JP2009200224A - Solid electrolytic capacitor and manufacturing method therefor - Google Patents

Solid electrolytic capacitor and manufacturing method therefor Download PDF

Info

Publication number
JP2009200224A
JP2009200224A JP2008039906A JP2008039906A JP2009200224A JP 2009200224 A JP2009200224 A JP 2009200224A JP 2008039906 A JP2008039906 A JP 2008039906A JP 2008039906 A JP2008039906 A JP 2008039906A JP 2009200224 A JP2009200224 A JP 2009200224A
Authority
JP
Japan
Prior art keywords
oxide film
dielectric oxide
solid electrolytic
thin film
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008039906A
Other languages
Japanese (ja)
Inventor
Kazuyo Omura
和世 大村
Hideki Matsuzawa
秀樹 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008039906A priority Critical patent/JP2009200224A/en
Publication of JP2009200224A publication Critical patent/JP2009200224A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor whose quality is hardly changed by a load of heat evolution, etc. and which has excellent leakage current characteristics, even when a high voltage is applied upon packaging or during use, and a manufacturing method therefor. <P>SOLUTION: In the solid electrolytic capacitor, a dielectric oxide film 2 is formed on a surface of a porous anode body 1 which leads an anode lead wire 7 and is made of a valve action metal, an insulator thin film 3 is formed in an insulation defective part of the dielectric oxide film 2, a solid electrolytic layer 4, a graphite layer 5, and a silver paste layer 6 are in turn formed by laminating on surfaces of the dielectric oxide film 2 and the insulator thin film 3, external terminals are connected to the anode lead wire and the silver paste layer, respectively, and a mold sheathing is performed so as to expose a part of the external terminals. The insulator thin film 3 is made of glass, and is formed by a cataphoresis method so as to coat the insulation defective part of the dielectric oxide film, to repair the insulation defective part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体電解コンデンサに関し、特に漏れ電流の増大を防止するための手段が施された固体電解コンデンサ及びその製造方法に係るものである。   The present invention relates to a solid electrolytic capacitor, and more particularly to a solid electrolytic capacitor provided with means for preventing an increase in leakage current and a method for manufacturing the same.

従来の固体電解コンデンサの基本構成は、タンタル、ニオブ、あるいはアルミニウム等の弁作用金属の焼結体を陽極とし、その表面に誘電体層として酸化皮膜を形成し、その上に半導体層として二酸化マンガンや導電性高分子等の固体電解質層を形成し、さらに、陰極として、グラファイト、銀ペースト等の導電体層を順次積層形成して構成される。   The basic structure of a conventional solid electrolytic capacitor is that a sintered body of a valve metal such as tantalum, niobium, or aluminum is used as an anode, an oxide film is formed as a dielectric layer on the surface, and manganese dioxide as a semiconductor layer thereon. And a solid electrolyte layer such as a conductive polymer, and a conductive layer such as graphite or silver paste is sequentially laminated as a cathode.

図3は、従来の固体電解コンデンサの基本構成を示す断面図である。図3に示すように、従来の固体電解コンデンサは、陽極リード線7の一端が埋没された弁作用金属からなる多孔質陽極体1の表面に、誘電体酸化皮膜2が形成され、その上に固体電解質層4、グラファイト層5、銀ペースト層6が順次積層形成されている。さらに、陽極リード線7の一端に陽極外部端子8が接続され、銀ペースト層6に陰極外部端子9が接続され、それらの外部端子の一部を露出させるように、全体を外装樹脂10にてモールド外装し構成されている。なお、図示はしていないが、陽極リード線7とグラファイト層5、銀ペースト層6の間は、当然ながら絶縁がなされている。   FIG. 3 is a cross-sectional view showing a basic configuration of a conventional solid electrolytic capacitor. As shown in FIG. 3, in the conventional solid electrolytic capacitor, a dielectric oxide film 2 is formed on the surface of a porous anode body 1 made of a valve metal in which one end of an anode lead wire 7 is buried. A solid electrolyte layer 4, a graphite layer 5, and a silver paste layer 6 are sequentially laminated. Further, an anode external terminal 8 is connected to one end of the anode lead wire 7, and a cathode external terminal 9 is connected to the silver paste layer 6, and the entirety is covered with an exterior resin 10 so that a part of these external terminals is exposed. Mold exterior is configured. Although not shown, the anode lead wire 7, the graphite layer 5, and the silver paste layer 6 are naturally insulated.

一般に、誘電体として機能する誘電体酸化皮膜2は、弁作用金属からなる多孔質陽極体1をリン酸などの電解質溶液に浸漬し、電解質溶液中で電圧を印加することにより形成される。電圧の印加方法としては、電流値を一定としてコンデンサの定格電圧によって定まる所定の電圧まで昇圧した後、一定時間保持するという方法が用いられている。このような方法で形成された誘電体酸化皮膜2は、非常に薄く、電解質溶液中の不純物によって均一且つ均質に形成されないことや、製造工程中の機械的ストレス等が原因で、部分的に絶縁欠陥が発生することが多い。絶縁欠陥が発生すると、漏れ電流特性の劣化が生じるので、これを改善する手段として、誘電体酸化皮膜形成時の電圧の印加方法を改良した技術が開示されている。   In general, the dielectric oxide film 2 functioning as a dielectric is formed by immersing the porous anode body 1 made of a valve metal in an electrolyte solution such as phosphoric acid and applying a voltage in the electrolyte solution. As a method for applying the voltage, a method is used in which the current value is kept constant, the voltage is boosted to a predetermined voltage determined by the rated voltage of the capacitor, and then held for a certain period of time. The dielectric oxide film 2 formed by such a method is very thin and partially insulated due to the fact that it is not formed uniformly and homogeneously due to impurities in the electrolyte solution, or due to mechanical stress during the manufacturing process. Defects often occur. When an insulation defect occurs, the leakage current characteristic is deteriorated. As a means for improving this, a technique in which a method for applying a voltage when forming a dielectric oxide film is improved is disclosed.

例えば、特許文献1に開示される技術では、直流で所定の電圧まで印加した後に、この直流に交流電圧を重畳させた電圧を印加することにより表面近傍の誘電体酸化皮膜を厚く形成して、機械的ストレスに強いコンデンサを製造している。   For example, in the technique disclosed in Patent Document 1, after applying a direct current up to a predetermined voltage, a thick dielectric oxide film near the surface is formed by applying a voltage obtained by superimposing an alternating current voltage on the direct current, Manufactures capacitors that are resistant to mechanical stress.

特許文献2に開示される技術では、陽極酸化の途中で一旦陽極体を電解液から引き上げて熱処理した後、この陽極体を電解液中に戻して再度陽極酸化を行い、誘電体酸化皮膜中の欠陥や不純物を少なくすることにより漏れ電流を低減化している。   In the technique disclosed in Patent Document 2, the anode body is once pulled up from the electrolytic solution during the anodic oxidation and heat-treated, and then this anode body is returned to the electrolytic solution to perform anodization again. Leakage current is reduced by reducing defects and impurities.

しかしながら、このような誘電体酸化皮膜形成法を用いても誘電体酸化皮膜には絶縁欠陥が発生しやすく、この絶縁欠陥により、漏れ電流特性や誘電体酸化皮膜の電気的、物理的強度が低下する問題が依然として残っている。このため、誘電体酸化皮膜に発生した絶縁欠陥を補修するための手段が提案されている。   However, even if such a dielectric oxide film formation method is used, insulation defects are easily generated in the dielectric oxide film, and this insulation defect reduces the leakage current characteristics and the electrical and physical strength of the dielectric oxide film. The problem still remains. For this reason, means for repairing insulation defects generated in the dielectric oxide film has been proposed.

例えば、特許文献3には漏れ電流の低い固体電解コンデンサを得る方法として、実装時の熱応力によって出来る誘電体酸化皮膜の絶縁欠陥部に、電着法により絶縁性高分子を形成し、絶縁欠陥を補修する方法が提案されている。   For example, in Patent Document 3, as a method of obtaining a solid electrolytic capacitor having a low leakage current, an insulating polymer is formed by an electrodeposition method on an insulating defect portion of a dielectric oxide film formed by a thermal stress at the time of mounting. A method of repairing the problem has been proposed.

これらの手段によって、漏れ電流特性は著しく改善されているが、従来の誘電体酸化皮膜の絶縁欠陥部を補修する絶縁性高分子は、実装時や使用時に高電圧を印加した場合、発熱等の負荷によって変質しやすいという問題がある。そのため、実装時の漏れ電流の増大を完全に防止することが困難となっており、更なる漏れ電流特性の改善が望まれている。   The leakage current characteristics are remarkably improved by these means, but the insulating polymer that repairs the insulation defect part of the conventional dielectric oxide film can generate heat, etc. when a high voltage is applied during mounting or use. There is a problem that it is easily altered by the load. Therefore, it is difficult to completely prevent an increase in leakage current at the time of mounting, and further improvement in leakage current characteristics is desired.

特開平11−145005号公報JP 11-14505 A 特開2002−246273号公報JP 2002-246273 A 特開平10−247612号公報Japanese Patent Laid-Open No. 10-247612

本発明は、上述の問題を解決すべくなされたもので、その技術的課題は、実装時や使用時に高電圧を印加する場合においても、発熱等の負荷によって変質しにくい、漏れ電流特性に優れた固体電解コンデンサ及びその製造方法を提供することである。   The present invention has been made to solve the above-mentioned problems, and its technical problem is excellent in leakage current characteristics that are not easily altered by a load such as heat generation even when a high voltage is applied during mounting or use. Another object of the present invention is to provide a solid electrolytic capacitor and a method for manufacturing the same.

上記課題を解決するため、本発明の固体電解コンデンサは、陽極リード線が導出された弁作用金属からなる多孔質陽極体の表面に誘電体酸化皮膜が形成され、前記誘電体酸化皮膜の絶縁欠陥部に絶縁体薄膜が形成され、前記誘電体酸化皮膜と前記絶縁体薄膜の表面に、固体電解質層、グラファイト層、銀ペースト層が順次積層形成され、前記陽極リード線と前記銀ペースト層のそれぞれに外部端子が接続され、前記外部端子の一部を露出させるようにモールド外装を施してなる固体電解コンデンサであって、前記絶縁体薄膜は、ガラスよりなり、前記誘電体酸化皮膜の絶縁欠陥部を覆うように電気泳動法で形成され、前記絶縁欠陥部を補修することを特徴とするものである。   In order to solve the above problems, a solid electrolytic capacitor according to the present invention has a dielectric oxide film formed on a surface of a porous anode body made of a valve metal from which an anode lead wire is derived, and insulation defects in the dielectric oxide film. An insulator thin film is formed on the surface, and a solid electrolyte layer, a graphite layer, and a silver paste layer are sequentially laminated on the surface of the dielectric oxide film and the insulator thin film, and each of the anode lead wire and the silver paste layer A solid electrolytic capacitor having an external terminal connected thereto and a mold exterior so as to expose a part of the external terminal, wherein the insulator thin film is made of glass, and an insulation defect portion of the dielectric oxide film The insulating defect portion is repaired by an electrophoresis method so as to cover the surface.

また、本発明によれば、陽極リード線が導出された弁作用金属からなる多孔質陽極体の表面に誘電体酸化皮膜が形成され、前記誘電体酸化皮膜の絶縁欠陥部に絶縁体薄膜が形成され、前記誘電体酸化皮膜と前記絶縁体薄膜の表面に、固体電解質層、グラファイト層、銀ペースト層が順次積層形成され、前記陽極リード線と前記銀ペースト層のそれぞれに外部端子が接続され、前記外部端子の一部を露出させるようにモールド外装を施してなる固体電解コンデンサの製造方法であって、前記絶縁体薄膜は、ガラスよりなり、前記誘電体酸化皮膜の絶縁欠陥部を覆うように電気泳動法で形成する固体電解コンデンサの製造方法が得られる。   According to the present invention, the dielectric oxide film is formed on the surface of the porous anode body made of the valve metal from which the anode lead wire is derived, and the insulator thin film is formed on the insulation defect portion of the dielectric oxide film. A solid electrolyte layer, a graphite layer, and a silver paste layer are sequentially laminated on the surface of the dielectric oxide film and the insulator thin film, and external terminals are connected to the anode lead wire and the silver paste layer, respectively. A method of manufacturing a solid electrolytic capacitor in which a mold exterior is provided so as to expose a part of the external terminal, wherein the insulator thin film is made of glass so as to cover an insulation defect portion of the dielectric oxide film. A method for producing a solid electrolytic capacitor formed by electrophoresis is obtained.

本発明によれば、陽極リード線が導出された弁作用金属からなる多孔質陽極体の表面に誘電体酸化皮膜が形成され、前記誘電体酸化皮膜の絶縁欠陥部に絶縁体薄膜が形成され、前記誘電体酸化皮膜と前記絶縁体薄膜の表面に、固体電解質層、グラファイト層、銀ペースト層が順次積層形成され、前記陽極リード線と前記銀ペースト層のそれぞれに外部端子が接続され、前記外部端子の一部を露出させるようにモールド外装を施してなる固体電解コンデンサにおいて、前記誘電体酸化皮膜の絶縁欠陥部を覆うように、ガラスからなる絶縁体薄膜が電気泳動法により形成される構造を採用することにより、ガラスからなる絶縁体薄膜が、絶縁欠陥部を補修する機能を有するので、漏れ電流の低減を図ることができる。さらに、このガラスからなる絶縁体薄膜は、実装時や使用時に高電圧を印加する場合においても、発熱等の負荷によって変質しにくいので、実装時や使用による漏れ電流の増大を防止できる、従来よりも漏れ電流特性に優れた固体電解コンデンサを提供できる。   According to the present invention, a dielectric oxide film is formed on the surface of the porous anode body made of the valve metal from which the anode lead wire is derived, and an insulator thin film is formed on the insulating defect portion of the dielectric oxide film, A solid electrolyte layer, a graphite layer, and a silver paste layer are sequentially laminated on the surfaces of the dielectric oxide film and the insulator thin film, and external terminals are connected to the anode lead wire and the silver paste layer, respectively. In a solid electrolytic capacitor having a mold exterior so as to expose a part of a terminal, a structure in which an insulating thin film made of glass is formed by electrophoresis so as to cover an insulating defect portion of the dielectric oxide film. By adopting, the insulator thin film made of glass has a function of repairing the insulation defect portion, so that the leakage current can be reduced. Furthermore, this insulator thin film made of glass is less likely to be altered by a load such as heat generation even when a high voltage is applied during mounting or use, so that an increase in leakage current due to mounting or use can be prevented. Can provide a solid electrolytic capacitor having excellent leakage current characteristics.

以下に、本発明の固体電解コンデンサの実施の形態を、図面に基づいて詳細に説明する。   Embodiments of the solid electrolytic capacitor of the present invention will be described below in detail with reference to the drawings.

図1は、本発明の一実施の形態の固体電解コンデンサの構成を示す断面図である。図1に示すように、本実施の形態の固体電解コンデンサは、陽極リード線7が導出された弁作用金属からなる多孔質陽極体1、多孔質陽極体1の表面に形成された誘電体酸化皮膜2、誘電体酸化皮膜2の絶縁欠陥部を覆うように形成されたガラスからなる絶縁体薄膜3、誘電体酸化皮膜2と絶縁体薄膜3上に順次形成された固体電解質層4、グラファイト層5、銀ペースト層6から構成されている。なお、図示していないが、陽極リード線7とグラファイト層5、銀ペースト層6の間は、従来技術のものと同様に絶縁が施されている。   FIG. 1 is a cross-sectional view showing a configuration of a solid electrolytic capacitor according to an embodiment of the present invention. As shown in FIG. 1, the solid electrolytic capacitor according to the present embodiment includes a porous anode body 1 made of a valve metal from which an anode lead wire 7 is led out, and a dielectric oxide formed on the surface of the porous anode body 1. The coating 2, the insulating thin film 3 made of glass formed so as to cover the insulating defect portion of the dielectric oxide coating 2, the solid oxide layer 4 sequentially formed on the dielectric oxide coating 2 and the insulating thin film 3, the graphite layer 5 and a silver paste layer 6. Although not shown, the anode lead wire 7, the graphite layer 5, and the silver paste layer 6 are insulated as in the prior art.

陽極リード線7が導出された弁作用金属からなる多孔質陽極体1は、粗面化された平板状のアルミ箔や、タンタル粉末等に、リード線を埋め込み、プレス成型、焼成した焼結体を用いることができる。弁作用金属としては、アルミニウム、タンタル、ニオブ、チタンから選ばれる一種もしくは数種を組み合わせて用いることができる。   A porous anode body 1 made of a valve metal from which an anode lead wire 7 is derived is a sintered body obtained by embedding a lead wire in a roughened flat aluminum foil, tantalum powder, etc., press molding, and firing. Can be used. As the valve action metal, one kind or a combination of several kinds selected from aluminum, tantalum, niobium, and titanium can be used.

多孔質陽極体1の表面に誘電体酸化皮膜2を形成した後、誘電体酸化皮膜2の絶縁欠陥部に、電気泳動法によって絶縁体薄膜3を形成する。誘電体酸化皮膜2の形成方法は、例えばリン酸中で電圧を印加するような従来と同様の方法を採用すればよい。絶縁体薄膜3の形成は、ガラス粉末を分散させた溶液中で電圧を印加する電気泳動法によって、誘電体酸化皮膜2の絶縁欠陥部にガラス粉末を付着させ、ガラスの軟化温度で焼付け形成する。絶縁体薄膜3として用いる絶縁性のガラスとしては、焼成温度650℃以下の低融点ガラスが好ましい。これは、焼成温度が720℃以上になると、アモルファス状態である誘電体皮膜の結晶化が促進され、絶縁性を保てなくなる可能性があるためである。鉛を含まない低融点ガラスとして、ホウケイ酸亜鉛系、リン酸亜鉛系、ビスマス系のガラスを用いることができる。また、電着液に分散させたガラス粉末の粒径は、誘電体酸化皮膜2の絶縁欠陥部の大きさが数μmであることから、1〜5μmが望ましい。   After forming the dielectric oxide film 2 on the surface of the porous anode body 1, the insulator thin film 3 is formed on the insulation defect portion of the dielectric oxide film 2 by electrophoresis. As a method for forming the dielectric oxide film 2, for example, a method similar to the conventional method in which a voltage is applied in phosphoric acid may be employed. The insulator thin film 3 is formed by attaching the glass powder to the insulating defect portion of the dielectric oxide film 2 by an electrophoretic method in which a voltage is applied in a solution in which the glass powder is dispersed, and baking it at the softening temperature of the glass. . The insulating glass used as the insulator thin film 3 is preferably a low melting glass having a baking temperature of 650 ° C. or lower. This is because when the firing temperature is 720 ° C. or higher, crystallization of the dielectric film in an amorphous state is promoted and insulation may not be maintained. As the low melting point glass containing no lead, zinc borosilicate, zinc phosphate, or bismuth glass can be used. The particle size of the glass powder dispersed in the electrodeposition liquid is preferably 1 to 5 μm because the size of the insulation defect portion of the dielectric oxide film 2 is several μm.

誘電体酸化皮膜2及び絶縁体薄膜3上に、従来と同様に、例えば、二酸化マンガンや導電性高分子からなる固体電解質層4を形成した後、グラファイト層5、銀ペースト層6を塗布、乾燥するなどして形成する。固体電解質層4として用いることのできる導電性高分子は、化学重合あるいは電解重合により形成することができる。モノマーとしては、ピロール、チオフェン、アニリン、もしくはそれらの誘導体を用いることができる。導電性高分子層は一層または複数層積層しても良く、さらに異なるポリマーを組み合わせて積層してもよい。   For example, after forming a solid electrolyte layer 4 made of, for example, manganese dioxide or a conductive polymer on the dielectric oxide film 2 and the insulating thin film 3, a graphite layer 5 and a silver paste layer 6 are applied and dried. And so on. The conductive polymer that can be used as the solid electrolyte layer 4 can be formed by chemical polymerization or electrolytic polymerization. As the monomer, pyrrole, thiophene, aniline, or a derivative thereof can be used. The conductive polymer layer may be laminated in a single layer or a plurality of layers, and may be laminated by combining different polymers.

上述のようにして製造された本発明の固体電解コンデンサは、誘電体酸化皮膜2の絶縁欠陥部が絶縁体薄膜3であるガラスによって補修されているため、漏れ電流が低減されている。しかもガラスからなる絶縁体薄膜層は、実装時や使用時に、高電圧を印加した場合においても、発熱等の負荷によって変質しにくいため、従来より漏れ電流特性に優れた固体電解コンデンサを得ることが可能となる。   The solid electrolytic capacitor of the present invention manufactured as described above has a reduced leakage current because the insulating defect portion of the dielectric oxide film 2 is repaired by the glass which is the insulating thin film 3. Moreover, the insulator thin film layer made of glass is less likely to be altered by a load such as heat generation even when a high voltage is applied during mounting or use, so that it is possible to obtain a solid electrolytic capacitor having better leakage current characteristics than before. It becomes possible.

以下、具体的に実施例について説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲の設計変更を伴う構成であっても本発明に含まれるものである。   Hereinafter, although an Example is described concretely, this invention is not limited to a following example, Even if it is a structure with a design change of the range which does not deviate from the summary of this invention, it is contained in this invention. Is.

本実施例では、多孔質陽極体1に使用する弁作用金属として、タンタル粉末の焼結体(長さ5mm、幅3mm、厚さ2mm)を用いた。また、多孔質陽極体1に埋め込む陽極リード線7として、直径2mmのタンタル線を用いた。前記多孔質陽極体1を0.05モル/Lのリン酸水溶液に浸漬し、電流値を一定として、電圧が60Vに達するまで直流電圧を昇圧した。続いて、前記多孔質陽極体1を60Vで4時間保持して誘電体酸化皮膜2を形成した。   In this example, a tantalum powder sintered body (length 5 mm, width 3 mm, thickness 2 mm) was used as the valve metal used for the porous anode body 1. A tantalum wire having a diameter of 2 mm was used as the anode lead wire 7 embedded in the porous anode body 1. The porous anode body 1 was immersed in a 0.05 mol / L phosphoric acid aqueous solution, the current value was kept constant, and the DC voltage was increased until the voltage reached 60V. Subsequently, the porous anode body 1 was held at 60 V for 4 hours to form a dielectric oxide film 2.

次に、誘電体酸化皮膜2が形成された多孔質陽極体1を、ガラス粉末等を分散させたアルコール溶液に浸漬し、20Vで30秒間電気泳動を行った。なお、電着液となるアルコール溶液は、エタノール400mLにヨウ素8gを溶解させたヨウ素エタノール液66mLと、エタノール40mLに界面活性剤2gを溶解させた界面活性剤エタノール液4mLと、エタノール1200mLに600gのガラスの粉末を分散させた溶液360mL、および純水6.6mLとを混合して調製した。ガラスの材質は、軟化温度の低いホウケイ酸亜鉛ガラスを用いた。この電気泳動法によって、誘電体酸化皮膜2の絶縁欠陥部にガラス粉末が付着した状態の多孔質陽極体1を、アルコールで洗浄した後、最高温度630℃の電気炉で焼付けして、ガラスからなる絶縁体薄膜3を形成した。   Next, the porous anode body 1 on which the dielectric oxide film 2 was formed was immersed in an alcohol solution in which glass powder or the like was dispersed, and electrophoresis was performed at 20 V for 30 seconds. In addition, the alcohol solution used as the electrodeposition solution was 66 mL of iodine ethanol solution in which 8 g of iodine was dissolved in 400 mL of ethanol, 4 mL of surfactant ethanol solution in which 2 g of surfactant was dissolved in 40 mL of ethanol, and 600 g of ethanol in 1200 mL of ethanol. The solution was prepared by mixing 360 mL of a solution in which glass powder was dispersed and 6.6 mL of pure water. As the glass material, zinc borosilicate glass having a low softening temperature was used. By this electrophoresis method, the porous anode body 1 in which the glass powder is adhered to the insulating defect portion of the dielectric oxide film 2 is washed with alcohol and then baked in an electric furnace having a maximum temperature of 630 ° C. An insulating thin film 3 was formed.

次に、固体電解質層4を、導電性ポリピロールを用いて電解重合により形成し、陰極引き出しのためにグラファイト層5を形成し、さらに銀ペースト層6を形成し陰極層とした。固体電解質層4、グラファイト層5、銀ペースト層6の厚さは、それぞれ10μmとした。   Next, the solid electrolyte layer 4 was formed by electrolytic polymerization using conductive polypyrrole, a graphite layer 5 was formed for cathode extraction, and a silver paste layer 6 was further formed as a cathode layer. The thickness of the solid electrolyte layer 4, the graphite layer 5, and the silver paste layer 6 was 10 μm, respectively.

最後に、実装のために、陽極リード線7の一端に、陽極外部端子8を抵抗溶接にて接続し、また、銀ペースト層6に、陰極外部端子9を導電接着剤にて接続した。陽極外部端子8、陰極外部端子9の材質は、42アロイ(42鉄ニッケル合金)を用いた。それらの外部端子の一部を露出させた状態で、全体をエポキシ樹脂からなる外装樹脂10にてモールド外装し、図1に示される固体電解コンデンサ(長さ6mm、幅3.5mm、厚さ2.5mm)を作製した。   Finally, for mounting, the anode external terminal 8 was connected to one end of the anode lead wire 7 by resistance welding, and the cathode external terminal 9 was connected to the silver paste layer 6 with a conductive adhesive. As the material of the anode external terminal 8 and the cathode external terminal 9, 42 alloy (42 iron nickel alloy) was used. With the external terminals partially exposed, the whole is molded with an exterior resin 10 made of an epoxy resin, and the solid electrolytic capacitor (length 6 mm, width 3.5 mm, thickness 2) shown in FIG. 0.5 mm).

従来品として、上述した本発明の実施の形態と基本構造は同一であり、誘電体酸化皮膜2の絶縁欠陥部に形成された絶縁体薄膜3を、ポリイミドとした固体電解コンデンサを作製した。   As a conventional product, a solid electrolytic capacitor in which the basic structure is the same as that of the above-described embodiment of the present invention, and the insulating thin film 3 formed in the insulating defect portion of the dielectric oxide film 2 is made of polyimide was produced.

発明品と同様に、多孔質陽極体1に使用する弁作用金属として、タンタル粉末の焼結体(長さ5mm、幅3mm、厚さ2mm)を用いた。また、多孔質陽極体1に埋め込む陽極リード線7として、直径2mmのタンタル線を用いた。前記多孔質陽極体1を0.05モル/Lのリン酸水溶液に浸漬し、電流値を一定として、電圧が60Vに達するまで直流電圧を昇圧した。続いて、前記多孔質陽極体1を60Vで4時間保持して誘電体酸化皮膜2を形成した。   Similar to the invention, a tantalum powder sintered body (length 5 mm, width 3 mm, thickness 2 mm) was used as the valve metal used for the porous anode body 1. A tantalum wire having a diameter of 2 mm was used as the anode lead wire 7 embedded in the porous anode body 1. The porous anode body 1 was immersed in a 0.05 mol / L phosphoric acid aqueous solution, the current value was kept constant, and the DC voltage was increased until the voltage reached 60V. Subsequently, the porous anode body 1 was held at 60 V for 4 hours to form a dielectric oxide film 2.

次に、誘電体酸化皮膜2が形成された多孔質陽極体1を、ポリアメック酸塩を含む溶液に浸漬し、40Vで1時間電気泳動を行った。なお、電着液の調整は、ビフォニルテトラカルボン酸二無水物1.2g及びP−フェニレンジアミン0.44gをN−メチルピロリドン21.8g中で反応させポリアミック酸溶液を調整した。このポリアミック酸溶液2.1gをN、N−ジメチルホルムアミド33.5gで希釈した後、よく撹拌しながらメタノール64.4gを加え、ポリアミック酸塩0.145%の電着液とした。この電気泳動を行った後、多孔質陽極体1を、アルコールで洗浄し、250℃で1時間加熱し、イミド化したポリイミドからなる絶縁体薄膜3を形成した。   Next, the porous anode body 1 on which the dielectric oxide film 2 was formed was immersed in a solution containing a polyamic acid salt and subjected to electrophoresis at 40 V for 1 hour. The electrodeposition solution was prepared by reacting 1.2 g of biphenyl tetracarboxylic dianhydride and 0.44 g of P-phenylenediamine in 21.8 g of N-methylpyrrolidone to prepare a polyamic acid solution. After diluting 2.1 g of this polyamic acid solution with 33.5 g of N, N-dimethylformamide, 64.4 g of methanol was added with good stirring to obtain a polyamic acid salt 0.145% electrodeposition solution. After this electrophoresis, the porous anode body 1 was washed with alcohol and heated at 250 ° C. for 1 hour to form an insulating thin film 3 made of imidized polyimide.

次に、固体電解質層4を、導電性ポリピロールを用いて電解重合により形成し、陰極引き出しのためにグラファイト層5を形成し、銀ペースト層6を順次形成し陰極層とした。固体電解質層4、グラファイト層5、銀ペースト層6の厚さは、それぞれ10μmとした。   Next, the solid electrolyte layer 4 was formed by electrolytic polymerization using conductive polypyrrole, a graphite layer 5 was formed for cathode extraction, and a silver paste layer 6 was sequentially formed to form a cathode layer. The thickness of the solid electrolyte layer 4, the graphite layer 5, and the silver paste layer 6 was 10 μm, respectively.

最後に、実装のために、陽極リード線7の一端に、陽極外部端子8を抵抗溶接にて接続し、また、銀ペースト層6に、陰極外部端子9を導電接着剤にて接続した。陽極外部端子8、陰極外部端子9の材質は、42アロイ(42鉄ニッケル合金)を用いた。それらの外部端子の一部を露出させた状態で、全体をエポキシ樹脂からなる外装樹脂10にてモールド外装し、図1に示される固体電解コンデンサ(長さ6mm、幅3.5mm、厚さ2.5mm)を作製した。   Finally, for mounting, the anode external terminal 8 was connected to one end of the anode lead wire 7 by resistance welding, and the cathode external terminal 9 was connected to the silver paste layer 6 with a conductive adhesive. As the material of the anode external terminal 8 and the cathode external terminal 9, 42 alloy (42 iron nickel alloy) was used. With the external terminals partially exposed, the whole is molded with an exterior resin 10 made of an epoxy resin, and the solid electrolytic capacitor (length 6 mm, width 3.5 mm, thickness 2) shown in FIG. 0.5 mm).

本発明の効果を実証する手段として、漏れ電流特性を測定した。以下の測定条件にて、本発明品と従来品を各々20個ずつ、漏れ電流特性の測定を行った。
印加電圧:20V
測定時間:電圧印加後1分間
As means for demonstrating the effect of the present invention, leakage current characteristics were measured. Under the following measurement conditions, leakage current characteristics were measured for 20 products of the present invention and 20 products of the prior art.
Applied voltage: 20V
Measurement time: 1 minute after voltage application

図2は、本発明の実施の形態と従来品の漏れ電流を示す図である。図2に示すように、本発明の実施の形態を適用した固体電解コンデンサの漏れ電流は、平均値で0.9μAとなり、平均値で2.0μAとなる従来品の1/2以下となっていることが分かる。   FIG. 2 is a diagram showing the leakage current of the embodiment of the present invention and the conventional product. As shown in FIG. 2, the leakage current of the solid electrolytic capacitor to which the embodiment of the present invention is applied is 0.9 μA on average and less than half of the conventional product, which is 2.0 μA on average. I understand that.

以上説明したように、本発明の固体電解コンデンサの製造方法を採用することによって、実装時や使用時に、高電圧を印加した場合においても、発熱等の負荷によって変質しにくい、漏れ電流特性に優れた固体電解コンデンサが得られることが分かる。   As described above, by adopting the method for manufacturing a solid electrolytic capacitor of the present invention, even when a high voltage is applied during mounting or use, it is difficult to change due to a load such as heat generation, and has excellent leakage current characteristics. It can be seen that a solid electrolytic capacitor is obtained.

本発明の一実施の形態の固体電解コンデンサの構成を示す断面図。Sectional drawing which shows the structure of the solid electrolytic capacitor of one embodiment of this invention. 本発明の実施の形態と従来品の漏れ電流を示す図。The figure which shows embodiment of this invention and the leakage current of a conventional product. 従来の固体電解コンデンサの基本構成を示す断面図。Sectional drawing which shows the basic composition of the conventional solid electrolytic capacitor.

符号の説明Explanation of symbols

1 多孔質陽極体
2 誘電体酸化皮膜
3 絶縁体薄膜
4 固体電解質層
5 グラファイト層
6 銀ペースト層
7 陽極リード線
8 陽極外部端子
9 陰極外部端子
10 外装樹脂
DESCRIPTION OF SYMBOLS 1 Porous anode body 2 Dielectric oxide film 3 Insulator thin film 4 Solid electrolyte layer 5 Graphite layer 6 Silver paste layer 7 Anode lead wire 8 Anode external terminal 9 Cathode external terminal 10 Exterior resin

Claims (2)

陽極リード線が導出された弁作用金属からなる多孔質陽極体の表面に誘電体酸化皮膜が形成され、前記誘電体酸化皮膜の絶縁欠陥部に絶縁体薄膜が形成され、前記誘電体酸化皮膜と前記絶縁体薄膜の表面に、固体電解質層、グラファイト層、銀ペースト層が順次積層形成され、前記陽極リード線と前記銀ペースト層のそれぞれに外部端子が接続され、前記外部端子の一部を露出させるようにモールド外装を施してなる固体電解コンデンサであって、前記絶縁体薄膜は、ガラスよりなり、前記誘電体酸化皮膜の絶縁欠陥部を覆うように電気泳動法で形成されたことを特徴とする固体電解コンデンサ。   A dielectric oxide film is formed on the surface of a porous anode body made of a valve metal from which an anode lead wire is derived, and an insulating thin film is formed on an insulating defect portion of the dielectric oxide film. A solid electrolyte layer, a graphite layer, and a silver paste layer are sequentially formed on the surface of the insulator thin film, external terminals are connected to the anode lead wire and the silver paste layer, respectively, and a part of the external terminals is exposed. A solid electrolytic capacitor having a mold exterior so that the insulating thin film is made of glass and formed by electrophoresis so as to cover an insulating defect portion of the dielectric oxide film. Solid electrolytic capacitor. 陽極リード線が導出された弁作用金属からなる多孔質陽極体の表面に誘電体酸化皮膜が形成され、前記誘電体酸化皮膜の絶縁欠陥部に絶縁体薄膜が形成され、前記誘電体酸化皮膜と前記絶縁体薄膜の表面に、固体電解質層、グラファイト層、銀ペースト層が順次積層形成され、前記陽極リード線と前記銀ペースト層のそれぞれに外部端子が接続され、前記外部端子の一部を露出させるようにモールド外装を施してなる固体電解コンデンサの製造方法であって、前記絶縁体薄膜は、ガラスよりなり、前記誘電体酸化皮膜の絶縁欠陥部を覆うように電気泳動法で形成することを特徴とする固体電解コンデンサの製造方法。   A dielectric oxide film is formed on the surface of a porous anode body made of a valve metal from which an anode lead wire is derived, and an insulating thin film is formed on an insulating defect portion of the dielectric oxide film. A solid electrolyte layer, a graphite layer, and a silver paste layer are sequentially formed on the surface of the insulator thin film, external terminals are connected to the anode lead wire and the silver paste layer, respectively, and a part of the external terminals is exposed. A method of manufacturing a solid electrolytic capacitor having a molded outer casing, wherein the insulator thin film is made of glass and formed by electrophoresis so as to cover an insulation defect portion of the dielectric oxide film. A method for producing a solid electrolytic capacitor.
JP2008039906A 2008-02-21 2008-02-21 Solid electrolytic capacitor and manufacturing method therefor Pending JP2009200224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039906A JP2009200224A (en) 2008-02-21 2008-02-21 Solid electrolytic capacitor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039906A JP2009200224A (en) 2008-02-21 2008-02-21 Solid electrolytic capacitor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2009200224A true JP2009200224A (en) 2009-09-03

Family

ID=41143421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039906A Pending JP2009200224A (en) 2008-02-21 2008-02-21 Solid electrolytic capacitor and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2009200224A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8542475B2 (en) * 2009-10-09 2013-09-24 The Penn State Research Foundation Self healing high energy glass capacitors
WO2020111093A1 (en) * 2018-11-30 2020-06-04 パナソニックIpマネジメント株式会社 Electrolytic capacitor and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8542475B2 (en) * 2009-10-09 2013-09-24 The Penn State Research Foundation Self healing high energy glass capacitors
WO2020111093A1 (en) * 2018-11-30 2020-06-04 パナソニックIpマネジメント株式会社 Electrolytic capacitor and production method therefor

Similar Documents

Publication Publication Date Title
US8482902B2 (en) Solid electrolytic capacitor element and manufacturing method therefor
US6661645B1 (en) Solid electrolytic capacitor and manufacturing method thereof
US20090237865A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP2009182157A (en) Solid-state electrolytic capacitor
CN104603896B (en) Solid electrolytic capacitor
US6865070B2 (en) Solid electrolytic capacitor
JP2015109329A (en) Method for forming solid electrolytic capacitor
JP6142292B2 (en) Solid electrolytic capacitor
JP5623214B2 (en) Solid electrolytic capacitor
JP2011193035A (en) Solid electrolytic capacitor element, method for manufacturing the same, and solid electrolytic capacitor
JP2011193035A5 (en)
JP2009200224A (en) Solid electrolytic capacitor and manufacturing method therefor
JP4259794B2 (en) Manufacturing method of solid electrolytic capacitor
JP2009130339A (en) Method for manufacturing solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
JP6227233B2 (en) Solid electrolytic capacitor
JP2006294843A (en) Solid electrolytic capacitor and its manufacturing method
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
JP5273736B2 (en) Manufacturing method of solid electrolytic capacitor
JP4818006B2 (en) Solid electrolytic capacitor element, manufacturing method thereof and solid electrolytic capacitor
JP2009130307A (en) Solid electrolytic capacitor and its manufacturing method
JP2001203128A (en) Method of manufacturing solid electrolytic capacitor
JP2009194266A (en) Solid electrolytic capacitor, and method of manufacturing the same
JP2007095801A (en) Manufacturing method of solid-state electrolytic capacitor
JP2008226971A (en) Manufacturing method for solid electrolytic capacitor