JP2009206402A - 半導体装置の設計方法及び半導体装置 - Google Patents

半導体装置の設計方法及び半導体装置 Download PDF

Info

Publication number
JP2009206402A
JP2009206402A JP2008049501A JP2008049501A JP2009206402A JP 2009206402 A JP2009206402 A JP 2009206402A JP 2008049501 A JP2008049501 A JP 2008049501A JP 2008049501 A JP2008049501 A JP 2008049501A JP 2009206402 A JP2009206402 A JP 2009206402A
Authority
JP
Japan
Prior art keywords
power supply
internal circuit
supply terminal
semiconductor device
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008049501A
Other languages
English (en)
Inventor
Teruo Suzuki
輝夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2008049501A priority Critical patent/JP2009206402A/ja
Publication of JP2009206402A publication Critical patent/JP2009206402A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

【課題】耐圧が高い半導体装置を設計する。
【解決手段】設計装置は、機能に応じた内部回路32を備えた半導体装置の設計処理において、内部回路32が接続された電源パッド44a,44b間の寄生容量値を算出し、この寄生容量値とライブラリに格納されている容量しきい値とを比較する。そして、設計装置は、寄生容量値が容量しきい値の範囲内の場合は、その寄生容量値の内部回路32を電源分離する。
【選択図】図4

Description

保護回路を有する半導体装置及びその設計方法に関するものである。
一般な半導体装置(LSI)には、外部からのESD(Electro Static Discharge、静電気放電)等に起因するサージ電流(過電流)から内部回路を構成する微細な半導体素子を保護するために、電源クランプ回路が保護回路として備えられている。
図10(a)に示すように、LSI上に形成された内部回路91は、LSIの周縁に形成された電源パッド92a、電源パッド92bにそれぞれ接続された電源配線93a,93b間に接続されている。内部回路91には、電源パッド92a及び電源配線93aを介してLSIの外部より高電位電源VDDが供給され、電源パッド92b及び電源配線93bを介してLSIの外部より低電位電源VSSが供給される。
内部回路91は、電源配線93a、93b間に接続された寄生容量C91を有している。寄生容量C91の容量値は、内部回路91を構成する素子の寄生容量、素子に電源を供給する電源配線間の寄生容量等の容量の合計値である。そして、電源配線93a、93b間には、内部回路91をサージ電流から保護する保護回路94が接続されている。
図10(b)に示すように、保護回路94はNMOSトランジスタT91にて構成されている。このNMOSトランジスタT91は、ゲート及びソースが電源配線93bに接続され、ドレインが電源配線93aに接続されている。上記のように接続されたNMOSトランジスタT91は、通常時にオフしている。
サージ電圧が電源パッド92aに印加された場合、そのサージ電圧が、NMOSトランジスタT91のドレイン−ソース間に形成される寄生バイポーラトランジスタT92のベースと寄生容量C91とに加わる。寄生バイポーラトランジスタT92は、そのベースに印加されるサージ電流によりオンし、寄生バイポーラトランジスタT92のコレクタ−エミッタ間に電流が流れる。
また、サージ電圧により寄生容量C91に蓄積された電荷は、オンした寄生バイポーラトランジスタT92を介して電源配線93bに流れる。このように、サージ電流が寄生バイポーラトランジスタT92を介して流れることで、内部回路91にサージ電流が流れることを防止し、この内部回路91をESD等に起因するサージ電流から保護する。
この種の半導体装置として、例えば特許文献1には、電源配線層を電気的に複数に分割し、半導体装置表面と電源配線層との間に形成される容量を小さくすることで、帯電による静電破壊による故障を防止する半導体装置が開示されている。
特開平8−116026号公報
ところが、保護回路94の回路構成と寄生容量C91の容量値の組合せにより、半導体装置における電源ESDの耐圧が低い場合がある。以下に半導体装置における電源ESDの耐圧と寄生容量C91の容量値との関係について説明する。
図10(b)に示すように、サージ電圧が電源パッド92aに印加されると、NMOSトランジスタT91のドレイン領域の電位が上昇し、基板とpn接合面においてアバランシェ降伏が起こり、寄生バイポーラトランジスタT92のコレクタ−ベース間にアバランシェ電流が流れる。このときのアバランシェ電流を電流源95により流れる電流として等価的に示し、基板抵抗を抵抗R91として等価的に示す。アバランシェ電流が基板抵抗を流れることにより、局所的に基板の電位が上昇し、寄生バイポーラトランジスタT92が導通する。なお、図10(b)において、容量C92はNMOSトランジスタT91のドレイン領域と基板との間の寄生容量を示す。この時、寄生容量C91の容量値によって、寄生容量C91から寄生バイポーラトランジスタT92に電流が流れ込み、寄生バイポーラトランジスタT92のコレクタ−エミッタ間に流れる電流が増大する。この結果、寄生バイポーラトランジスタT92のPN接合、即ちNMOSトランジスタT91のドレイン領域とp型拡散領域との間のPN接合が破損する。つまり、保護回路94が電源クランプ回路として機能しなくなる、即ち電源ESDの耐圧が低くなる。
この半導体装置の設計方法の目的は、保護回路の耐圧が高い半導体装置を設計することにある。
この半導体装置の目的は、保護回路の耐圧を高め内部回路を保護することにある。
この半導体装置の設計方法は、第1電源端子と第2電源端子間に接続され、前記第1電源端子に接続された第1電源配線を介して第1電源電圧が供給され、前記第2電源端子に接続された第2電源配線を介して第2電源電圧が供給される内部回路と、前記内部回路と並列に接続され、前記内部回路に対する静電気放電の発生時に導通して前記サージ電流(過電流)から前記内部回路を保護する保護回路と、を備えた半導体装置の設計方法であって、前記第1電源端子と前記第2電源端子との間の寄生容量値を算出し、前記寄生容量値が所定の容量しきい値よりも小さくなるように前記内部回路を電源分離するようにした。
この半導体装置の設計方法によれば、第1電源端子と第2電源端子の間の寄生容量が所定の容量しきい値よりも小さくなるように前記内部回路を電源分離することにより、寄生容量に起因する保護回路の耐圧が高くなる。
この半導体装置の設計方法は、第1電源端子と第2電源端子間に接続され、前記第1電源端子に接続された第1電源配線を介して第1電源電圧が供給され、前記第2電源端子に接続された第2電源配線を介して第2電源電圧が供給される内部回路と、前記内部回路と並列に接続され、前記内部回路に対する静電気放電の発生時に導通して前記サージ電流から前記内部回路を保護する保護回路と、を備えた半導体装置の設計方法であって、前記第1電源端子と前記第2電源端子との間の寄生容量値を算出し、前記寄生容量値と容量しきい値とを比較し、比較結果に基づいて、前記容量しきい値により設定される範囲内の寄生容量値の内部回路を電源分離するようにした。
この半導体装置の設計方法によれば、容量しきい値により設定される範囲内の寄生容量値がないように内部回路を電源分離することにより、その範囲内の寄生容量から保護回路への影響が少なくなり、保護回路の耐圧が高くなる。
また、この半導体装置の設計方法は、前記保護回路は、前記第1電源配線と前記第2電源配線とにそれぞれソースとドレインとが接続され、ゲートに低電位電圧が供給される電源配線に接続されたNチャネルMOSトランジスタからなる電源クランプ回路であり、前記容量しきい値は、前記第1電源端子及び前記第2電源端子に印加されるサージ電流により前記NチャネルMOSトランジスタの寄生バイポーラトランジスタに流れる電流量と、該寄生バイポーラトランジスタの特性とに基づいて設定されてなるものである。
この半導体装置の設計方法によれば、NチャネルMOSトランジスタからなる電源クランプ回路によりサージ電流の印加時に内部回路を保護するとともに、内部回路の寄生容量値と、電源クランプ回路を構成するトランジスタに流れる電流値、及び電源クランプ回路を構成するトランジスタの特性に応じて内部回路が電源分離される。
この半導体装置は、第1電源端子と第2電源端子間に接続され、前記第1電源端子に接続された第1電源配線を介して第1電源電圧が供給され、前記第2電源端子に接続された第2電源配線を介して第2電源電圧が供給される内部回路と、前記内部回路と並列に接続され、前記内部回路に対する静電気放電の発生時に導通してサージ電流から前記内部回路を保護する保護回路と、を備えた半導体装置であって、前記内部回路は、前記第1電源端子と前記第2電源端子との間の寄生容量値が所定の容量しきい値よりも小さくなるように電源分離されてなる。
この半導体装置によれば、第1電源端子と第2電源端子の間の寄生容量が所定の容量しきい値よりも小さくなるように内部回路が電源分離されることにより、寄生容量に起因する保護回路の耐圧が高くなり、内部回路が保護される。
この半導体装置は、第1電源端子と第2電源端子間に接続され、前記第1電源端子に接続された第1電源配線を介して第1電源電圧が供給され、前記第2電源端子に接続された第2電源配線を介して第2電源電圧が供給される内部回路と、前記内部回路と並列に接続され、前記内部回路に対する静電気放電の発生時に導通してサージ電流から前記内部回路を保護する保護回路と、を備えた半導体装置であって、前記内部回路は、前記第1電源端子と前記第2電源端子との間の寄生容量値が、第1のしきい値よりも低い値か、又は前記第1のしきい値よりも高い第2のしきい値よりも高い値である。
この半導体装置によれば、寄生容量値が第1のしきい値より低い内部回路、又は寄生容量値が第2のしきい値より高い内部回路が形成され、内部回路から保護回路への影響が少なくなり、保護回路の耐圧が高くなり、内部回路が保護される。
この半導体装置は、第1電源端子と第2電源端子間に接続され、前記第1電源端子に接続された第1電源配線を介して第1電源電圧が供給され、前記第2電源端子に接続された第2電源配線を介して第2電源電圧が供給される内部回路と、前記内部回路と並列に接続され、前記内部回路に対する静電気放電の発生時に導通してサージ電流から前記内部回路を保護する保護回路と、を備えた半導体装置であって、前記第1電源端子と前記第2電源端子の間の寄生容量値が、互いに異なる第1のしきい値と第2のしきい値の間の値を含まないように前記内部回路の構成が設定されてなる。
この半導体装置は、第1のしきい値と第2のしきい値の間の寄生容量値の内部回路を含まないため、その内部回路の寄生容量から保護回路への影響が少なくなり、保護回路の耐圧が高くなり、内部回路が保護される。
この半導体装置の前記保護回路は、前記第1電源配線と前記第2電源配線とにそれぞれソースとドレインとが接続され、ゲートに低電位電圧が供給される電源配線に接続されたNチャネルMOSトランジスタからなる電源クランプ回路である、この半導体装置は、NチャネルMOSトランジスタからなる電源クランプ回路により、内部回路がESD等に起因するサージ電流から保護される。
この半導体装置の前記容量しきい値は、前記第1電源端子及び前記第2電源端子に印加されるサージ電圧により前記NチャネルMOSトランジスタの寄生バイポーラトランジスタに流れる電流量と、該寄生バイポーラトランジスタの特性とに基づいて設定されてなる。この半導体装置は、内部回路の寄生容量値と、トランジスタに流れる電流値、及びトランジスタの特性に応じて内部回路が電源分離される。
開示された半導体装置の設計方法によれば、保護回路の耐圧が高い半導体装置を設計することができる。
開示された半導体装置によれば、耐圧の高い保護回路により内部回路を保護することができる。
以下、一実施形態を図面に従って説明する。
図2に示すように、半導体装置を設計する設計装置11は一般的なCAD(Computer Aided Design )装置からなり、中央処理装置(以下、CPUという)12、メモリ13、記憶装置14、表示装置15、入力装置16、及び、ドライブ装置17により構成され、それらはバス18を介して相互に接続されている。
CPU12は、メモリ13を利用してプログラムを実行し、配線設計等の必要な処理を実現する。メモリ13には、各種処理を提供するために必要なプログラムとデータが格納され、メモリ13としては、通常、キャッシュ・メモリ、システム・メモリおよびディスプレイ・メモリを含む。
表示装置15は、処理結果の表示、パラメータ入力画面等の表示に用いられ、これにはCRT,LCD,PDP等が用いられる。入力装置16は、ユーザからの要求や指示,パラメータの入力に用いられ、これにはキーボードおよびマウス装置(図示せず)等が用いられる。
記憶装置14は、通常、磁気ディスク装置、光ディスク装置、光磁気ディスク装置を含む。この記憶装置14には、図1に示す各ステップ21〜25からなる半導体装置の設計処理のプログラムデータとファイル26〜30が格納され、CPU12は、入力装置16による指示に応答しているプログラム,データをメモリ13へ転送し、それを実行する。
CPU12が実行するプログラムデータは、記録媒体19にて提供される。ドライブ装置17は、記録媒体19を駆動し、その記憶内容にアクセスする。CPU12は、ドライブ装置17を介して記録媒体19からプログラムデータを読み出し、それを記憶装置14にインストールする。
記録媒体19としては、磁気テープ(MT)、メモリカード、フレキシブルディスク、光ディスク(CD-ROM,DVD-ROM,… )、光磁気ディスク(MO,MD,…)等、任意のコンピュータ読み取り可能な記録媒体を使用することができる。この記録媒体19に、上述のプログラム,データを格納しておき、必要に応じて、メモリ13にロードして使用することもできる。
尚、記録媒体19には、通信媒体を介してアップロード又はダウンロードされたプログラムデータを記録した媒体、ディスク装置を含む。更に、コンピュータによって直接実行可能なプログラムを記録した記録媒体だけでなく、いったん他の記録媒体(ハードディスク等)にインストールすることによって実行可能となるようなプログラムを記録した記録媒体や、暗号化されたり、圧縮されたりしたプログラムを記録した記録媒体も含む。
次に、設計装置11において実施される設計方法を、図1のフローチャートに従って説明する。
CPU12は、図1に示すステップ21〜25の処理を実行することで、電源ESDの耐圧が高い半導体装置を設計する手段として機能する。
まず、ステップ21(論理合成処理)において、CPU12は、ライブラリ26と設計データ27に基づいて作成したネットリスト28を図2に示す記憶装置14に格納する。ライブラリ26は、複数のマクロセル及びスタンダードセルの情報、シミュレーションにて算出した結果に基づいて、電源ESDの耐圧を低くする内部回路の寄生容量のしきい値(以下、容量しきい値)を含むデータベースである。この容量しきい値は、電源ESDの耐圧を低くする内部回路の寄生容量値の範囲の上限(第2のしきい値)と下限(第1のしきい値)を規定している。このマクロセル及びスタンダードセルの情報は、サイズ、構成、端子位置、電気的特性を含む。また、プロセステクノロジ毎に素子特性パラメータが異なるため、プロセステクノロジに対応する電源ESDの耐圧に影響する寄生容量値の範囲が異なる。従って、ライブラリ26には、複数のプロセステクノロジのそれぞれに対応する容量しきい値が記憶されている。
設計データ27は、例えばハードウェア記述言語を用いて回路の動作を記述したものである。ネットリスト28は、回路を構成するマクロセル及びスタンダードセル、及びそれらを接続するネット情報を含む。尚、既にネットリスト28が作成されている場合、処理は次のステップ22から実行される。
ステップ22(レイアウト処理)において、CPU12は、入力装置16から入力されたレイアウト条件とステップ21にて作成したネットリスト28とライブラリ26に基づいてレイアウトデータ29を作成する。レイアウトデータ29は、LSIサイズ、配線幅、配線間隔などのレイアウト条件を反映させて、ライブラリ26に含まれているマクロセルを配置した配置位置、マクロセル等をネットリスト28に従って接続する配線の配置位置を含むものである。
レイアウトデータ29によって形成されるLSIを図3に示す。
このLSI30は矩形状に形成され、中央に内部回路31〜33が形成されている。内部回路31〜33の境界を一点鎖線で示す。つまり、実線と一点鎖線とで囲まれた領域内に、それぞれ内部回路31〜33を構成するセル等の素子が形成されている。本実施形態において、内部回路31〜33は、回路規模(回路を構成する素子の数)が異なり、素子の数は内部回路31,32,33の順で少なくなっている。LSIの30の周辺領域は、内部回路31〜33に対応する領域31a〜33aに区分されている。
領域31aには、内部回路31に対応する複数のパッド34が、LSI30の周辺に沿って形成されている。内部回路31とパッド34との間にI/Oセル領域には、I/Oセル35が配列されている。これらのI/Oセル35は、対応するパッド34と内部回路31を構成する図示しない素子との間、信号伝達が可能に構成されている。
また、領域31aには、内部回路31の素子等に第1電源電圧及び第2電源電圧としての高電位電圧及び低電位電圧を供給するため、第1電源端子及び第2電源端子としての電源パッド41a,41bが、LSI30の周辺に形成されている。電源パッド41a,41bの数は、内部回路31の消費電力に応じて設定され、本実施形態では3組の電源パッド41a,41bが形成されている。I/Oセル35の上方の配線層には、内部回路31の素子等に電源電圧を供給するための第1電源配線及び第2電源配線としての電源配線42a,42bがLSI30の周辺に沿って延びるように形成されている。各電源配線42a,42bは、対応する電源パッド41a,41bと接続されている。上記I/Oセル領域には、電源配線42a,42bと接続された複数の保護回路43が形成されている。保護回路43は、電源ESD等に起因するサージ電圧から内部回路31を保護するために設けられている。本実施形態において、保護回路43は、図10(b)に示す従来例の保護回路94と同じ構成の回路である。
同様に、領域32aには、内部回路32と対応する複数のパッド36、I/Oセル37が形成されている。また、領域32aには、内部回路32の素子等に高電位電圧及び低電位電圧を供給するため、第1電源端子及び第2電源端子としての電源パッド44a,44b、及び第1電源配線及び第2電源配線としての電源配線45a,45bと、内部回路32を保護するための保護回路46が形成されている。
同様に、領域33aには、内部回路33と対応する複数のパッド38、I/Oセル39が形成されている。また、領域33aには、内部回路33の素子等に高電位電圧及び低電位電圧を供給するため、第1電源端子及び第2電源端子としての電源パッド47a,47b、及び第1電源配線及び第2電源配線としての電源配線48a,48bと、内部回路33を保護するための保護回路49が形成されている。
尚、この領域31a〜33aは、内部回路31,32,33とパッド34,36,38等の対応を示すものであり、内部回路31,32,33の構成等により、領域31a〜33aがずれている場合もある。
内部回路32の上方の配線層には、電源配線45aと図示しないコンタクトを介して電気的に接続された第1電源配線としての内部電源配線51a,52aと、電源配線45bと図示しないコンタクトを介して電気的に接続された第2電源配線としての内部電源配線51b,52bとが形成されている。尚、実線で表した内部電源配線51a,51bと、破線で表した内部電源配線52a,52bは、互いに異なる配線層に形成されるとともに互いに直交する方向に沿って延びるように形成され、両電源配線51a,51b,52a,52bは図示しないコンタクトを介して電気的に接続されている。
同様に、内部回路31の上方の配線層には、電源配線42a,42bと接続された図示しない内部電源配線が形成され、内部回路33の上方の配線層には、電源配線48a,48bと接続された図示しない内部電源配線が形成されている。
ステップ23(容量抽出処理)において、CPU12は、ライブラリ26に基づいて、ステップ22において作成されたレイアウトデータ29により作成される半導体装置30の寄生容量値を算出する。この寄生容量値は、電源パッド41a,41b、電源パッド44a,44b、電源パッド47a,47b、それぞれの間に存在する容量の値である。設計装置11は、電源パッド41a,41b間の容量、即ち内部回路31と領域31a内に含まれるI/Oセル35の寄生容量、電源配線42a,42b間の寄生容量の容量値の合計値を算出する。
同様に、設計装置11は、電源パッド41a,41b間の容量、即ち内部回路32と領域32a内に含まれるI/Oセル37の寄生容量、電源配線45a,45b間の寄生容量の容量値の合計値を算出する。同様に、設計装置11は、電源パッド41a,41b間の容量、即ち内部回路33と領域33a内に含まれるI/Oセル39の寄生容量、電源配線48a,48b間の寄生容量の容量値の合計値を算出する。そして、設計装置11は、算出した合計値、即ち寄生容量値をメモリ13または記憶装置14に格納する。尚、上記の合計値は、内部回路31〜33上の電源配線間の寄生容量を含む。
ステップ24(分離判断処理)において、CPU12は、ステップ23において算出した寄生容量値とライブラリ26から読み出した容量しきい値とを比較し、各電源パッド41a,41b,44a,44b,47a,47bそれぞれに接続された内部回路31,32,33に対して電源分離が必用か否か判断する。設計装置11は、寄生容量値が容量しきい値の範囲に該当しない場合、即ち、寄生容量値が容量しきい値の上限以上、又は寄生容量値が容量しきい値の下限以下の場合、その寄生容量値に対応する内部回路について電源分離が不要と判断し、処理を終了する。
一方、設計装置11は、寄生容量値が容量しきい値の上限と下限との間の場合、その寄生容量値に対応する内部回路について電源分離が必用と判断し、ステップ25に移行する。
ステップ25(分離レイアウト処理)において、CPU12は、ステップ24において分離が必要だと判断された内部回路のブロックを電源分離する。このとき、設計装置11は、対象とする内部回路を、予め設定された数(分離設定数)の素子が第1のサブ電源配線に接続された第1の内部サブ回路と、第1の内部サブ回路以外の素子が第2のサブ電源配線に接続された第2の内部サブ回路とに電源分離する。分離設定数は、聞知された第1の内部サブ回路における寄生容量値が容量しきい値の下限よりも小さくなるように予め設定されている。設計装置11は、電源分離した内部回路(第1の内部サブ回路及び第2の内部サブ回路)の配置情報を生成する。更に、設計装置11は、電源分離した内部回路に少なくとも1つの保護回路が並列に接続されるように、保護回路を配置する配置情報を生成する。そして、設計装置11は、生成した配置情報をレイアウトデータ29に格納する。
そして、設計装置11は、ステップ24からステップ23に移行し、第2の内部サブ回路について、上記と同様に寄生容量値を算出し(ステップ24)、電源分離の必要性を判断する。
即ち、設計装置11は、容量しきい値に該当する寄生容量値の内部回路が存在する場合、ステップ23からステップ25を繰り返し実行することにより、その内部回路を、容量しきい値の下限よりも小さい寄生容量値の内部サブ回路に電源分離する。容量しきい値は、保護回路の耐圧に応じて設定されており、容量しきい値の下限と上限との間の寄生容量値の内部回路が保護回路の耐圧を低くする。従って、内部回路を、容量しきい値の下限よりも小さな寄生容量値の内部サブ回路に電源分離することにより、対象とする内部回路に接続される保護回路よりも、各内部サブ回路に接続される保護回路の耐圧を高くする。
次に、各ステップの詳細について説明する。
まず、容量しきい値の設定を説明する。
図10(a)に示すような半導体装置について、所定のテクノロジの内部回路91の寄生容量C91の容量値を所定範囲(例えば1pFから40nF)まで所定のステップで変更し、それぞれの容量値のレイアウトデータについてシミュレーション(例えばH-Spice Simulationのミックスモード)を実施し、電源パッド92a、92b間に流れる電流値を算出する。図6〜図8は、130nmテクノロジの内部回路91におけるシミュレーション結果である。
図6(a)は、容量値を1pFに設定した内部回路91について、電源パッド92a,92b間にESD(例えば、ヒューマンボディモデルの条件において2000V)を印加した場合におけるI−V特性を示し、図6(b)は時間経過に対する電流変化を示し、実線はトランジスタT92に流れる電流量、一点鎖線は寄生容量C91に流れる電流量、破線は合計の電流量を示す。尚、図6(b)において、合計の電流量とトランジスタT92に流れる電流量はほぼ等しいので、破線は実線と重ねて表されている。
図7(a)(b)は、容量値を100pFに設定した内部回路91における特性を示し、図8(a)(b)は、容量値を40nFに設定した内部回路91における特性を示す。尚、図8(b)において、合計の電流量と寄生容量C91に流れる電流量はほぼ等しいので、破線のみが表されている。
図7(b)において、基準線よりも上の一点鎖線は、電源パッド92a,92bから寄生容量C91に向かって流れる電流の量を示し、基準線よりも下の一点鎖線は、寄生容量C91から逆流する電流の量を示す。この寄生容量C91から逆流する電流によって、トランジスタT92に流れる電流の変化量が大きい、つまり大きな突入電流がトランジスタT92に流れる。
図9は、デバイスシミュレーションの結果を示し、寄生容量値を変更した場合のトランジスタT92に流れる電流の時間的変化を重ねて示す。尚、曲線71、72,73,74はそれぞれ寄生容量値が10pF,100pF,1nF,10nFの時の時間的変化を示す。例えば、曲線74においける電流量の最大値(ピーク値)は7アンペア(A)程度にもなる。このトランジスタT92に流れる電流量のピーク値が所定値(例えば約1.8A)以下となる容量値の範囲を、容量しきい値としている。この範囲を設定する所定値(約1.8A)は、寄生バイポーラトランジスタT92の特性に応じて設定される。トランジスタT92のPN接合は約1.8A以上の電流により熱破壊する。従って、トランジスタT92が破損しない電流量とするように、所定値が設定される。尚、上記は、130nmテクノロジにおける設定の一例を示すものであり、設定値は保護回路の回路構成、トランジスタT92の形状(テクノロジ)、等により異なるのは言うまでもない。
次に、図1に示すステップ25における電源分離処理を説明する。
一例として、図3に示す半導体装置30において、電源パッド44a,44b間の寄生容量値が容量しきい値の範囲内の場合における処理を説明する。尚、ここでは、説明を簡略化するため、内部回路32の寄生容量のみを対象とする。
先ず、設計装置11は、所定の分離設定値に基づいて、図4(a)に示すように、内部回路32を、第1の内部サブ回路32aと第2の内部サブ回路32bとに分割する。図4(a)に、一点鎖線Lbにて第1の内部サブ回路32aと第2の内部サブ回路32bとの境界を示す。第1の内部サブ回路32aは、所定数の素子を含み、第2の内部サブ回路32bは、内部回路32を構成する素子のうち、第1の内部サブ回路32aに含まれる素子以外の素子を含む。
次に、設計装置11は、第1及び第2の内部サブ回路32a,32bに対応して電源配線を分割する。即ち、設計装置11は、図4(a)に示すように、内部回路32に電源電圧を供給する電源配線45a,45bを、図4(b)に示すように、第1の内部サブ回路32aに対応する電源配線81a,81bと、第2の内部サブ回路32bに対応する電源配線82a,82bに分割する。更に、設計装置11は、図4(a)に示すように、2つの内部サブ回路32a,32bに跨る内部電源配線51a,52aを、図4(b)に示すように、第1の内部サブ回路32a上の内部電源配線83a,84aと、第2の内部サブ回路32b上の内部電源配線83b,84bに分割する。
次に、設計装置11は、必用に応じて電源パッド、保護回路を配置する。即ち、図4(a)に示すように、内部回路32に電源電圧を供給する電源パッド44a,44bは、図4(b)に示すように、電源分離後の電源配線81a,81bに接続されている。また、両電源配線81a,81bには、それらの配線より下に形成された保護回路46が接続されている。一方、分割された電源配線82a,82bは、電源パッドに接続されておらず、保護回路も接続されていない。このため、電源配線82a,82bが接続された第2の内部サブ回路32bは動作しない。
従って、設計装置11は、図5(b)に示すように、これらの電源配線82a,82bに対して、電源パッド85a,85bを空き領域に配置するとともに電源配線82a,82bに接続する。更に、設計装置11は、電源配線82a,82b間に接続された保護回路86を配置する。
上記の処理を回路ブロック的に表すと、図5のようになる。即ち、設計装置11は、図5(a)に示すように、電源パッド44a,44bにそれぞれ接続された電源配線45a,45b間の内部回路32を、図5(b)に示すように、第1の内部サブ回路32aと第2の内部サブ回路32bとに分割する。更に、設計装置11は、電源配線45a,45bを、内部サブ回路32aに対応する電源配線81a,81bと、内部サブ回路32bに対応する電源配線82a,82bとに分割する。
次に、設計装置11は、分割した第2の内部サブ回路32bについて、図1に示すステップ23において寄生容量値を算出し、容量しきい値と比較する。設計装置11は、電源パッド85a,85b間の寄生容量値を算出し、その寄生容量値と容量しきい値とを比較する。第2の内部サブ回路32bの寄生容量値は、第1の内部サブ回路32aよりも小さいため、設計装置11は、第2の内部サブ回路32bについて分割の必用は無いと判断し、処理を終了する。
以上記述したように、本実施の形態によれば、以下の効果を奏する。
(1)設計装置11は、機能に応じた内部回路31〜33を備えた半導体装置の設計処理において、各内部回路31〜33が接続された電源パッド41a,41b,44a,44b,47a,47b間の寄生容量値を算出し、この寄生容量値とライブラリ26に格納されている容量しきい値とを比較する。そして、設計装置11は、寄生容量値が容量しきい値の範囲内の場合は、その寄生容量値の内部回路32を電源分離するようにした。その結果、内部回路32の寄生容量に起因し、寄生容量から保護回路46に逆流する電流量を少なくすることで、保護回路46が破損し難くなり、サージ電圧に対する保護回路46の耐圧を高くすることができる。
設計方法の概略を示すフローチャートである。 設計装置の概略構成図である。 LSI(半導体装置)の概略平面図である。 (a)(b)は電源分離処理の説明図である。 (a)(b)は電源分離処理の説明図である。 (a)(b)はシミュレーションの結果を示す説明図である。 (a)(b)はシミュレーションの結果を示す説明図である。 (a)(b)はシミュレーションの結果を示す説明図である。 デバイスシミュレーションの結果を示す説明図である。 (a)は半導体装置の説明図、(b)は保護回路の回路図である。
符号の説明
11 設計装置
26 ライブラリ
30 半導体装置
31〜33 内部回路
44a 第1電源パッド
44b 第2電源パッド
45a 第1電源配線
45b 第2電源配線
46 保護回路

Claims (8)

  1. 第1電源端子と第2電源端子間に接続され、前記第1電源端子に接続された第1電源配線を介して第1電源電圧が供給され、前記第2電源端子に接続された第2電源配線を介して第2電源電圧が供給される内部回路と、前記内部回路と並列に接続され、前記内部回路に対する静電気放電の発生時に導通してサージ電流から前記内部回路を保護する保護回路と、を備えた半導体装置の設計方法であって、
    前記第1電源端子と前記第2電源端子との間の寄生容量値を算出し、
    前記寄生容量値が所定の容量しきい値よりも小さくなるように前記内部回路を電源分離する、
    ことを特徴とする半導体装置の設計方法。
  2. 第1電源端子と第2電源端子間に接続され、前記第1電源端子に接続された第1電源配線を介して第1電源電圧が供給され、前記第2電源端子に接続された第2電源配線を介して第2電源電圧が供給される内部回路と、前記内部回路と並列に接続され、前記内部回路に対する静電気放電の発生時に導通してサージ電流から前記内部回路を保護する保護回路と、を備えた半導体装置の設計方法であって、
    前記第1電源端子と前記第2電源端子との間の寄生容量値を算出し、
    前記寄生容量値と容量しきい値とを比較し、
    比較結果に基づいて、前記容量しきい値により設定される範囲内の寄生容量値の内部回路を電源分離する、
    ことを特徴とする半導体装置の設計方法。
  3. 前記保護回路は、前記第1電源配線と前記第2電源配線とにそれぞれソースとドレインとが接続され、ゲートが低電位電圧が供給される電源配線に接続されたNチャネルMOSトランジスタからなる電源クランプ回路であり、
    前記容量しきい値は、前記第1電源端子及び前記第2電源端子に印加される前記サージ電流により前記NチャネルMOSトランジスタの寄生バイポーラトランジスタに流れる電流量と、該寄生バイポーラトランジスタの特性とに基づいて設定されてなる、
    ことを特徴とする請求項1又は2に記載の半導体装置の設計方法。
  4. 第1電源端子と第2電源端子間に接続され、前記第1電源端子に接続された第1電源配線を介して第1電源電圧が供給され、前記第2電源端子に接続された第2電源配線を介して第2電源電圧が供給される内部回路と、
    前記内部回路と並列に接続され、前記内部回路に対する静電気放電の発生時に導通してサージ電流から前記内部回路を保護する保護回路と、
    を備えた半導体装置であって、
    前記内部回路は、前記第1電源端子と前記第2電源端子との間の寄生容量値が所定の容量しきい値よりも小さくなるように電源分離されてなる、
    ことを特徴とする半導体装置。
  5. 第1電源端子と第2電源端子間に接続され、前記第1電源端子に接続された第1電源配線を介して第1電源電圧が供給され、前記第2電源端子に接続された第2電源配線を介して第2電源電圧が供給される内部回路と、
    前記内部回路と並列に接続され、前記内部回路に対する静電気放電の発生時に導通してサージ電流から前記内部回路を保護する保護回路と、
    を備えた半導体装置であって、
    前記内部回路は、前記第1電源端子と前記第2電源端子との間の寄生容量値が、第1のしきい値よりも低い値か、又は前記第1のしきい値よりも高い第2のしきい値よりも高い値である、
    ことを特徴とする半導体装置。
  6. 第1電源端子と第2電源端子間に接続され、前記第1電源端子に接続された第1電源配線を介して第1電源電圧が供給され、前記第2電源端子に接続された第2電源配線を介して第2電源電圧が供給される内部回路と、
    前記内部回路と並列に接続され、前記内部回路に対する静電気放電の発生時に導通してサージ電流から前記内部回路を保護する保護回路と、
    を備えた半導体装置であって、
    前記第1電源端子と前記第2電源端子の間の寄生容量値が、互いに異なる第1のしきい値と第2のしきい値の間の値を含まないように前記内部回路の構成が設定されてなる、
    ことを特徴とする半導体装置。
  7. 前記保護回路は、前記第1電源配線と前記第2電源配線とにそれぞれソースとドレインとが接続され、ゲートが低電位電圧が供給される電源配線に接続されたNチャネルMOSトランジスタからなる電源クランプ回路である、
    ことを特徴とする請求項4〜6のうちの何れか1項に記載の半導体装置。
  8. 前記容量しきい値は、前記第1電源端子及び前記第2電源端子に印加される前記サージ電流により前記NチャネルMOSトランジスタの寄生バイポーラトランジスタに流れる電流量と、該寄生バイポーラトランジスタの特性とに基づいて設定されてなる、
    ことを特徴とする請求項7に記載の半導体装置。
JP2008049501A 2008-02-29 2008-02-29 半導体装置の設計方法及び半導体装置 Pending JP2009206402A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049501A JP2009206402A (ja) 2008-02-29 2008-02-29 半導体装置の設計方法及び半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049501A JP2009206402A (ja) 2008-02-29 2008-02-29 半導体装置の設計方法及び半導体装置

Publications (1)

Publication Number Publication Date
JP2009206402A true JP2009206402A (ja) 2009-09-10

Family

ID=41148360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049501A Pending JP2009206402A (ja) 2008-02-29 2008-02-29 半導体装置の設計方法及び半導体装置

Country Status (1)

Country Link
JP (1) JP2009206402A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379053B2 (en) 2012-03-05 2016-06-28 Ps4 Luxco S.A.R.L. Semiconductor device having signal line and power supply line intersecting with each other
US10320186B2 (en) 2015-11-27 2019-06-11 Samsung Electronics Co., Ltd. Display drive chip
WO2024057763A1 (ja) * 2022-09-14 2024-03-21 ローム株式会社 I/o回路、半導体装置、セルライブラリ、半導体装置の回路設計方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379053B2 (en) 2012-03-05 2016-06-28 Ps4 Luxco S.A.R.L. Semiconductor device having signal line and power supply line intersecting with each other
US10320186B2 (en) 2015-11-27 2019-06-11 Samsung Electronics Co., Ltd. Display drive chip
WO2024057763A1 (ja) * 2022-09-14 2024-03-21 ローム株式会社 I/o回路、半導体装置、セルライブラリ、半導体装置の回路設計方法

Similar Documents

Publication Publication Date Title
US6553542B2 (en) Semiconductor device extractor for electrostatic discharge and latch-up applications
CN108702148B (zh) 面积高效且稳健的静电放电电路
US6493850B2 (en) Integrated circuit design error detector for electrostatic discharge and latch-up applications
JP5579746B2 (ja) 信号及び電源の統合esd保護デバイス
US8881085B1 (en) Cell-level electrostatic discharge protection for an integrated circuit
US20130032885A1 (en) Area efficient gridded polysilicon layouts
US5796638A (en) Methods, apparatus and computer program products for synthesizing integrated circuits with electrostatic discharge capability and connecting ground rules faults therein
US20170308639A1 (en) Method for analyzing ir drop and electromigration of ic
US20210042461A1 (en) Method of inserting dummy boundary cells for macro/ip and ic
KR20220061900A (ko) 배면 전력 레일을 갖는 셀 아키텍처
CN104424377A (zh) 具有共享pode的标准集成电路单元的泄漏预估的***和方法
TW202028765A (zh) 分析半導體裝置上漏電流的方法與系統
Voldman ESD: design and synthesis
JP2009206402A (ja) 半導体装置の設計方法及び半導体装置
US8306804B2 (en) System, an apparatus and a method for performing chip-level electrostatic discharge simulations
KR20110127068A (ko) 집적된 jfet들을 갖는 실리콘 제어 정류기에 기초한 정전기 방전 보호 회로, 동작 방법 및 설계 구조
US20220343053A1 (en) Semiconductor structure of cell array with adaptive threshold voltage
US12019965B2 (en) Integrated circuit including standard cell and method of manufacturing the integrated circuit
JP3996735B2 (ja) 半導体装置
KR20160008366A (ko) 정전기 방전 보호 소자 및 이를 포함하는 반도체 장치
US20140068535A1 (en) System and method for configuring a transistor device using rx tuck
US20220165706A1 (en) Semiconductor structure of cell array
US11941338B2 (en) Integrated circuit with dummy boundary cells
Li et al. ESD design rule checker
US11755815B2 (en) System and method for improving design performance through placement of functional and spare cells by leveraging LDE effect