009211818A JP2008050586A JP2008050586A JP2009211818A JP 2009211818 A JP2009211818 A JP 2009211818A JP 2008050586 A JP2008050586 A JP 2008050586A JP 2008050586 A JP2008050586 A JP 2008050586A JP 2009211818 A JP2009211818 A JP 2009211818A
Authority
JP
Japan
Prior art keywords
electrolyte secondary
secondary battery
nonaqueous electrolyte
active material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008050586A
Other languages
Japanese (ja)
Inventor
Takuya Shinomiya
拓也 四宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008050586A priority Critical patent/JP2009211818A/en
Publication of JP2009211818A publication Critical patent/JP2009211818A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with enhanced anode adhesiveness and load characteristics. <P>SOLUTION: The nonaqueous electrolyte secondary battery uses, as an active material for the anode, particles wherein graphite particle surface is coated with amorphous carbon with a specific surface of 200 to 500 m<SP>2</SP>/g when calcined as single substance and a molecular weight of 300 to 500, and that, with a coating volume of 0.1 to 10 mass% to graphite. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電池特性の向上を目的とした非水電解質二次電池の改良に関する。   The present invention relates to an improvement in a non-aqueous electrolyte secondary battery for the purpose of improving battery characteristics.

非水電解質二次電池は、高いエネルギー密度を有し、高容量であるため、携帯機器の駆動電源として広く利用されている。非水電解質二次電池に用いる負極活物質としては、従来、黒鉛が広く用いられているが、黒鉛粒子相互の密着性が低いため、生産効率が低下すると共に、電池特性を十分に高めることができないという問題があった。   Nonaqueous electrolyte secondary batteries have high energy density and high capacity, and are therefore widely used as drive power sources for portable devices. Conventionally, graphite has been widely used as a negative electrode active material for non-aqueous electrolyte secondary batteries. However, since the adhesion between graphite particles is low, production efficiency is lowered and battery characteristics are sufficiently enhanced. There was a problem that I could not.

ここで、下記特許文献1には、黒鉛粒子の表面に非晶質炭素を設ける技術が提案されている。   Here, Patent Document 1 below proposes a technique of providing amorphous carbon on the surface of graphite particles.

特許第2643035号Patent No. 2643035

特許文献1の技術によると、結晶性の高い黒鉛を用いても、電解液の分解による充電効率の低下を抑制できるとされる。   According to the technique of Patent Document 1, it is said that even if highly crystalline graphite is used, a decrease in charging efficiency due to decomposition of the electrolytic solution can be suppressed.

しかし、この技術では、いまだ電池特性が十分ではないという問題があった。   However, this technique still has a problem that the battery characteristics are not sufficient.

本発明は、上記に鑑みなされたものであって、電池特性に優れた非水電解質二次電池用負極活物質及びこれを用いてなる非水電解質二次電池を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the negative electrode active material for nonaqueous electrolyte secondary batteries excellent in the battery characteristic, and a nonaqueous electrolyte secondary battery using the same.

上記課題を解決するための第1の本発明は、次のように構成されている。
黒鉛粒子の表面に、単体で焼成した場合の比表面積が200〜500m/g、分子量が300〜500の非晶質炭素となる物質が被覆され、且つ、被覆量が黒鉛に対して0.1〜10質量%である非水電解質二次電池用負極活物質。
The first aspect of the present invention for solving the above problems is configured as follows.
The surface of the graphite particle is coated with a substance that becomes amorphous carbon having a specific surface area of 200 to 500 m 2 / g and a molecular weight of 300 to 500 when fired as a simple substance, and the coating amount is set to 0. The negative electrode active material for nonaqueous electrolyte secondary batteries which is 1-10 mass%.

上記構成によると、黒鉛粒子に被覆された非晶質炭素が負極の密着性を高めるように作用するので、これを用いることにより負極の生産性が向上する。また、黒鉛粒子に被覆された非晶質炭素がLiイオンの反応点を増やすように作用し、負荷特性も向上する。   According to the above configuration, the amorphous carbon coated with the graphite particles acts so as to improve the adhesion of the negative electrode, so that the productivity of the negative electrode is improved by using this. In addition, the amorphous carbon coated with the graphite particles acts to increase the reaction points of Li ions, and the load characteristics are also improved.

上記課題を解決するための第2の本発明は、上記非水電解質二次電池用負極活物質を用いてなる非水電解質二次電池である。   A second aspect of the present invention for solving the above problems is a non-aqueous electrolyte secondary battery using the negative electrode active material for a non-aqueous electrolyte secondary battery.

上記課題を解決するための第3の本発明は、次のように構成されている。
黒鉛粒子の表面に、単体で焼成した場合の比表面積が200〜500m/g、分子量が300〜500の非晶質炭素となる物質を、黒鉛に対して0.1〜10質量%を被覆する被覆工程と、前記被覆工程の後、前記黒鉛粒子を焼成する焼成工程と、を備えることを特徴とする非水電解質二次電池用負極活物質の製造方法。
The third aspect of the present invention for solving the above problems is configured as follows.
The surface of graphite particles is coated with 0.1 to 10% by mass with respect to graphite of a substance that becomes amorphous carbon having a specific surface area of 200 to 500 m 2 / g and a molecular weight of 300 to 500 when fired alone. The manufacturing method of the negative electrode active material for nonaqueous electrolyte secondary batteries characterized by including the coating process to perform, and the baking process which bakes the said graphite particle after the said coating process.

上記構成によると、被覆して焼成することにより黒鉛粒子表面に形成される非晶質炭素が負極の密着性を高めるように作用するので、これを用いることにより負極の生産性が向上する。また、被覆して焼成することにより黒鉛粒子表面に形成される非晶質炭素がLiイオンの反応点を増やすように作用し、負荷特性も向上する。   According to the above configuration, the amorphous carbon formed on the surface of the graphite particles when coated and fired acts to increase the adhesion of the negative electrode, so that the productivity of the negative electrode is improved by using this. Moreover, the amorphous carbon formed on the surface of the graphite particles by coating and firing acts so as to increase the reaction points of Li ions, and the load characteristics are also improved.

前記被覆する物質としては、二糖類を用いることが好ましく、中でもスクロースがより好ましい。スクロースを用いる場合、焼成温度を800〜1100℃とすることが好ましい。   As the substance to be coated, disaccharides are preferably used, and sucrose is more preferable. When using sucrose, it is preferable that a calcination temperature shall be 800-1100 degreeC.

核となる黒鉛粒子としては、平均粒径が10~30μm、d(002)値が3.365以下であるものを用いることが好ましい。   As graphite particles serving as nuclei, those having an average particle diameter of 10 to 30 μm and a d (002) value of 3.365 or less are preferably used.

上記課題を解決するための第4の本発明は、上記非水電解質二次電池用負極活物質の製造方法を用いてなる非水電解質二次電池の製造方法である。   A fourth aspect of the present invention for solving the above problem is a method for producing a nonaqueous electrolyte secondary battery using the above method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery.

上記で説明したように、本発明によると、密着性及び負荷特性に優れた非水電解質二次電池を得ることができる。   As described above, according to the present invention, a nonaqueous electrolyte secondary battery excellent in adhesion and load characteristics can be obtained.

本発明を実施するための最良の形態を、以下の実施例を通じて、詳細に説明する。なお、本発明は下記の形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができる。   The best mode for carrying out the present invention will be described in detail through the following examples. In addition, this invention is not limited to the following form, In the range which does not change the summary, it can change suitably and can implement.

(実施例)
[実施例1]
〔正極の作製〕
コバルト酸リチウム90質量部と、黒鉛粉末5質量部と、ポリフッ化ビニリデン5質量部と、N−メチル−2−ピロリドンとを混合して、正極活物質スラリーとした。この正極活物質スラリーをドクターブレード法により厚み15μmのアルミニウム製集電体の両面に塗布し、乾燥させた後、ローラプレス機により圧延し、裁断して正極を得た。
(Example)
[Example 1]
[Production of positive electrode]
90 parts by mass of lithium cobaltate, 5 parts by mass of graphite powder, 5 parts by mass of polyvinylidene fluoride, and N-methyl-2-pyrrolidone were mixed to obtain a positive electrode active material slurry. This positive electrode active material slurry was applied to both surfaces of a 15 μm thick aluminum current collector by the doctor blade method, dried, rolled with a roller press, and cut to obtain a positive electrode.

〔負極の作製〕
(被覆工程)
黒鉛粉末と、スクロースとを湿式で混合し、黒鉛粒子表面をスクロースで被覆した。
(Production of negative electrode)
(Coating process)
The graphite powder and sucrose were mixed in a wet manner, and the surface of the graphite particles was coated with sucrose.

(焼成工程)
この後、1000℃で焼成し、スクロースを炭化させて非晶質炭素とし、これをふるいにかけて分級して、負極活物質となした。このとき、被覆量(炭素化後のスクロースの質量÷黒鉛粒子の質量)を1%とした。質量減少量は、熱重量分析により測定した。
(Baking process)
Then, it baked at 1000 degreeC, carbonized sucrose to amorphous carbon, and this was sieved and classified, and it was set as the negative electrode active material. At this time, the coating amount (mass of sucrose after carbonization ÷ mass of graphite particles) was 1%. The amount of mass loss was measured by thermogravimetric analysis.

上記負極活物質95質量部と、カルボキシメチルセルロース3質量部と、スチレンブタジエンゴム2質量部と、水と、を混合して、負極活物質スラリーとした。この負極活物質スラリーをドクターブレード法により厚み8μmの銅製集電体の両面に塗布し、乾燥させた後、ローラプレス機により圧延し、裁断して負極を得た。   95 parts by mass of the negative electrode active material, 3 parts by mass of carboxymethyl cellulose, 2 parts by mass of styrene butadiene rubber, and water were mixed to obtain a negative electrode active material slurry. This negative electrode active material slurry was applied to both sides of a copper current collector having a thickness of 8 μm by the doctor blade method, dried, rolled with a roller press, and cut to obtain a negative electrode.

なお、正極及び負極の活物質塗布量は、正極と負極とが対向する部分での充電容量比(負極充電容量÷正極充電容量)を1.1となるようにした。   The active material application amount of the positive electrode and the negative electrode was set such that the charge capacity ratio (negative electrode charge capacity / positive electrode charge capacity) at the portion where the positive electrode and the negative electrode face each other was 1.1.

〔電極体の作製〕
上記正極及び負極を、ポリエチレン製微多孔膜からなるセパレータを介して巻回し、最外周にポロプロピレン製のテープを貼り付け、この後、プレスして、扁平渦巻電極体とした。
(Production of electrode body)
The positive electrode and the negative electrode were wound through a separator made of a polyethylene microporous film, a polypropylene polypropylene tape was attached to the outermost periphery, and then pressed to obtain a flat spiral electrode body.

〔非水電解質の調整〕
エチレンカーボネートとプロピレンカーボネートとエチルメチルカーボネートを体積比1:1:8(25℃、1気圧)で混合し、電解質塩としてのLiPFを1.0M(モル/リットル)となるように溶解して、非水電解質となした。
[Nonaqueous electrolyte adjustment]
Ethylene carbonate, propylene carbonate, and ethyl methyl carbonate are mixed at a volume ratio of 1: 1: 8 (25 ° C., 1 atm), and LiPF 6 as an electrolyte salt is dissolved to 1.0 M (mol / liter). It became a non-aqueous electrolyte.

〔電池の組み立て〕
上記扁平電極体を、角形外装缶内に挿入した。この後、注液口を備える封口体により外装缶の開口を封止し、注液口より非水電解質を注液し、この後注液口を封止して、実施例1に係る非水電解質二次電池を作製した。
[Assembling the battery]
The flat electrode body was inserted into a rectangular outer can. Thereafter, the opening of the outer can is sealed with a sealing body having a liquid injection port, the nonaqueous electrolyte is injected from the liquid injection port, and then the liquid injection port is sealed, so that the nonaqueous solution according to Example 1 is used. An electrolyte secondary battery was produced.

[実施例2]
焼成温度を1100℃としたこと以外は、上記実施例1と同様にして、実施例2にかかる非水電解質二次電池を作製した。
[Example 2]
A nonaqueous electrolyte secondary battery according to Example 2 was produced in the same manner as in Example 1 except that the firing temperature was 1100 ° C.

[実施例3]
焼成温度を900℃としたこと以外は、上記実施例1と同様にして、実施例3にかかる非水電解質二次電池を作製した。
[Example 3]
A nonaqueous electrolyte secondary battery according to Example 3 was produced in the same manner as in Example 1 except that the firing temperature was set to 900 ° C.

[実施例4]
焼成温度を800℃としたこと以外は、上記実施例1と同様にして、実施例4にかかる非水電解質二次電池を作製した。
[Example 4]
A nonaqueous electrolyte secondary battery according to Example 4 was produced in the same manner as in Example 1 except that the firing temperature was 800 ° C.

[比較例1]
焼成温度を1200℃としたこと以外は、上記実施例1と同様にして、比較例1にかかる非水電解質二次電池を作製した。
[Comparative Example 1]
A nonaqueous electrolyte secondary battery according to Comparative Example 1 was produced in the same manner as in Example 1 except that the firing temperature was 1200 ° C.

[比較例2]
焼成温度を1200℃としたこと以外は、上記実施例1と同様にして、比較例2にかかる非水電解質二次電池を作製した。
[Comparative Example 2]
A nonaqueous electrolyte secondary battery according to Comparative Example 2 was produced in the same manner as in Example 1 except that the firing temperature was 1200 ° C.

〈密着性試験〉
上記で作製した電池の負極の密着性を確かめるため、アクリル板に両面テープを貼り付け、負極に押し付け、その後垂直に引き上げ、活物質が剥離する強度を測定した。この結果を下記表1に示す。
<Adhesion test>
In order to confirm the adhesion of the negative electrode of the battery prepared above, a double-sided tape was attached to the acrylic plate, pressed against the negative electrode, and then pulled up vertically to measure the strength at which the active material peeled. The results are shown in Table 1 below.

〈負荷特性試験〉
上記で作製した電池を定電流800mAで電圧が4.2Vとなるまで充電し、定電流800mAで電圧が2.75Vとなるまで放電した。この放電容量を1It放電容量とした。この後、上記条件で充電した後、定電流2400mAで電圧が2.75Vとなるまで放電した。この放電容量を3It放電容量とした。下記式により負荷特性を算出した。この結果を下記表1に示す。
負荷特性(%)=3It放電容量÷1It放電容量×100
<Load characteristic test>
The battery produced above was charged at a constant current of 800 mA until the voltage reached 4.2 V, and discharged at a constant current of 800 mA until the voltage reached 2.75 V. This discharge capacity was set to 1 It discharge capacity. Thereafter, after charging under the above conditions, the battery was discharged at a constant current of 2400 mA until the voltage reached 2.75V. This discharge capacity was taken as 3 It discharge capacity. The load characteristics were calculated by the following formula. The results are shown in Table 1 below.
Load characteristics (%) = 3 It discharge capacity ÷ 1 It discharge capacity × 100

上記表1から、焼成温度が高まると、スクロースの比表面積が小さくなり、密着性が低くなり、負荷特性が高まる傾向にあることがわかる。   From Table 1 above, it can be seen that when the firing temperature is increased, the specific surface area of sucrose is decreased, the adhesion is decreased, and the load characteristics tend to be increased.

ここで、負極に求められる密着性としては50mN/XW以上であることが好ましく、負荷特性としては75%以上であることが好ましい。このため、焼成後のスクロースの比表面積は200〜500m/gであることが好ましく、焼成温度は800〜1100℃であることが好ましい。 Here, the adhesion required for the negative electrode is preferably 50 mN / XW or more, and the load characteristic is preferably 75% or more. For this reason, it is preferable that the specific surface area of the sucrose after baking is 200-500 m < 2 > / g, and it is preferable that baking temperature is 800-1100 degreeC.

[実施例5]
スクロースに代えてラフィノースを用いた(ラフィノースの分子量は500)こと以外は、上記実施例1と同様にして、実施例5にかかる非水電解質二次電池を作製した。
[Example 5]
A nonaqueous electrolyte secondary battery according to Example 5 was produced in the same manner as in Example 1 except that raffinose was used instead of sucrose (the molecular weight of raffinose was 500).

[比較例3]
スクロースに代えてフェノールを用いた(フェノールの分子量は100)こと以外は、上記実施例1と同様にして、比較例3にかかる非水電解質二次電池を作製した。
[Comparative Example 3]
A nonaqueous electrolyte secondary battery according to Comparative Example 3 was produced in the same manner as in Example 1 except that phenol was used instead of sucrose (the molecular weight of phenol was 100).

[比較例4]
スクロースに代えてポリエチレングリコールを用いた(ポリエチレングリコールの分子量は600)こと以外は、上記実施例1と同様にして、比較例4にかかる非水電解質二次電池を作製した。
[Comparative Example 4]
A nonaqueous electrolyte secondary battery according to Comparative Example 4 was produced in the same manner as in Example 1 except that polyethylene glycol was used instead of sucrose (polyethylene glycol had a molecular weight of 600).

実施例1、5、比較例3、4にかかる電池について、上記と同様にして密着性試験、負荷特性試験を行った。この結果を下記表2に示す。   The batteries according to Examples 1 and 5 and Comparative Examples 3 and 4 were subjected to an adhesion test and a load characteristic test in the same manner as described above. The results are shown in Table 2 below.

上記表2から、被覆種単体の分子量が大きくなるに伴い、密着性が向上し、且つ負荷特性が低下する傾向にあることがわかる。   From Table 2 above, it can be seen that as the molecular weight of the single coating species increases, the adhesion tends to improve and the load characteristics tend to decrease.

ここで、負極に求められる密着性としては50mN/XW以上であることが好ましく、負荷特性としては75%以上であることが好ましい。このため、被覆種単体の分子量は300〜500であることが好ましい。   Here, the adhesion required for the negative electrode is preferably 50 mN / XW or more, and the load characteristic is preferably 75% or more. For this reason, it is preferable that the molecular weight of a coating seed single-piece | unit is 300-500.

[実施例6]
被覆量を0.1%としたこと以外は、上記実施例1と同様にして、実施例6にかかる非水電解質二次電池を作製した。
[Example 6]
A nonaqueous electrolyte secondary battery according to Example 6 was produced in the same manner as in Example 1 except that the coating amount was 0.1%.

[実施例7]
被覆量を5%としたこと以外は、上記実施例1と同様にして、実施例7にかかる非水電解質二次電池を作製した。
[Example 7]
A nonaqueous electrolyte secondary battery according to Example 7 was produced in the same manner as in Example 1 except that the coating amount was 5%.

[実施例8]
被覆量を10%としたこと以外は、上記実施例1と同様にして、実施例8にかかる非水電解質二次電池を作製した。
[Example 8]
A nonaqueous electrolyte secondary battery according to Example 8 was fabricated in the same manner as in Example 1 except that the coating amount was 10%.

[比較例5]
被覆量を15%としたこと以外は、上記実施例1と同様にして、比較例5にかかる非水電解質二次電池を作製した。
[Comparative Example 5]
A nonaqueous electrolyte secondary battery according to Comparative Example 5 was produced in the same manner as in Example 1 except that the coating amount was 15%.

[比較例6]
スクロース被覆を行わなかったこと以外は、上記実施例1と同様にして、比較例3にかかる非水電解質二次電池を作製した。
[Comparative Example 6]
A nonaqueous electrolyte secondary battery according to Comparative Example 3 was produced in the same manner as in Example 1 except that sucrose coating was not performed.

実施例1、6〜8、比較例5、6にかかる電池について、上記と同様にして密着性試験、負荷特性試験を行った。この結果を下記表3に示す。   The batteries according to Examples 1 and 6 to 8 and Comparative Examples 5 and 6 were subjected to an adhesion test and a load characteristic test in the same manner as described above. The results are shown in Table 3 below.

上記表3から、スクロースの被覆量としては、0.10〜10質量%が好ましいことがわかる。   From Table 3 above, it is understood that the sucrose coating amount is preferably 0.10 to 10% by mass.

以上に説明したように、本発明によれば、密着性に優れた非水電解質二次電池用負極活物質を提供できる。この負極活物質は負荷特性に優れるので、産業上の利用可能性は大きい。   As described above, according to the present invention, it is possible to provide a negative electrode active material for a non-aqueous electrolyte secondary battery having excellent adhesion. Since this negative electrode active material is excellent in load characteristics, industrial applicability is great.

Claims (6)

黒鉛粒子の表面に、単体で焼成した場合の比表面積が200〜500m/g、分子量が300〜500の非晶質炭素となる物質が被覆され、且つ被覆量が前記黒鉛に対して0.1〜10質量%である非水電解質二次電池用負極活物質。 The surface of the graphite particles is coated with a substance that becomes amorphous carbon having a specific surface area of 200 to 500 m 2 / g and a molecular weight of 300 to 500 when fired as a simple substance, and the coating amount is about 0. The negative electrode active material for nonaqueous electrolyte secondary batteries which is 1-10 mass%. 請求項1に記載の非水電解質二次電池用負極活物質を用いる非水電解質二次電池。   A non-aqueous electrolyte secondary battery using the negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1. 黒鉛粒子の表面に、単体で焼成した場合の比表面積が200〜500m/g、分子量が300〜500の非晶質炭素となる物質を、前記黒鉛に対して0.1〜10質量%を被覆する被覆工程と、
前記被覆工程の後、前記黒鉛粒子を焼成する焼成工程と、
を備えることを特徴とする非水電解質二次電池用負極活物質の製造方法。
A substance that becomes amorphous carbon having a specific surface area of 200 to 500 m 2 / g and a molecular weight of 300 to 500 when fired as a single substance on the surface of the graphite particles is 0.1 to 10% by mass with respect to the graphite. A coating process for coating;
A firing step of firing the graphite particles after the coating step;
A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery.
請求項3に記載の非水電解質二次電池用負極活物質の製造方法において、
前記被覆する物質が二糖類である、
ことを特徴とする非水電解質二次電池用負極活物質の製造方法。
In the manufacturing method of the negative electrode active material for nonaqueous electrolyte secondary batteries of Claim 3,
The covering material is a disaccharide;
The manufacturing method of the negative electrode active material for nonaqueous electrolyte secondary batteries characterized by the above-mentioned.
請求項3又は4に記載の非水電解質二次電池用負極活物質の製造方法において、
前記被覆する物質がスクロースであり、
前記焼成温度が800〜1100℃である、
ことを特徴とする非水電解質二次電池用負極活物質の製造方法。
In the manufacturing method of the negative electrode active material for nonaqueous electrolyte secondary batteries of Claim 3 or 4,
The coating material is sucrose;
The firing temperature is 800 to 1100 ° C.
The manufacturing method of the negative electrode active material for nonaqueous electrolyte secondary batteries characterized by the above-mentioned.
請求項3ないし5いずれかに記載の非水電解質二次電池用負極活物質の製造方法を備える非水電解質二次電池の製造方法。   A method for producing a non-aqueous electrolyte secondary battery comprising the method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 3.
JP2008050586A 2008-02-29 2008-02-29 Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same, and manufacturing method for both of same Pending JP2009211818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050586A JP2009211818A (en) 2008-02-29 2008-02-29 Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same, and manufacturing method for both of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050586A JP2009211818A (en) 2008-02-29 2008-02-29 Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same, and manufacturing method for both of same

Publications (1)

Publication Number Publication Date
JP2009211818A true JP2009211818A (en) 2009-09-17

Family

ID=41184794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050586A Pending JP2009211818A (en) 2008-02-29 2008-02-29 Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same, and manufacturing method for both of same

Country Status (1)

Country Link
JP (1) JP2009211818A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134572A (en) * 2009-12-24 2011-07-07 Hitachi Powdered Metals Co Ltd Anode active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
CN102544458A (en) * 2011-12-30 2012-07-04 中聚電池研究院有限公司 Preparation method of modified graphite cathode material of lithium-ion power battery
KR20140041887A (en) 2011-07-29 2014-04-04 도요타지도샤가부시키가이샤 Lithium ion secondary battery and production method therefor
JP2014530473A (en) * 2011-10-17 2014-11-17 ロックウッドリチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH Battery active material
CN107546367A (en) * 2016-06-29 2018-01-05 汽车能源供应公司 Lithium ion secondary battery cathode and lithium rechargeable battery
JP2018006072A (en) * 2016-06-29 2018-01-11 オートモーティブエナジーサプライ株式会社 Negative electrode of lithium-ion secondary battery
US10381638B2 (en) 2015-08-27 2019-08-13 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, and rechargeable lithium battery including the same
US11411213B2 (en) 2014-06-02 2022-08-09 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, and rechargeable lithium battery including same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196404A (en) * 2005-01-17 2006-07-27 Sharp Corp Lithium secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196404A (en) * 2005-01-17 2006-07-27 Sharp Corp Lithium secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134572A (en) * 2009-12-24 2011-07-07 Hitachi Powdered Metals Co Ltd Anode active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
KR20140041887A (en) 2011-07-29 2014-04-04 도요타지도샤가부시키가이샤 Lithium ion secondary battery and production method therefor
US9929398B2 (en) 2011-07-29 2018-03-27 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery and method of manufacturing the same
JP2014530473A (en) * 2011-10-17 2014-11-17 ロックウッドリチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH Battery active material
US10403885B2 (en) 2011-10-17 2019-09-03 Albemarle Germany Gmbh Active material for batteries
CN102544458A (en) * 2011-12-30 2012-07-04 中聚電池研究院有限公司 Preparation method of modified graphite cathode material of lithium-ion power battery
US11411213B2 (en) 2014-06-02 2022-08-09 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, and rechargeable lithium battery including same
US10381638B2 (en) 2015-08-27 2019-08-13 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, and rechargeable lithium battery including the same
CN107546367A (en) * 2016-06-29 2018-01-05 汽车能源供应公司 Lithium ion secondary battery cathode and lithium rechargeable battery
JP2018006071A (en) * 2016-06-29 2018-01-11 オートモーティブエナジーサプライ株式会社 Negative electrode of lithium-ion secondary battery
JP2018006072A (en) * 2016-06-29 2018-01-11 オートモーティブエナジーサプライ株式会社 Negative electrode of lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
US10608247B2 (en) Negative electrode for secondary battery, method of fabricating the same and secondary battery including the same
Armstrong et al. TiO2 (B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0. 5Mn1. 5O4 cathodes and a polymer electrolyte
US11462737B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP5316905B2 (en) Lithium secondary battery
JP6219302B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP2009211818A (en) Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same, and manufacturing method for both of same
WO2011080884A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10529989B2 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JP2010267540A (en) Nonaqueous electrolyte secondary battery
KR20140105794A (en) Lithium secondary battery and method for manufacturing same
TW201618356A (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active materiallayer for lithium ion battery
KR20170051315A (en) Positive electrode for secondary battery, preparation method thereof, and lithium secondary battery comprising the same
KR20120069314A (en) Anode having improved adhesion for lithium secondary battery
JP2009245917A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing same, and positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2005251684A (en) Nonaqueous electrolyte secondary battery
JP2010232088A (en) Nonaqueous electrolyte secondary battery
US10249879B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
JP2013532892A (en) Lithium battery electrode
JP7205717B2 (en) positive electrode
KR20160010181A (en) Lithium secondary battery electrode and method for preparing the same
JP6246682B2 (en) Lithium ion secondary battery
JP6219303B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP6265521B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
JP5679206B2 (en) Method for producing negative electrode for lithium ion secondary battery and method for producing lithium ion secondary battery
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611