JP2009206186A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2009206186A
JP2009206186A JP2008044862A JP2008044862A JP2009206186A JP 2009206186 A JP2009206186 A JP 2009206186A JP 2008044862 A JP2008044862 A JP 2008044862A JP 2008044862 A JP2008044862 A JP 2008044862A JP 2009206186 A JP2009206186 A JP 2009206186A
Authority
JP
Japan
Prior art keywords
light
led chips
substrate
led chip
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008044862A
Other languages
Japanese (ja)
Inventor
Kenichiro Tanaka
健一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008044862A priority Critical patent/JP2009206186A/en
Publication of JP2009206186A publication Critical patent/JP2009206186A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which has high reliability and is made reduced in cost. <P>SOLUTION: The light emitting device includes a package (not illustrated) which includes one optical detecting element 4 detecting light beams emitted from a plurality of LED chips 1a to 1d differing in light emission color and extracts mixed-color light of the light beams from the respective LED chips 1a to 1d, switching elements Qa to Qd inserted into feed lines to the respective LED chips 1a to 1d, and a control unit 10 which performs PWM control over the respective switching elements Qa to Qd on the basis of the output of the optical detecting element 4 to individually control optical outputs of the respective LED chips 1a to 1d. The control unit 10 generates a PWM signal to be supplied to the respective switching elements Qa to Qd so that a mixed-color period Ta wherein all the LED chips 1a to 1d illuminate and a monitoring period Tu wherein only one LED chip to be monitored using the optical detecting element 4 illuminate may alternate in time series and LED chips which illuminate to be monitored may change in sequence. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発光色の異なる複数個のLEDチップ(発光ダイオードチップ)を用いた発光装置に関するものである。   The present invention relates to a light emitting device using a plurality of LED chips (light emitting diode chips) having different emission colors.

従来から、図4および図5に示すように、発光色の異なる4個のLEDチップ1a,1b,1c,1dが実装されるとともに各LEDチップ1a〜1dから放射される光を1対1で各別に検出するフォトダイオードからなる4つの光検出素子4が設けられてなり各LEDチップ1a〜1dからの光の混色光が取り出されるパッケージ2’を備えた発光装置が提案されている(特許文献1)。   Conventionally, as shown in FIGS. 4 and 5, four LED chips 1a, 1b, 1c, and 1d having different emission colors are mounted, and light emitted from each LED chip 1a to 1d is 1: 1. There has been proposed a light-emitting device including a package 2 ′ provided with four photodetecting elements 4 each consisting of a photodiode to be detected, and from which mixed color light from the LED chips 1a to 1d is taken out (Patent Literature). 1).

上述のパッケージ2’は、各LEDチップ1a〜1dが収納される収納凹所2bが一表面に形成され各LEDチップ1a〜1dが実装される実装基板2aと、実装基板2aの上記一表面側で収納凹所2bを閉塞する形で配設された透光性部材3とで構成されており、収納凹所2b内が各LEDチップ1a〜1dを封止した透光性封止材(例えば、シリコーン樹脂など)からなる封止部5により充実されている。   The above-described package 2 ′ includes a mounting substrate 2a on which a housing recess 2b in which each LED chip 1a to 1d is stored is formed on one surface and each LED chip 1a to 1d is mounted, and the one surface side of the mounting substrate 2a. And a translucent member 3 disposed so as to close the housing recess 2b, and the inside of the housing recess 2b seals the LED chips 1a to 1d (for example, , Silicone resin, etc.).

ここにおいて、実装基板2aは、シリコン基板20aを用いて形成され各LEDチップ1a〜1dが実装されるベース基板20と、シリコン基板40aを用いて形成され光取出窓41が形成されるとともに各光検出素子4が形成された光検出素子形成基板40と、シリコン基板30aを用いて形成されてなり光取出窓41に連通する開口窓31が形成されベース基板20と光検出素子形成基板40との間に介在する配光用基板30とで構成されており、各LEDチップ1a〜1dはベース基板20に形成された貫通孔配線24を介して外部接続用電極27a,27aと電気的に接続され、各光検出素子4は配光用基板30に形成された貫通孔配線34およびベース基板20に形成された貫通孔配線24を介して外部接続用電極27b,27bと電気的に接続されている。   Here, the mounting substrate 2a is formed using the silicon substrate 20a, the base substrate 20 on which the LED chips 1a to 1d are mounted, the silicon substrate 40a, and the light extraction window 41 is formed. A light detection element forming substrate 40 on which the detection element 4 is formed, and an opening window 31 formed using the silicon substrate 30a and communicating with the light extraction window 41 is formed, and the base substrate 20 and the light detection element formation substrate 40 are formed. The LED chips 1a to 1d are electrically connected to the external connection electrodes 27a and 27a through the through-hole wirings 24 formed in the base substrate 20, respectively. Each photodetecting element 4 is connected to the external connection electrodes 27b and 27b through the through-hole wiring 34 formed in the light distribution substrate 30 and the through-hole wiring 24 formed in the base substrate 20. It is electrically connected.

ところで、上述のパッケージ2’は、上述のように、光検出素子形成基板40に各発光色のLEDチップ1a〜1dそれぞれから放射された光を各別に検出する4つの光検出素子4が設けられており、4つの光検出素子4と互いに発光色の異なる4つのLEDチップ1a〜1dとを1対1で対応させるために、ベース基板20と配光用基板30とで囲まれた内部空間を各発光色のLEDチップ1a〜1dそれぞれの収納空間に区画し各LEDチップ1a〜1dそれぞれから放射された光が2つ以上の光検出素子4の受光面へ入射するのを阻止する十字状の遮光部39が、配光用基板30に連続一体に形成されている。   By the way, as described above, the above-described package 2 ′ is provided with the four light detection elements 4 that individually detect the light emitted from the LED chips 1 a to 1 d of the respective emission colors on the light detection element forming substrate 40. An internal space surrounded by the base substrate 20 and the light distribution substrate 30 is made to correspond one-to-one with the four light detection elements 4 and the four LED chips 1a to 1d having different emission colors. A cross-shaped section that divides the light-emitting LED chips 1a to 1d into storage spaces and blocks light emitted from the LED chips 1a to 1d from entering the light receiving surfaces of the two or more light detection elements 4. The light shielding portion 39 is formed continuously and integrally on the light distribution substrate 30.

上述の発光装置では、パッケージ2’を実装する回路基板を設けて、当該回路基板に、各LEDチップ1a〜1dを駆動する駆動回路と、各光検出素子4により検出される光強度がそれぞれの目標値に保たれるように駆動回路から各発光色のLEDチップ1a〜1dに流れる電流をフィードバック制御する制御回路とを設けることにより、各光検出素子4それぞれの出力に基づいて各発光色のLEDチップ1a〜1dの光出力を各別に制御することができ、各発光色ごとのLEDチップ1a〜1dの光出力の経時変化の違いなどによらず混色光(ここでは、白色光)の光色や色温度の精度を向上することができ、信頼性が向上する。
特開2007−294834号公報
In the above-described light emitting device, a circuit board on which the package 2 ′ is mounted is provided, and the light intensity detected by each of the light detection elements 4 and the drive circuit that drives the LED chips 1a to 1d is provided on the circuit board. By providing a control circuit that feedback-controls the current that flows from the drive circuit to the LED chips 1a to 1d of the respective emission colors so as to be maintained at the target value, the emission color of each emission color is determined based on the output of each of the photodetector elements 4. The light output of the LED chips 1a to 1d can be controlled separately, and light of mixed color light (here, white light) regardless of the temporal change in the light output of the LED chips 1a to 1d for each emission color. The accuracy of color and color temperature can be improved, and the reliability is improved.
JP 2007-294834 A

しかしながら、図4および図5に示した構成のパッケージ2’と、上記駆動回路と、上記制御回路とを備えた発光装置では、パッケージ2’に複数の光検出素子4を設けるとともに遮光部39を設ける必要があり、パッケージ2’の構造が煩雑になり、パッケージ2’の小型化が制限されるとともにコストが高くなってしまう。また、遮光部39での光損失も発生し外部への光取出し効率が低下してしまう。   However, in the light emitting device including the package 2 ′ having the configuration shown in FIGS. 4 and 5, the drive circuit, and the control circuit, a plurality of light detection elements 4 are provided in the package 2 ′ and the light shielding portion 39 is provided. Therefore, the structure of the package 2 ′ becomes complicated, and downsizing of the package 2 ′ is restricted and the cost is increased. Further, light loss at the light shielding portion 39 also occurs, and the light extraction efficiency to the outside is reduced.

本発明は上記事由に鑑みて為されたものであり、その目的は、信頼性が高く且つ低コスト化が可能な発光装置を提供することにある。   The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a light-emitting device that is highly reliable and can be reduced in cost.

請求項1の発明は、発光色の異なる複数個のLEDチップが実装されるとともに各LEDチップから放射される光を検出する1つの光検出素子が設けられてなり各LEDチップからの光の混色光が取り出されるパッケージと、各LEDチップそれぞれへの給電路に挿入されたスイッチング素子と、光検出素子の出力に基づいて各スイッチング素子それぞれをPWM制御することで各LEDチップの光出力を各別に調節する制御部とを備え、制御部は、全てのLEDチップが点灯する混色期間と光検出素子によるモニタリング対象となる1個のLEDチップのみが点灯するモニタリング用期間とが時系列的に交互に現われモニタリング対象として点灯するLEDチップが順次切り替わるように各スイッチング素子それぞれへ与えるPWM信号を生成することを特徴とする。   According to the first aspect of the present invention, a plurality of LED chips having different emission colors are mounted, and one light detection element for detecting light emitted from each LED chip is provided. The light output of each LED chip is individually controlled by PWM control of each switching element based on the package from which light is extracted, the switching element inserted in the power supply path to each LED chip, and the output of the light detection element A control unit that adjusts, and the control unit alternately alternates the color mixture period in which all the LED chips are lit and the monitoring period in which only one LED chip to be monitored by the light detection element is lit in time series. The PWM signal that is given to each switching element so that the LED chips that appear and are lit as monitoring targets are switched sequentially. Characterized in that it formed.

この発明によれば、制御部が、全てのLEDチップが点灯する混色期間と光検出素子によるモニタリング対象となる1個のLEDチップのみが点灯するモニタリング用期間とが時系列的に交互に現われモニタリング対象として点灯するLEDチップが順次切り替わるように各スイッチング素子それぞれへ与えるPWM信号を生成するので、パッケージに1つの光検出素子を設けるだけで各発光色のLEDチップそれぞれの光を精度良く検出することができるとともに混色光の光色や色温度の精度を向上することができるから、信頼性が高く且つ低コスト化が可能になる。   According to this invention, the control unit monitors the color mixture period in which all the LED chips are turned on and the monitoring period in which only one LED chip to be monitored by the light detection element is turned on alternately in time series. Since a PWM signal to be supplied to each switching element is generated so that the LED chips that are lit as a target are sequentially switched, it is possible to accurately detect the light of each LED chip of each emission color only by providing one light detection element in the package. In addition, the accuracy of the light color and color temperature of the mixed color light can be improved, so that the reliability is high and the cost can be reduced.

請求項2の発明は、請求項1の発明において、制御部は、少なくとも混色期間とモニタリング用期間とを含む単位期間においてモニタリング対象のLEDチップの点灯開始タイミングを他のLEDチップの点灯開始タイミングよりも早くすることでモニタリング用期間が周期的に現われるように各PWM信号を生成することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the control unit determines the lighting start timing of the LED chip to be monitored from the lighting start timing of other LED chips in a unit period including at least the color mixture period and the monitoring period. Each PWM signal is generated so that the monitoring period appears periodically by making it earlier.

この発明によれば、前記制御部において前記光検出素子の出力を入力するタイミング制御が容易になり、より信頼性が向上する。   According to the present invention, the timing control for inputting the output of the light detection element in the control unit is facilitated, and the reliability is further improved.

請求項1の発明では、信頼性が高く且つ低コスト化が可能になるという効果がある。   According to the first aspect of the invention, there is an effect that the reliability is high and the cost can be reduced.

以下、本実施形態の発光装置について図1〜図3に基づいて説明する。   Hereinafter, the light emitting device of the present embodiment will be described with reference to FIGS.

本実施形態の発光装置は、発光色の異なる複数個(本実施形態では、4個)のLEDチップ1a〜1dが実装されるとともに各LEDチップ1a〜1dから放射される光を検出する1つの光検出素子4が設けられてなり各LEDチップ1a〜1dからの光の混色光が取り出されるパッケージ2(図2および図3参照)と、各LEDチップ1a〜1dそれぞれへの給電路に挿入されたMOSFETからなるスイッチング素子Qa〜Qdと、光検出素子4の出力に基づいて各スイッチング素子Qa〜QdそれぞれをPWM制御することで各LEDチップ1a〜1dの光出力を各別に調節する制御部10とを備えている。   The light emitting device according to the present embodiment includes a plurality of (four in the present embodiment) LED chips 1a to 1d having different emission colors, and detects light emitted from the LED chips 1a to 1d. A package 2 (see FIGS. 2 and 3) that is provided with a light detection element 4 and extracts mixed color light from the LED chips 1a to 1d, and is inserted into a power feeding path to each of the LED chips 1a to 1d. The control unit 10 that adjusts the light output of each of the LED chips 1a to 1d by PWM-controlling each of the switching elements Qa to Qd based on the output of the switching elements Qa to Qd composed of the MOSFETs and the light detection element 4. And.

以下では、まずパッケージ2について説明した後、制御部10について説明する。   Hereinafter, the package 2 will be described first, and then the control unit 10 will be described.

パッケージ2は、図2および図3に示すように、各LEDチップ1a〜1dが収納される収納凹所2bが一表面に形成され各LEDチップ1a〜1dが実装される実装基板2aと、実装基板2aの上記一表面側で収納凹所2bを閉塞する形で配設された透光性部材3とで構成されており、収納凹所2b内が各LEDチップ1a〜1dを封止した透光性材料(例えば、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、ガラスなど)からなる封止部5により充実されている。なお、透光性部材3は、必ずしも設ける必要はなく、また、透光性部材3の代わりに、レンズなどの光学部材を設けてもよい。   As shown in FIGS. 2 and 3, the package 2 includes a mounting substrate 2 a on which a housing recess 2 b in which the LED chips 1 a to 1 d are stored is formed on one surface, and the LED chips 1 a to 1 d are mounted. The light-transmitting member 3 is disposed so as to close the housing recess 2b on the one surface side of the substrate 2a, and the inside of the storage recess 2b seals the LED chips 1a to 1d. It is enriched by a sealing portion 5 made of a light material (for example, silicone resin, acrylic resin, epoxy resin, polycarbonate resin, glass, etc.). The translucent member 3 is not necessarily provided, and an optical member such as a lens may be provided instead of the translucent member 3.

上述の4個のLEDチップ1a〜1dとしては、それぞれ、青色光を放射するLEDチップ1a、緑色光を放射するLEDチップ1b、黄色光を放射するLEDチップ1c、赤色光を放射するLEDチップ1dを採用しており、青色光と緑色光と黄色光と赤色光の混色光として白色光を得ることができる。ただし、各LEDチップ1a〜1dの発光色は特に限定するものではなく、所望の混色光に応じて適宜選択すればよい。   The four LED chips 1a to 1d described above include an LED chip 1a that emits blue light, an LED chip 1b that emits green light, an LED chip 1c that emits yellow light, and an LED chip 1d that emits red light. And white light can be obtained as mixed light of blue light, green light, yellow light and red light. However, the emission colors of the LED chips 1a to 1d are not particularly limited, and may be appropriately selected according to desired mixed color light.

また、実装基板2aは、各LEDチップ1a〜1dが一表面側に実装される矩形板状のベース基板20と、ベース基板20の上記一表面側に対向配置され円形状の光取出窓41が形成されるとともに光検出素子4が形成された光検出素子形成基板40と、ベース基板20と光検出素子形成基板40との間に介在し光取出窓41に連通する矩形状の開口窓31が形成された配光用基板30とで構成されている。ここで、実装基板2aは、光検出素子形成基板40において配光用基板30の開口窓31上に張り出した部位が、実装基板2aの上記一表面側において収納凹所2bの周部から内方へ突出した庇状の突出部2cを構成しており、当該突出部2cに光検出素子4が形成されている。なお、光取出窓41の開口形状は円形状に限らず、例えば、矩形状でもよい。   The mounting substrate 2a includes a rectangular plate-like base substrate 20 on which the LED chips 1a to 1d are mounted on one surface side, and a circular light extraction window 41 arranged to face the one surface side of the base substrate 20. A light detection element forming substrate 40 formed with the light detection element 4 and a rectangular opening window 31 interposed between the base substrate 20 and the light detection element formation substrate 40 and communicating with the light extraction window 41 are provided. The light distribution substrate 30 is formed. Here, in the mounting substrate 2a, the portion of the light detection element forming substrate 40 that protrudes above the opening window 31 of the light distribution substrate 30 is inward from the peripheral portion of the housing recess 2b on the one surface side of the mounting substrate 2a. And a photodetecting element 4 is formed on the protruding portion 2c. The opening shape of the light extraction window 41 is not limited to a circular shape, and may be a rectangular shape, for example.

ここにおいて、ベース基板20、配光用基板30および光検出素子形成基板40の外周形状は矩形状であり、配光用基板30および光検出素子形成基板40はベース基板20と同じ外形寸法に形成されている。また、光検出素子形成基板40の厚み寸法はベース基板20および配光用基板30の厚み寸法に比べて小さく設定されている。   Here, the outer peripheral shapes of the base substrate 20, the light distribution substrate 30, and the light detection element formation substrate 40 are rectangular, and the light distribution substrate 30 and the light detection element formation substrate 40 are formed to have the same outer dimensions as the base substrate 20. Has been. Further, the thickness dimension of the light detection element forming substrate 40 is set smaller than the thickness dimension of the base substrate 20 and the light distribution substrate 30.

上述のベース基板20、配光用基板30および光検出素子形成基板40は、それぞれ、導電形がn形で主表面が(100)面のシリコン基板20a,30a,40aを用いて形成してあり、配光用基板30の開口窓31の内側面は、アルカリ系溶液(例えば、TMAH水溶液、KOH水溶液など)を用いた異方性エッチングにより形成された(111)面により構成されており(つまり、配光用基板30は、開口窓31の開口面積がベース基板20から離れるにつれて徐々に大きくなっており)、LEDチップ1a〜1dから側方へ放射された光を前方(突出部2c側)へ反射するミラーを構成している。   The base substrate 20, the light distribution substrate 30 and the light detection element formation substrate 40 described above are formed by using silicon substrates 20a, 30a and 40a having an n-type conductivity and a (100) main surface, respectively. The inner side surface of the opening window 31 of the light distribution substrate 30 is constituted by a (111) surface formed by anisotropic etching using an alkaline solution (for example, TMAH aqueous solution, KOH aqueous solution, etc.) (that is, In the light distribution substrate 30, the opening area of the opening window 31 gradually increases as the distance from the base substrate 20 increases), and the light emitted from the LED chips 1a to 1d to the side is forward (on the protruding portion 2c side). This constitutes a mirror that reflects to the surface.

ベース基板20は、シリコン基板20aの一表面側(図2(a)における上面側)に、LEDチップ1a〜1dの両電極それぞれと電気的に接続される2つ1組の導体パターン25a,25aが4組形成されるとともに、配光用基板30に形成された2つの貫通孔配線34,34を介して光検出素子4と電気的に接続される2つ導体パターン25b,25bが形成されており、各導体パターン25a,25a,25b,25bとシリコン基板20aの他表面側(図2(a)における下面側)に形成された各外部接続用電極27a,27a,27b,27bとがそれぞれ貫通孔配線24を介して電気的に接続されている。また、ベース基板20は、シリコン基板20aの上記一表面側に、配光用基板30と接合するための接合用金属層29も形成されている。   The base substrate 20 has a pair of conductor patterns 25a and 25a that are electrically connected to both electrodes of the LED chips 1a to 1d on one surface side (the upper surface side in FIG. 2A) of the silicon substrate 20a. Are formed, and two conductor patterns 25b and 25b that are electrically connected to the light detecting element 4 through two through-hole wirings 34 and 34 formed on the light distribution substrate 30 are formed. Each of the conductor patterns 25a, 25a, 25b, and 25b and the external connection electrodes 27a, 27a, 27b, and 27b formed on the other surface side (the lower surface side in FIG. 2A) of the silicon substrate 20a penetrate each other. They are electrically connected through the hole wiring 24. The base substrate 20 is also formed with a bonding metal layer 29 for bonding to the light distribution substrate 30 on the one surface side of the silicon substrate 20a.

本実施形態におけるLEDチップ1a〜1dは、結晶成長用基板として導電性基板を用い厚み方向の両面に電極(図示せず)が形成された可視光LEDチップである。そこで、ベース基板20は、各LEDチップ1a〜1dが電気的に接続される2つの導体パターン25a,25aのうちの一方の導体パターン25aを、LEDチップ1a〜1dがダイボンディングされる矩形状のダイパッド部25aaと、ダイパッド部25aaに連続一体に形成され貫通孔配線24との接続部位となる引き出し配線部25abとで構成してある。要するに、LEDチップ1a〜1dは、上記一方の導体パターン25aのダイパッド部25aaにダイボンディングされており、ダイパッド部25aa側の電極がダイパッド部25aaに接合されて電気的に接続され、光取り出し面側の電極がボンディングワイヤ14を介して他方の導体パターン25aと電気的に接続されている。   The LED chips 1a to 1d in the present embodiment are visible light LED chips in which a conductive substrate is used as a crystal growth substrate and electrodes (not shown) are formed on both surfaces in the thickness direction. Therefore, the base substrate 20 has a rectangular shape in which one of the two conductor patterns 25a and 25a to which the LED chips 1a to 1d are electrically connected is die-bonded to the LED chip 1a to 1d. A die pad portion 25aa and a lead-out wiring portion 25ab that is continuously formed integrally with the die pad portion 25aa and serves as a connection portion with the through-hole wiring 24 are configured. In short, the LED chips 1a to 1d are die-bonded to the die pad portion 25aa of the one conductor pattern 25a, and the electrodes on the die pad portion 25aa side are joined and electrically connected to the die pad portion 25aa, and the light extraction surface side The electrode is electrically connected to the other conductor pattern 25a through the bonding wire.

また、ベース基板20は、シリコン基板20aの上記他表面側における各ダイパッド部25aaそれぞれの投影領域に、シリコン基板20aよりも熱伝導率の高い金属材料からなる矩形状の放熱用パッド部28が形成されており、シリコン基板20aの厚み方向において重なるダイパッド部25aaと放熱用パッド部28とがシリコン基板20aよりも熱伝導率の高い金属材料(例えば、Cuなど)からなる複数の円柱状のサーマルビア26を介して熱的に結合されており、LEDチップ1a〜1dで発生した熱が各サーマルビア26および放熱用パッド部28を介して放熱されるようになっている。   Further, in the base substrate 20, a rectangular heat radiation pad portion 28 made of a metal material having a higher thermal conductivity than the silicon substrate 20a is formed in the projection region of each die pad portion 25aa on the other surface side of the silicon substrate 20a. A plurality of cylindrical thermal vias in which the die pad portion 25aa and the heat dissipation pad portion 28 that overlap in the thickness direction of the silicon substrate 20a are made of a metal material (for example, Cu) having a higher thermal conductivity than the silicon substrate 20a. The heat generated by the LED chips 1 a to 1 d is radiated through the thermal vias 26 and the heat radiating pad portions 28.

ところで、ベース基板20は、シリコン基板20aに、上述の各貫通孔配線24それぞれが内側に形成される複数の貫通孔22aと、上述の各サーマルビア26それぞれが内側に形成される複数の貫通孔22bとが厚み方向に貫設され、シリコン基板20aの上記一表面および上記他表面と各貫通孔22a,22bの内面とに跨って熱酸化膜(シリコン酸化膜)からなる絶縁膜23が形成されており、各導体パターン25a,25a,25b,25b、接合用金属層29、各外部接続用電極27a,27a,27b,27b、各放熱用パッド部28、各貫通孔配線24および各サーマルビア26がシリコン基板20aと電気的に絶縁されている。   By the way, the base substrate 20 has a plurality of through holes 22a in which each of the above-described through-hole wirings 24 is formed inside and a plurality of through-holes in which each of the above-described thermal vias 26 is formed in the silicon substrate 20a. 22b is formed in the thickness direction, and an insulating film 23 made of a thermal oxide film (silicon oxide film) is formed across the one surface and the other surface of the silicon substrate 20a and the inner surfaces of the through holes 22a and 22b. Each conductive pattern 25a, 25a, 25b, 25b, bonding metal layer 29, each external connection electrode 27a, 27a, 27b, 27b, each heat dissipation pad 28, each through-hole wiring 24, and each thermal via 26 Is electrically insulated from the silicon substrate 20a.

ここにおいて、各導体パターン25a,25a,25b,25b、接合用金属層29、各外部接続用電極27a,27a,27b,27b、各放熱用パッド部28は、絶縁膜23上に形成されたTi膜と当該Ti膜上に形成されたAu膜との積層膜により構成されており、シリコン基板20aの上記一表面側の各導体パターン25a,25a,25b,25b、接合用金属層29が同時に形成され、シリコン基板20aの上記他表面側の各外部接続用電極27a,27a,27b,27b、各放熱用パッド部28が同時に形成されている。なお、本実施形態では、絶縁膜23上のTi膜の膜厚を15〜50nm、Ti膜上のAu膜の膜厚を500nmに設定してあるが、これらの数値は一例であって特に限定するものではない。また、各Au膜の材料は、純金に限らず不純物を添加したものでもよい。また、各Au膜と絶縁膜23との間に密着性改善用の密着層としてTi膜を介在させてあるが、密着層の材料はTiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。また、貫通孔配線24およびサーマルビア26の材料としては、Cuを採用しているが、Cuに限らず、例えば、Ni、Alなどを採用してもよい。   Here, each conductor pattern 25a, 25a, 25b, 25b, bonding metal layer 29, each external connection electrode 27a, 27a, 27b, 27b, and each heat radiation pad portion 28 are formed on the insulating film 23. Each of the conductor patterns 25a, 25a, 25b, 25b on the one surface side of the silicon substrate 20a and the bonding metal layer 29 are formed at the same time by a laminated film of a film and an Au film formed on the Ti film. Then, the external connection electrodes 27a, 27a, 27b, 27b and the heat radiation pad portions 28 on the other surface side of the silicon substrate 20a are formed at the same time. In this embodiment, the thickness of the Ti film on the insulating film 23 is set to 15 to 50 nm, and the thickness of the Au film on the Ti film is set to 500 nm. However, these numerical values are only examples and are particularly limited. Not what you want. Further, the material of each Au film is not limited to pure gold, and may be one added with impurities. In addition, although a Ti film is interposed as an adhesion layer for improving adhesion between each Au film and the insulating film 23, the material of the adhesion layer is not limited to Ti, for example, Cr, Nb, Zr, TiN, TaN or the like may be used. Further, although Cu is adopted as the material of the through-hole wiring 24 and the thermal via 26, it is not limited to Cu, and for example, Ni, Al, etc. may be adopted.

配光用基板30は、シリコン基板30aの一表面側(図2(a)における下面側)に、ベース基板20の2つの導体パターン25b,25bと接合されて電気的に接続される2つの導体パターン(図示せず)が形成されるとともに、ベース基板20の接合用金属層29と接合される接合用金属層36が形成されている。また、配光用基板30は、シリコン基板30aの他表面側(図2(a)における上面側)に、貫通孔配線34,34を介して上記一表面側の2つの導体パターンと電気的に接続される2つの導体パターン37,37が形成されるとともに、光検出素子形成基板40と接合するための接合用金属層38が形成されている。なお、配光用基板30は、開口窓31の内側面にLEDチップ1a〜1dから放射される光に対する反射率の高い金属材料からなる反射膜などを設けてもよい。   The light distribution substrate 30 has two conductors bonded to and electrically connected to the two conductor patterns 25b and 25b of the base substrate 20 on one surface side (the lower surface side in FIG. 2A) of the silicon substrate 30a. A pattern (not shown) is formed, and a bonding metal layer 36 to be bonded to the bonding metal layer 29 of the base substrate 20 is formed. Further, the light distribution substrate 30 is electrically connected to the two conductor patterns on the one surface side on the other surface side (the upper surface side in FIG. 2A) of the silicon substrate 30a through the through-hole wirings 34, 34. Two conductor patterns 37 and 37 to be connected are formed, and a bonding metal layer 38 for bonding to the light detection element forming substrate 40 is formed. The light distribution substrate 30 may be provided with a reflection film made of a metal material having a high reflectance with respect to the light emitted from the LED chips 1 a to 1 d on the inner surface of the opening window 31.

また、配光用基板30は、上述の2つの貫通孔配線34それぞれが内側に形成される2つの貫通孔32がシリコン基板30aの厚み方向に貫設され、シリコン基板30aの上記一表面および上記他表面と各貫通孔32の内面とに跨って熱酸化膜(シリコン酸化膜)からなる絶縁膜33が形成されており、上記一表面側の各導体パターンおよび上記他表面側の各導体パターン37,37および各接合用金属層36,38がシリコン基板30aと電気的に絶縁されている。ここにおいて、上記一表面側の各導体パターンおよび上記他表面側の各導体パターン37,37および各接合用金属層36,38は、絶縁膜33上に形成されたTi膜と当該Ti膜上に形成されたAu膜との積層膜により構成されており、シリコン基板30aの上記一表面側の各導体パターンおよび接合用金属層36が同時に形成され、シリコン基板30aの上記他表面側の各導体パターン37,37および接合用金属層38が同時に形成されている。なお、本実施形態では、絶縁膜33上のTi膜の膜厚を15〜50nm、Ti膜上のAu膜の膜厚を500nmに設定してあるが、これらの数値は一例であって特に限定するものではない。ここにおいて、各Au膜の材料は、純金に限らず不純物を添加したものでもよい。また、各Au膜と絶縁膜33との間に密着性改善用の密着層としてTi膜を介在させてあるが、密着層の材料はTiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。また、貫通孔配線34の材料としては、Cuを採用しているが、Cuに限らず、例えば、Ni、Alなどを採用してもよい。   Further, the light distribution substrate 30 has two through-holes 32 in which the above-described two through-hole wirings 34 are respectively formed in the thickness direction of the silicon substrate 30a. An insulating film 33 made of a thermal oxide film (silicon oxide film) is formed across the other surface and the inner surface of each through-hole 32, and each conductor pattern on the one surface side and each conductor pattern 37 on the other surface side. , 37 and the bonding metal layers 36, 38 are electrically insulated from the silicon substrate 30a. Here, the conductor patterns on the one surface side, the conductor patterns 37 and 37 on the other surface side, and the bonding metal layers 36 and 38 are formed on the Ti film formed on the insulating film 33 and the Ti film, respectively. Each conductive pattern on the one surface side of the silicon substrate 30a and the bonding metal layer 36 are formed at the same time, and each conductor pattern on the other surface side of the silicon substrate 30a is formed by a laminated film with the formed Au film. 37 and 37 and the bonding metal layer 38 are formed simultaneously. In this embodiment, the thickness of the Ti film on the insulating film 33 is set to 15 to 50 nm, and the thickness of the Au film on the Ti film is set to 500 nm. However, these numerical values are only examples and are particularly limited. Not what you want. Here, the material of each Au film is not limited to pure gold, and may be added with impurities. Further, although a Ti film is interposed as an adhesion improving layer for adhesion between each Au film and the insulating film 33, the material of the adhesion layer is not limited to Ti, for example, Cr, Nb, Zr, TiN, TaN or the like may be used. Further, although Cu is adopted as the material of the through-hole wiring 34, it is not limited to Cu, and for example, Ni, Al or the like may be adopted.

光検出素子形成基板40は、シリコン基板40aの一表面側(図2(a)における下面側)に、配光用基板30の2つの導体パターン37,37と接合されて電気的に接続される2つの導体パターン(図示せず)が形成されるとともに、配光用基板30の接合用金属層38と接合される接合用金属層48が形成されている。ここにおいて、光検出素子形成基板40の光検出素子4は、n形のシリコン基板40aにp形領域4aを形成することにより形成されたフォトダイオードからなり、光検出素子形成基板40に形成された2つの導体パターンの一方の導体パターンがフォトダイオードのp形領域4aに電気的に接続され、他方の導体パターンがn形領域(シリコン基板40aの一部)bに電気的に接続されている。本実施形態におけるパッケージ2は、実装基板2aの平面視における外周形状が正方形状であって、収納凹所2bの開口形状が正方形状であり、光検出素子形成基板40は、光取出窓41の開口形状が円形状であり、実装基板2aの収納凹所2bの投影領域へ張り出した突出部2cにp形領域4aが形成されている。   The light detection element forming substrate 40 is joined to and electrically connected to the two conductor patterns 37 and 37 of the light distribution substrate 30 on one surface side (the lower surface side in FIG. 2A) of the silicon substrate 40a. Two conductor patterns (not shown) are formed, and a bonding metal layer 48 bonded to the bonding metal layer 38 of the light distribution substrate 30 is formed. Here, the light detection element 4 of the light detection element formation substrate 40 is formed of a photodiode formed by forming a p-type region 4a on an n-type silicon substrate 40a, and is formed on the light detection element formation substrate 40. One of the two conductor patterns is electrically connected to the p-type region 4a of the photodiode, and the other conductor pattern is electrically connected to the n-type region (a part of the silicon substrate 40a) b. In the package 2 according to the present embodiment, the outer peripheral shape of the mounting substrate 2a in a plan view is a square shape, the opening shape of the housing recess 2b is a square shape, and the photodetecting element forming substrate 40 includes the light extraction window 41. The opening shape is a circular shape, and a p-type region 4a is formed in the protruding portion 2c that protrudes to the projection region of the housing recess 2b of the mounting substrate 2a.

ここで、光検出素子4を構成するフォトダイオードのp形領域4aは、光検出素子形成基板40の円形状の光取出窓41を取り囲むように形成されており(光取出窓41の周部において収納凹所2bに臨む表面側に受光面が形成されており)、図2(b)から分かるように実装基板2aへの投影視において全てのLEDチップ1a〜1dを取り囲むように形成されている。   Here, the p-type region 4a of the photodiode constituting the light detection element 4 is formed so as to surround the circular light extraction window 41 of the light detection element forming substrate 40 (at the periphery of the light extraction window 41). A light receiving surface is formed on the surface side facing the housing recess 2b), and as can be seen from FIG. 2B, it is formed so as to surround all the LED chips 1a to 1d in a projection view on the mounting substrate 2a. .

また、光検出素子形成基板40は、シリコン基板40aの上記一表面側にシリコン酸化膜からなる絶縁膜43が形成されており、当該絶縁膜43がフォトダイオードの反射防止膜を兼ねている。また、光検出素子形成基板40は、上記一方の導体パターンが、絶縁膜43に形成した第1のコンタクトホール(図示せず)を通してp形領域4aと電気的に接続され、上記他方の導体パターンが絶縁膜43に形成した第2のコンタクトホール(図示せず)を通してn形領域4bと電気的に接続されている。ここにおいて、各導体パターンおよび接合用金属層48は、絶縁膜43上に形成されたTi膜と当該Ti膜上に形成されたAu膜との積層膜により構成されており、同時に形成してある。なお、本実施形態では、絶縁膜43上のTi膜の膜厚を15〜50nm、Ti膜上のAu膜の膜厚を500nmに設定してあるが、これらの数値は一例であって特に限定するものではない。ここにおいて、各Au膜の材料は、純金に限らず不純物を添加したものでもよい。また、各Au膜と絶縁膜43との間に密着性改善用の密着層としてTi膜を介在させてあるが、密着層の材料はTiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。   Further, in the photodetecting element forming substrate 40, an insulating film 43 made of a silicon oxide film is formed on the one surface side of the silicon substrate 40a, and the insulating film 43 also serves as an antireflection film of the photodiode. In the photodetecting element forming substrate 40, the one conductor pattern is electrically connected to the p-type region 4a through a first contact hole (not shown) formed in the insulating film 43, and the other conductor pattern is formed. Is electrically connected to the n-type region 4b through a second contact hole (not shown) formed in the insulating film 43. Here, each conductor pattern and the bonding metal layer 48 are composed of a laminated film of a Ti film formed on the insulating film 43 and an Au film formed on the Ti film, and are formed at the same time. . In this embodiment, the thickness of the Ti film on the insulating film 43 is set to 15 to 50 nm, and the thickness of the Au film on the Ti film is set to 500 nm. However, these numerical values are only examples and are particularly limited. Not what you want. Here, the material of each Au film is not limited to pure gold, and may be added with impurities. Further, although a Ti film is interposed as an adhesion improving layer for adhesion between each Au film and the insulating film 43, the material of the adhesion layer is not limited to Ti, for example, Cr, Nb, Zr, TiN, TaN or the like may be used.

また、上述の透光性部材3は、透光性材料(例えば、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、ガラスなど)からなる透光性基板を用いて形成してある。ここで、透光性部材3は、実装基板2aと同じ外周形状の矩形板状に形成されており、実装基板2a側とは反対の光取り出し面に、LEDチップ1a〜1dから放射された光の全反射を抑制する微細凹凸構造が形成されている。ここにおいて、透光性部材3の光取り出し面に形成する微細凹凸構造は、多数の微細な凹部が2次元周期構造を有するように形成されている。なお、上述の微細凹凸構造は、例えば、レーザ加工技術やエッチング技術やインプリントリソグラフィ技術などを利用して形成すればよい。また、微細凹凸構造の周期は、LEDチップ1a〜1dの発光ピーク波長の1/4〜100倍程度の範囲で適宜設定すればよい。   Further, the above-described translucent member 3 is formed using a translucent substrate made of a translucent material (for example, silicone resin, acrylic resin, epoxy resin, polycarbonate resin, glass, or the like). Here, the translucent member 3 is formed in the same outer peripheral rectangular plate shape as the mounting substrate 2a, and the light emitted from the LED chips 1a to 1d on the light extraction surface opposite to the mounting substrate 2a side. A fine concavo-convex structure that suppresses total reflection is formed. Here, the fine concavo-convex structure formed on the light extraction surface of the translucent member 3 is formed such that many fine concave portions have a two-dimensional periodic structure. The fine concavo-convex structure described above may be formed using, for example, a laser processing technique, an etching technique, an imprint lithography technique, or the like. The period of the fine concavo-convex structure may be set as appropriate within a range of about 1/4 to 100 times the emission peak wavelength of the LED chips 1a to 1d.

上述のパッケージ2の形成にあたっては、光検出素子4、絶縁膜43、各導体パターン、および接合用金属層48が形成され且つ光取出窓41が形成されていないシリコン基板40aと配光用基板30とを接合する第1の接合工程を行った後、シリコン基板40aを所望の厚みまで研磨する研磨工程を行い、その後、誘導結合プラズマ(ICP)型のドライエッチング装置などを用いてシリコン基板40aに光取出窓41を形成する光取出窓形成工程を行うことで光検出素子形成基板40を完成させてから、LEDチップ1a〜1dが搭載され各ボンディングワイヤ14の結線が行われたベース基板20(つまり、LEDチップ1a〜1dが実装されたベース基板20)と配光用基板30とを接合する第2の接合工程を行うことにより実装基板2aを完成させ、続いて、実装基板2aの収納凹所2b内に透光性材料(例えば、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、ガラスなど)を充填して封止部5を形成する封止部形成工程、封止部形成工程の後で実装基板2aと透光性部材3とを接合する第3の接合工程を行うようにすればよい。ここにおいて、第1の接合工程、第2の接合工程では、接合前に互いの接合表面へアルゴンのプラズマ若しくはイオンビーム若しくは原子ビームを真空中で照射して各接合表面の清浄化・活性化を行ってから、接合表面同士を接触させ、常温下で直接接合する常温接合法を採用しているが、常温接合法に限らず、AuSnや半田などの低融点共晶材料を用いた接合法を採用してもよい。   In forming the package 2 described above, the silicon substrate 40a and the light distribution substrate 30 in which the light detection element 4, the insulating film 43, each conductor pattern, and the bonding metal layer 48 are formed and the light extraction window 41 is not formed. After performing the first bonding step, the silicon substrate 40a is polished to a desired thickness, and then the silicon substrate 40a is formed using an inductively coupled plasma (ICP) type dry etching apparatus or the like. After completing the light detection element forming substrate 40 by performing the light extraction window forming step of forming the light extraction window 41, the base substrate 20 (with the LED chips 1a to 1d mounted and the bonding wires 14 connected thereto) That is, the mounting substrate is obtained by performing the second bonding step of bonding the base substrate 20) on which the LED chips 1a to 1d are mounted and the light distribution substrate 30 to each other. 2a is completed, and subsequently, a sealing portion 5 is formed by filling a light-transmitting material (for example, silicone resin, acrylic resin, epoxy resin, polycarbonate resin, glass, etc.) in the housing recess 2b of the mounting substrate 2a. What is necessary is just to make it perform the 3rd joining process which joins the mounting substrate 2a and the translucent member 3 after the sealing part formation process to perform and the sealing part formation process. Here, in the first bonding step and the second bonding step, each bonding surface is cleaned and activated by irradiating each bonding surface with argon plasma, ion beam or atomic beam in vacuum before bonding. After joining, the room-temperature bonding method is used in which the bonding surfaces are brought into contact with each other and directly bonded at room temperature. However, not only the room-temperature bonding method but also a bonding method using a low-melting eutectic material such as AuSn or solder. It may be adopted.

上述の第1の接合工程では、シリコン基板40aの接合用金属層48と配光用基板30の接合用金属層38とが接合されるとともに、シリコン基板40aの導体パターンと配光用基板30の導体パターン37,37とが接合され電気的に接続される。ここで、シリコン基板40aの導体パターンと配光用基板30の導体パターン37,37との接合部位は、貫通孔配線34に重なる領域からずらしてあるので、前者の導体パターンと後者の導体パターン37,37との互いの接合面の平坦度を高めることができ、特に常温接合法により接合する際の接合歩留まりを高めることができるとともに接合信頼性を高めることができる。また、上述の第2の接合工程では、ベース基板20の接合用金属層29と配光用基板30の接合用金属層36とが接合されるとともに、ベース基板20の導体パターン25b,25bと配光用基板30の導体パターンとが接合され電気的に接続される。ここで、ベース基板20の導体パターン25b,25bと配光用基板30の導体パターンとの接合部位は、貫通孔配線24に重なる領域および貫通孔配線34に重なる領域からずらしてあるので、前者の導体パターン25b,25bと後者の導体パターンとの互いの接合面の平坦度を高めることができ、特に常温接合法により接合する際の接合歩留まりを高めることができるとともに接合信頼性を高めることができる。   In the first bonding step described above, the bonding metal layer 48 of the silicon substrate 40 a and the bonding metal layer 38 of the light distribution substrate 30 are bonded, and the conductor pattern of the silicon substrate 40 a and the light distribution substrate 30 are combined. Conductive patterns 37 and 37 are joined and electrically connected. Here, since the junction part of the conductor pattern of the silicon substrate 40a and the conductor patterns 37, 37 of the light distribution substrate 30 is shifted from the region overlapping the through-hole wiring 34, the former conductor pattern and the latter conductor pattern 37 are arranged. , 37, the flatness of the joint surfaces can be increased, and in particular, the bonding yield when bonding by the room temperature bonding method can be increased and the bonding reliability can be increased. Further, in the above-described second bonding step, the bonding metal layer 29 of the base substrate 20 and the bonding metal layer 36 of the light distribution substrate 30 are bonded, and the conductor patterns 25b and 25b of the base substrate 20 are arranged. The conductor pattern of the light substrate 30 is joined and electrically connected. Here, since the joint portions of the conductor patterns 25b and 25b of the base substrate 20 and the conductor pattern of the light distribution substrate 30 are shifted from the region overlapping the through-hole wiring 24 and the region overlapping the through-hole wiring 34, the former The flatness of the joint surfaces of the conductor patterns 25b and 25b and the latter conductor pattern can be increased, and in particular, the bonding yield when bonding by the room temperature bonding method can be increased and the bonding reliability can be increased. .

また、上述のパッケージ2の製造にあたっては、上述の各シリコン基板20a,30a,40aとして、それぞれベース基板20、配光用基板30、光検出素子形成基板40を多数形成可能なシリコンウェハを用いるとともに、上述の透光性基板として透光性部材3を多数形成可能なウェハ状のもの(透光性ウェハ)を用い、上述の第1の接合工程、研磨工程、光取出窓形成工程、第2の接合工程、封止部形成工程、第3の接合工程などの各工程をウェハレベルで行うことでウェハレベルパッケージ構造体を形成してから、ダイシング工程によりパッケージ2のサイズに分割されている。したがって、ベース基板20と配光用基板30と光検出素子形成基板40と透光性部材3とが同じ外形サイズとなり、小型のパッケージ2を実現できるとともに、製造が容易になる。   In manufacturing the above-described package 2, a silicon wafer capable of forming a large number of the base substrate 20, the light distribution substrate 30, and the light detection element forming substrate 40 is used as each of the silicon substrates 20a, 30a, and 40a. A wafer-like one (translucent wafer) capable of forming a large number of translucent members 3 is used as the above-described translucent substrate, and the above-described first bonding step, polishing step, light extraction window forming step, second The wafer level package structure is formed by performing each process such as the bonding process, the sealing part forming process, and the third bonding process at the wafer level, and then divided into the size of the package 2 by the dicing process. Therefore, the base substrate 20, the light distribution substrate 30, the light detection element formation substrate 40, and the translucent member 3 have the same outer size, so that a small package 2 can be realized and manufacturing is facilitated.

以下、上述の制御部10について説明する。   Hereinafter, the above-described control unit 10 will be described.

制御部10は、上述のように、光検出素子4の出力に基づいて各スイッチング素子Qa〜QdそれぞれをPWM制御することで各LEDチップ1a〜1dの光出力を各別に調節するものであり、各スイッチング素子Qa〜Qdそれぞれへ図1(b)に示すようなPWM信号を与える。   As described above, the control unit 10 performs PWM control on each of the switching elements Qa to Qd based on the output of the light detection element 4, thereby adjusting the light output of each LED chip 1a to 1d separately. A PWM signal as shown in FIG. 1B is given to each of the switching elements Qa to Qd.

ここにおいて、制御部10は、マイクロコンピュータに適宜のプログラムを搭載することにより構成されており、全てのLEDチップ1a〜1dが点灯する混色期間Taと光検出素子4によるモニタリング対象となる1個のLEDチップ(全てのLEDチップ1a〜1dのうちの1個)のみが点灯するモニタリング用期間Tuとが時系列的に交互に現われモニタリング対象として点灯するLEDチップが順次切り替わるように各スイッチング素子Qa〜Qdそれぞれへ与えるPWM信号を生成する。なお、各PWM信号の周波数は、人が光の点滅を感じないように100Hz以上に設定することが望ましい。   Here, the control unit 10 is configured by installing an appropriate program in the microcomputer, and the color mixture period Ta in which all the LED chips 1 a to 1 d are turned on and one object to be monitored by the light detection element 4. The switching elements Qa˜ are arranged such that only the LED chips (one of all the LED chips 1a˜1d) are lit up and the monitoring periods Tu alternately appear in time series, and the LED chips lit up as monitoring targets are sequentially switched. A PWM signal to be supplied to each Qd is generated. Note that the frequency of each PWM signal is preferably set to 100 Hz or more so that a person does not feel blinking of light.

より具体的には、制御部10は、少なくとも混色期間Taとモニタリング用期間Tuとを含む単位期間T1においてモニタリング対象のLEDチップ(全てのLEDチップ1a〜1dのうちの1個)の点灯開始タイミング(PWM信号におけるオン期間の立ち上がりのタイミング)を他のLEDチップの点灯開始タイミングよりも早くすることでモニタリング用期間Tuが周期的に現われるように各PWM信号を生成するようになっている。ここで、制御部10は、各モニタリング用期間Tuにおいて図1(b)中に上向きの矢印で示したタイミングで光検出素子4の出力を入力し、光検出素子4の出力があらかじめ各LEDチップ1a〜1dそれぞれに対応付けて1対1で設定された各別の目標値に保たれるようにPWM信号のオンデューティをフィードバック制御する(オンデューティをフィードバック制御する際には、オン期間の立ち下りのタイミングを変化させることでオンデューティを変化させる)。ここで、上述の単位期間T1は、モニタリング用期間Tuと混色期間Taとの他に、全てのLEDチップ1a〜1dが消灯している消灯期間なども含んでいる。なお、上述の単位期間T1においては、混色期間Taとモニタリング用期間Tuとのうちモニタリング用期間Tuを混色期間Taよりも先に設定してあるが、混色期間Taの後にモニタリング用期間Tuを設定するようにしてもよい。   More specifically, the control unit 10 starts the lighting start timing of the LED chip to be monitored (one of all the LED chips 1a to 1d) in the unit period T1 including at least the color mixture period Ta and the monitoring period Tu. Each PWM signal is generated such that the monitoring period Tu appears periodically by making (the rise timing of the ON period in the PWM signal) earlier than the lighting start timing of the other LED chips. Here, the control unit 10 inputs the output of the light detection element 4 at the timing indicated by the upward arrow in FIG. 1B in each monitoring period Tu, and the output of the light detection element 4 is previously set to each LED chip. The on-duty of the PWM signal is feedback controlled so as to be maintained at different target values set in a one-to-one correspondence with 1a to 1d (when the on-duty is feedback-controlled, the on-period The on-duty is changed by changing the descending timing). Here, the above-described unit period T1 includes, in addition to the monitoring period Tu and the color mixture period Ta, an unlit period in which all the LED chips 1a to 1d are unlit. In the unit period T1, the monitoring period Tu is set before the color mixing period Ta out of the color mixing period Ta and the monitoring period Tu. However, the monitoring period Tu is set after the color mixing period Ta. You may make it do.

上述の図1(b)に示した例では、制御部10は、青色光(B)を放射するLEDチップ1a、緑色光(G)を放射するLEDチップ1b、黄色光(A)を放射するLEDチップ1c、赤色光(R)を放射するLEDチップ1d、LEDチップ1a、LEDチップ1b、LEDチップ1c、・・・の順でモニタリング対象のLEDチップが順次切り替わるように各スイッチング素子Qa〜Qdそれぞれへ与えるPWM信号を生成しているが、モニタリング対象とするLEDチップの順序は特に限定するものではない。   In the example illustrated in FIG. 1B, the control unit 10 emits the LED chip 1a that emits blue light (B), the LED chip 1b that emits green light (G), and the yellow light (A). The switching elements Qa to Qd so that the LED chips to be monitored are sequentially switched in the order of the LED chip 1c, the LED chip 1d that emits red light (R), the LED chip 1a, the LED chip 1b, the LED chip 1c,. Although the PWM signal given to each is generated, the order of the LED chips to be monitored is not particularly limited.

また、モニタリング対象とするLEDチップを複数の単位期間T1に亘って同じものとしてもよく、例えば、LEDチップ1a、LEDチップ1a、LEDチップ1b、LEDチップ1b、LEDチップ1c、LEDチップ1c、LEDチップ1d、LEDチップ1d、LEDチップ1a、LEDチップ1a、LEDチップ1b、LEDチップ1b、・・・の順でモニタリング対象のLEDチップが順次切り替わるように各スイッチング素子Qa〜Qdそれぞれへ与えるPWM信号を生成するようにしもよく、この場合には、制御部10において、同じモニタリング対象のLEDチップに関する光検出素子4からの複数の入力の平均値を求める演算を行い、当該平均値と上記目標値とを比較してオンデューティをフィードバック制御するようにしてもよい。   Further, the LED chip to be monitored may be the same over a plurality of unit periods T1, for example, LED chip 1a, LED chip 1a, LED chip 1b, LED chip 1b, LED chip 1c, LED chip 1c, LED PWM signal applied to each of the switching elements Qa to Qd so that the monitoring target LED chips are sequentially switched in the order of chip 1d, LED chip 1d, LED chip 1a, LED chip 1a, LED chip 1b, LED chip 1b,. In this case, the control unit 10 performs an operation for obtaining an average value of a plurality of inputs from the light detection elements 4 regarding the same LED chip to be monitored, and the average value and the target value are calculated. Compared with the on-duty feedback control It may be.

なお、LEDチップ1a〜1dの光出力に関しては、現状では〔青色光を放射するLEDチップ1a〕>〔赤色光を放射するLEDチップ1d〕>〔黄色光を放射するLEDチップ1c〕>〔緑色光を放射するLEDチップ1b〕となっており、初期状態において各LEDチップ1a〜1dそれぞれに対応するスイッチング素子Qa〜Qdへ与えるPWM信号のオンデューティに関しては、図1(b)から分かるように、〔LEDチップ1aに対応するスイッチング素子Qa〕<〔LEDチップ1dに対応するスイッチング素子Qd〕<〔LEDチップ1cに対応するスイッチング素子Qc〕<〔LEDチップ1bに対応するスイッチング素子Qb〕となっている。ただし、LEDチップ1a〜1dとして光出力が同じものが用意できる場合には、各スイッチング素子Qa〜Qdへ与えるPWM信号のオンデューティを同じに設定してもよい。   Regarding the light output of the LED chips 1a to 1d, at present, [LED chip 1a emitting blue light]> [LED chip 1d emitting red light]> [LED chip 1c emitting yellow light]> [green As shown in FIG. 1B, the on-duty of the PWM signal applied to the switching elements Qa to Qd corresponding to the LED chips 1a to 1d in the initial state is the LED chip 1b that emits light. [Switching element Qa corresponding to LED chip 1a] <[switching element Qd corresponding to LED chip 1d] <[switching element Qc corresponding to LED chip 1c] <[switching element Qb corresponding to LED chip 1b] ing. However, when LED chips 1a to 1d having the same light output can be prepared, the on-duty of the PWM signal applied to each switching element Qa to Qd may be set to be the same.

以上説明した本実施形態の発光装置では、制御部10が、上述のように、全てのLEDチップ1a〜1dが点灯する混色期間Taと光検出素子4によるモニタリング対象となる1個のLEDチップのみが点灯するモニタリング用期間Tuとが時系列的に交互に現われモニタリング対象として点灯するLEDチップが順次切り替わるように各スイッチング素子Qa〜Qdそれぞれへ与えるPWM信号を生成するので、パッケージ2に1つの光検出素子4を設けるだけで各発光色のLEDチップ1a〜1dそれぞれの光を精度良く検出することができるとともに混色光の光色や色温度の精度を向上することができるから、信頼性が高く且つ低コスト化が可能になる。また、本実施形態の発光装置では、図4および図5に示した従来の発光装置のパッケージ2’における遮光部39を設ける必要がなく、隣り合うLEDチップ1a〜1d間の距離を短くすることができて、LEDチップ1a〜1dをより狭い範囲内に配置することが可能になり、色むらの発生を抑制できるとともに、混色光の光色や色温度の精度を向上することができる。また、上述の遮光部39に起因した光損失がなくなるので、外部への光取出し効率の向上も可能となる。   In the light emitting device of the present embodiment described above, the control unit 10 has only one LED chip to be monitored by the color mixture period Ta in which all the LED chips 1a to 1d are lit and the light detection element 4 as described above. Since the monitoring period Tu in which is turned on alternately appears in time series and the LED chips to be turned on as monitoring targets are sequentially switched, PWM signals to be supplied to the respective switching elements Qa to Qd are generated. By providing the detection element 4, it is possible to detect each of the light emitting color LED chips 1 a to 1 d with high accuracy and to improve the accuracy of the light color and color temperature of the mixed color light, so that the reliability is high. In addition, the cost can be reduced. Further, in the light emitting device of this embodiment, it is not necessary to provide the light shielding portion 39 in the package 2 ′ of the conventional light emitting device shown in FIGS. 4 and 5, and the distance between the adjacent LED chips 1a to 1d is shortened. Thus, the LED chips 1a to 1d can be arranged in a narrower range, the occurrence of color unevenness can be suppressed, and the accuracy of the light color and color temperature of the mixed color light can be improved. In addition, since the light loss due to the above-described light shielding portion 39 is eliminated, the light extraction efficiency to the outside can be improved.

また、本実施形態の発光装置によれば、制御部10が、少なくとも混色期間Taとモニタリング用期間Tuとを含む単位期間T1においてモニタリング対象のLEDチップの点灯開始タイミングを他のLEDチップの点灯開始タイミングよりも早くすることでモニタリング用期間が周期的に現われるように各PWM信号を生成するので、制御部10において光検出素子4の出力を入力するタイミング制御が容易になり、より信頼性が向上する。   Further, according to the light emitting device of the present embodiment, the control unit 10 determines the lighting start timing of the LED chip to be monitored in the unit period T1 including at least the color mixture period Ta and the monitoring period Tu. Since each PWM signal is generated so that the monitoring period appears periodically by making it earlier than the timing, the timing control for inputting the output of the light detection element 4 in the control unit 10 becomes easy, and the reliability is further improved. To do.

ところで、上述の発光装置は、制御部10が、パッケージ2を実装する回路基板に設けてあるが、半導体製造技術を利用してパッケージ2に制御部10を形成するようにしてもよい。また、上述の発光装置では、各スイッチング素子Qa〜QdをMOSFETにより構成してあるが、MOSFETに限らず、例えば、バイポーラトランジスタにより構成してもよい。   By the way, although the control part 10 is provided in the circuit board which mounts the package 2 in the above-mentioned light-emitting device, you may make it form the control part 10 in the package 2 using a semiconductor manufacturing technique. In the above-described light emitting device, each switching element Qa to Qd is configured by a MOSFET. However, the switching element Qa to Qd is not limited to a MOSFET but may be configured by, for example, a bipolar transistor.

なお、上述の実施形態では、ベース基板20、配光用基板30、光検出素子形成基板40それぞれをシリコン基板20a,30a,40aを用いて形成してあるが、シリコン基板20a,30a,40aに限らず、半導体基板であればよく、例えば、シリコンカーバイド基板(SiC基板)を用いて形成してもよい。また、LEDチップ1a〜1dとしては、例えば、結晶成長用基板の主表面側に発光部などをエピタキシャル成長した後に発光部を支持する導電性基板(例えば、Si基板など)を発光部に固着してから、結晶成長用基板などを除去したものを用いてもよい。また、パッケージ2に実装するLEDチップの数や発光色は特に限定するものではない。   In the above-described embodiment, the base substrate 20, the light distribution substrate 30, and the light detection element formation substrate 40 are formed using the silicon substrates 20a, 30a, and 40a, respectively, but the silicon substrates 20a, 30a, and 40a are formed on the silicon substrates 20a, 30a, and 40a. It is not limited to a semiconductor substrate, and may be formed using, for example, a silicon carbide substrate (SiC substrate). In addition, as the LED chips 1a to 1d, for example, a light emitting portion is epitaxially grown on the main surface side of the crystal growth substrate, and then a conductive substrate (for example, a Si substrate) that supports the light emitting portion is fixed to the light emitting portion. Then, a substrate from which a crystal growth substrate or the like is removed may be used. Further, the number of LED chips to be mounted on the package 2 and the emission color are not particularly limited.

実施形態の発光装置を示し、(a)は概略回路図、(b)は動作説明図である。The light-emitting device of embodiment is shown, (a) is a schematic circuit diagram, (b) is operation | movement explanatory drawing. 同上の発光装置のパッケージを示し、(a)は概略断面図、(b)は要部概略平面図である。The package of the light emitting device same as the above is shown, (a) is a schematic cross-sectional view, (b) is a schematic plan view of the main part. 同上の発光装置のパッケージの概略分解斜視図である。It is a general | schematic disassembled perspective view of the package of the light-emitting device same as the above. 従来例を示す発光装置のパッケージの概略断面図である。It is a schematic sectional drawing of the package of the light-emitting device which shows a prior art example. 同上の発光装置のパッケージの概略分解斜視図である。It is a general | schematic disassembled perspective view of the package of the light-emitting device same as the above.

符号の説明Explanation of symbols

1a〜1d LEDチップ
2 パッケージ
4 光検出素子
10 制御部
Qa〜Qd スイッチング素子
T1 単位期間
Ta 混色期間
Tu モニタリング用期間
DESCRIPTION OF SYMBOLS 1a-1d LED chip 2 Package 4 Photodetection element 10 Control part Qa-Qd Switching element T1 Unit period Ta Color mixing period Tu Monitoring period

Claims (2)

発光色の異なる複数個のLEDチップが実装されるとともに各LEDチップから放射される光を検出する1つの光検出素子が設けられてなり各LEDチップからの光の混色光が取り出されるパッケージと、各LEDチップそれぞれへの給電路に挿入されたスイッチング素子と、光検出素子の出力に基づいて各スイッチング素子それぞれをPWM制御することで各LEDチップの光出力を各別に調節する制御部とを備え、制御部は、全てのLEDチップが点灯する混色期間と光検出素子によるモニタリング対象となる1個のLEDチップのみが点灯するモニタリング用期間とが時系列的に交互に現われモニタリング対象として点灯するLEDチップが順次切り替わるように各スイッチング素子それぞれへ与えるPWM信号を生成することを特徴とする発光装置。   A package in which a plurality of LED chips with different emission colors are mounted and one light detection element for detecting light emitted from each LED chip is provided, and a mixed color light from each LED chip is taken out, A switching element inserted in a power feeding path to each LED chip, and a control unit that individually adjusts the light output of each LED chip by PWM controlling each switching element based on the output of the light detection element The control unit is configured such that a mixed color period in which all LED chips are lit and a monitoring period in which only one LED chip to be monitored by the light detection element is alternately displayed in time series, and the LEDs that are lit as monitoring objects Generates a PWM signal to be supplied to each switching element so that the chips are sequentially switched. A light-emitting device to be. 制御部は、少なくとも混色期間とモニタリング用期間とを含む単位期間においてモニタリング対象のLEDチップの点灯開始タイミングを他のLEDチップの点灯開始タイミングよりも早くすることでモニタリング用期間が周期的に現われるように各PWM信号を生成することを特徴とする請求項1記載の発光装置。   The control unit makes the monitoring period appear periodically by making the lighting start timing of the LED chip to be monitored earlier than the lighting start timing of the other LED chips in the unit period including at least the color mixture period and the monitoring period. The light emitting device according to claim 1, wherein each PWM signal is generated.
JP2008044862A 2008-02-26 2008-02-26 Light emitting device Pending JP2009206186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044862A JP2009206186A (en) 2008-02-26 2008-02-26 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044862A JP2009206186A (en) 2008-02-26 2008-02-26 Light emitting device

Publications (1)

Publication Number Publication Date
JP2009206186A true JP2009206186A (en) 2009-09-10

Family

ID=41148191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044862A Pending JP2009206186A (en) 2008-02-26 2008-02-26 Light emitting device

Country Status (1)

Country Link
JP (1) JP2009206186A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016116843A1 (en) 2015-09-10 2017-03-16 Panasonic Intellectual Property Management Co., Ltd. Lighting device and lighting system and moving body, which includes this
JP2017054799A (en) * 2015-09-10 2017-03-16 パナソニックIpマネジメント株式会社 Illumination device, and illumination system and vehicle that have the same
JP2017162571A (en) * 2016-03-07 2017-09-14 パナソニックIpマネジメント株式会社 Illumination system and mobile including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157316A (en) * 2002-03-01 2005-06-16 Sharp Corp Light-emitting device, display device using the same and reader
JP2007294834A (en) * 2006-03-28 2007-11-08 Matsushita Electric Works Ltd Light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157316A (en) * 2002-03-01 2005-06-16 Sharp Corp Light-emitting device, display device using the same and reader
JP2007294834A (en) * 2006-03-28 2007-11-08 Matsushita Electric Works Ltd Light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016116843A1 (en) 2015-09-10 2017-03-16 Panasonic Intellectual Property Management Co., Ltd. Lighting device and lighting system and moving body, which includes this
JP2017054799A (en) * 2015-09-10 2017-03-16 パナソニックIpマネジメント株式会社 Illumination device, and illumination system and vehicle that have the same
US9635729B2 (en) 2015-09-10 2017-04-25 Panasonic Intellectual Property Management Co., Ltd. Illumination device and illumination system and mobile body including the same
CN106969326A (en) * 2015-09-10 2017-07-21 松下知识产权经营株式会社 Lighting device and possess the illuminator of the lighting device, moving body
JP2017162571A (en) * 2016-03-07 2017-09-14 パナソニックIpマネジメント株式会社 Illumination system and mobile including the same

Similar Documents

Publication Publication Date Title
JP5192666B2 (en) Light emitting device
JP5185683B2 (en) LED module manufacturing method and lighting apparatus manufacturing method
KR100764432B1 (en) Led package having anodized isolations and its manufacturing method
JP5113349B2 (en) RGB thermal isolation board
JP2009509326A (en) Variable color light emitting device and control method thereof
JP2003008083A (en) Multiple chip semiconductor led assembly
JP5010203B2 (en) Light emitting device
JP2008034315A (en) Led illumination fixture
JP2009010044A (en) Light emitting device
JP2008034487A (en) Light-emitting device
JP5102652B2 (en) Light emitting device
JP2009206186A (en) Light emitting device
JP4877239B2 (en) Method for manufacturing light emitting device
JP5278175B2 (en) Light emitting device
JP5010199B2 (en) Light emitting device
JP5351624B2 (en) LED module
JP5813636B2 (en) Light source manufacturing method and light source
JP2010278317A (en) Light emitting device
JP2009177095A (en) Light-emitting device
JP2009177099A (en) Light-emitting device
JP2009177101A (en) Light-emitting device
JP2011009559A (en) Light-emitting device
JP2010278151A (en) Light emitting device
JP5475954B2 (en) Light emitting device
JP2010034240A (en) Lighting fixture

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105