JP2009208972A - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP2009208972A
JP2009208972A JP2008051047A JP2008051047A JP2009208972A JP 2009208972 A JP2009208972 A JP 2009208972A JP 2008051047 A JP2008051047 A JP 2008051047A JP 2008051047 A JP2008051047 A JP 2008051047A JP 2009208972 A JP2009208972 A JP 2009208972A
Authority
JP
Japan
Prior art keywords
reaction
metal fuel
hydrogen
temperature
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008051047A
Other languages
Japanese (ja)
Inventor
Yoichiro Asano
陽一郎 浅野
Mitsuru Nishida
満 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008051047A priority Critical patent/JP2009208972A/en
Publication of JP2009208972A publication Critical patent/JP2009208972A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen generator capable of generating hydrogen at a high reaction ratio without depending on a water supply output at a reaction temperature lower than that performed conventionally. <P>SOLUTION: The hydrogen generator includes a reaction vessel for housing a metallic fuel, a temperature controlling means for controlling the temperature of the metallic fuel, a water supplying means for supplying water to the metallic fuel, and a hydrogen recovering means for recovering hydrogen generated by the reaction of the metallic fuel and the supplied water, wherein the metallic fuel has a shape of any one of a powdery, a granular or a pelletized shape, the temperature for heating the metallic fuel by the temperature controlling means is a melting point of a hydroxide formed by the reaction of the metallic fuel and the supplied water or higher and lower than the melting point of the metallic fuel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素を動力源とする燃料電池やエンジン等に使用される水素発生装置に関する。   The present invention relates to a hydrogen generator used in a fuel cell, an engine or the like using hydrogen as a power source.

水素発生装置は、反応容器内の塊状の金属燃料に水を供給し、金属燃料と水との反応で発生した水素を回収する。特許文献1に記載されるように、金属燃料は、リチウム水素化物、または、リチウム水素化物にリチウムやアルミニウムを混合したものからなり、金属燃料を溶融して液体状態として水と反応させる。
特開昭61−149508号公報
The hydrogen generator supplies water to the bulk metal fuel in the reaction vessel, and recovers hydrogen generated by the reaction between the metal fuel and water. As described in Patent Document 1, the metal fuel is made of lithium hydride or lithium hydride mixed with lithium or aluminum, and the metal fuel is melted and reacted with water in a liquid state.
JP 61-149508 A

従来の水素発生装置は、リチウム水素化物の融点以上(例えば800℃以上)まで加熱し、塊状の金属燃料を溶融させる必要があった。このため、初期起動に時間がかかるとともに、反応中高温に維持するため反応容器が熱変形し、フランジ部のシール性が低下するという問題があった。また、従来の水素発生装置では、反応中に溶融した金属燃料と反応生成物(水酸化物)が混在するため、高圧力で給水や水蒸気を供給することにより、未反応の金属燃料と生成物とを攪拌し、水との接触面積を増大させ反応率を向上させる必要があった。しかし、給水量を下げるなどして低出力での運転を行う場合、攪拌が不十分となる。その結果、反応生成物が未反応の金属燃料を覆ってしまい、十分な反応率を達成することができなかった。   The conventional hydrogen generator needs to be heated to the melting point of lithium hydride or higher (for example, 800 ° C. or higher) to melt the bulk metal fuel. For this reason, there is a problem that initial startup takes time and the reaction vessel is thermally deformed to maintain a high temperature during the reaction, and the sealing performance of the flange portion is lowered. Moreover, in the conventional hydrogen generator, since the metal fuel melted during the reaction and the reaction product (hydroxide) are mixed, by supplying feed water or steam at high pressure, unreacted metal fuel and product It was necessary to improve the reaction rate by increasing the contact area with water. However, when the operation is performed at a low output, for example, by reducing the amount of water supplied, the stirring becomes insufficient. As a result, the reaction product covered the unreacted metal fuel, and a sufficient reaction rate could not be achieved.

本発明は、従来よりも低い反応温度において給水出力に依存せず高い反応率で水素を発生させることができる水素発生装置を提供する。   The present invention provides a hydrogen generator capable of generating hydrogen at a high reaction rate without depending on the water supply output at a reaction temperature lower than that of the prior art.

上記課題を解決するために、本発明の水素発生装置は、金属燃料を収容する反応容器と、前記金属燃料を加熱する加熱手段と、前記金属燃料に水を供給する水供給手段と、前記金属燃料と前記供給された水との反応によって発生する水素を回収する水素回収手段とを備える水素発生装置であって、前記金属燃料が、粉末状、顆粒状及びペレット状のいずれかの形状を有し、前記金属燃料が加熱される温度が、前記金属燃料と前記供給された水との反応によって生成する水酸化物の融点以上、且つ、前記金属燃料の融点未満の温度であることを特徴とする。   In order to solve the above-described problems, a hydrogen generator of the present invention includes a reaction vessel that contains a metal fuel, a heating unit that heats the metal fuel, a water supply unit that supplies water to the metal fuel, and the metal A hydrogen generator comprising a hydrogen recovery means for recovering hydrogen generated by a reaction between fuel and the supplied water, wherein the metal fuel has a powder, granule, or pellet shape. The temperature at which the metal fuel is heated is equal to or higher than a melting point of a hydroxide generated by a reaction between the metal fuel and the supplied water and lower than a melting point of the metal fuel. To do.

反応生成物である水酸化物の融点以上、且つ、金属燃料の融点未満の温度では、金属燃料は固体状態であり、水酸化物は液体状態となる。粉末状、顆粒状及びペレット状のいずれかの形状を有する金属燃料の嵩密度は、液体状態の水酸化物の密度よりも小さい。このため、金属燃料と水との反応中に、金属燃料と液体状態の水酸化物との密度差により、水酸化物は反応容器の下部に蓄積され、金属燃料は水酸化物の上層に浮かび上がる。この結果、水酸化物によって金属燃料と水との反応が阻害されず、高い反応率を安定して継続させることができる。本発明の水素発生装置は、従来のように金属燃料の融点以上に加熱しないため、熱による反応容器の変形を抑制でき、装置設計が容易となる利点がある。また、高出力で給水して液体状態の金属燃料と水酸化物とを混合させる必要が無く、低出力の給水においても水素発生量を制御可能である。   At temperatures above the melting point of the reaction product hydroxide and below the melting point of the metal fuel, the metal fuel is in a solid state and the hydroxide is in a liquid state. The bulk density of the metal fuel having a powder, granule or pellet shape is smaller than the density of the hydroxide in the liquid state. For this reason, during the reaction between the metal fuel and water, the hydroxide accumulates in the lower part of the reaction vessel due to the density difference between the metal fuel and the liquid hydroxide, and the metal fuel floats on the upper layer of the hydroxide. Go up. As a result, the reaction between the metal fuel and water is not inhibited by the hydroxide, and a high reaction rate can be stably continued. Since the hydrogen generator of the present invention is not heated above the melting point of the metal fuel as in the prior art, there is an advantage that the deformation of the reaction vessel due to heat can be suppressed and the device design is facilitated. In addition, it is not necessary to mix the metal fuel and hydroxide in a liquid state by supplying water at a high output, and the amount of hydrogen generation can be controlled even in a low output water supply.

上記発明において、前記金属燃料の嵩密度が、0.2g/cm以上1.5g/cm以下であることが好ましい。 In the above invention, the bulk density of the metal fuel is preferably 0.2 g / cm 3 or more and 1.5 g / cm 3 or less.

金属燃料が上記の嵩密度であれば、金属燃料と液体状態の水酸化物との密度差が大きくなり、金属燃料と水酸化物とが分離しやすくなる。   If the metal fuel has the above bulk density, the density difference between the metal fuel and the hydroxide in the liquid state becomes large, and the metal fuel and the hydroxide are easily separated.

上記発明において、前記水酸化物を前記反応容器の下方に導く溝を備えることができる。   The said invention WHEREIN: The groove | channel which guide | induces the said hydroxide to the downward direction of the said reaction container can be provided.

特に反応初期では、生成した水酸化物の量が少ないため、水酸化物が反応容器下部へ流動しにくい。水酸化物を反応容器下方に導く溝を設けることで、反応初期において未反応の金属燃料と水酸化物とを分離しやすくする。これにより、金属燃料と水との反応が促進され、反応初期での反応速度低下を防止できる。   In particular, at the initial stage of the reaction, the amount of hydroxide produced is small, so that the hydroxide does not easily flow to the lower part of the reaction vessel. By providing a groove for guiding the hydroxide to the lower side of the reaction vessel, it becomes easy to separate the unreacted metal fuel and the hydroxide at the initial stage of the reaction. Thereby, reaction of metal fuel and water is accelerated | stimulated and the reaction rate fall at the initial stage of reaction can be prevented.

本発明によれば、粉末状、顆粒状、またはペレット状の金属燃料の嵩密度と液体状態の反応生成物との密度差を利用して、金属燃料と反応生成物とを常に分離することができる。このため、低出力の給水でも水素発生量を制御することができ、発生した水素を利用した燃料電池やエンジンの出力制御範囲を広くすることが可能となる。
また、従来の水素発生装置に比べて反応容器内の温度を下げることができるため、反応容器の変形を抑制でき、装置設計が容易となる。
According to the present invention, the metal fuel and the reaction product can always be separated by utilizing the difference in density between the bulk density of the powdery, granular, or pellet-like metal fuel and the reaction product in the liquid state. it can. For this reason, the hydrogen generation amount can be controlled even with low-output water supply, and the output control range of the fuel cell or engine using the generated hydrogen can be widened.
Further, since the temperature in the reaction vessel can be lowered as compared with the conventional hydrogen generator, deformation of the reaction vessel can be suppressed, and the device design is facilitated.

以下に、本発明の水素発生装置を参照して説明する。
図1は、第1実施形態に係る水素発生装置の概略図である。第1実施形態の水素発生装置10は、密閉可能である反応容器11を備える。反応容器11の上部に、給水管12が接続され、給水管12の先端にノズル13が接続される。また、反応容器11の上部に、水素回収管14が接続される。温度制御手段として、反応容器11下部に反応容器内部の温度を測定可能となる温度計17と、反応容器11下部の外周部にヒータ15及び冷却装置16が設置される。
Below, it demonstrates with reference to the hydrogen generator of this invention.
FIG. 1 is a schematic view of a hydrogen generator according to the first embodiment. The hydrogen generator 10 of the first embodiment includes a reaction vessel 11 that can be sealed. A water supply pipe 12 is connected to the top of the reaction vessel 11, and a nozzle 13 is connected to the tip of the water supply pipe 12. A hydrogen recovery pipe 14 is connected to the upper part of the reaction vessel 11. As temperature control means, a thermometer 17 capable of measuring the temperature inside the reaction container at the lower part of the reaction container 11, and a heater 15 and a cooling device 16 are installed at the outer periphery of the lower part of the reaction container 11.

反応容器11内に、金属燃料18が充填される。金属燃料は、水素化リチウム(LiH)、水素化アルミニウムリチウム(LiAlH)、水素化ホウ素リチウム(LiBH)などのリチウム水素化物またはこれらの混合物を主成分とし、必要に応じて金属リチウムまたは金属アルミを添加したものである。金属燃料の形状は、粉末状、顆粒状、またはペレット状とされる。金属燃料の嵩密度は、0.2g/cm以上1.5g/cm以下であることが好ましい。 The reaction vessel 11 is filled with a metal fuel 18. The metal fuel is mainly composed of lithium hydride such as lithium hydride (LiH), lithium aluminum hydride (LiAlH 4 ), lithium borohydride (LiBH 4 ), or a mixture thereof, and if necessary, metal lithium or metal Aluminum is added. The shape of the metal fuel is powder, granule, or pellet. The bulk density of the metal fuel is preferably 0.2 g / cm 3 or more and 1.5 g / cm 3 or less.

リチウム水素化物を主成分とする金属燃料と水との反応では、以下の化学式のように、水素と水酸化物が生成する。

Figure 2009208972
ここで、MはLi,Al,Bを表す。 In the reaction between a metal fuel mainly composed of lithium hydride and water, hydrogen and hydroxide are generated as in the following chemical formula.
Figure 2009208972
Here, M represents Li, Al, and B.

水素化リチウムを金属燃料とした水素発生装置を用いて、水素を発生させる工程を以下で説明する。
粉末状、顆粒状またはペレット状の水素化リチウムを反応容器11内に充填する。水素化リチウムの場合、嵩密度が0.2g/cm以上0.4g/cm以下であることが好ましい。
A process of generating hydrogen using a hydrogen generator using lithium hydride as a metal fuel will be described below.
Powdered, granular, or pelletized lithium hydride is charged into the reaction vessel 11. In the case of lithium hydride, the bulk density is preferably 0.2 g / cm 3 or more and 0.4 g / cm 3 or less.

温度計17が反応容器11内の温度を計測しながら、水素化リチウム18が上記反応により生成する水酸化リチウム(LiOH)の融点以上、水素化リチウムの融点未満の範囲内の温度となるように、ヒータ15が反応容器11を加熱する。水酸化リチウムの融点は約450〜470℃、水素化リチウムの融点は約680℃であるので、反応容器内の水素化リチウムを500℃以上650℃未満の温度に加熱する。   While the thermometer 17 measures the temperature in the reaction vessel 11, the lithium hydride 18 has a temperature in the range of not less than the melting point of lithium hydroxide (LiOH) produced by the reaction and less than the melting point of lithium hydride. The heater 15 heats the reaction vessel 11. Since the melting point of lithium hydroxide is about 450 to 470 ° C. and the melting point of lithium hydride is about 680 ° C., the lithium hydride in the reaction vessel is heated to a temperature of 500 ° C. or higher and lower than 650 ° C.

水素化リチウム18が上記範囲内の温度に到達した後、給水管12を介してノズル13から水または蒸気を、水素化リチウム18の上側から噴霧する。噴霧された水または蒸気と接触した水素化リチウムとが反応し、水素と水酸化リチウムとが生成する。生成した水素を、水素回収管14を通じて回収する。   After the lithium hydride 18 reaches a temperature within the above range, water or steam is sprayed from above the lithium hydride 18 through the water supply pipe 12 from the nozzle 13. Lithium hydride in contact with the sprayed water or steam reacts to produce hydrogen and lithium hydroxide. The generated hydrogen is recovered through the hydrogen recovery pipe 14.

反応中、ヒータ15および冷却装置16が、水酸化リチウムの融点以上水素化リチウムの融点未満の範囲内の温度(500℃以上650℃未満)となるように、反応容器11内の温度を制御する。上記の温度範囲では、水素化リチウムは固体状態であり、水酸化リチウムは液体状態となる。液体状態の水酸化リチウムの密度は約1.7g/cmであり、反応容器11内に充填した水素化リチウムの嵩密度(0.2g/cm以上0.4g/cm以下)と比べて非常に大きい。このため、図2(a)に示すように、水酸化リチウムが、液体の水酸化リチウムと固体の水素化リチウムの混合層20を形成しながら反応容器11の下方に沈降する。固体状態である未反応の水素化リチウム18は、混合層20の上部に浮上する。反応を継続すると、図2(b)に示すように、反応容器11の底部に水酸化リチウム層21が形成され、水酸化リチウム層21上に混合層20及び水素化リチウム層18が順に形成された状態となる。すなわち、密度差によって金属原料の水素化リチウムと反応生成物の水酸化リチウムとが分離される。水または蒸気と接触する最上部には常に未反応の水素化リチウムが存在し、反応によって生成する水酸化リチウムは反応容器底部に蓄積されるので、水酸化リチウムによって反応が阻害されることが無い。このため、安定した反応を継続することができ、ほぼ100%の反応率を達成することができる。 During the reaction, the temperature in the reaction vessel 11 is controlled so that the heater 15 and the cooling device 16 have a temperature in the range from the melting point of lithium hydroxide to less than the melting point of lithium hydride (500 ° C. or more and less than 650 ° C.). . In the above temperature range, lithium hydride is in a solid state and lithium hydroxide is in a liquid state. The density of the lithium hydroxide in the liquid state is about 1.7 g / cm 3 , compared with the bulk density (0.2 g / cm 3 or more and 0.4 g / cm 3 or less) of lithium hydride filled in the reaction vessel 11. And very big. Therefore, as shown in FIG. 2A, lithium hydroxide settles below the reaction vessel 11 while forming a mixed layer 20 of liquid lithium hydroxide and solid lithium hydride. The unreacted lithium hydride 18 that is in a solid state floats on top of the mixed layer 20. When the reaction is continued, as shown in FIG. 2B, a lithium hydroxide layer 21 is formed at the bottom of the reaction vessel 11, and a mixed layer 20 and a lithium hydride layer 18 are sequentially formed on the lithium hydroxide layer 21. It becomes a state. That is, lithium hydride as a metal raw material and lithium hydroxide as a reaction product are separated by a density difference. Since there is always unreacted lithium hydride in the uppermost part in contact with water or steam, lithium hydroxide produced by the reaction is accumulated at the bottom of the reaction vessel, so that the reaction is not inhibited by lithium hydroxide. . For this reason, a stable reaction can be continued and a reaction rate of almost 100% can be achieved.

水素発生量は、給水量または蒸気量を調節することによって制御する。本実施形態では、給水出力を高くして水素化リチウムと水酸化リチウムとを攪拌する必要が無い。低出力の給水でも反応効率が向上するので、水素発生量を高精度で制御可能である。この結果、本実施形態の水素発生装置で発生した水素を利用した燃料電池やエンジンの出力制御範囲を広げることができる。   The amount of hydrogen generation is controlled by adjusting the amount of water supply or steam. In this embodiment, there is no need to increase the feed water output and stir lithium hydride and lithium hydroxide. Since the reaction efficiency is improved even with low-output water supply, the amount of hydrogen generation can be controlled with high accuracy. As a result, the output control range of the fuel cell or engine using the hydrogen generated by the hydrogen generator of the present embodiment can be expanded.

図3は、第2実施形態に係る水素発生装置の概略図である。第2実施形態の水素発生装置30において、反応容器31内に充填した金属燃料38内に溝39が形成される。溝39は、例えば中空管を金属燃料に埋め込むことで形成される。   FIG. 3 is a schematic view of a hydrogen generator according to the second embodiment. In the hydrogen generator 30 of the second embodiment, a groove 39 is formed in the metal fuel 38 filled in the reaction vessel 31. The groove 39 is formed, for example, by embedding a hollow tube in a metal fuel.

温度計37が反応容器31内の温度を計測しながら、ヒータ35が反応容器31を加熱する。これにより、金属燃料38の温度が、金属燃料の融点以上、且つ、反応生成物の融点未満の範囲内の温度となる。   The heater 35 heats the reaction vessel 31 while the thermometer 37 measures the temperature in the reaction vessel 31. Thereby, the temperature of the metal fuel 38 becomes a temperature within the range of the melting point of the metal fuel or more and less than the melting point of the reaction product.

金属燃料38が上記範囲内の温度に到達した後、給水管32を介してノズル33から水または蒸気を、金属燃料38の上側から噴霧する。噴霧された水または蒸気と接触した金属燃料が反応する。ヒータ35及び冷却装置36が、反応中の金属燃料の温度を制御する。反応によって生成した水酸化物は、溝39を通って反応容器31の下方に移動する。生成した水素は、水素回収管34を通じて回収される。   After the metal fuel 38 reaches a temperature within the above range, water or steam is sprayed from the nozzle 33 through the water supply pipe 32 from above the metal fuel 38. Metallic fuel in contact with sprayed water or steam reacts. The heater 35 and the cooling device 36 control the temperature of the metal fuel during the reaction. The hydroxide generated by the reaction moves below the reaction vessel 31 through the groove 39. The generated hydrogen is recovered through the hydrogen recovery pipe 34.

反応初期において、水酸化物の生成量は少なく、反応容器21の下方に沈降しにくい。このため、最上部は金属燃料と水酸化物が混在する状態となり、水酸化物が金属燃料を覆い反応が阻害されて反応速度が低下する。第2実施形態の水素発生装置30のように、金属燃料38内に溝39を形成しておくと、反応初期に生成した水酸化物が溝39を伝って反応容器31下方に移動しやすくなる。この結果、最上部に存在する金属燃料の比率が増加し、水酸化物による反応阻害が抑制される。   In the initial stage of the reaction, the amount of hydroxide produced is small and it is difficult to settle below the reaction vessel 21. For this reason, the uppermost part is in a state where the metal fuel and the hydroxide are mixed, the hydroxide covers the metal fuel, the reaction is inhibited, and the reaction rate is lowered. If the groove 39 is formed in the metal fuel 38 as in the hydrogen generator 30 of the second embodiment, the hydroxide generated at the initial stage of the reaction easily travels down the reaction vessel 31 through the groove 39. . As a result, the ratio of the metal fuel existing in the uppermost portion is increased, and reaction inhibition due to hydroxide is suppressed.

本実施形態では、金属燃料内に溝を形成したが、これに限定されない。例えば、反応容器内周に沿って溝を形成しても良い。また、ペレット状の金属燃料を用いた場合は、ペレット同士の間隙を大きくするなどして溝を形成することも可能である。   In the present embodiment, the grooves are formed in the metal fuel, but the present invention is not limited to this. For example, a groove may be formed along the inner periphery of the reaction vessel. Further, when a pellet-shaped metal fuel is used, it is possible to form grooves by increasing the gap between the pellets.

第1実施形態の水素発生装置の概略図である。It is the schematic of the hydrogen generator of 1st Embodiment. 第1実施形態の水素発生装置を用いた水素発生反応過程における金属燃料及び反応生成物の状態を表した概略図であり、(a)反応初期、(b)反応安定期の状態を表した図である。It is the schematic showing the state of the metal fuel and the reaction product in the hydrogen generation reaction process using the hydrogen generator of the first embodiment, and shows the state of (a) early reaction and (b) stable reaction period. It is. 第2実施形態の水素発生装置の概略図である。It is the schematic of the hydrogen generator of 2nd Embodiment.

符号の説明Explanation of symbols

10 水素発生装置
11 反応容器
12 給水管
13 ノズル
14 水素回収管
15 ヒータ
16 冷却装置
17 金属燃料
18 温度計
DESCRIPTION OF SYMBOLS 10 Hydrogen generator 11 Reaction container 12 Water supply pipe 13 Nozzle 14 Hydrogen recovery pipe 15 Heater 16 Cooling device 17 Metal fuel 18 Thermometer

Claims (3)

金属燃料を収容する反応容器と、
前記金属燃料の温度を制御する温度制御手段と、
前記金属燃料に水を供給する水供給手段と、
前記金属燃料と前記供給された水との反応によって発生する水素を回収する水素回収手段とを備える水素発生装置であって、
前記金属燃料が、粉末状、顆粒状及びペレット状のいずれかの形状を有し、
前記温度制御手段によって前記金属燃料が加熱される温度が、前記金属燃料と前記供給された水との反応によって生成する水酸化物の融点以上、且つ、前記金属燃料の融点未満の温度であることを特徴とする水素発生装置。
A reaction vessel containing metal fuel;
Temperature control means for controlling the temperature of the metal fuel;
Water supply means for supplying water to the metal fuel;
A hydrogen generator comprising hydrogen recovery means for recovering hydrogen generated by a reaction between the metal fuel and the supplied water,
The metal fuel has a powder, granule or pellet shape,
The temperature at which the metal fuel is heated by the temperature control means is not less than the melting point of the hydroxide generated by the reaction between the metal fuel and the supplied water and is less than the melting point of the metal fuel. A hydrogen generator characterized by
前記金属燃料の嵩密度が、0.2g/cm以上1.5g/cm以下であることを特徴とする請求項1に記載の水素発生装置。 2. The hydrogen generator according to claim 1, wherein a bulk density of the metal fuel is 0.2 g / cm 3 or more and 1.5 g / cm 3 or less. 前記水酸化物を前記反応容器の下方に導く溝が設けられた請求項1または請求項2に記載の水素発生装置。   The hydrogen generator according to claim 1 or 2, wherein a groove for guiding the hydroxide to the lower side of the reaction vessel is provided.
JP2008051047A 2008-02-29 2008-02-29 Hydrogen generator Withdrawn JP2009208972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051047A JP2009208972A (en) 2008-02-29 2008-02-29 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051047A JP2009208972A (en) 2008-02-29 2008-02-29 Hydrogen generator

Publications (1)

Publication Number Publication Date
JP2009208972A true JP2009208972A (en) 2009-09-17

Family

ID=41182499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051047A Withdrawn JP2009208972A (en) 2008-02-29 2008-02-29 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP2009208972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215429A (en) * 2009-03-13 2010-09-30 Toyota Motor Corp Metal hydride composite and method for producing the same
JP2017024958A (en) * 2015-07-27 2017-02-02 アクアフェアリー株式会社 Hydrogen generator, manufacturing method thereof, and hydrogen generation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215429A (en) * 2009-03-13 2010-09-30 Toyota Motor Corp Metal hydride composite and method for producing the same
JP2017024958A (en) * 2015-07-27 2017-02-02 アクアフェアリー株式会社 Hydrogen generator, manufacturing method thereof, and hydrogen generation method

Similar Documents

Publication Publication Date Title
Chuayboon et al. Syngas production via solar-driven chemical looping methane reforming from redox cycling of ceria porous foam in a volumetric solar reactor
US3985866A (en) Method of producing high-pressure hydrogen containing gas for use as a power source
US9718684B1 (en) Method for continuously producing hydrogen, heat and aluminum oxides on demand
Gokon et al. Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production
US20070020174A1 (en) Method for generating hydrogen gas
JP5900992B2 (en) Hydrogen gas generation method and apparatus
JP2007320792A (en) Hydrogen gas generating method and hydrogen gas generator
Chuayboon et al. Solar chemical looping gasification of biomass with the ZnO/Zn redox system for syngas and zinc production in a continuously-fed solar reactor
JP2002128502A (en) System for producting hydrogen gas
JP2019182711A (en) Hydrogen generator, and method of operating the same
JP2019156656A (en) Method and apparatus for generating hydrogen gas
US9731967B1 (en) System for continuously producing hydrogen, heat and aluminum oxides on demand
JP2009208972A (en) Hydrogen generator
CN103044187B (en) A kind of method and system of producing monochloroethane
JP2006056753A (en) Method and apparatus for generating hydrogen and fuel cell system
JP2010163286A (en) Method for generating hydrogen gas using metallic sodium and apparatus for the same
JP5883240B2 (en) Hydrogen production method
US20120009119A1 (en) Method and apparatus for generating hydrogen
JP2007045646A (en) Hydrogen producing method and hydrogen producing apparatus
RU2232710C1 (en) Hydrogen generator
CN102444881B (en) Method for generating steam through chemical reaction and device and application thereof
JP2000239672A (en) Production of hydrogen gas and the like and apparatus therefor
Laude et al. Electrolysis of LiOH for hydrogen supply
JP2015086232A (en) Coal-coke gasification apparatus and method by using internally circulating fluidized layer
KR102278210B1 (en) Methanation reactor for reacting hydrogen with at least one carbon-based compound and producing methane and water

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510