JP2009194019A - Heat dissipating method, heat dissipating apparatus, semiconductor chip, and electronic equipment - Google Patents

Heat dissipating method, heat dissipating apparatus, semiconductor chip, and electronic equipment Download PDF

Info

Publication number
JP2009194019A
JP2009194019A JP2008030581A JP2008030581A JP2009194019A JP 2009194019 A JP2009194019 A JP 2009194019A JP 2008030581 A JP2008030581 A JP 2008030581A JP 2008030581 A JP2008030581 A JP 2008030581A JP 2009194019 A JP2009194019 A JP 2009194019A
Authority
JP
Japan
Prior art keywords
refrigerant liquid
heat
pipe
power
temperature refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008030581A
Other languages
Japanese (ja)
Inventor
Masafumi Kawanaka
雅史 川中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008030581A priority Critical patent/JP2009194019A/en
Publication of JP2009194019A publication Critical patent/JP2009194019A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat dissipating method and a heat dissipating apparatus which do not invite an increase in power consumption and provide high cooling and heat dissipation efficiency, and to provide a semiconductor chip and electronic equipment that have the heat dissipating apparatus. <P>SOLUTION: The heat dissipating apparatus circulates a cooling medium liquid between a heater 1 and a heat exchanger 4 by a cooling medium circulating pump 5 so that heat generated by the heater 1 is dissipated by the heat exchanger 4. The heat dissipating apparatus includes a thermoelectric conversion element 6 that converts a temperature difference between a high-temperature cooling medium liquid pipeline through which the cooling medium liquid at high temperature flows and a low-temperature cooling medium liquid pipeline through which the cooling medium liquid at low temperature flows, into electric power. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、消費エネルギーが少なく、放熱効率に優れた放熱方法及び装置、並びにその放熱装置を備えた半導体チップ及び電子機器に関する。   The present invention relates to a heat dissipation method and apparatus with low energy consumption and excellent heat dissipation efficiency, and a semiconductor chip and an electronic device including the heat dissipation apparatus.

半導体デバイスなどの高い熱を発する発熱体を冷却する放熱装置としては、特許文献1や特許文献2のように、冷媒液と外部放熱器とポンプとを組み合わせ、発熱体と放熱器とを冷媒液循環パイプなどで接続した冷媒システムが提案されている。   As a heat radiating device that cools a heating element that emits high heat, such as a semiconductor device, as in Patent Document 1 and Patent Document 2, a refrigerant liquid, an external radiator, and a pump are combined, and the heating element and the radiator are combined with a refrigerant liquid. A refrigerant system connected with a circulation pipe has been proposed.

また、特許文献3や特許文献4のように、発熱体と冷却機構との間に熱電変換素子を挿入して、熱電変換素子にて得られた電力を利用して強制空冷する放熱システムが提案されている。
特開平5−136305号公報 特開平5−335454号公報 特開2005−26473号公報 特開2005−136212号公報
Also, as in Patent Document 3 and Patent Document 4, a heat dissipation system is proposed in which a thermoelectric conversion element is inserted between a heating element and a cooling mechanism, and forced air cooling is performed using electric power obtained by the thermoelectric conversion element. Has been.
JP-A-5-136305 JP-A-5-335454 JP 2005-26473 A JP 2005-136212 A

特許文献1や特許文献2のような構成では、冷媒を循環させて外部放熱器にて熱交換するため発熱体の冷却・放熱の効率は高いものの、冷媒を循環させるポンプが必要であるためポンプを駆動させる電力が必要となるという問題がある。   In configurations such as Patent Document 1 and Patent Document 2, since the refrigerant is circulated and heat exchange is performed by an external radiator, the efficiency of cooling and radiating the heating element is high, but a pump for circulating the refrigerant is necessary. There is a problem that electric power for driving is required.

また、特許文献3や特許文献4のような構成では、発熱体と冷却機構との間に熱電変換素子を挿入するため、発熱体と冷却機構とを直接接触させる構成と比較すると冷却効率が低いという問題がある。   Further, in the configurations such as Patent Document 3 and Patent Document 4, since the thermoelectric conversion element is inserted between the heating element and the cooling mechanism, the cooling efficiency is lower than the structure in which the heating element and the cooling mechanism are in direct contact. There is a problem.

本発明は係る問題に鑑みてなされたものであり、電力消費の増加を招くことがなく、冷却・放熱効率の高い放熱方法及び装置、並びにその放熱装置を備えた半導体チップ及び電子機器を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a heat dissipation method and apparatus having high cooling and heat dissipation efficiency without causing an increase in power consumption, and a semiconductor chip and an electronic apparatus including the heat dissipation apparatus. For the purpose.

上記目的を達成するため、本発明は、第1の態様として、発熱体と外部放熱器との間で冷媒液をポンプによって循環させて、発熱体で発生した熱を外部放熱器において放熱する放熱装置であって、高温度の冷媒液が流れている高温度冷媒液配管と低温度の冷媒液が流れている低温度冷媒液配管との温度差を電力に変換する熱電変換手段と、高温度冷媒液配管と低温度冷媒液配管との温度差を動力に変換する熱動力変換手段との少なくとも一方を有することを特徴とする放熱装置を提供するものである。   In order to achieve the above object, the present invention provides, as a first aspect, heat dissipation in which a refrigerant liquid is circulated between a heating element and an external radiator by a pump, and heat generated in the heating element is radiated in the external radiator. Thermoelectric conversion means for converting a temperature difference between a high-temperature refrigerant liquid pipe through which a high-temperature refrigerant liquid flows and a low-temperature refrigerant liquid pipe through which a low-temperature refrigerant liquid is flowing into electric power, and a high temperature It is an object of the present invention to provide a heat dissipating device having at least one of thermopower conversion means for converting a temperature difference between a refrigerant liquid pipe and a low temperature refrigerant liquid pipe into power.

また、上記目的を達成するため、本発明は、第2の態様として、上記本発明の第1の態様に係る放熱装置を備えた半導体チップを提供するものである。   Moreover, in order to achieve the said objective, this invention provides the semiconductor chip provided with the thermal radiation apparatus which concerns on the said 1st aspect of the said this invention as a 2nd aspect.

また、上記目的を達成するため、本発明は、第3の態様として、上記本発明の第1の態様に係る放熱装置を備えた電子機器を提供するものである。   Moreover, in order to achieve the said objective, this invention provides the electronic device provided with the thermal radiation apparatus which concerns on the said 1st aspect of the said this invention as a 3rd aspect.

また、上記目的を達成するため、本発明は、第4の態様として、発熱体と外部放熱器との間で冷媒液をポンプによって循環させて、発熱体で発生した熱を外部放熱器において放熱する放熱方法であって、高温度の冷媒液が流れている配管と低温度の冷媒液が流れている配管との温度差を電力及び動力の少なくとも一方に変換し、変換した電力及び動力の少なくとも一部をポンプの駆動に用いることを特徴とする放熱方法を提供するものである。   In order to achieve the above object, as a fourth aspect of the present invention, a refrigerant liquid is circulated between the heating element and the external radiator by a pump, and the heat generated in the heating element is radiated in the external radiator. A heat dissipation method for converting a temperature difference between a pipe through which a high-temperature refrigerant liquid flows and a pipe through which a low-temperature refrigerant liquid flows into at least one of electric power and power, and at least the converted electric power and power The present invention provides a heat dissipation method characterized in that a part is used for driving a pump.

本発明によれば、電力消費の増加を招くことがなく、冷却・放熱効率の高い放熱方法及び装置、並びにその放熱装置を備えた半導体チップ及び電子機器を提供できる。   According to the present invention, it is possible to provide a heat dissipation method and apparatus with high cooling and heat dissipation efficiency, and a semiconductor chip and an electronic device including the heat dissipation apparatus without causing an increase in power consumption.

本発明では、冷却液と外部放熱器とポンプとを組み合わせた放熱装置において、高温度の冷媒液が流れている配管と低温度の冷媒液が流れている配管との間に、高温度と低温度との温度差を電力に変換する熱電変換機構又は動力に変換する熱動力変換機構を配置する。
例えば、半導体素子と伝熱的に面接触したプレートと、プレートに穿った冷媒液通路を経由して放熱器、冷媒液循環ポンプとの間にて冷媒液を循環させる冷媒液循環回路において、高温度の冷媒液が流れている配管と低温度の冷媒液が流れている配管との間に、熱電変換素子又はスターリングエンジンを配置する。
熱電変換素子を配置する場合には、熱電変換素子にて熱起電力を発生させ、冷媒液循環ポンプに電力を供給することが可能となる。また、余った電力を蓄電池に蓄積し、再利用することが可能となる。一方、スターリングエンジンを配置する構成の場合には、スターリングエンジンで発生した動力で冷媒液循環ポンプを駆動できる。また、余った回転エネルギーで発電機を駆動することにより、電力として蓄電池に蓄積し、再利用することが可能となる。
In the present invention, in a heat dissipation device that combines a coolant, an external radiator, and a pump, a high temperature and a low temperature are provided between a pipe through which a high-temperature refrigerant liquid flows and a pipe through which a low-temperature refrigerant liquid flows. A thermoelectric conversion mechanism that converts a temperature difference from temperature into electric power or a thermopower conversion mechanism that converts power into power is disposed.
For example, in a refrigerant liquid circulation circuit that circulates a refrigerant liquid between a plate in thermal contact with a semiconductor element and a radiator and a refrigerant liquid circulation pump through a refrigerant liquid passage formed in the plate, A thermoelectric conversion element or a Stirling engine is arranged between the pipe through which the low-temperature refrigerant liquid flows and the pipe through which the low-temperature refrigerant liquid flows.
When the thermoelectric conversion element is disposed, it is possible to generate thermoelectromotive force in the thermoelectric conversion element and supply electric power to the refrigerant liquid circulation pump. Further, surplus power can be accumulated in the storage battery and reused. On the other hand, in the case of a configuration in which a Stirling engine is arranged, the refrigerant liquid circulation pump can be driven by power generated by the Stirling engine. Further, by driving the generator with surplus rotational energy, it can be stored in the storage battery as electric power and reused.

本発明に係る放熱装置では、特許文献3や特許文献4とは異なり、発熱体と冷媒液とが直接接触する構造を維持するため、特許文献1や特許文献2と同等の良好な冷却・放熱効率が得られる。
冷媒液循環ポンプを駆動させる電力又は動力を、放熱装置内部で発生・調達するため、電力消費を増加させることはない。従って、冷却・放熱効率が高く、消費電力の小さい放熱装置を実現できる。
その上、放熱装置内で発生した電力や動力に余剰がある場合には、これを蓄積することにより、廃熱を利用した電力再生と再利用とが可能となる。
Unlike the Patent Documents 3 and 4, the heat dissipating device according to the present invention maintains a structure in which the heating element and the refrigerant liquid are in direct contact with each other. Efficiency is obtained.
Electricity or power for driving the refrigerant circulation pump is generated and procured inside the heat radiating device, so that power consumption is not increased. Therefore, it is possible to realize a heat dissipating device having high cooling / heat dissipating efficiency and low power consumption.
In addition, if there is a surplus in the power and power generated in the heat dissipation device, it is possible to regenerate and reuse power using waste heat by accumulating this.

特許文献1や特許文献2では、CPUの発熱状態と冷媒液循環ポンプの回転数とが連動しないため、冷却液循環ポンプの回転数が必要以上に高くなり、必要以上に多くの電力を消費する。一方、本発明では、CPUの発熱状態が高い場合には高温冷媒液と低温冷媒液との温度差が大きくなり、より多くの電力又は動力が発生し、冷媒液循環ポンプの回転数が高くなる。このため、冷媒液の流れが速くなり、CPU冷却効率が高くなるという正のフィードバックが生じるため、最も効率のよい冷媒回転速度が維持され、最小限の電力又は動力にて放熱装置が動作する。   In Patent Document 1 and Patent Document 2, since the heat generation state of the CPU and the rotation speed of the refrigerant liquid circulation pump do not work together, the rotation speed of the cooling liquid circulation pump becomes higher than necessary and consumes more power than necessary. . On the other hand, in the present invention, when the heat generation state of the CPU is high, the temperature difference between the high-temperature refrigerant liquid and the low-temperature refrigerant liquid increases, more electric power or power is generated, and the rotation speed of the refrigerant liquid circulation pump increases. . For this reason, since positive flow feedback that the flow of the refrigerant liquid becomes faster and the CPU cooling efficiency becomes higher is generated, the most efficient refrigerant rotation speed is maintained, and the heat radiating device operates with the minimum electric power or power.

また、発熱体と受熱器との間に熱電変換素子を配置する特許文献3や特許文献4と比べると、発熱体に受熱器が直接接触する本発明は、モジュールを薄くできるため、CPU又は半導体チップの積層化などを容易に実現でき、CPU又は半導体チップの設計自由度が増大する。   Further, in comparison with Patent Document 3 and Patent Document 4 in which a thermoelectric conversion element is disposed between a heating element and a heat receiver, the present invention in which the heat receiver directly contacts the heating element can reduce the thickness of the module. Chip stacking and the like can be easily realized, and the degree of freedom in designing a CPU or a semiconductor chip is increased.

以下、上記の特徴を有する本発明の好適な実施の形態について説明する。   A preferred embodiment of the present invention having the above features will be described below.

〔第1の実施形態〕
図1に、本発明を好適に実施した第1の実施形態に係る放熱装置を搭載したCPUモジュールの概略構成を示す。図1に示すように、放熱装置は、発熱体であるCPU1と、CPU1から熱を吸い取る受熱器2と、熱を受け取る冷媒が循環する冷却液輸送パイプ3と、冷媒から熱を放出する熱交換器4と、冷媒を循環させる冷媒液循環ポンプ5とを有する。
[First Embodiment]
FIG. 1 shows a schematic configuration of a CPU module equipped with a heat dissipation device according to the first embodiment in which the present invention is preferably implemented. As shown in FIG. 1, the heat radiating device includes a CPU 1 that is a heating element, a heat receiver 2 that absorbs heat from the CPU 1, a coolant transport pipe 3 in which a refrigerant that receives heat circulates, and heat exchange that releases heat from the refrigerant. And a refrigerant liquid circulation pump 5 for circulating the refrigerant.

発熱体1に密着した受熱器2において、冷却された冷媒が熱を受け取り高温冷媒液となる。高温冷媒液は、冷却液輸送パイプ3を通じて熱交換器4に輸送され、熱交換器4にて高温冷媒液の熱は外部へ放熱される。そして、熱交換器4にて放熱することによって温度が低下した低温冷媒液は、冷媒液循環ポンプ5にて冷媒液輸送用パイプ3を介して受熱器2まで再び循環される。冷媒液輸送パイプ3において、高温度の冷媒液が流れている配管と低温度の冷媒液が流れている配管との間に熱電変換素子6が配置される。   In the heat receiver 2 that is in close contact with the heating element 1, the cooled refrigerant receives heat and becomes a high-temperature refrigerant liquid. The high-temperature refrigerant liquid is transported to the heat exchanger 4 through the coolant transport pipe 3, and the heat of the high-temperature refrigerant liquid is radiated to the outside by the heat exchanger 4. Then, the low-temperature refrigerant liquid whose temperature has been reduced by releasing heat in the heat exchanger 4 is circulated again to the heat receiver 2 through the refrigerant liquid transport pipe 3 by the refrigerant liquid circulation pump 5. In the refrigerant liquid transport pipe 3, the thermoelectric conversion element 6 is disposed between a pipe through which a high-temperature refrigerant liquid flows and a pipe through which a low-temperature refrigerant liquid flows.

具体的な構成例を挙げると、発熱体1としてのCPU又は半導体素子に対して伝熱的に面接触した受熱器2としてのプレートと、熱交換器4としての放熱器との間で、プレートに穿たれた冷媒液通路を経由して冷媒液循環ポンプ5によって冷媒液が循環される冷媒液循環回路3において、高温度の冷媒液が流れている配管と低温度の冷媒液が流れている配管との間に熱電変換素子6を配置する。高温度冷媒液の接合部と低温度冷媒液の接合部との間にゼーベック効果を有するn型半導体及びp型半導体を交互に敷き詰めて相互に直列接続することによって、低温接合部のn型半導体端とp型半導体端との間に熱起電力が発生し、熱を電力に変換する。   As a specific configuration example, a plate between the plate as the heat receiver 2 that is in surface contact with the CPU or the semiconductor element as the heating element 1 and the radiator as the heat exchanger 4 In the refrigerant liquid circulation circuit 3 in which the refrigerant liquid is circulated by the refrigerant liquid circulation pump 5 through the refrigerant liquid passage bored in the pipe, the pipe through which the high-temperature refrigerant liquid flows and the low-temperature refrigerant liquid are flowing. The thermoelectric conversion element 6 is arranged between the pipes. An n-type semiconductor having a low-temperature junction is formed by alternately laying n-type semiconductors and p-type semiconductors having a Seebeck effect between the high-temperature refrigerant liquid junction and the low-temperature refrigerant liquid junction and connecting them in series. A thermoelectromotive force is generated between the end and the p-type semiconductor end to convert heat into electric power.

上記のように、特許文献3や特許文献4では、発熱体と受熱器との間に熱電変換素子を配置するため、発熱体と受熱器との熱交換効率が低下し、冷却・放熱効率が低下する。これに対し本実施形態においては、発熱体1と発熱体1から熱を吸いとる受熱器2との間に他の部材を配置しないため、特許文献1や特許文献2と同様の高い冷却効率を維持しつつ、廃熱から電力を再生できる。また、発熱体1に受熱器2を直接接続するため、特許文献3や特許文献4のような構成と比較して、モジュールを薄くすることができる。このため、CPU又は半導体素子11の積層化などを容易に実現でき、CPU又は半導体素子11の設計自由度が高くなる。   As described above, in Patent Document 3 and Patent Document 4, since the thermoelectric conversion element is disposed between the heat generator and the heat receiver, the heat exchange efficiency between the heat generator and the heat receiver is reduced, and the cooling and heat dissipation efficiency is improved. descend. On the other hand, in this embodiment, since no other member is disposed between the heating element 1 and the heat receiver 2 that absorbs heat from the heating element 1, high cooling efficiency similar to that of Patent Document 1 and Patent Document 2 is achieved. Electricity can be regenerated from waste heat while maintaining. Further, since the heat receiver 2 is directly connected to the heating element 1, the module can be made thinner as compared with configurations such as Patent Document 3 and Patent Document 4. For this reason, stacking of the CPU or the semiconductor element 11 can be easily realized, and the degree of freedom in designing the CPU or the semiconductor element 11 is increased.

さらに、温度差を利用して生成した電力を、冷媒液循環ポンプ5の駆動電力として印加することにより、新たに電力を消費することなく冷媒液循環ポンプ5を駆動制御できる。特許文献1や特許文献2では、CPUの発熱状態と冷媒液循環ポンプの回転数とが連動しないため、冷却液循環ポンプの回転数が必要以上に高くなり、必要以上に多くの電力を消費する。一方、本発明では、発熱体1の発熱状態が高い場合には高温冷媒液と低温冷媒液との温度差が大きくなり、より多くの電力が発生し、冷媒液循環ポンプ5の回転数が高くなる。このため、冷媒液の流れが速くなり、発熱体1の冷却効率が高くなるという正のフィードバックが生じるため、最も効率のよい冷媒回転速度が維持され、最小限の電力にて放熱装置が動作する。   Furthermore, by applying the electric power generated by utilizing the temperature difference as the driving electric power for the refrigerant liquid circulation pump 5, it is possible to drive and control the refrigerant liquid circulation pump 5 without newly consuming electric power. In Patent Document 1 and Patent Document 2, since the heat generation state of the CPU and the rotation speed of the refrigerant liquid circulation pump do not work together, the rotation speed of the cooling liquid circulation pump becomes higher than necessary and consumes more power than necessary. . On the other hand, in the present invention, when the heat generation state of the heating element 1 is high, the temperature difference between the high-temperature refrigerant liquid and the low-temperature refrigerant liquid is large, more electric power is generated, and the rotation speed of the refrigerant liquid circulation pump 5 is high. Become. For this reason, since the flow of the refrigerant liquid becomes faster and positive feedback occurs that the cooling efficiency of the heating element 1 is increased, the most efficient refrigerant rotation speed is maintained, and the heat radiating device operates with the least power. .

しかも、冷媒液循環ポンプ5を駆動するための電力よりも熱電変換素子6で発生する電力の方が大きい場合には、図2示すように余剰電力を蓄電池8などに蓄積すれば電力を再利用することが可能となる。   In addition, when the electric power generated by the thermoelectric conversion element 6 is larger than the electric power for driving the refrigerant liquid circulation pump 5, if the surplus electric power is accumulated in the storage battery 8 or the like as shown in FIG. It becomes possible to do.

本実施形態に係る放熱装置に適用する冷媒液、冷媒液循環ポンプ5、受熱器2、放熱器4、冷媒液輸送用パイプ3、熱電変換素子6などは、公知のものを適用可能であり、その材料、寸法、形状などは特に限定されない。   As the refrigerant liquid, the refrigerant liquid circulation pump 5, the heat receiver 2, the radiator 4, the refrigerant liquid transport pipe 3, the thermoelectric conversion element 6 and the like applied to the heat dissipation device according to this embodiment, known ones can be applied. The material, dimensions, shape, etc. are not particularly limited.

〔第2の実施形態〕
図3に、本発明を好適に実施した第2の実施形態に係る放熱装置を搭載したCPUモジュールの概略構成を示す。第1の実施形態との相違は、熱電変換素子6の代わりにスターリングエンジン7が設置されている点である。スターリングエンジン7は、公知のものを適用可能である。
[Second Embodiment]
FIG. 3 shows a schematic configuration of a CPU module equipped with a heat dissipation device according to the second embodiment in which the present invention is preferably implemented. The difference from the first embodiment is that a Stirling engine 7 is installed instead of the thermoelectric conversion element 6. A known engine can be used as the Stirling engine 7.

具体的な構成例を挙げると、発熱体1としてのCPU又は半導体素子に対して伝熱的に面接触した受熱器2としてのプレートと、熱交換器4としての放熱器との間で、プレートに穿たれた冷媒液通路を経由して冷媒液循環ポンプ5によって冷媒液が循環される冷媒液循環回路3において、高温度の冷媒液が流れている配管と低温度の冷媒液が流れている配管との間にスターリングエンジン7を配置する。高温度冷媒液の接合部に高温側シリンダを、低温度冷媒液の接合部に低温側シリンダを配置することにより、スターリングエンジン7が「加熱」、「膨張」、「冷却」、「圧縮」の各工程からなるサイクルを繰り返す。これらの進退動作をクランク軸の回転動作に変換することにより、冷媒液循環ポンプ5を回転させることが可能となる。   As a specific configuration example, a plate between the plate as the heat receiver 2 that is in surface contact with the CPU or the semiconductor element as the heating element 1 and the radiator as the heat exchanger 4 In the refrigerant liquid circulation circuit 3 in which the refrigerant liquid is circulated by the refrigerant liquid circulation pump 5 through the refrigerant liquid passage bored in the pipe, the pipe through which the high-temperature refrigerant liquid flows and the low-temperature refrigerant liquid are flowing. A Stirling engine 7 is disposed between the pipes. By arranging the high temperature side cylinder at the junction of the high temperature refrigerant liquid and the low temperature side cylinder at the junction of the low temperature refrigerant liquid, the Stirling engine 7 can perform “heating”, “expansion”, “cooling”, “compression”. The cycle consisting of each process is repeated. The refrigerant liquid circulation pump 5 can be rotated by converting these advance / retreat operations into the rotation operation of the crankshaft.

本実施形態においては、温度差を利用して生成した動力を、冷媒液循環ポンプ5の駆動電力として使用することにより、新たに電力を消費することなく冷媒液循環ポンプ5を駆動制御できる。特許文献1や特許文献2では、CPUの発熱状態と冷媒液循環ポンプの回転数とが連動しないため、冷却液循環ポンプの回転数が必要以上に高くなり、必要以上に多くの電力を消費する。一方、本発明では、発熱体1の発熱状態が高い場合には高温冷媒液と低温冷媒液との温度差が大きくなり、より多くの動力が発生し、冷媒液循環ポンプ5の回転数が高くなる。このため、冷媒液の流れが速くなり、発熱体1の冷却効率が高くなるという正のフィードバックが生じるため、最も効率のよい冷媒回転速度が維持され、最小限の電力にて放熱装置が動作する。   In the present embodiment, by using the power generated by utilizing the temperature difference as the driving power for the refrigerant liquid circulation pump 5, the refrigerant liquid circulation pump 5 can be driven and controlled without newly consuming electric power. In Patent Document 1 and Patent Document 2, since the heat generation state of the CPU and the rotation speed of the refrigerant liquid circulation pump do not work together, the rotation speed of the cooling liquid circulation pump becomes higher than necessary and consumes more power than necessary. . On the other hand, in the present invention, when the heat generation state of the heating element 1 is high, the temperature difference between the high-temperature refrigerant liquid and the low-temperature refrigerant liquid becomes large, more power is generated, and the rotation speed of the refrigerant liquid circulation pump 5 is high. Become. For this reason, since the flow of the refrigerant liquid becomes faster and positive feedback occurs that the cooling efficiency of the heating element 1 is increased, the most efficient refrigerant rotation speed is maintained, and the heat radiating device operates with the least power. .

しかも、冷媒液循環ポンプ5を駆動するために要する力よりも熱動力変換素子7で発生する動力の方が大きい場合には、図4示すように余剰動力で発電機9を駆動し、発生した電力を蓄電池8に蓄積すれば電力を再利用することが可能となる。   In addition, when the power generated by the thermal power conversion element 7 is larger than the power required to drive the refrigerant circulation pump 5, the generator 9 is driven by surplus power as shown in FIG. If the electric power is stored in the storage battery 8, the electric power can be reused.

この他の点については、上記第1の実施形態と同様であるため、重複する説明は省略する。   Since the other points are the same as those in the first embodiment, a duplicate description is omitted.

なお、上記各実施形態は本発明の好適な実施の一例であり、本発明はこれに限定されることなく様々な変形が可能である。   Each of the above embodiments is an example of a preferred embodiment of the present invention, and the present invention is not limited to this and can be variously modified.

本発明を好適に実施した第1の実施形態に係る放熱装置の構成を示す図である。It is a figure which shows the structure of the thermal radiation apparatus which concerns on 1st Embodiment which implemented this invention suitably. 余剰電力を蓄積する蓄電池を設けた放熱装置の構成を示す図である。It is a figure which shows the structure of the thermal radiation apparatus provided with the storage battery which accumulate | stores surplus electric power. 本発明を好適に実施した第2の実施形態に係る放熱装置の構成を示す図である。It is a figure which shows the structure of the thermal radiation apparatus which concerns on 2nd Embodiment which implemented this invention suitably. 余剰動力によって発電した電力を蓄積する蓄電池を設けた放熱装置の構成を示す図である。It is a figure which shows the structure of the thermal radiation apparatus provided with the storage battery which accumulate | stores the electric power generated with the surplus motive power.

符号の説明Explanation of symbols

1 発熱体
2 受熱器
3 冷媒液輸送パイプ
4 熱交換器
5 冷媒液循環ポンプ
6 熱電変換素子
7 スターリングエンジン
8 蓄電池
9 発電機
DESCRIPTION OF SYMBOLS 1 Heat generating body 2 Heat receiver 3 Refrigerant liquid transport pipe 4 Heat exchanger 5 Refrigerant liquid circulation pump 6 Thermoelectric conversion element 7 Stirling engine 8 Storage battery 9 Generator

Claims (9)

発熱体と外部放熱器との間で冷媒液をポンプによって循環させて、前記発熱体で発生した熱を前記外部放熱器において放熱する放熱装置であって、高温度の冷媒液が流れている高温度冷媒液配管と低温度の冷媒液が流れている低温度冷媒液配管との温度差を電力に変換する熱電変換手段と、前記高温度冷媒液配管と前記低温度冷媒液配管との温度差を動力に変換する熱動力変換手段との少なくとも一方を有することを特徴とする放熱装置。   A heat radiating device that circulates refrigerant liquid between a heating element and an external radiator by a pump, and radiates heat generated in the heating element in the external radiator, in which high temperature refrigerant liquid flows Thermoelectric conversion means for converting the temperature difference between the temperature refrigerant liquid pipe and the low temperature refrigerant liquid pipe through which the low temperature refrigerant liquid is flowing into electric power; and the temperature difference between the high temperature refrigerant liquid pipe and the low temperature refrigerant liquid pipe A heat dissipating device comprising at least one of a heat power conversion means for converting the power into power. 前記熱電変換手段において変換した電力の少なくとも一部を前記ポンプの駆動に用いることを特徴とする請求項1記載の放熱装置。   The heat radiating device according to claim 1, wherein at least a part of the electric power converted by the thermoelectric converter is used for driving the pump. 前記熱動力変換手段において変換した動力の少なくとも一部を前記ポンプの駆動に用いることを特徴とする請求項1記載の放熱装置。   The heat radiating device according to claim 1, wherein at least a part of the power converted by the thermal power conversion means is used for driving the pump. 前記発熱体と伝熱的に接触したプレートに穿たれた冷媒液通路を経由して、前記外部放熱器と前記プレートとの間で前記冷媒液を循環させる冷媒液循環回路を有し、
前記熱電変換手段は、前記冷媒液循環回路において高温度の冷媒液が流れている配管と低温度の冷媒液が流れている配管との間に配置された熱電変換素子であることを特徴とする請求項1又は2記載の放熱装置。
A refrigerant liquid circulation circuit that circulates the refrigerant liquid between the external radiator and the plate via a refrigerant liquid passage formed in a plate that is in heat transfer contact with the heating element;
The thermoelectric conversion means is a thermoelectric conversion element disposed between a pipe through which a high-temperature refrigerant liquid flows and a pipe through which a low-temperature refrigerant liquid flows in the refrigerant liquid circulation circuit. The heat dissipation device according to claim 1 or 2.
前記発熱体と伝熱的に接触したプレートに穿たれた冷媒液通路を経由して、前記外部放熱器と前記プレートとの間で前記冷媒液を循環させる冷媒液循環回路を有し、
前記熱動力変換手段は、前記冷媒液循環回路において高温度の冷媒液が流れている配管と低温度の冷媒液が流れている配管との間に配置されたスターリングエンジンであることを特徴とする請求項1又は3記載の放熱装置。
A refrigerant liquid circulation circuit that circulates the refrigerant liquid between the external radiator and the plate via a refrigerant liquid passage formed in a plate that is in heat transfer contact with the heating element;
The thermal power conversion means is a Stirling engine disposed between a pipe through which a high-temperature refrigerant liquid flows and a pipe through which a low-temperature refrigerant liquid flows in the refrigerant liquid circulation circuit. The heat dissipation device according to claim 1 or 3.
前記熱電変換手段において変換された電力、及び前記熱動力変換手段によって変換された動力で駆動される発電機によって発電された電力の少なくとも一方によって充電可能な蓄電池を有することを特徴とする請求項1から5のいずれか1項記載の放熱構造。   2. A storage battery that can be charged by at least one of the electric power converted by the thermoelectric conversion means and the electric power generated by a generator driven by the power converted by the thermopower conversion means. 6. The heat dissipation structure according to any one of items 1 to 5. 請求項1から6のいずれか1項記載の放熱構造を備えた半導体チップ。   A semiconductor chip comprising the heat dissipation structure according to claim 1. 請求項1から6のいずれか1項記載の放熱構造を備えた電子機器。   The electronic device provided with the thermal radiation structure of any one of Claim 1 to 6. 発熱体と外部放熱器との間で冷媒液をポンプによって循環させて、前記発熱体で発生した熱を前記外部放熱器において放熱する放熱方法であって、高温度の冷媒液が流れている配管と低温度の冷媒液が流れている配管との温度差を電力及び動力の少なくとも一方に変換し、変換した電力及び動力の少なくとも一部を前記ポンプの駆動に用いることを特徴とする放熱方法。   A heat dissipation method in which a refrigerant liquid is circulated by a pump between a heating element and an external radiator to dissipate heat generated in the heating element in the external radiator, and a pipe through which a high-temperature refrigerant liquid flows And a pipe through which a low-temperature refrigerant liquid flows are converted into at least one of electric power and power, and at least a part of the converted electric power and power is used for driving the pump.
JP2008030581A 2008-02-12 2008-02-12 Heat dissipating method, heat dissipating apparatus, semiconductor chip, and electronic equipment Withdrawn JP2009194019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030581A JP2009194019A (en) 2008-02-12 2008-02-12 Heat dissipating method, heat dissipating apparatus, semiconductor chip, and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030581A JP2009194019A (en) 2008-02-12 2008-02-12 Heat dissipating method, heat dissipating apparatus, semiconductor chip, and electronic equipment

Publications (1)

Publication Number Publication Date
JP2009194019A true JP2009194019A (en) 2009-08-27

Family

ID=41075819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030581A Withdrawn JP2009194019A (en) 2008-02-12 2008-02-12 Heat dissipating method, heat dissipating apparatus, semiconductor chip, and electronic equipment

Country Status (1)

Country Link
JP (1) JP2009194019A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115036A (en) * 2009-11-30 2011-06-09 Fujitsu Ltd Power generation method using heat of heat generation source, and heat pipe apparatus
WO2013065196A1 (en) * 2011-11-04 2013-05-10 富士通株式会社 Microchannel cooling device, microchannel cooling system, and electronic instrument
WO2014087636A1 (en) * 2012-12-03 2014-06-12 日本電気株式会社 Electronic device cooling system
CN110267507A (en) * 2019-07-31 2019-09-20 广东机电职业技术学院 A kind of heat dissipating method and radiator for realizing driving using capture waste heat
WO2020258379A1 (en) * 2019-06-26 2020-12-30 东北大学 High-power chip closed liquid metal two-loop cooling system
JP2022043973A (en) * 2020-09-04 2022-03-16 台達電子工業股▲ふん▼有限公司 Electric vehicle charging module
CN110267507B (en) * 2019-07-31 2024-04-26 广东机电职业技术学院 Heat dissipation device driven by utilizing captured waste heat

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115036A (en) * 2009-11-30 2011-06-09 Fujitsu Ltd Power generation method using heat of heat generation source, and heat pipe apparatus
WO2013065196A1 (en) * 2011-11-04 2013-05-10 富士通株式会社 Microchannel cooling device, microchannel cooling system, and electronic instrument
JPWO2013065196A1 (en) * 2011-11-04 2015-04-02 富士通株式会社 Microchannel cooling device, microchannel cooling system, and electronic apparatus
US9468130B2 (en) 2011-11-04 2016-10-11 Fujitsu Limited Micro channel cooling device, micro channel cooling system, and electronic instrument
WO2014087636A1 (en) * 2012-12-03 2014-06-12 日本電気株式会社 Electronic device cooling system
JPWO2014087636A1 (en) * 2012-12-03 2017-01-05 日本電気株式会社 Electronic equipment cooling system
WO2020258379A1 (en) * 2019-06-26 2020-12-30 东北大学 High-power chip closed liquid metal two-loop cooling system
CN110267507A (en) * 2019-07-31 2019-09-20 广东机电职业技术学院 A kind of heat dissipating method and radiator for realizing driving using capture waste heat
CN110267507B (en) * 2019-07-31 2024-04-26 广东机电职业技术学院 Heat dissipation device driven by utilizing captured waste heat
JP2022043973A (en) * 2020-09-04 2022-03-16 台達電子工業股▲ふん▼有限公司 Electric vehicle charging module
US11758699B2 (en) 2020-09-04 2023-09-12 Delta Electronics, Inc. Charging module for electric vehicle

Similar Documents

Publication Publication Date Title
JP5484071B2 (en) Vehicle equipped with thermoelectric generator
US8522570B2 (en) Integrated circuit chip cooling using magnetohydrodynamics and recycled power
Yang et al. Advances in liquid metal science and technology in chip cooling and thermal management
KR100986657B1 (en) An apparatus for thermoelectric generator and cooling
US10443499B2 (en) Enhanced heat sink availability on gas turbine engines through the use of coolers
JP2012041033A (en) Heating part cooling structure for hybrid electric automobile
KR20140073703A (en) Device for generating electricity by using waste energy
JP4660240B2 (en) Temperature difference power generation system
CN102315585A (en) Air-cooling and heat-radiating device for high-power semiconductor laser module
JP2009194019A (en) Heat dissipating method, heat dissipating apparatus, semiconductor chip, and electronic equipment
CN106598181A (en) Heat dissipation apparatus and electronic device
KR102248103B1 (en) Vehicle power module using thermoelectric element
CN102446877A (en) Semiconductor cooling device
WO2018066250A1 (en) Energy conversion device
KR101753152B1 (en) A thermoelectric generator having heat exchanger using molten metal
CN108874082A (en) A kind of computer cabinet inside waste heat recovery plant
CN110970376A (en) High-performance chip heat dissipation device
JP4367362B2 (en) Waste heat recovery method and cooling bed
KR101651651B1 (en) System for cooling solar cell panel
Elghool et al. Investigation on the performance of a prototype of thermo-electric generation with heat pipe-heat sink
JP2011115036A (en) Power generation method using heat of heat generation source, and heat pipe apparatus
US8037693B2 (en) Method, apparatus, and system for cooling an object
JP2013143792A (en) Electric power generation system
JP2008143432A (en) In-vehicle power source device
WO2018158625A1 (en) Thermoelectric battery charger with independent economizer

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510