JP2009187752A - Power storage element - Google Patents

Power storage element Download PDF

Info

Publication number
JP2009187752A
JP2009187752A JP2008025524A JP2008025524A JP2009187752A JP 2009187752 A JP2009187752 A JP 2009187752A JP 2008025524 A JP2008025524 A JP 2008025524A JP 2008025524 A JP2008025524 A JP 2008025524A JP 2009187752 A JP2009187752 A JP 2009187752A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
storage element
lithium ions
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008025524A
Other languages
Japanese (ja)
Inventor
Toshiyuki Miwa
俊之 美和
Shinichi Ueki
伸一 植木
Osamu Terabayashi
治 寺林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2008025524A priority Critical patent/JP2009187752A/en
Publication of JP2009187752A publication Critical patent/JP2009187752A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power storage element of a type in which lithium ions are stored beforehand in a negative electrode by a horizontal doping method, in which storage of the lithium ions into the negative electrode active material is made smoothly by suppressing decomposition of the electrolytic solution. <P>SOLUTION: The power storage element 200 is composed by sealing an electrode laminate 100 in which a positive electrode 10p for carrying lithium ions or anions reversibly and a negative electrode 10n consisting of a material for storing and releasing lithium are arranged in opposition through a separator 30 and an electrolytic solution containing lithium salt, and metal lithium 20 is arranged so as to be in electrical contact with a current collector 11n at least at one place or more in the surface of the negative electrode, and the lithium ions are stored beforehand. The ratio X (=a/b) of the added amount a (%) of vinylene-carbonate in the electrolytic solution and the specific surface area b(m<SP>2</SP>/g) per unit weight of the negative electrode is made 0.2-3.5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、リチウムイオンあるいはアニオンを可逆的に担持可能な正極と、リチウムイオンの吸蔵・放出が可能な材料からなるとともに前記正極とセパレータを介して対向配置される負極と、リチウム塩を含んだ電解液とを備えて、正極、セパレータ、負極を積層してなる蓄電素子に関する。具体的には、負極にあらかじめリチウムイオンを吸蔵させておくタイプの蓄電素子に関する。   The present invention includes a positive electrode capable of reversibly carrying lithium ions or anions, a negative electrode which is made of a material capable of occluding and releasing lithium ions, and is disposed opposite to the positive electrode via a separator, and a lithium salt. It is related with the electrical storage element which comprises electrolyte solution and laminates a positive electrode, a separator, and a negative electrode. Specifically, the present invention relates to a power storage element in which lithium ions are occluded in advance in a negative electrode.

上記したタイプの蓄電素子(以下、プレドープ型蓄電素子)は、急速充電が可能であるとともに、リチウムイオンをあらかじめ負極に吸蔵させるため、負極の電位が下がり、大きな電圧を得ることができ、高いエネルギー容量を得ることができる。そのため、風力発電の負荷平準化装置、瞬低対策装置、自動車における回生電力の蓄電用途などに利用されることが期待されている。   The above-mentioned type of storage element (hereinafter referred to as pre-doped storage element) is capable of rapid charging and has lithium ions previously stored in the negative electrode, so that the potential of the negative electrode is lowered and a large voltage can be obtained, resulting in high energy. Capacity can be obtained. For this reason, it is expected to be used for a load leveling device for wind power generation, a device for preventing sag reduction, and for storing regenerative power in an automobile.

従来のプレドープ型蓄電素子におけるリチウムイオンの吸蔵(プレドープ)方式には、例えば、特許3485935号公報に記載されているように、メッシュ状の集電体に負極、または正極を形成し、それを交互にセパレータを挟んで積層した電極積層体の外側に金属リチウムを貼った集電体を配置し、負極と電気的接触を持たせることにより、このメッシュを通して負極にリチウムイオンをプレドープする方式がある。この方式では、金属リチウムと負極が対向し、リチウムイオンは、負極に対して垂直方向からプレドープされる。   In a conventional pre-doped type storage element, a lithium ion occlusion (pre-doping) method, for example, as described in Japanese Patent No. 3485935, a negative electrode or a positive electrode is formed on a mesh-like current collector, and these are alternately arranged. There is a method of pre-doping lithium ions into the negative electrode through this mesh by disposing a current collector with metallic lithium pasted on the outer side of the electrode laminate laminated with a separator between them and making electrical contact with the negative electrode. In this method, metallic lithium and a negative electrode face each other, and lithium ions are pre-doped from a direction perpendicular to the negative electrode.

以下、このようなプレドープ方式を「垂直ドープ方式」と称することにすると、垂直ドープ方式は、メッシュなど穴が空いた集電体を用いることによりコストが嵩むという問題を有していた。   Hereinafter, when such a pre-doping method is referred to as a “vertical doping method”, the vertical doping method has a problem that the cost is increased by using a current collector having a hole such as a mesh.

そこで本発明者らは、製造や低価格化が容易なプレドープ方式として、シート状集電体の表面に負極を形成するとともに、その集電体面と同じ面に金属リチウムを貼着し、リチウムイオンを集電体の表面に沿って負極にドープする「水平ドープ方式」を採用することとした。また、水平ドープ方式は、垂直ドープ方式と比較して、吸蔵されるリチウムイオンの量を精確に設定でき、その後の電池反応を均一にすることができる、という利点がある。このような水平ドープ方式は、例えば、スラリー状の負極活物質をスキージや転写ロールを用いてシート成形(塗布)するなど、容易に負極を集電体の表面に形成することができる。   Therefore, the present inventors formed a negative electrode on the surface of the sheet-like current collector as a pre-doping method that is easy to manufacture and reduce the price, and adhered lithium metal to the same surface as the current collector surface, The “horizontal dope method” is adopted in which the negative electrode is doped along the surface of the current collector. Further, the horizontal doping method has an advantage that the amount of stored lithium ions can be accurately set and the subsequent battery reaction can be made uniform as compared with the vertical doping method. In such a horizontal dope method, the negative electrode can be easily formed on the surface of the current collector, for example, by forming (applying) a slurry-like negative electrode active material using a squeegee or a transfer roll.

プレドープ型蓄電素子やリチウム二次電池などの蓄電素子では、近年、大電流による充放電が必要になっている。そのため、例えば、リチウム二次電池では、より薄いセパレータを使用したり、電極面積を増加させるなど、内部抵抗を可能な限り下げるための工夫がなされている。電極面積を増加させるために活物質の粉体粒子径を小さくすると、電解液の分解が起こるために、電解液にビニレンカーボネートを少量(1%程度)添加する方法がとられている。   In power storage elements such as pre-doped power storage elements and lithium secondary batteries, charging / discharging with a large current is required in recent years. Therefore, for example, lithium secondary batteries have been devised to reduce the internal resistance as much as possible, such as using a thinner separator or increasing the electrode area. When the powder particle diameter of the active material is reduced in order to increase the electrode area, the electrolytic solution is decomposed. Therefore, a method of adding a small amount (about 1%) of vinylene carbonate to the electrolytic solution is employed.

しかし、本発明が対象とする水平ドープ方式のプレドープ型蓄電素子では、金属リチウムを負極集電体上に配置し、その金属リチウムから溶出するリチウムイオンを負極に拡散させようとすると、ビニレンカーボネートを1%程度添加しただけでは電解液の分解を抑制できず、リチウムイオンの吸蔵が円滑に進行しないことが本発明者らによる試験などにより判明した。   However, in the horizontally doped pre-doped type storage element targeted by the present invention, when metallic lithium is arranged on the negative electrode current collector and lithium ions eluted from the metallic lithium are diffused into the negative electrode, vinylene carbonate is It has been found by tests and the like by the present inventors that the addition of about 1% cannot suppress the decomposition of the electrolytic solution and does not smoothly proceed with occlusion of lithium ions.

水平ドープ方式のプレドープ型蓄電素子において電解液が分解してしまう原因としては、リチウムイオンが集電体上に配置した金属リチウムから吸蔵対象となる負極材料へ水平方向へ移動しながら拡散していくため、リチウムイオンの供給源である金属リチウムと負極が形成されている領域の各点までの距離が大きくばらついてしまうからと考えられる。すなわち、負極形成領域に金属リチウムに近い場所と遠い場所とがあり、プレドープの初期段階において、吸蔵反応が不均一に進行するとともに、プレドープによるリチウムイオンの吸蔵速度がリチウム二次電池の充電時における負極への吸蔵速度と比べて遅い、ということに起因していると考えられる。   The cause of the electrolyte decomposition in the horizontally doped pre-doped type storage element is that lithium ions diffuse while moving in the horizontal direction from the metallic lithium placed on the current collector to the negative electrode material to be occluded. For this reason, it is considered that the distance to each point in the region where the metal lithium that is the lithium ion supply source and the negative electrode are formed varies greatly. That is, the negative electrode formation region has a place near and far from metallic lithium, and in the initial stage of pre-doping, the occlusion reaction proceeds non-uniformly, and the occlusion rate of lithium ions by pre-doping is during charging of the lithium secondary battery. This is thought to be due to the fact that it is slower than the storage rate in the negative electrode.

本発明は、上記知見や考察に基づいてなされたもので、その目的は、水平ドープ方式によって負極にあらかじめリチウムイオンを吸蔵させておくタイプの蓄電素子において、電解液の分解を抑制することにより、リチウムイオンの負極活物質への吸蔵を円滑に進行させることを可能とすることである。   The present invention has been made based on the above knowledge and considerations, and its purpose is to suppress decomposition of the electrolytic solution in a storage element of a type in which lithium ions are previously stored in the negative electrode by a horizontal dope method, It is possible to make occlusion of lithium ions into the negative electrode active material proceed smoothly.

上記目的を達成するために、本発明者らは、まず、電解液におけるビニレンカーボネートの添加量a(%)と負極の単位重量当たりの比表面積b(m/g)に着目し、試行錯誤の結果、これらの比率X(=a/b)の最適条件を見いだし本発明に想到した。
そして本発明は、リチウムイオンあるいはアニオンを可逆的に担持可能な正極と、リチウムイオンの吸蔵・放出が可能な材料からなる負極とをセパレータを介して対向配置してなる電極積層体と、リチウム塩を含む電解液とを密封封止してなるとともに、前記負極面内の少なくとも1箇所以上に金属リチウムを集電体と電気的に接触するように配置し、リチウムイオンが負極活物質にあらかじめ吸蔵されてなる蓄電素子において、
前記電解液におけるビニレンカーボネートの添加量a(%)と負極の単位重量当たりの比表面積b(m/g)との比率X(=a/b)が、0.2〜3.5である蓄電素子とした。
In order to achieve the above object, the inventors first focused on the addition amount a (%) of vinylene carbonate in the electrolytic solution and the specific surface area b (m 2 / g) per unit weight of the negative electrode, and trial and error. As a result, the optimum conditions for these ratios X (= a / b) were found and the present invention was conceived.
The present invention also relates to an electrode laminate in which a positive electrode capable of reversibly carrying lithium ions or anions and a negative electrode made of a material capable of occluding and releasing lithium ions are arranged opposite to each other with a separator interposed therebetween, and a lithium salt In addition, the lithium metal is placed in at least one location on the negative electrode surface so as to be in electrical contact with the current collector, and lithium ions are previously occluded in the negative electrode active material. In the electricity storage device formed,
The ratio X (= a / b) between the added amount a (%) of vinylene carbonate in the electrolytic solution and the specific surface area b (m 2 / g) per unit weight of the negative electrode is 0.2 to 3.5. It was set as the electrical storage element.

また、負極材料の粉体粒子の大きさにも着目し、その最適化も試み、上記Xの条件を充足した上で、前記負極の材料における粉体粒子の50%累積粒子径が1〜10μmである蓄電素子も本発明の範囲とした。   Also, paying attention to the size of the powder particles of the negative electrode material, and trying to optimize it, after satisfying the above condition X, the 50% cumulative particle size of the powder particles in the negative electrode material is 1 to 10 μm. This power storage element is also included in the scope of the present invention.

さらに、負極材料の細孔構造にも着目し、上記Xに係る条件、またはXと上記50%累積粒子径に係る条件に、負極が、細孔分布測定によるモード径で0.1〜6.0μmであることを条件に加えた蓄電素子としてもよい。   Further, paying attention to the pore structure of the negative electrode material, the negative electrode has a mode diameter of 0.1 to 6.5 in terms of the pore distribution measurement under the condition related to X or the condition related to X and the 50% cumulative particle diameter. It is good also as an electrical storage element which added the condition that it is 0 micrometer.

本発明の蓄電素子によれば、水平プレドープ時に電解液の分解を抑制してリチウムイオンを負極に円滑に拡散させることができる。   According to the electricity storage device of the present invention, it is possible to suppress the decomposition of the electrolytic solution during horizontal pre-doping and smoothly diffuse lithium ions to the negative electrode.

===蓄電素子の構造===
図1に本発明の第1の実施例における蓄電素子の負極側の概略構造(A)と正極側の概略構造(B)とを示した。(A)と(B)には、それぞれ、負極側の電極体(負極集電体)1nと正極側の電極体(正極電極体)1pの平面図と側面図とを示した。
=== Structure of power storage element ===
FIG. 1 shows a schematic structure (A) on the negative electrode side and a schematic structure (B) on the positive electrode side of the electricity storage device in the first example of the present invention. A plan view and a side view of a negative electrode body (negative electrode current collector) 1n and a positive electrode body (positive electrode body) 1p are shown in (A) and (B), respectively.

負極電極体1nは、略矩形の一辺に端子接続部12nが突設された銅箔を集電体11nとし、その集電体11nの端子接続部12n以外の略矩形領域の表裏両面に負極電極部10nが塗布されるとともに、当該略矩形の領域の一部を所定形状に剥離して負極電極部10nが塗布されていない電極未塗布部13nを設け、その未塗布部13nに金属リチウム20を貼着した構造を基本としている。   The negative electrode body 1n uses a copper foil having a terminal connection portion 12n protruding from one side of a substantially rectangular shape as a current collector 11n, and negative electrode electrodes on both front and back surfaces of a substantially rectangular region other than the terminal connection portion 12n of the current collector 11n. 10 n is applied, a part of the substantially rectangular region is peeled off in a predetermined shape to provide an electrode uncoated portion 13 n where the negative electrode portion 10 n is not coated, and metal lithium 20 is applied to the uncoated portion 13 n. It is based on a pasted structure.

負極電極体1nの具体的な作成方法としては、炭素粉体とポリフッ化ビニリデン樹脂を95:5の重量比で混合したものに、N−メチル−2−ピロリジノン(NMP)を加えてペースト状に混練したものを集電体11nとなる厚さ14μmの銅箔の表裏両面に塗布して乾燥させた後、所定の細孔構造となるように圧延操作を行なう。そして、端子接続部12nを備えた電極体形状となるように銅箔を切断した上で、電極未塗布部13nとなる部分の負極活物質を剥離する。本実施例では、塗布領域の左右中央を上下に延長する帯状に剥離して電極未塗布部13nを形成し、その当該未塗布部13nの形状に沿う帯状の金属リチウム20を貼着している。なお、上記炭素材料として、易黒鉛化性炭素、難黒鉛化性炭素、黒鉛などが使用可能であるが、リチウムイオンを吸蔵可能な材料であれば特に限定される訳ではない。   As a specific method for producing the negative electrode body 1n, N-methyl-2-pyrrolidinone (NMP) is added to a mixture of carbon powder and polyvinylidene fluoride resin in a weight ratio of 95: 5 to form a paste. The kneaded material is applied to both the front and back surfaces of a 14 μm-thick copper foil serving as the current collector 11n, dried, and then subjected to a rolling operation so as to have a predetermined pore structure. And after cutting copper foil so that it may become an electrode body shape provided with the terminal connection part 12n, the negative electrode active material of the part used as the electrode non-application part 13n is peeled. In this example, the left and right centers of the application region are peeled off in a strip shape extending vertically to form the electrode uncoated portion 13n, and the strip-shaped metallic lithium 20 along the shape of the uncoated portion 13n is attached. . In addition, as the carbon material, graphitizable carbon, non-graphitizable carbon, graphite, and the like can be used, but there is no particular limitation as long as the material can occlude lithium ions.

一方、正極電極体1pは、略矩形の一辺に端子接続部12pが突設されたアルミニウム箔を集電体11pとし、その集電体11pの端子接続部12p以外の略矩形領域の表裏両面に正極活物質を塗布した構造を基本としている。正極電極体1pの具体的な作成方法としては、活性炭粉末80重量部、アセチレンブラック10重量部、およびポリフッ化ビニリデン粉末10重量部を混合し、その混合物にNMPを加えて混練してペースト状にしたものを厚さ20μmのアルミニウム箔の表裏両面に塗布して乾燥させた後、所定の圧延操作を行い、端子接続部12pを備えた電極体形状となるようにアルミニウム箔を切断する。そして、負極電極体1nと対向させたときに、金属リチウムが貼着される未塗布領域13nと位置が合致するように塗布領域の左右中央を上下に延長する帯状に剥離して電極未塗布部13pを形成する。   On the other hand, in the positive electrode body 1p, an aluminum foil having a terminal connection portion 12p projecting on one side of a substantially rectangular shape is used as a current collector 11p, and on both front and back surfaces of a substantially rectangular region other than the terminal connection portion 12p of the current collector 11p. It is based on a structure in which a positive electrode active material is applied. As a specific method for producing the positive electrode body 1p, 80 parts by weight of activated carbon powder, 10 parts by weight of acetylene black, and 10 parts by weight of polyvinylidene fluoride powder are mixed, and NMP is added to the mixture and kneaded to form a paste. After applying and drying both the front and back surfaces of an aluminum foil having a thickness of 20 μm, a predetermined rolling operation is performed, and the aluminum foil is cut so as to have an electrode body shape having the terminal connection portion 12p. Then, when facing the negative electrode body 1n, the electrode uncoated portion is peeled off in a strip shape extending vertically from the left and right center of the coated region so that the position matches the uncoated region 13n to which the metallic lithium is stuck. 13p is formed.

このように作成された両極の電極体(1p,1n)は、双方の前記電極未塗布部(13p,13n)の形状を合わせるようにポリオレフィン系マイクロポーラスフィルムセパレータを介して対向させて積層され電極積層体100に組み立てられる。なお、上記セパレータ30は、ポリエチレン、ポリプロピレン、アラミド、PET、セルロース、セロハン等を少なくとも1種以上用いた多孔質フィルム、不織布など、イオン透過性を有し、正負極間を電気的に分離できるものであればよい。   The bipolar electrode bodies (1p, 1n) created in this way are laminated to face each other via a polyolefin-based microporous film separator so as to match the shapes of the two uncoated electrodes (13p, 13n). It is assembled into the laminate 100. The separator 30 is a porous film or nonwoven fabric using at least one kind of polyethylene, polypropylene, aramid, PET, cellulose, cellophane, etc., and has ion permeability and can electrically separate the positive and negative electrodes. If it is.

図2(A)(B)に、当該電極積層体100の断面図と平面図とを示した。正極電極体1p、セパレータ30、負極電極体1n、セパレータ30となる構成を一つの発電要素50とし、電極積層体100は、この発電要素50を複数積層したものである(A)。本実施例では、30組の発電要素50を積層している。また、正極と負極のそれぞれの端子接続部(12p,12n)は、同じ方向に突出するように、かつ積層方向で上下に重ならないように互い違いとなるようにそれぞれの集電体を積層している(B)。   2A and 2B are a cross-sectional view and a plan view of the electrode stack 100. The structure that becomes the positive electrode body 1p, the separator 30, the negative electrode body 1n, and the separator 30 is a single power generation element 50, and the electrode stack 100 is formed by stacking a plurality of the power generation elements 50 (A). In this embodiment, 30 sets of power generation elements 50 are stacked. Also, the current collectors are laminated so that the terminal connection portions (12p, 12n) of the positive electrode and the negative electrode are staggered so as to protrude in the same direction and do not overlap vertically in the lamination direction. (B).

さらに、このように電極積層体100を組み立てた後、図3に示すように、それぞれの発電要素50の正極の端子接続部12p同士、および負極の端子接続部12n同士を重ねた状態で一括してリード端子板60に溶接し、次いで、3辺を融着して袋状に形成したアルミラミネートフィルムの外装体70内にリード端子60を外部に導出した状態で電極積層体100を配置し、当該外装体70内に、電解液(例えば、LiPFの濃度が1モル/Lとなるように調整されたプロピレンカーボネート)にビニレンカーボネートを添加したものを注入し、外装体70の開口を真空封止して構造体としての蓄電素子200を完成させる。なお、上記構造において、負極における金属リチウムの貼着方法は、図1に示した位置や配置に限定されるものではなく、例えば、図4(A)〜(C)に示すように、様々な位置や配置が考えられる。 Further, after assembling the electrode laminate 100 in this manner, as shown in FIG. 3, the positive electrode terminal connection portions 12p and the negative electrode connection portions 12n of the respective power generation elements 50 are stacked together. The electrode laminate 100 is disposed in a state in which the lead terminal 60 is led out to the outside in an aluminum laminate film outer package 70 formed by fusing three sides and formed into a bag shape. Into the outer package 70, an electrolyte solution (for example, propylene carbonate adjusted so that the concentration of LiPF 6 is 1 mol / L) is injected and vinylene carbonate is added, and the opening of the outer package 70 is vacuum-sealed. It stops and the electrical storage element 200 as a structure is completed. In addition, in the said structure, the adhesion method of the metallic lithium in a negative electrode is not limited to the position and arrangement | positioning shown in FIG. 1, For example, as shown to FIG. Position and arrangement are possible.

なお、上述した蓄電素子200の構造は従来から知られている蓄電素子と同様である。しかし本発明は、ビニレンカーボネートの添加量を従来(1%程度)より多くしつつ適正範囲内に調整することで電解液の分解反応を抑制して、負極集電体11n上に配置された金属リチウム20を起源とした負極活物質におけるリチウムイオン吸蔵反応を円滑に進行させることができるようになり、さらに、負極材料の粒子径および構造を最適化することにより低抵抗化を達成している。   Note that the structure of the above-described power storage element 200 is the same as that of a conventionally known power storage element. However, the present invention suppresses the decomposition reaction of the electrolytic solution by adjusting the addition amount of vinylene carbonate within the appropriate range while increasing the amount of vinylene carbonate (about 1%), and the metal disposed on the negative electrode current collector 11n. The lithium ion occlusion reaction in the negative electrode active material originating from lithium 20 can be made to proceed smoothly, and the resistance is reduced by optimizing the particle size and structure of the negative electrode material.

具体的には、本発明の蓄電素子は、電解液におけるビニレンカーボネートの添加量a(%)と負極の単位重量当たりの比表面積b(m/g)との比率X(=a/b)、負極における炭素粉体の粒度(50%累積粒度:μm)、負極の細孔構造におけるモード径(μm)を最適化している。 Specifically, the electricity storage device of the present invention has a ratio X (= a / b) between the addition amount a (%) of vinylene carbonate in the electrolytic solution and the specific surface area b (m 2 / g) per unit weight of the negative electrode. The particle size (50% cumulative particle size: μm) of the carbon powder in the negative electrode and the mode diameter (μm) in the pore structure of the negative electrode are optimized.

===サンプル条件===
上記構造の蓄電素子において、電解液におけるビニレンカーボネートの添加量a(%)と負極の単位重量当たりの比表面積b(m/g)との比率X(=a/b)、負極材料(本実施例では炭素粉体)の粒度分布(50%累積粒子径)、負極の細孔構造におけるモード径の各条件がそれぞれ異なる蓄電素子をサンプルとして種々作成した。そして、各条件の最適値を求めるために、作製した各サンプルを10日間放置したのち、外観検査を目視にて行い、その後、外観検査で異常が無かったサンプルについて直流抵抗値を測定した。直流抵抗値は、25℃で3.8Vまで1Aで充電して1分間休止し、次いで100Aの電流値で放電を行い、放電開始直前の電圧値V1と放電開始100msec経過時点での電圧値V2を測定し、ΔV=V1−V2、電流値I(=100A)として、抵抗値Rを、R=ΔV/Iの式によって求めた。
=== Sample condition ===
In the electricity storage device having the above structure, the ratio X (= a / b) between the addition amount a (%) of vinylene carbonate in the electrolytic solution and the specific surface area b (m 2 / g) per unit weight of the negative electrode, the negative electrode material (present In the examples, various electric storage elements having different particle size distribution (50% cumulative particle size) and mode diameter in the pore structure of the negative electrode were prepared as samples. And in order to obtain | require the optimum value of each condition, after leaving each produced sample for 10 days, an external appearance inspection was performed visually, and direct-current resistance value was measured about the sample which did not have abnormality by the external appearance inspection after that. The DC resistance value was charged at 1 A up to 3.8 V at 25 ° C., paused for 1 minute, then discharged at a current value of 100 A, and the voltage value V1 immediately before the start of discharge and the voltage value V2 when 100 msec had elapsed from the start of discharge. Was measured, and ΔV = V1−V2 and the current value I (= 100 A), the resistance value R was determined by the equation R = ΔV / I.

また、粒度分布の測定にはレーザー回折散乱式粒度分布測定装置(日機装製マイクロトラックMT3300)を使用した。また、モード径および比表面積は、水銀圧入法を測定原理とした細孔分布測定装置(Quantachrome社製ポロシメータPoreMaster60)により細孔分布を測定し、その測定結果より算出した。具体的には、20〜60,000PSI(0.138〜414MPa)の範囲で圧力Pを測定し、細孔(直)径Dを、Washburnの式
D=4γcosθ/P
に基づいて算出した。ここで、γは水銀の表面張力(480dyn/cm)であり、θは、水銀と細孔壁面との接触角(140゜)である。
In addition, a laser diffraction / scattering particle size distribution measuring device (Nikkiso Microtrac MT3300) was used to measure the particle size distribution. Further, the mode diameter and specific surface area were calculated from the measurement results obtained by measuring the pore distribution with a pore distribution measuring device (Porosimeter PoreMaster 60 manufactured by Quantachrome) based on the mercury intrusion method. Specifically, the pressure P is measured in the range of 20 to 60,000 PSI (0.138 to 414 MPa), and the pore (straight) diameter D is determined by the Washburn equation D = 4γcos θ / P.
Calculated based on Here, γ is the surface tension of mercury (480 dyn / cm), and θ is the contact angle (140 °) between mercury and the pore wall surface.

表1に負極に用いた炭素粉体を50%累積粒子径に応じて分類分けした。

Figure 2009187752
Table 1 classifies the carbon powder used for the negative electrode according to the 50% cumulative particle size.
Figure 2009187752

表2の各サンプルにおける、炭素粉体、モード径、比率Xの各条件と、外観検査結果、および直流抵抗比率とを示した。

Figure 2009187752
Each condition of the carbon powder, mode diameter, and ratio X, the appearance inspection result, and the direct current resistance ratio in each sample of Table 2 are shown.
Figure 2009187752

実施例1〜9が当該発明に係る蓄電素子であり、比較例1〜8が従来の蓄電素子である。なお、この表2において、直流抵抗比率は上記式によって求めた各サンプルの抵抗値Rについて、比較例3における抵抗値Rを100%としたときの相対値によって示した。   Examples 1 to 9 are power storage elements according to the present invention, and Comparative Examples 1 to 8 are conventional power storage elements. In Table 2, the direct current resistance ratio is shown as a relative value with respect to the resistance value R of each sample obtained by the above formula when the resistance value R in Comparative Example 3 is 100%.

表2の結果において、比較例1、比較例5、比較例7の各サンプルにおいて外観検査にて異常が見られた。また、外観検査において異常が無く直流抵抗値の測定を行ったサンプルの内、比較例2、比較例3、比較例4、比較例6、比較例8の抵抗値は全て100%以上であり高いことが分かった。一方、実施例1〜9のサンプルは、48.3%〜80.9%の範囲にあり、抵抗値が低いことが分かった。   In the results of Table 2, abnormalities were observed in the appearance inspection in each sample of Comparative Example 1, Comparative Example 5, and Comparative Example 7. In addition, among the samples in which the DC resistance value was measured in the appearance inspection without any abnormality, the resistance values of Comparative Example 2, Comparative Example 3, Comparative Example 4, Comparative Example 6, and Comparative Example 8 were all 100% or higher and high. I understood that. On the other hand, the samples of Examples 1 to 9 were in the range of 48.3% to 80.9%, indicating that the resistance value was low.

ここで、まず、比率(X)に着目すると、実施例1、比較例5、比較例6は、比率(X)以外の条件は同じであるが、比較例5は外観検査で異常が見られ、比較例6は直流抵抗値比率が基準に対して2.5倍近く高かった。すなわち、直流抵抗値が極めて高い。また、実施例2と比較例7、および実施例3と比較例8についても同様に比率X以外の条件は同じであるが、比較例7では外観検査において異常が見られ、比較例8は直流抵抗値比率が50%も高かった。以上より、比率(X)が0.2より小さいと、プレドープ期間経過後に目視できる異常が発生し、3.5より大きいと直流抵抗値が増大する。したがって、電解液におけるビニレンカーボネートの添加量a(%)と負極の単位重量当たりの比表面積b(m/g)との比率X(=a/b)は、0.2〜3.5の範囲であることが必要条件となる。 Here, when focusing on the ratio (X), Example 1, Comparative Example 5, and Comparative Example 6 have the same conditions except for the ratio (X), but Comparative Example 5 shows an abnormality in the appearance inspection. In Comparative Example 6, the DC resistance ratio was nearly 2.5 times higher than the reference. That is, the DC resistance value is extremely high. Similarly, the conditions of Example 2 and Comparative Example 7 and Example 3 and Comparative Example 8 are the same except for the ratio X. In Comparative Example 7, an abnormality was observed in the appearance inspection, and Comparative Example 8 was a direct current. The resistance ratio was as high as 50%. From the above, when the ratio (X) is smaller than 0.2, an abnormality that can be visually observed after the pre-doping period has elapsed, and when it is larger than 3.5, the direct current resistance value increases. Therefore, the ratio X (= a / b) of the addition amount a (%) of vinylene carbonate in the electrolytic solution and the specific surface area b (m 2 / g) per unit weight of the negative electrode is 0.2 to 3.5. It must be a range.

次に、比率Xが上記の範囲となる比較例について、表1に示した粉体(50%累積粒子径)について着目すると、比較例1は、粉体とモード径が、それぞれ粉体D(0.83μm)、モード径0.21で実施例7と同じであるとともに、比率(X)が実施例2の0.21とほぼ同じで0.20である。しかし比較例1では、外観検査において異常が見られた、
また、比較例2は、粉体とモード径が実施例8と同じで、それぞれ粉体E(12.37μm)、モード径2.22であるとともに、比率(X)が上記範囲の上限に近い実施例3の3.50とほぼ同様で3.45であるが、直流抵抗比率が基準に対して219.9%と極めて高い。以上より、比率Xが0.20〜0.35の範囲であっても、その下限値と上限値に近いところでは、粉体D(0.83μm)や粉体E(12.37μm)では、プレドープ期間において異常が発生したり、直流抵抗値が増大したりする可能性を示唆している。したがって、負極材料に使用される粉体の50%累積粒子径は、粉体A〜Cに基づいて1μm〜10μmとすることが望ましい。
Next, focusing on the powder (50% cumulative particle diameter) shown in Table 1 for the comparative example in which the ratio X is in the above range, the comparative example 1 has the powder D ( 0.83 μm) and a mode diameter of 0.21, which is the same as in Example 7, and the ratio (X) is approximately the same as 0.21 in Example 2 and is 0.20. However, in Comparative Example 1, an abnormality was seen in the appearance inspection.
In Comparative Example 2, the powder and mode diameter are the same as those in Example 8, respectively, with powder E (12.37 μm) and mode diameter 2.22, and the ratio (X) is close to the upper limit of the above range. Although it is substantially the same as 3.50 of Example 3 and is 3.45, the DC resistance ratio is extremely high at 219.9% with respect to the reference. From the above, even if the ratio X is in the range of 0.20 to 0.35, the powder D (0.83 μm) and the powder E (12.37 μm) are close to the lower limit and the upper limit. This suggests the possibility that anomalies occur during the pre-doping period and the DC resistance value increases. Therefore, the 50% cumulative particle size of the powder used for the negative electrode material is desirably 1 μm to 10 μm based on the powders A to C.

さらに、細孔モード径についての最適化について検討した。実施例4と比較例3は、粉体が同じ粉体Bでその50%累積粒子径は1.03μmであり好適な条件範囲内であるが下限値に近い。比率(X)については、実施例4の0.45に対して比較例3は0.78であり、比率(X)の適正数値範囲(0.20〜3.50)から言えば同等である。むしろ比較例3の方が中心値に近い。にもかかわらず、比較例3の直流抵抗値は100%であり、実施例4の直流抵抗値は72.4%で、抵抗値が基準に対して30%近く低下している。ここでモード径に着目すると、実施例4の0.10μmに対して比較例3は0.06μmである。したがって、モード径は0.1μmより大きくすることが好ましいと言える。   Furthermore, optimization about the pore mode diameter was examined. In Example 4 and Comparative Example 3, the powder is the same powder B, and the 50% cumulative particle size is 1.03 μm, which is within the preferable condition range, but is close to the lower limit value. The ratio (X) is 0.78 in Comparative Example 3 with respect to 0.45 in Example 4, and is equivalent from the appropriate numerical range (0.20 to 3.50) of the ratio (X). . Rather, Comparative Example 3 is closer to the center value. Nevertheless, the DC resistance value of Comparative Example 3 is 100%, the DC resistance value of Example 4 is 72.4%, and the resistance value is reduced by nearly 30% with respect to the reference. Here, focusing on the mode diameter, the comparative example 3 is 0.06 μm compared to 0.10 μm of the fourth embodiment. Therefore, it can be said that the mode diameter is preferably larger than 0.1 μm.

また、実施例5と比較例4は、粉体が同じC(10.21μm)で、小数点以下を四捨五入すると上記適正範囲の上限値である。比率(X)については、実施例5の0.53に対して比較例4は0.40であり同等といえる。しかし比較例4は、直流抵抗値が109.5%であり、抵抗値が増大している。モード径は、実施例5の6.03μmに対して比較例4は6.76μmである。したがって、モード径は6.0μmより小さい方が好ましいと言える。以上より、モード径は、0.1〜6.0μmであればより好ましい。   Moreover, Example 5 and Comparative Example 4 have the same powder (C (10.21 μm)), and are rounded off to the upper limit of the appropriate range. Regarding the ratio (X), it can be said that Comparative Example 4 is 0.40 compared to 0.53 of Example 5, and is equivalent. However, in Comparative Example 4, the DC resistance value is 109.5%, and the resistance value is increased. The mode diameter is 6.03 μm in Example 5 and 6.76 μm in Comparative Example 4. Therefore, it can be said that the mode diameter is preferably smaller than 6.0 μm. From the above, the mode diameter is more preferably 0.1 to 6.0 μm.

本発明の実施例における蓄電素子の電極構造を示す図である。It is a figure which shows the electrode structure of the electrical storage element in the Example of this invention. 上記実施例における蓄電素子を構成する電極積層体の概略構造図である。It is a schematic structural drawing of the electrode laminated body which comprises the electrical storage element in the said Example. 上記実施例における蓄電素子の概略図である。It is the schematic of the electrical storage element in the said Example. 上記蓄電素子おいて、負極側に貼着される金属リチウムのその他の配置を示す図である。In the said electrical storage element, it is a figure which shows the other arrangement | positioning of the metallic lithium stuck on the negative electrode side.

符号の説明Explanation of symbols

1p 正極電極体
1n 負極電極体
10p 正極電極部
10n 負極電極部
11p、11n 集電体
12p、12n 端子接続部
13p、13n 電極未塗布部
20 金属リチウム
30 セパレータ
50 発電要素
60 リード端子板
70 外装体
100 電極積層体
200 蓄電素子
1p positive electrode body 1n negative electrode body 10p positive electrode portion 10n negative electrode portion 11p, 11n current collector 12p, 12n terminal connection portion 13p, 13n electrode uncoated portion 20 metal lithium 30 separator 50 power generation element 60 lead terminal plate 70 exterior body 100 Electrode laminate 200 Storage element

Claims (3)

リチウムイオンあるいはアニオンを可逆的に担持可能な正極と、リチウムイオンの吸蔵・放出が可能な材料からなる負極とをセパレータを介して対向配置してなる電極積層体と、リチウム塩を含む電解液とを密封封止してなるとともに、前記負極面内の少なくとも1箇所以上に金属リチウムを集電体と電気的に接触するように配置し、リチウムイオンが負極活物質にあらかじめ吸蔵されてなる蓄電素子において、
前記電解液におけるビニレンカーボネートの添加量a(%)と負極の単位重量当たりの比表面積b(m/g)との比率X(=a/b)が、0.2〜3.5である
ことを特徴とする蓄電素子。
An electrode laminate in which a positive electrode capable of reversibly carrying lithium ions or anions and a negative electrode made of a material capable of occluding and releasing lithium ions are arranged opposite to each other with a separator interposed therebetween; and an electrolyte containing a lithium salt; And a lithium ion is previously stored in the negative electrode active material, and the lithium metal is disposed in at least one position on the negative electrode surface so as to be in electrical contact with the current collector. In
The ratio X (= a / b) between the added amount a (%) of vinylene carbonate in the electrolytic solution and the specific surface area b (m 2 / g) per unit weight of the negative electrode is 0.2 to 3.5. A power storage element.
前記負極の材料は、粉体粒子の50%累積粒子径が1〜10μmであることを特徴とする請求項1に記載の蓄電素子。   2. The electricity storage device according to claim 1, wherein the material of the negative electrode has a 50% cumulative particle diameter of powder particles of 1 to 10 μm. 前記負極は、細孔分布測定によるモード径が0.1〜6.0μmであることを特徴とする請求項1または2に記載の蓄電素子。   The electric storage element according to claim 1, wherein the negative electrode has a mode diameter of 0.1 to 6.0 μm by pore distribution measurement.
JP2008025524A 2008-02-05 2008-02-05 Power storage element Pending JP2009187752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025524A JP2009187752A (en) 2008-02-05 2008-02-05 Power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025524A JP2009187752A (en) 2008-02-05 2008-02-05 Power storage element

Publications (1)

Publication Number Publication Date
JP2009187752A true JP2009187752A (en) 2009-08-20

Family

ID=41070792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025524A Pending JP2009187752A (en) 2008-02-05 2008-02-05 Power storage element

Country Status (1)

Country Link
JP (1) JP2009187752A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049500A (en) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Manufacturing method of lithium ion capacitor
JP2012069792A (en) * 2010-09-24 2012-04-05 Nissin Electric Co Ltd Method of manufacturing electric double layer capacitor
WO2015037486A1 (en) * 2013-09-12 2015-03-19 新神戸電機株式会社 Electrolyte solution for lithium ion capacitors, and lithium ion capacitor
JP2018073803A (en) * 2016-07-06 2018-05-10 リンダ・チョンLinda Zhong Electrode with lithium and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049500A (en) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Manufacturing method of lithium ion capacitor
JP2012069792A (en) * 2010-09-24 2012-04-05 Nissin Electric Co Ltd Method of manufacturing electric double layer capacitor
WO2015037486A1 (en) * 2013-09-12 2015-03-19 新神戸電機株式会社 Electrolyte solution for lithium ion capacitors, and lithium ion capacitor
JP2018073803A (en) * 2016-07-06 2018-05-10 リンダ・チョンLinda Zhong Electrode with lithium and manufacturing method thereof
JP7169740B2 (en) 2016-07-06 2022-11-11 リキャップ テクノロジーズ、インコーポレイテッド LITHIUM ELECTRODE AND METHOD FOR MANUFACTURING SAME

Similar Documents

Publication Publication Date Title
US9543077B2 (en) Separator with heat resistant insulation layer
JP4738042B2 (en) Non-aqueous lithium storage element and method for manufacturing the same
US9660240B2 (en) Secondary battery including separator containing electroconductive porous layer sandwiched between electroconductive material-free porous layers
JP5888551B2 (en) Manufacturing method of sealed lithium secondary battery
WO2012053256A1 (en) Lithium ion capacitor
CN112864546B (en) Non-aqueous electrolyte secondary battery
JP2009187753A (en) Power storage element
KR101846767B1 (en) Nonaqueous electrolyte secondary battery
WO2018043375A1 (en) Electricity storage element and method for producing same
JP5308646B2 (en) Lithium ion capacitor
CN106463656B (en) Battery and cell manufacturing method
JP2009187752A (en) Power storage element
JP6770701B2 (en) Power storage element
JP2017195059A (en) Method of recovering output of electricity storage element
JP2009187751A (en) Power storage element
CN105047983A (en) Nonaqueous electrolyte secondary battery
JP2016181491A (en) Power storage device
JP2016186886A (en) Electricity storage element
JP2008060028A (en) Power storage device
US11302905B2 (en) Negative electrode of nonaqueous lithium-ion secondary battery and nonaqueous lithium-ion secondary battery using same
JP2009009858A (en) Electrode for lithium ion secondary battery
JP2015023001A (en) Porous current collector for power storage device, electrode and power storage device
JP2019212909A (en) Power storage device
JP6946617B2 (en) Power storage element
JP2013161762A (en) Nonaqueous electrolyte secondary battery