JP2009187886A - Method of manufacturing cadmium negative electrode of alkaline storage battery - Google Patents

Method of manufacturing cadmium negative electrode of alkaline storage battery Download PDF

Info

Publication number
JP2009187886A
JP2009187886A JP2008029040A JP2008029040A JP2009187886A JP 2009187886 A JP2009187886 A JP 2009187886A JP 2008029040 A JP2008029040 A JP 2008029040A JP 2008029040 A JP2008029040 A JP 2008029040A JP 2009187886 A JP2009187886 A JP 2009187886A
Authority
JP
Japan
Prior art keywords
active material
cadmium
paste
negative electrode
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008029040A
Other languages
Japanese (ja)
Inventor
Kazuki Onoda
一城 小野田
Takeya Ito
剛也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008029040A priority Critical patent/JP2009187886A/en
Publication of JP2009187886A publication Critical patent/JP2009187886A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method capable of obtaining a cadmium negative electrode of an alkaline storage battery which can improve an active material utilization rate without increasing the number of new processes. <P>SOLUTION: In the method of manufacturing the cadmium negative electrode 11 of an alkaline storage battery, the cadmium negative electrode 11 is formed by applying an active material paste containing a cadmium active material made of cadmium oxide as a major constituent and an organic high-polymer paste agent to an electrode substrate 11a. In this case, the manufacturing method includes an addition process of adding pyrophosphoric acid copper (Cu<SB>2</SB>P<SB>2</SB>O<SB>7</SB>) into the cadmium paste agent made of metal cadmium as a preliminary charged active material and the organic high-polymer paste agent as the major constituents, an active material paste preparation process of preparing the active material paste by kneading the cadmium paste agent added with the pyrophosphoric acid copper (Cu<SB>2</SB>P<SB>2</SB>O<SB>7</SB>) and the cadmium oxide (CdO) used as a main active material, and an active material applying process of forming an active material applied layer 11b by applying the active material paste to the electrode substrate 11a made of a conductive core. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、少なくとも酸化カドミウムを主体とするカドミウム活物質と有機高分子糊料とを含有する活物質ペーストを電極基板に塗布して形成するアルカリ蓄電池用カドミウム負極の製造方法に関する。   The present invention relates to a method for producing a cadmium negative electrode for an alkaline storage battery, wherein an active material paste containing at least a cadmium active material mainly composed of cadmium oxide and an organic polymer paste is applied to an electrode substrate.

従来、ニッケル−カドミウム蓄電池に用いられるカドミウム負極には焼結式負極と非焼結式負極とがある。焼結式負極はニッケル粉末を焼結して形成したニッケル焼結基板に水酸化カドミウム(Cd(OH)2)を主体とするカドミウム活物質を充填して作製されるものである。一方、非焼結式負極は酸化カドミウム(CdO)を主体とするカドミウム活物質と有機高分子糊料や合成繊維等とを混練して活物質ペーストを調製し、この活物質ペーストをパンチングメタル等の導電性芯体(電極基板)に塗布して作製されるものである。 Conventionally, cadmium negative electrodes used in nickel-cadmium storage batteries include sintered negative electrodes and non-sintered negative electrodes. The sintered negative electrode is manufactured by filling a nickel sintered substrate formed by sintering nickel powder with a cadmium active material mainly composed of cadmium hydroxide (Cd (OH) 2 ). On the other hand, a non-sintered negative electrode is prepared by kneading a cadmium active material mainly composed of cadmium oxide (CdO) with an organic polymer paste or synthetic fiber to prepare an active material paste. It is produced by applying to a conductive core (electrode substrate).

近年、電動工具等のコードレス機器においてニッケル−カドミウム蓄電池が使用されているが、それら機器の小型化・高出力化の流れを受け、ニッケル−カドミウム蓄電池に対して高容量化、高充填密度化が要請されている。そこで、ニッケル正極、カドミウム負極の特性を向上させるための開発が種々行われてきた。   In recent years, nickel-cadmium storage batteries have been used in cordless devices such as electric tools. However, due to the trend toward miniaturization and higher output of these devices, higher capacity and higher packing density have been achieved for nickel-cadmium storage batteries. It has been requested. Thus, various developments have been made to improve the characteristics of the nickel positive electrode and the cadmium negative electrode.

その一つとして、充電効率を向上させて活物質利用率を高めるための種々の提案がなされるようになった。例えば、特許文献1(特開平2−30066号公報)においては、カドミウム負極に酸化銅(CuO)を固形添加することにより、カドミウム負極の充電効率を向上させることが提案されている。   As one of them, various proposals for improving the charging efficiency and increasing the active material utilization rate have been made. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2-30066) proposes improving the charging efficiency of a cadmium negative electrode by adding copper oxide (CuO) to the cadmium negative electrode in a solid form.

また、特許文献2(特開昭63−308872号公報)においては、カドミウム負極を硫酸銅(CuSO4)溶液などの銅塩溶液に浸漬し、それをアルカリ電解液中で陰電解して予備放電を行うとともに、銅塩の一部あるいは全部を金属銅に変換することにより、カドミウム負極に金属銅の導電性マトリックスを形成する方法が提案されている。
特開平2−30065号公報 特開昭63−308872号公報
In Patent Document 2 (Japanese Patent Laid-Open No. 63-308772), a cadmium negative electrode is immersed in a copper salt solution such as a copper sulfate (CuSO 4 ) solution, and is subjected to a negative discharge in an alkaline electrolyte to perform a preliminary discharge. And a method of forming a conductive matrix of metallic copper on the cadmium negative electrode by converting a part or all of the copper salt into metallic copper.
Japanese Patent Laid-Open No. 2-30065 Japanese Unexamined Patent Publication No. 63-308872

しかしながら、上述した特許文献1にて提案されたカドミウム負極にあっては、酸化銅(CuO)は固形添加であるため、カドミウム活物質中に酸化銅(CuO)が均一に分散しがたく、導電性が充分に向上しないことが明らかになった。このため、活物質利用率が十分に向上しないという問題を生じた。   However, in the cadmium negative electrode proposed in Patent Document 1 described above, since copper oxide (CuO) is a solid addition, copper oxide (CuO) is not easily dispersed uniformly in the cadmium active material. It became clear that the property was not improved sufficiently. For this reason, the problem that the active material utilization rate did not improve sufficiently occurred.

また、上述した特許文献2にて提案された方法においては、カドミウム負極を作製した後、銅塩溶液に浸漬し、陰電解を行った後、水洗・乾燥を行うという新たな複数の工程が増えることとなる。このため、工程数の増加に伴い、製造効率が低下するという新たな問題が生じた。また、上述した特許文献2にて提案された方法においては、銅塩溶液に浸漬する代わりに、活物質中に予め硫酸銅(CuSO4)粉末を混合して用いることも開示されている。
ところが、溶媒に水を用いた場合、硫酸銅(CuSO4)粉末を活物質となる酸化カドミウム(CdO)に対して銅の質量換算で3質量%以上添加すると、ペースト混練時にペーストが固化し、ペースト混練工程やペーストの塗布工程でハンドリング性が悪化するという問題も生じた。
In addition, in the method proposed in Patent Document 2 described above, a new cadmium negative electrode is produced, and then immersed in a copper salt solution, subjected to negative electrolysis, and then subjected to a plurality of new steps of washing and drying. It will be. For this reason, the new problem that manufacturing efficiency fell with the increase in the number of processes occurred. Further, in the method proposed in Patent Document 2 described above, it is also disclosed that copper sulfate (CuSO 4 ) powder is mixed and used in advance in the active material instead of being immersed in a copper salt solution.
However, when water is used as the solvent, if the copper sulfate (CuSO 4 ) powder is added in an amount of 3% by mass or more in terms of the mass of copper with respect to cadmium oxide (CdO) as an active material, the paste is solidified during paste kneading, There was also a problem that handling properties deteriorated in the paste kneading process and the paste application process.

そこで、本発明においては上記の如き問題点を解決するためになされたものであって、新たな工程数を増やすことなく、活物質利用率が向上したアルカリ蓄電池用カドミウム負極を得ることができる製造方法を提供することを目的とするものである。   Therefore, in the present invention, it was made in order to solve the above-described problems, and a production capable of obtaining a cadmium negative electrode for an alkaline storage battery with an improved active material utilization rate without increasing the number of new processes. It is intended to provide a method.

本発明のアルカリ蓄電池用カドミウム負極の製造方法は、少なくとも酸化カドミウムを主体とするカドミウム活物質と有機高分子糊料とを含有する活物質ペーストを電極基板に塗布して形成するようにしている。そして、上記の如き目的を達成するため、予備充電活物質となる金属カドミウムと有機高分子糊料とを主体とするカドミウム糊料中にピロリン酸銅(Cu227)を添加するピロリン酸銅添加工程と、ピロリン酸銅(Cu227)が添加されたカドミウム糊料と主活物質となる酸化カドミウム(CdO)とを混練して活物質ペーストを調製する活物質ペースト調製工程と、活物質ペーストを導電性芯体からなる電極基板に塗布して活物質塗布層を形成する活物質塗布工程とを備えるようにしている。 In the method for producing a cadmium negative electrode for an alkaline storage battery of the present invention, an active material paste containing at least a cadmium active material mainly composed of cadmium oxide and an organic polymer paste is applied to an electrode substrate. In order to achieve the above object, pyrroline is obtained by adding copper pyrophosphate (Cu 2 P 2 O 7 ) to a cadmium paste mainly composed of metal cadmium as a precharge active material and an organic polymer paste. An active material paste preparation in which an active material paste is prepared by kneading an acid copper addition step, cadmium paste containing copper pyrophosphate (Cu 2 P 2 O 7 ) and cadmium oxide (CdO) as a main active material A process and an active material application step of applying an active material paste to an electrode substrate made of a conductive core to form an active material application layer.

ここで、カドミウム糊料中にピロリン酸銅(Cu227)を添加すると、ピロリン酸銅(Cu227)は糊料中に溶解されて極めて均一に分散することとなる。そして、ピロリン酸銅(Cu227)が均一に分散した糊料を主活物質となる酸化カドミウム(CdO)に混合し、混練すると、ピロリン酸銅(Cu227)が均一に分散した活物質ペーストを得ることができる。この場合、ピロリン酸銅(Cu227)として銅を添加すると、銅の質量換算で3質量%以上を添加しても、活物質ペーストの混練中にペーストの固化が起こらず、次工程でのハンドリング性を向上させることが可能となる。 Here, when copper pyrophosphate (Cu 2 P 2 O 7 ) is added to the cadmium paste, copper pyrophosphate (Cu 2 P 2 O 7 ) is dissolved in the paste and dispersed extremely uniformly. . Then, a paste in which copper pyrophosphate (Cu 2 P 2 O 7 ) is uniformly dispersed is mixed with cadmium oxide (CdO) as a main active material, and kneaded to obtain copper pyrophosphate (Cu 2 P 2 O 7 ). A uniformly dispersed active material paste can be obtained. In this case, when copper is added as copper pyrophosphate (Cu 2 P 2 O 7 ), the solidification of the paste does not occur during the kneading of the active material paste even when 3% by mass or more in terms of copper is added. It becomes possible to improve the handleability in the process.

そして、このようにして作製された活物質ペーストを導電性芯体からなる電極基板に塗布すると、活物質層中にピロリン酸銅(Cu227)が均一に分散したカドミウム負極を得ることが可能となる。これにより、電池組立後の充電の際に緻密な銅の導電性ネットワークを形成させることが可能となる。この結果、新たな工程を増加させることなく、活物質ペーストの混練中にペーストの固化が起こらず、かつ、次工程でのハンドリング性が良好で、活物質利用率が向上したカドミウム負極を得ることが可能となる。 When the active material paste thus prepared is applied to an electrode substrate made of a conductive core, a cadmium negative electrode in which copper pyrophosphate (Cu 2 P 2 O 7 ) is uniformly dispersed in the active material layer is obtained. It becomes possible. This makes it possible to form a dense copper conductive network during charging after battery assembly. As a result, it is possible to obtain a cadmium negative electrode in which the solidification of the paste does not occur during the kneading of the active material paste, the handling property in the next step is good, and the active material utilization rate is improved without increasing the number of new steps. Is possible.

本発明においては、活物質層中にピロリン酸銅(Cu227)が均一に分散したカドミウム負極を得ることができるので、電池組立後の充電の際に緻密な銅の導電性ネットワークを形成させることが可能となる。これにより、新たな工程を増加させることなく、活物質ペーストの混練中にペーストの固化が起こらず、かつ、次工程でのハンドリング性が良好で、活物質利用率が向上したカドミウム負極を提供することが可能となる。 In the present invention, since a cadmium negative electrode in which copper pyrophosphate (Cu 2 P 2 O 7 ) is uniformly dispersed in the active material layer can be obtained, a dense copper conductive network can be obtained at the time of charging after battery assembly. Can be formed. This provides a cadmium negative electrode in which paste solidification does not occur during the kneading of the active material paste without increasing new processes, the handling property in the next process is good, and the active material utilization rate is improved. It becomes possible.

ついで、本発明のアルカリ蓄電池用カドミウム負極の製造方法の一実施の形態を以下に説明するが、本発明は以下の実施の形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。なお、図1は本発明のニッケル−カドミウム蓄電池を模式的に示す断面図である。   Next, an embodiment of a method for producing a cadmium negative electrode for an alkaline storage battery according to the present invention will be described below. However, the present invention is not limited to the following embodiment at all, and is appropriately within a range not changing the gist thereof. It is possible to change and implement. In addition, FIG. 1 is sectional drawing which shows typically the nickel-cadmium storage battery of this invention.

1.カドミウム活物質ペースト
(1)活物質ペーストa
予備充電活物質となる金属カドミウム20質量部と、有機高分子糊料(例えば、ヒドロキシプロピルセルロース、ポリビニルアルコールなど)1質量部と、ナイロン繊維1質量部と、水和防止剤としてリン酸水素二ナトリウム(Na2HPO4)1質量部と、水30質量部とからなるカドミウム糊料中にピロリン酸銅(Cu227)を銅の質量換算で3質量部添加し、ピロリン酸銅(Cu227)をカドミウム糊料中に溶解させた。この後、主活物質となる酸化カドミウム80質量部に、上述したピロリン酸銅(Cu227)が溶解されたカドミウム糊料を混練して活物質ペーストを調製し、これを活物質ペーストaとした。
1. Cadmium active material paste (1) Active material paste a
20 parts by weight of metal cadmium serving as a precharge active material, 1 part by weight of an organic polymer paste (for example, hydroxypropylcellulose, polyvinyl alcohol, etc.), 1 part by weight of nylon fibers, and two hydrogen phosphates as an antihydration agent 3 parts by mass of copper pyrophosphate (Cu 2 P 2 O 7 ) in terms of copper mass was added to a cadmium paste consisting of 1 part by mass of sodium (Na 2 HPO 4 ) and 30 parts by mass of water, and copper pyrophosphate (Cu 2 P 2 O 7 ) was dissolved in the cadmium paste. Thereafter, an active material paste is prepared by kneading the above-described cadmium paste in which copper pyrophosphate (Cu 2 P 2 O 7 ) is dissolved in 80 parts by mass of cadmium oxide serving as a main active material. It was set as paste a.

(2)活物質ペーストb
予備充電活物質となる金属カドミウム20質量部と、有機高分子糊料(例えば、ヒドロキシプロピルセルロース、ポリビニルアルコールなど)1質量部と、ナイロン繊維1質量部と、水和防止剤としてリン酸水素二ナトリウム(Na2HPO4)1質量部と、水30質量部とからなるカドミウム糊料を調製した。この後、主活物質となる酸化カドミウム80質量部に、上述したカドミウム糊料を混練してカドミウム活物質ペーストを調製し、これを活物質ペーストbとした。
(2) Active material paste b
20 parts by weight of metal cadmium serving as a precharge active material, 1 part by weight of an organic polymer paste (for example, hydroxypropylcellulose, polyvinyl alcohol, etc.), 1 part by weight of nylon fibers, and two hydrogen phosphates as an antihydration agent A cadmium paste comprising 1 part by mass of sodium (Na 2 HPO 4 ) and 30 parts by mass of water was prepared. Thereafter, the above-described cadmium paste was kneaded with 80 parts by mass of cadmium oxide serving as a main active material to prepare a cadmium active material paste, which was defined as an active material paste b.

(3)活物質ペーストc
予備充電活物質となる金属カドミウム20質量部と、有機高分子糊料(例えば、ヒドロキシプロピルセルロース、ポリビニルアルコールなど)1質量部と、ナイロン繊維1質量部と、水和防止剤としてリン酸水素二ナトリウム(Na2HPO4)1質量部と、水30質量部とからなるカドミウム糊料を調製した。この後、主活物質となる酸化カドミウム80質量部と、酸化銅(CuO)を銅の質量換算で3質量部と、上述したカドミウム糊料を混練してカドミウム活物質ペーストを調製し、これを活物質ペーストcとした。
(3) Active material paste c
20 parts by weight of metal cadmium serving as a precharge active material, 1 part by weight of an organic polymer paste (for example, hydroxypropylcellulose, polyvinyl alcohol, etc.), 1 part by weight of nylon fibers, and two hydrogen phosphates as an antihydration agent A cadmium paste comprising 1 part by mass of sodium (Na 2 HPO 4 ) and 30 parts by mass of water was prepared. Thereafter, 80 parts by mass of cadmium oxide serving as a main active material, 3 parts by mass of copper oxide (CuO) in terms of copper mass, and the above-described cadmium paste are mixed to prepare a cadmium active material paste. An active material paste c was obtained.

(4)活物質ペーストd
予備充電活物質となる金属カドミウム20質量部と、有機高分子糊料(例えば、ヒドロキシプロピルセルロース、ポリビニルアルコールなど)1質量部と、ナイロン繊維1質量部と、水和防止剤としてリン酸水素二ナトリウム(Na2HPO4)1質量部と、水30質量部とからなるカドミウム糊料中に硫酸銅(CuSO4)を銅の質量換算で3質量部添加し、硫酸銅(CuSO4)をカドミウム糊料中に溶解させた。この後、主活物質となる酸化カドミウム80質量部に、上述した硫酸銅(CuSO4)が溶解されたカドミウム糊料を混練してカドミウム活物質ペーストを調製し、これを活物質ペーストdとした。
(4) Active material paste d
20 parts by weight of metal cadmium serving as a precharge active material, 1 part by weight of an organic polymer paste (for example, hydroxypropylcellulose, polyvinyl alcohol, etc.), 1 part by weight of nylon fibers, and two hydrogen phosphates as an antihydration agent cadmium and sodium (Na 2 HPO 4) 1 part by weight, copper sulfate in cadmium pastes consisting of water 30 parts by mass (CuSO 4) were added 3 parts by weight in terms of copper, copper sulfate (CuSO 4) Dissolved in the paste. Thereafter, cadmium paste in which copper sulfate (CuSO 4 ) is dissolved in 80 parts by mass of cadmium oxide as a main active material is kneaded to prepare a cadmium active material paste, which is defined as an active material paste d. .

(5)活物質ペーストe
予備充電活物質となる金属カドミウム20質量部と、有機高分子糊料(例えば、ヒドロキシプロピルセルロース、ポリビニルアルコールなど)1質量部と、ナイロン繊維1質量部と、水和防止剤としてリン酸水素二ナトリウム(Na2HPO4)1質量部と、水30質量部とからなるカドミウム糊料中に酢酸銅(Cu(CH3COO)2)を銅の質量換算で3質量部添加し、酢酸銅(Cu(CH3COO)2)をカドミウム糊料中に溶解させた。この後、主活物質となる酸化カドミウム80質量部に、上述した酢酸銅(Cu(CH3COO)2)が溶解されたカドミウム糊料を混練してカドミウム活物質ペーストを調製し、これを活物質ペーストeとした。
(5) Active material paste e
20 parts by weight of metal cadmium serving as a precharge active material, 1 part by weight of an organic polymer paste (for example, hydroxypropylcellulose, polyvinyl alcohol, etc.), 1 part by weight of nylon fiber, and two hydrogen phosphates as an antihydration agent 3 parts by mass of copper acetate (Cu (CH 3 COO) 2 ) in terms of copper mass is added to a cadmium paste consisting of 1 part by mass of sodium (Na 2 HPO 4 ) and 30 parts by mass of water. Cu (CH 3 COO) 2 ) was dissolved in the cadmium paste. Thereafter, cadmium paste in which copper acetate (Cu (CH 3 COO) 2 ) is dissolved in 80 parts by mass of cadmium oxide as a main active material is kneaded to prepare a cadmium active material paste. Material paste e was designated.

(6)活物質ペーストの粘度の測定
ついで、得られた活物質ペーストa〜eの粘度(Pa・s)の測定を行うと、下記の表1に示すような結果が得られた。なお、下記の表1において、測定不能は粘度が800Pa・s以上で、活物質ペーストが固化していることを示している。

Figure 2009187886
(6) Measurement of Viscosity of Active Material Paste Next, when the viscosity (Pa · s) of the obtained active material pastes a to e was measured, the results shown in Table 1 below were obtained. In Table 1 below, measurement failure indicates that the viscosity is 800 Pa · s or more and the active material paste is solidified.
Figure 2009187886

上記表1の結果から明らかなように、カドミウム糊料中に硫酸銅(CuSO4)を添加した活物質ペーストd、およびカドミウム糊料中に酢酸銅(Cu(CH3COO)2)を添加した活物質ペーストeは、ペースト粘度が800Pa・s以上(測定不能)で、固化していることが分かった。 As is clear from the results in Table 1 above, active material paste d in which copper sulfate (CuSO 4 ) is added to cadmium paste, and copper acetate (Cu (CH 3 COO) 2 ) is added to cadmium paste. The active material paste e was found to have a paste viscosity of 800 Pa · s or higher (impossible to be measured) and solidified.

一方、カドミウム糊料中にピロリン酸銅(Cu227)を添加した活物質ペーストaにおいては、ペースト粘度が300Pa・sで、混練および芯体への塗布工程でのハンドリング性に問題のないペースト性状であることが分かった。また、銅化合物が無添加の活物質ペーストb、およびカドミウム糊料中ではなく、活物質ペースト中に酸化銅(CuO)の粉末を添加した活物質ペーストcについても、ペースト粘度がそれぞれ220Pa・sおよび250Pa・sで、混練および芯体への塗布工程でのハンドリング性に問題のないペースト性状であることが分かった。 On the other hand, in the active material paste a in which copper pyrophosphate (Cu 2 P 2 O 7 ) is added to the cadmium paste, the paste viscosity is 300 Pa · s, and there is a problem in handling properties in the kneading and coating process to the core. The paste was found to have no paste. Also, the active material paste b to which the copper compound is not added and the active material paste c in which the copper oxide (CuO) powder is added to the active material paste, not the cadmium paste, have a paste viscosity of 220 Pa · s, respectively. And 250 Pa · s, it was found that the paste properties had no problem in handling properties in the kneading and coating process on the core.

2.カドミウム負極
そこで、混練および芯体への塗布工程でのハンドリング性に問題のないペースト性状である活物質ペーストa,b,cを用いて、以下のようにしてカドミウム負極A,B,Cをそれぞれ作製した。この場合、まず、パンチングメタルよりなる導電性芯体(電極基板)11aを用意する。そして、この導電性芯体(電極基板)11aの両面に活物質ペーストa,b,cをそれぞれ塗布した後、乾燥させて導電性芯体(電極基板)11aの両面に活物質層11bを形成させた。その後、所定の厚みに圧延し、所定の寸法になるように切断して、カドミウム負極A,B,Cをそれぞれ作製した。なお、活物質ペーストaを用いたものをカドミウム負極Aとし、活物質ペーストbを用いたものをカドミウム負極Bとし、活物質ペーストcを用いたものをカドミウム負極Cとした。
2. Cadmium negative electrode Therefore, cadmium negative electrodes A, B, and C were respectively formed as follows using the active material pastes a, b, and c having paste properties with no problem in handling properties in the kneading and coating processes on the core. Produced. In this case, first, a conductive core (electrode substrate) 11a made of punching metal is prepared. Then, the active material pastes a, b, and c are respectively applied to both surfaces of the conductive core (electrode substrate) 11a and then dried to form the active material layers 11b on both surfaces of the conductive core (electrode substrate) 11a. I let you. Then, it rolled to the predetermined thickness and cut | disconnected so that it might become a predetermined dimension, and produced the cadmium negative electrodes A, B, and C, respectively. In addition, the thing using the active material paste a was used as the cadmium negative electrode A, the one using the active material paste b was used as the cadmium negative electrode B, and the one using the active material paste c was used as the cadmium negative electrode C.

3.ニッケル−カドミウム蓄電池簡易セル
ついで、上述のようにして作製したカドミウム負極A,B,Cを用いて、以下のようにしてニッケル−カドミウム蓄電池簡易セルを作製した。この場合、上述したカドミウム負極A,B,Cの表面積に対して十分大きな表面積を有するニッケル正極を用い、これらのカドミウム負極A,B,Cとニッケル正極とがそれぞれ対向するように、各簡易セル容器内にカドミウム負極A,B,Cとニッケル正極とを配設した。そして、これらの各簡易セル容器内に比重が1.2の水酸化カリウム(KOH)水溶液を注液してニッケル−カドミウム蓄電池簡易セルをそれぞれ作製した。
3. Nickel-cadmium battery simple cell Next, using the cadmium negative electrodes A, B, and C produced as described above, a nickel-cadmium battery simple cell was produced as follows. In this case, a nickel positive electrode having a sufficiently large surface area relative to the surface area of the cadmium negative electrodes A, B, and C described above is used, and each simple cell is arranged such that these cadmium negative electrodes A, B, C and the nickel positive electrode face each other. Cadmium negative electrodes A, B and C and a nickel positive electrode were disposed in the container. Then, a potassium hydroxide (KOH) aqueous solution having a specific gravity of 1.2 was injected into each of these simple cell containers to prepare nickel-cadmium storage battery simple cells.

ついで、上述のように作製した各ニッケル−カドミウム蓄電池簡易セルを用いて、25℃の温度雰囲気で、0.3Itの充電々流で16時間充電した後、2/3Itの放電々流で簡易セルの電圧が0.8Vになるまで放電させた。そして、このときの放電時間から各簡易セルの放電容量(W2)を求めた。ついで、各カドミウム負極A,B,Cの理論容量(W1)に対する得られた放電容量(W2)の比率を活物質利用率W(%)(W=(W2/W1)×100)として求めると、下記の表2に示すような結果となった。

Figure 2009187886
Next, using each nickel-cadmium storage battery simple cell produced as described above, charging was performed for 16 hours with a charging current of 0.3 It in a temperature atmosphere of 25 ° C., and then a simple cell with a discharging current of 2/3 It. The battery was discharged until the voltage became 0.8V. And the discharge capacity (W2) of each simple cell was calculated | required from the discharge time at this time. Then, when the ratio of the obtained discharge capacity (W2) to the theoretical capacity (W1) of each cadmium negative electrode A, B, C is determined as an active material utilization rate W (%) (W = (W2 / W1) × 100). The results shown in Table 2 below were obtained.
Figure 2009187886

上記表2の結果から以下のことが明らかになった。即ち、ピロリン酸銅の溶解や酸化銅添加の無いカドミウム負極Bを用いたセルの活物質利用率は71.9%と低いことが分かる。これに対して、活物質ペースト中に酸化銅(CuO)の粉末を添加した活物質ペーストcにより形成されたカドミウム負極Cを用いたセルの活物質利用率は77.3%で、無添加のカドミウム負極Bを用いたセルよりも向上していることが分かる。
さらに、カドミウム糊料中にピロリン酸銅(Cu227)を添加して調製された活物質ペーストaにより形成されたカドミウム負極Aを用いたセルの活物質利用率は79.7%で、酸化銅(CuO)の粉末を添加した活物質ペーストcにより形成されたカドミウム負極Cを用いたセルよりもさらに向上していることが分かる。
From the results in Table 2 above, the following became clear. That is, it can be seen that the active material utilization rate of the cell using the cadmium negative electrode B without dissolution of copper pyrophosphate and addition of copper oxide is as low as 71.9%. On the other hand, the active material utilization rate of the cell using the cadmium negative electrode C formed by the active material paste c in which the copper oxide (CuO) powder was added to the active material paste was 77.3%, which was not added. It turns out that it is improving rather than the cell using the cadmium negative electrode B. FIG.
Furthermore, the active material utilization rate of the cell using the cadmium negative electrode A formed by the active material paste a prepared by adding copper pyrophosphate (Cu 2 P 2 O 7 ) to the cadmium paste is 79.7%. Thus, it can be seen that the cell is further improved than the cell using the cadmium negative electrode C formed of the active material paste c to which the copper oxide (CuO) powder is added.

これは、ピロリン酸銅(Cu227)の溶解や酸化銅(CuO)の添加が無いことにより、カドミウム負極B中での導電性が劣るために、活物質利用率が低下したと考えられる。一方、活物質ペースト中に酸化銅(CuO)の粉末を添加することにより、カドミウム負極C中での導電性は多少は改善されるが、酸化銅(CuO)は固形添加であるため、カドミウム負極Cの活物質層中に均一に分散しがたく、導電性が充分に向上しないために活物質利用率が十分に向上しなかったと考えられる。 This is because the conductivity in the cadmium negative electrode B is inferior due to the lack of dissolution of copper pyrophosphate (Cu 2 P 2 O 7 ) and the addition of copper oxide (CuO), resulting in a decrease in active material utilization. Conceivable. On the other hand, by adding copper oxide (CuO) powder to the active material paste, the conductivity in the cadmium negative electrode C is somewhat improved, but since copper oxide (CuO) is a solid addition, the cadmium negative electrode It is considered that the active material utilization rate was not sufficiently improved because it was difficult to uniformly disperse in the C active material layer and the conductivity was not sufficiently improved.

これらに対して、カドミウム負極Aは、カドミウム糊料中にピロリン酸銅(Cu227)を添加、溶解させて、ピロリン酸銅(Cu227)を糊料中に極めて均一に分散させた後、主活物質となる酸化カドミウム(CdO)に混合し、混練して活物質ペーストとしている。そして、ピロリン酸銅(Cu227)が均一に分散した活物質ペーストを導電性芯体に塗布しているので、カドミウム負極Aの活物質層中にはピロリン酸銅(Cu227)が均一に分散して存在することとなる。これにより、電池組立後の充電の際に緻密な銅の導電性ネットワークを形成させることが可能となり、活物質利用率が十分に向上したと考えられる。 On the other hand, the cadmium negative electrode A is obtained by adding and dissolving copper pyrophosphate (Cu 2 P 2 O 7 ) in the cadmium paste and dissolving the copper pyrophosphate (Cu 2 P 2 O 7 ) in the paste. After being uniformly dispersed, it is mixed with cadmium oxide (CdO) as a main active material and kneaded to obtain an active material paste. Since copper pyrophosphate (Cu 2 P 2 O 7) is coated with a uniformly dispersed active material paste to the conductive core, the active material layer of the cadmium negative electrode A copper pyrophosphate (Cu 2 P 2 O 7 ) is present in a uniformly dispersed state. Thereby, it is possible to form a dense copper conductive network during charging after battery assembly, and the active material utilization rate is considered to be sufficiently improved.

4.ニッケル−カドミウム蓄電池
ついで、上述したカドミウム負極11を用いて、本発明に係るニッケル−カドミウム蓄電池10を作製する例について、図1に基づき、以下に説明する。
まず、発泡ニッケルからなる電極基板12aに水酸化ニッケルを主体とする正極活物質と結着剤とからなる正極活物質スラリー12bを充填する。ついで、乾燥後、所定の厚みになるまで圧延し、所定の寸法になるように切断して、ニッケル正極12を作製する。この場合、このニッケル正極12の電極基板12aの上端部には活物質が充填されていない活物質の未充填部12cが形成されるようにする。
4). Nickel-cadmium storage battery Next, an example of producing the nickel-cadmium storage battery 10 according to the present invention using the above-described cadmium negative electrode 11 will be described with reference to FIG.
First, an electrode substrate 12a made of foamed nickel is filled with a positive electrode active material slurry 12b made of a positive electrode active material mainly composed of nickel hydroxide and a binder. Next, after drying, it is rolled to a predetermined thickness and cut to a predetermined dimension to produce a nickel positive electrode 12. In this case, an active material unfilled portion 12 c that is not filled with an active material is formed at the upper end portion of the electrode substrate 12 a of the nickel positive electrode 12.

ついで、例えばナイロン製であるセパレータ13を用意し、このセパレータ13を上述のように作製されるカドミウム負極11の両面に配置するとともに、このセパレータ13の上にニッケル正極12を配置して帯状積層体とする。この場合、セパレータ13の上にニッケル正極12を配置するに際しては、ニッケル正極12の活物質の未充填部12cの下端部がセパレータ13の上端部に位置するように配置する。一方、セパレータ13の上にカドミウム負極11を配置するに際しては、カドミウム負極11の上端部から若干パレータ13の上端が突出するとともに、カドミウム負極11の下端部から所定の長さだけセパレータ13の下端が突出するように配置する。   Next, a separator 13 made of nylon, for example, is prepared, and the separator 13 is arranged on both surfaces of the cadmium negative electrode 11 produced as described above, and the nickel positive electrode 12 is arranged on the separator 13 to form a belt-like laminate. And In this case, when the nickel positive electrode 12 is arranged on the separator 13, the nickel positive electrode 12 is arranged so that the lower end portion of the unfilled portion 12 c of the nickel positive electrode 12 is positioned at the upper end portion of the separator 13. On the other hand, when the cadmium negative electrode 11 is disposed on the separator 13, the upper end of the pallet 13 slightly protrudes from the upper end portion of the cadmium negative electrode 11, and the lower end of the separator 13 extends from the lower end portion of the cadmium negative electrode 11 by a predetermined length. Arrange so that it protrudes.

ついで、上述のような配置関係となった帯状積層体を渦巻状に巻回して渦巻状電極群を形成する。ついで、渦巻状電極群の活物質の未塗布部11cの下に負極集電体14を配置して、この負極集電体14と活物質の未塗布部11cとを抵抗溶接する。また、渦巻状電極群の上に正極集電体15を配置して、この正極集電体15と未充填部12cとを抵抗溶接して、電極体を形成する。なお、正極集電体15には、この正極集電体15より延出してリード部15aが形成されている。ついで、上述のようにして作製された電極体を外装缶16内に挿入した後、負極集電体14と外装缶16の底部とを溶接する。   Subsequently, the strip-shaped laminate having the above-described arrangement relation is spirally wound to form a spiral electrode group. Next, the negative electrode current collector 14 is arranged under the active material uncoated portion 11c of the spiral electrode group, and the negative electrode current collector 14 and the active material uncoated portion 11c are resistance-welded. Further, the positive electrode current collector 15 is disposed on the spiral electrode group, and the positive electrode current collector 15 and the unfilled portion 12c are resistance-welded to form an electrode body. The positive electrode current collector 15 has a lead portion 15 a extending from the positive electrode current collector 15. Next, after the electrode body produced as described above is inserted into the outer can 16, the negative electrode current collector 14 and the bottom of the outer can 16 are welded.

また、正極蓋17aと正極キャップ17bとからなる封口体17を用意し、正極集電体15から延出するリード部15aを封口体17に設けられた正極蓋17aの底部に溶接する。ついで、外装缶16の上部外周面に溝入れ加工を施して環状溝部16aを形成する。この後、金属製外装缶16内に電解液(例えば、30質量%の水酸化カリウム(KOH)水溶液)を注液し、封口体17の外周部に装着された封口ガスケット18を外装缶16の環状溝部16aの上に載置するとともに、外装缶16の先端部16bを封口体17側にかしめて封口することにより、ニッケル−カドミウム蓄電池10を組み立てることができる。   In addition, a sealing body 17 including a positive electrode lid 17 a and a positive electrode cap 17 b is prepared, and a lead portion 15 a extending from the positive electrode current collector 15 is welded to the bottom of the positive electrode lid 17 a provided on the sealing body 17. Next, grooving is performed on the upper outer peripheral surface of the outer can 16 to form an annular groove 16a. Thereafter, an electrolytic solution (for example, 30 mass% potassium hydroxide (KOH) aqueous solution) is injected into the metal outer can 16, and the sealing gasket 18 attached to the outer peripheral portion of the sealing body 17 is attached to the outer can 16. The nickel-cadmium storage battery 10 can be assembled by placing it on the annular groove 16a and sealing the tip 16b of the outer can 16 by sealing it toward the sealing body 17 side.

上述したように、本発明においては予備充電活物質である金属カドミウムと有機高分子糊料を主体とするカドミウム糊料中にピロリン酸銅(Cu227)を添加し、溶解させて、糊料中にピロリン酸銅(Cu227)を均一に分散化させた後、主活物質である酸化カドミウムと混合して活物質ペーストを調製するようにしている。そして、このように調製された活物質ペーストを導電芯体に塗布して活物質層を形成するようにしているので、活物質層中にピロリン酸銅(Cu227)を均一に分散させたカドミウム負極を作製することが可能となる。これにより、電池組立後の充電の際に緻密な銅の導電性ネットワークを形成させることができ、新たな工程数を増やすことなく、かつ、活物質ペースト混練中にペーストの固化が起らず、ハンドリング性が良好で、活物質利用率が向上したアルカリ蓄電池用カドミウム負極を得ることができる。 As described above, in the present invention, copper pyrophosphate (Cu 2 P 2 O 7 ) is added and dissolved in a cadmium paste mainly composed of metal cadmium which is a precharge active material and an organic polymer paste. In addition, copper pyrophosphate (Cu 2 P 2 O 7 ) is uniformly dispersed in the paste, and then mixed with cadmium oxide as a main active material to prepare an active material paste. Since the active material paste thus prepared is applied to the conductive core to form an active material layer, copper pyrophosphate (Cu 2 P 2 O 7 ) is uniformly distributed in the active material layer. A dispersed cadmium negative electrode can be produced. Thereby, it is possible to form a dense copper conductive network during charging after battery assembly, without increasing the number of new steps, and without solidifying the paste during active material paste kneading, A cadmium negative electrode for an alkaline storage battery having good handling properties and improved active material utilization can be obtained.

本発明のニッケル−カドミウム蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the nickel-cadmium storage battery of this invention.

符号の説明Explanation of symbols

11…カドミウム負極、11a…基板、11b…負極活物質、11c…活物質未充填部、12…ニッケル正極、12a…基板、12b…正極活物質、12c…活物質未充填部、13…セパレータ、14…負極集電体、15…正極集電体、15a…リード部、16…外装缶、16a…環状溝部、16b…先端部、17…封口体、17a…正極蓋、17b…正極キャップ、18…封口ガスケット DESCRIPTION OF SYMBOLS 11 ... Cadmium negative electrode, 11a ... Substrate, 11b ... Negative electrode active material, 11c ... Active material unfilled part, 12 ... Nickel positive electrode, 12a ... Substrate, 12b ... Positive electrode active material, 12c ... Active material unfilled part, 13 ... Separator, DESCRIPTION OF SYMBOLS 14 ... Negative electrode collector, 15 ... Positive electrode collector, 15a ... Lead part, 16 ... Exterior can, 16a ... Annular groove part, 16b ... Tip part, 17 ... Sealing body, 17a ... Positive electrode cover, 17b ... Positive electrode cap, 18 ... Sealing gasket

Claims (1)

少なくとも酸化カドミウムを主体とするカドミウム活物質と有機高分子糊料とを含有する活物質ペーストを電極基板に塗布して形成するアルカリ蓄電池用カドミウム負極の製造方法であって、
予備充電活物質となる金属カドミウムと有機高分子糊料とを主体とするカドミウム糊料中にピロリン酸銅を添加するピロリン酸銅添加工程と、
前記ピロリン酸銅が添加されたカドミウム糊料と主活物質となる酸化カドミウムとを混練して活物質ペーストを調製する活物質ペースト調製工程と、
前記活物質ペーストを導電性芯体からなる電極基板に塗布して活物質塗布層を形成する活物質塗布工程とを備えたことを特徴とするアルカリ蓄電池用カドミウム負極の製造方法。
A method for producing a cadmium negative electrode for an alkaline storage battery, comprising forming an active material paste containing at least a cadmium active material mainly composed of cadmium oxide and an organic polymer paste on an electrode substrate,
A copper pyrophosphate addition step of adding copper pyrophosphate into a cadmium paste mainly composed of a metal cadmium serving as a precharge active material and an organic polymer paste;
An active material paste preparation step of preparing an active material paste by kneading the cadmium paste added with the copper pyrophosphate and cadmium oxide as a main active material;
A method for producing a cadmium negative electrode for an alkaline storage battery, comprising: an active material application step of applying the active material paste to an electrode substrate made of a conductive core to form an active material application layer.
JP2008029040A 2008-02-08 2008-02-08 Method of manufacturing cadmium negative electrode of alkaline storage battery Withdrawn JP2009187886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029040A JP2009187886A (en) 2008-02-08 2008-02-08 Method of manufacturing cadmium negative electrode of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029040A JP2009187886A (en) 2008-02-08 2008-02-08 Method of manufacturing cadmium negative electrode of alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2009187886A true JP2009187886A (en) 2009-08-20

Family

ID=41070912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029040A Withdrawn JP2009187886A (en) 2008-02-08 2008-02-08 Method of manufacturing cadmium negative electrode of alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2009187886A (en)

Similar Documents

Publication Publication Date Title
JP5771193B2 (en) Paste zinc electrode for rechargeable zinc battery
KR101938103B1 (en) Carbon Fiber Zinc Negative Electrode
JP5477288B2 (en) Lead-acid battery and method for manufacturing the same
EP2834874B1 (en) Zinc electrode for use in rechargeable batteries
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP5396216B2 (en) Lead acid battery
JP2015130249A (en) Positive electrode for alkali storage batteries and alkali storage battery using the same
JP2009187886A (en) Method of manufacturing cadmium negative electrode of alkaline storage battery
JP4752401B2 (en) Manufacturing method of cylindrical alkaline storage battery
JP5025276B2 (en) Alkaline storage battery and method of manufacturing the same
JP5790383B2 (en) Alkaline storage battery
JP5752487B2 (en) Alkaline storage battery and alkaline storage battery system
JP7166705B2 (en) Method for manufacturing negative electrode for zinc battery and method for manufacturing zinc battery
JP2009238447A (en) Cylindrical alkaline storage battery
JP5164412B2 (en) Alkaline storage battery and method for manufacturing sintered substrate
WO2012014895A1 (en) Sintered nickel cathode, method of manufacturing same, and alkaline storage battery employing the sintered nickel cathode
JP3685704B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP5998549B2 (en) Alkaline storage battery
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP6232722B2 (en) Nickel-cadmium storage battery
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method
JP2007273296A (en) Manufacturing method of nickel-cadmium storage battery
JP2008117725A (en) Cylindrical nickel-hydrogen storage battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510