JP2009182888A - Dqpsk偏波多重方式に対応した光受信装置 - Google Patents

Dqpsk偏波多重方式に対応した光受信装置 Download PDF

Info

Publication number
JP2009182888A
JP2009182888A JP2008021996A JP2008021996A JP2009182888A JP 2009182888 A JP2009182888 A JP 2009182888A JP 2008021996 A JP2008021996 A JP 2008021996A JP 2008021996 A JP2008021996 A JP 2008021996A JP 2009182888 A JP2009182888 A JP 2009182888A
Authority
JP
Japan
Prior art keywords
signal light
polarization
unit
dqpsk
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008021996A
Other languages
English (en)
Inventor
Akihiko Isomura
章彦 磯村
C Rasmussen Jens
シー ラスムッセン イエンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008021996A priority Critical patent/JP2009182888A/ja
Priority to US12/232,607 priority patent/US7689074B2/en
Publication of JP2009182888A publication Critical patent/JP2009182888A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/676Optical arrangements in the receiver for all-optical demodulation of the input optical signal
    • H04B10/677Optical arrangements in the receiver for all-optical demodulation of the input optical signal for differentially modulated signal, e.g. DPSK signals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】DQPSK偏波多重方式について、簡略な構成で小型化が可能であり、低消費電力かつ低コストの光受信装置を提供する。
【解決手段】光受信装置は、入力されるDQPSK偏波多重信号光Sを偏波ビームスプリッタ3で水平/垂直偏波の各信号光SH,SVに分離し、該各信号光SH,SVを光カプラ4H,4Vで2分岐する。そして、各光カプラ4H,4Vの一方の分岐光SHI,SVIを光サーキュレータ10I1,10I2を介してIブランチ側の遅延干渉計5Iに与えて双方向に伝搬させると共に、各光カプラ4H,4Vの他方の分岐光SHQ,SVQを光サーキュレータ10Q1,10Q2を介してQブランチ側の遅延干渉計5Qに与えて双方向に伝搬させることにより、1組の遅延干渉計5I,5Qを水平/垂直偏波で共用する。
【選択図】図1

Description

本発明は、偏波多重方式を用いて差動4値位相偏移変調(Differential Quadrature Phase Shift Keying:DQPSK)信号光を伝送する光通信システムのための光受信装置に関する。
近年、100Gbps(ギガビット毎秒)イーサーネットの標準化に向けて、各種伝送方式の検討が行われている。100Gbps以上の信号に対応可能な伝送方式の1つとして、例えば、DQPSK信号光を偏波多重して伝送する方式が有力な候補に挙がっている。DQPSK信号光は、互いに隣接する2つのシンボル間の位相変化(0,π/2,π,3π/2の4値)により情報を搬送する信号である。偏波状態の異なる1組のDQPSK信号光を偏波多重した信号光(以下、DQPSK偏波多重信号光と呼ぶ)は、ボーレート(baud rate)を落とすことが可能であり、偏波モード分散(PMD)耐力、波長分散耐力に優れている。
図6は、DQPSK偏波多重方式に対応した光受信装置の典型的な構成例である。この光受信装置では、光通信システムの伝送路101を伝送されたDQPSK偏波多重信号光Sが、偏波コントローラ(PC)102を介して偏波ビームスプリッタ103に入力され、水平偏波の信号光SHと垂直偏波の信号光SVとに分離される。水平/垂直偏波の各信号光SH,SVは、各々に対応した光カプラ(CPL)104H,104Vで2分岐されて、光カプラ104Hの分岐光SHI,SVQが基板105Hに与えられ、光カプラ104Vの分岐光SVI,SVQが基板105Vに与えられる。各基板105H,105Vには、それぞれ、IブランチおよびQブランチに対応する1組の遅延干渉計が形成されており、各々の遅延干渉計は、光通信システムにおけるシンボル時間に相当する光遅延要素を備えている。また、各遅延干渉計のアーム間の光位相差は、Iブランチでは「π/4」に設定され、Qブランチでは「−π/4」に設定されている。基板105H上の各遅延干渉計の2つの出力端子は、バランスド光検出器(O/E)106HI,106HQにそれぞれ接続され、また、基板105V上の各遅延干渉計の2つの出力端子も同じく、バランスド光検出器(O/E)106VI,106VQにそれぞれ接続されている。そして、各バランスド光検出器106HI,106HQ,106VI,106VQで光電変換された信号が受信回路107で処理されることにより、水平偏波のDQPSK信号光を復調した受信データDHと、垂直偏波のDQPSK信号光を復調した受信データDVとが再生される。
また、上記の光受信装置では、各基板105H,105Vにおける各々の遅延干渉計のアーム間の光位相差が正確に「π/4」および「−π/4」に設定されていることが非常に重要であり、光位相差にずれが生じていると、許容範囲を超えた光S/N比の劣化が発生する。このため、受信回路107からの出力信号を基に制御回路108H,108Vで位相誤差をモニタして、位相が目標値に保持されるように各々の遅延干渉計の温度等を最適化するフィードバック制御が行われる(例えば、特許文献1,2参照)。
特開2007−20138号公報 特開2007−201939号公報
しかしながら、上記の図6に示したようなDQPSK偏波多重方式に対応した光受信装置については装置の大型化が問題となる。すなわち、偏波多重を行わないDQPSK信号光受信装置と比べると、DQPSK偏波多重方式に対応した光受信装置は2倍の構成が必要であり、特に、1組の遅延干渉計が形成された各基板は、各々の遅延干渉計が光の分波および合波を行う構成となっているためサイズが大きく、装置内に如何にして実装スペースを確保するかが課題になる。また、遅延干渉計基板が2つ必要になることで、光位相差のフィードバック制御を行う際に各々の遅延干渉計の温度を調整する手段(例えば、ヒータ、ペルチェなど)で使用される電力が、偏波多重を行わない場合と比較して2倍となるので、消費電力の増加も問題である。さらに、遅延干渉計の温度制御はアナログ回路で行われるため、回路部品の特性バラツキの影響が大きく、精密な回路設計および実装が必要となるが、制御対象の遅延干渉計が2倍に増えることで、各々の遅延干渉計に対応した回路に使用される部品間の特性バラツキをより小さくことが求められるようになり、装置コストを上昇させてしまうという課題もある。
本発明は上記の点に着目してなされたもので、DQPSK偏波多重方式について、簡略な構成で小型化が可能であり、低消費電力かつ低コストの光受信装置を提供することを目的とする。
上記の目的を達成するため、本光受信装置の一態様は、偏波状態の異なる1組のDQPSK信号光が偏波多重されたDQPSK偏波多重信号光を受信する光受信装置において、偏波分離部と、第1および第2の分岐部と、第1および第2のブランチと、第1および第2の遅延干渉部と、信号光入出力部と、第1乃至第4の光電変換部と、受信処理部と、制御部と、を備えている。偏波分離部は、入力されるDQPSK偏波多重信号光を水平偏波のDQPSK信号光および垂直偏波のDQPSK信号光に分離する。第1の分岐部は、前記偏波分離部で分離された水平偏波のDQPSK信号光を2つに分岐し、水平偏波の第1信号光および水平偏波の第2信号光を生成する。第2の分岐部は、前記偏波分離部で分離された垂直偏波のDQPSK信号光を2つに分岐し、垂直偏波の第1信号光および垂直偏波の第2信号光を生成する。第1のブランチは、前記水平偏波の第1信号光および前記垂直偏波の第1信号光が伝搬し、第2のブランチは、前記水平偏波の第2信号光および前記垂直偏波の第2信号光が伝搬する。第1の遅延干渉部は、前記第1のブランチ上に配置され、第2の遅延干渉部は、前記第2のブランチ上に配置される。信号光入出力部は、前記第1の遅延干渉部に対して、前記水平偏波の第1信号光および前記垂直偏波の第1信号光を、互いの伝搬方向が逆になるように与え、かつ、前記第2の遅延干渉部に対して、前記水平偏波の第2信号光および前記垂直偏波の第2信号光を、互いの伝搬方向が逆になるように与えると共に、前記第1の遅延干渉部を伝搬した前記水平偏波の第1信号光および前記垂直偏波の第1信号光を取り出し、かつ、前記第2の遅延干渉部を伝搬した前記水平偏波の第2信号光および前記垂直偏波の第2信号光を取り出す。第1乃至第4の光電変換部は、前記信号光入出力部で取り出された前記水平偏波の第1信号光、前記垂直偏波の第1信号光、前記水平偏波の第2信号光および前記垂直偏波の第2信号光をそれぞれ受光して電気信号に変換する。受信処理部は、前記第1乃至第4の光電変換部から出力される各電気信号を処理することにより、前記水平偏波のDQPSK信号光を復調した受信データおよび前記垂直偏波のDQPSK信号光を復調した受信データを再生する。制御部は、前記受信処理部の処理結果に基づいて前記第1および第2の遅延干渉部をフィードバック制御する。
上記のような光受信装置では、信号光入出力部によって、第1の遅延干渉部に対して水平偏波の第1信号光および垂直偏波の第1信号光が双方向から与えられると共に、第2の遅延干渉部に対して水平偏波の第2信号光および垂直偏波の第2信号光が双方向から与えられ、1組の遅延干渉部が水平偏波および垂直偏波について共用されるようになる。
本光受信装置の他の態様は、偏波状態の異なる1組のDQPSK信号光が偏波多重されたDQPSK偏波多重信号光を受信する光受信装置において、偏波コントローラと、分岐部と、第1および第2の遅延干渉部と、第1乃至第4の偏波ビームスプリッタと、第1乃至第4の光電変換部と、受信処理部と、制御部と、を備えている。偏波コントローラは、入力されるDQPSK偏波多重信号光の偏波状態を制御する。分岐部は、前記偏波コントローラから出力されるDQPSK偏波多重信号光を2つに分岐し、第1のDQPSK偏波多重信号光および第2のDQPSK偏波多重信号光を生成する。第1の遅延干渉部は、前記第1のDQPSK偏波多重信号光が入力ポートに与えられ、第2の遅延干渉部は、前記第2のDQPSK偏波多重信号光が入力ポートに与えられる。第1の偏波ビームスプリッタは、前記第1の遅延干渉部の2つの出力ポートのうちの一方に接続される。第2の偏波ビームスプリッタは、前記第1の遅延干渉部の2つの出力ポートのうちの他方に接続され、前記第1の偏波ビームスプリッタと同一方向の偏波軸を有する。第3の偏波ビームスプリッタは、前記第2の遅延干渉部の2つの出力ポートのうちの一方に接続され、前記第1の偏波ビームスプリッタと同一方向の偏波軸を有する。第4の偏波ビームスプリッタは、前記第2の遅延干渉部の2つの出力ポートのうちの他方に接続され、前記第1の偏波ビームスプリッタと同一方向の偏波軸を有する。第1の光電変換部は、前記第1および第2の偏波ビームスプリッタからそれぞれ出力される水平偏波の信号光を受光して電気信号にそれぞれ変換する。第2の光電変換部は、前記第3および第4の偏波ビームスプリッタからそれぞれ出力される水平偏波の信号光を受光して電気信号にそれぞれ変換する。第3の光電変換部は、前記第1および第2の偏波ビームスプリッタからそれぞれ出力される垂直偏波の信号光を受光して電気信号にそれぞれ変換する。第4の光電変換部は、前記第3および第4の偏波ビームスプリッタからそれぞれ出力される垂直偏波の信号光を受光して電気信号にそれぞれ変換する。受信処理部は、前記第1乃至第4の光電変換部から出力される各電気信号を処理することにより、水平偏波のDQPSK信号光を復調した受信データおよび垂直偏波のDQPSK信号光を復調した受信データを再生する。制御部は、前記受信処理部の処理結果に基づいて、前記第1および第2の遅延干渉部、並びに、前記偏波コントローラをフィードバック制御する。
上記のような光受信装置では、DQPSK偏波多重信号光が偏波分離される前に第1および第2の遅延干渉部に与えられ、該第1および第2の遅延干渉部を伝搬した各光が第1乃至第4偏波ビームスプリッタにより水平偏波の信号光および垂直偏波の信号光に分離されるようになり、この場合も1組の遅延干渉部が水平偏波および垂直偏波について共用されることになる。
上記のような本光受信装置によれば、偏波多重を行わない場合のDQPSK信号光受信装置の遅延干渉部と基本的に同様な簡略な構成の遅延干渉部により、DQPSK偏波多重信号光を受信することが可能になる。また、水平偏波および垂直偏波について1組の遅延干渉部を共通化したことで、各遅延干渉部の光位相差をフィードバック制御するための構成も簡略化されるので、各遅延干渉部の制御に要する電力や回路部品の特性バラツキによる影響を低減することができる。よって、小型で低消費電力かつ低コストのDQPSK偏波多重方式に対応した光受信装置を提供することが可能になる。
以下、本発明を実施するための最良の形態について添付図面を参照しながら説明する。なお、全図を通して同一の符号は同一または相当部分を示すものとする。
図1は、本発明によるDQPSK偏波多重方式に対応した光受信装置の第1実施形態を示す構成図である。
図1において、本実施形態の光受信装置は、例えば、伝送路1の受信端に接続された偏波コントローラ(PC)2と、偏波コントローラ2に接続された偏波分離部としての偏波ビームスプリッタ3と、偏波ビームスプリッタ3から出力される水平および垂直偏波の各信号光SH,SVが入力される第1および第2の分岐部としての光カプラ(CPL)4H,4Vと、第1および第2の遅延干渉部としての1組の遅延干渉計5I,5Qが形成された基板5と、各光カプラ4H,4Vで分岐された光を各遅延干渉計5I,5Qに与えると共に、各遅延干渉計5I,5Qを通過した光を取り出す信号光入出力部としての4つの光サーキュレータ10I1,10Q1,10I2,10Q2と、各遅延干渉計5I,5Qの各々のポートから出力される光が光サーキュレータ10I1〜10Q2を介して若しくは直接入力される第1〜第4の光電変換部としてのバランスド光検出器(O/E)6HI,6HQ,6VQ,6VIと、各バランスド光検出器6HI〜6VIの出力信号が入力され、水平および垂直偏波の各DQPSK信号光を復調した受信データDH,DVを再生する受信処理部としての受信回路7と、受信回路7からの出力信号を基に光位相差の誤差をモニタして各遅延干渉計5I,5Qのフィードバック制御を行う制御部としての制御回路8と、を備えている。
具体的に、偏波コントローラ2は、伝送路1を伝送されたDQPSK偏波多重信号光Sが偏波ビームスプリッタ3に対して所望の偏波状態で入力されるように、該信号光Sの偏波を制御するものである。偏波ビームスプリッタ3は、偏波コントローラ2からの出力光Sを、水平偏波のDQPSK信号光SHと垂直偏波のDQPSK信号光SVとに偏波分離する。光カプラ4Hは、偏波ビームスプリッタ3から出力される水平偏波のDQPSK信号光SHを2分岐し、一方の分岐光SHI(水平偏波の第1信号光)を光サーキュレータ10I1に送り、他方の分岐光SHQ(水平偏波の第2信号光)を光サーキュレータ10Q1に送る。光カプラ4Vは、偏波ビームスプリッタ3から出力される垂直偏波のDQPSK信号光SVを2分岐し、一方の分岐光SVI(垂直偏波の第1信号光)を光サーキュレータ10I2に送り、他方の分岐光SVQ(垂直偏波の第2信号光)を光サーキュレータ10Q2に送る。
基板5に形成されている各遅延干渉計5I,5Qは、それぞれ、マッハツェンダ光導波路を用いて構成されており、一方のアーム(図1では上側アーム)には光遅延要素が設けられている。遅延時間は、DQPSK信号光における1シンボル時間である。DQPSK信号光においては、1シンボル時間は、データのビットレートの逆数の2倍に相当する。各遅延干渉計5I,5Qの他方のアーム(図1では下側アーム)には移相要素が設けられている。遅延干渉計5Iに設けられている移相要素の位相量(移相量)は「π/4」である。遅延干渉計5Qに設けられている移相要素の位相量は「−π/4」である。これらの移相要素は、制御回路8による制御対象となる。
以下の説明では、遅延干渉計5Iを伝搬する光の経路をIブランチ、遅延干渉計5Qを伝搬する光の経路をQブランチと呼ぶことにする。また、遅延干渉計5Iの4つのポートについては、基板5の左端面上側に位置するものを第1ポートPI1、左端面下側に位置するものを第2ポートPI2、右端面上側に位置するものを第3ポートPI3、右端面下側に位置するものを第4ポートPI4とする。これと同様にして遅延干渉計5Qの第1〜第4ポートをPQ1〜PQ4とする。
光サーキュレータ10I1,10Q1,10I2,10Q2は、それぞれ、3つの接続端子を備えており、第1接続端子に入力された光を第2接続端子から出力し、第2接続端子に入力された光を第3接続端子から出力する一方、これらの光とは逆方向に進む光を遮断する特性を有する。光サーキュレータ10I1は、第1接続端子が光カプラ4Hの一方の分岐ポートに接続され、第2接続端子が遅延干渉計5Iの第1ポートPI1に接続され、第3接続端子がバランスド光検出器6VIの入力ポートに接続されている。光サーキュレータ10Q1は、第1接続端子が光カプラ4Hの他方の分岐ポートに接続され、第2接続端子が遅延干渉計5Qの第1ポートPQ1に接続され、第3接続端子がバランスド光検出器6VQの入力ポートに接続されている。光サーキュレータ10I2は、第1接続端子が光カプラ4Vの一方の分岐ポートに接続され、第2接続端子が遅延干渉計5Iの第3ポートPI3に接続され、第3接続端子がバランスド光検出器6HIの入力ポートに接続されている。光サーキュレータ10Q2は、第1接続端子が光カプラ4Vの他方の分岐ポートに接続され、第2接続端子が遅延干渉計5Qの第3ポートPQ3に接続され、第3接続端子がバランスド光検出器6HQの入力ポートに接続されている。
バランスド光検出器6HI,6HQ,6VQ,6VIは、それぞれ、一対のフォトダイオードを備えており、対応する遅延干渉計からの出力光を受光して差動光電変換検出を行うものである。各バランスド光検出器から出力される電気信号は、受信回路7に与えられる。
受信回路7は、例えば図2の具体的な回路図に示すように、各バランスド光検出器6HI,6HQ,6VQ,6VIにそれぞれ対応した、トランスインピーダンスアンプ(TIA)71HI,71HQ,71VQ,71VI、リミッタアンプ(LIA)72HI,72HQ,72VQ,72VI、および、識別回路73HI,73HQ,73VQ,73VIを備え、さらに、水平偏波に対応する側の識別回路73HI,73HQの出力信号を合波する合波器74H、および、垂直偏波に対応する側の識別回路73VQ,73VIの出力信号を合波する合波器74Vを備えている。
TIA71HI〜71VIは、それぞれ、バランスド光検出器6HI〜6VIから出力される電流信号を電圧信号に変換する。TIA71HI〜71VIの出力信号は、LIA72HI〜72VIを介して識別回路73HI〜73VIにそれぞれ送られる。また、ここでは例えば水平偏波に対応する側のTIA71HI,71HQの出力信号が、制御回路8の後述するミキサ81I,81Qにも送られる。識別回路73HI〜73VIは、それぞれ、受信信号から再生したクロックを利用して、LIA72HI〜72VIの出力信号の論理判定を行う。識別回路73HI,73HQの出力信号は、合波器74Hに送られると共に、制御回路8のミキサ81Q,81Iに送られる。合波器74Hは、識別回路73HI,73HQの出力信号を合波することで、水平偏波のDQPSK信号光SHを復調した受信データDHを出力する。また、識別回路73VQ,73VIの出力信号は、合波器74Vに送られる。合波器74Vは、識別回路73VQ,73VIの出力信号を合波することで、垂直偏波のDQPSK信号光SVを復調した受信データDVを出力する。
制御回路8は、例えば図2に示すように、2つのミキサ81I,81Qおよびマイクロコントローラ82を備えている。ミキサ81Iは、TIA71HIの出力信号および識別回路73HQの出力信号を互いに掛け合わせてマイクロコントローラ82に出力する。また、ミキサ81Qは、TIA71HQの出力信号および識別回路73HIの出力信号を互いに掛け合わせてマイクロコントローラ82に出力する。このとき、各ミキサ81I,81Qに対して入出力される電圧信号は、図示を省略したローパスフィルタ等により高周波成分が除去(平均化)されているものとする。マイクロコントローラ82は、ミキサ81Iからの出力信号に対して所定の演算を実行することで、Iブランチ側の遅延干渉計5Iにおける光位相差(移相量)を最適化する制御信号CIを生成すると共に、ミキサ81Qからの出力信号に対して所定の演算を実行することで、Qブランチ側の遅延干渉計5Qにおける光位相差(移相量)を最適化する制御信号CQを生成する。ここでは、1つのマイクロコントローラ82によりIブランチおよびQブランチに対応した制御信号CI,CQを生成するようにしたが、各々のブランチに個別に対応したマイクロコントローラを設けるようにしてもよい。上記の制御信号CI,CQに従って、例えば、遅延干渉計5I,5Qにそれぞれ対応させて基板5に付設された図示しない温度調整手段(例えば、ヒータやペルチェなど)が制御されることにより、各遅延干渉計5I,5Qの移相要素の位相量が調整される。
次に、第1実施形態の動作について説明する。
上記のような構成を有する光受信装置では、伝送路1を伝送されてきたDQPSK偏波多重信号光Sが、偏波コントローラ2を介して偏波ビームスプリッタ3に入力され偏波分離される。偏波ビームスプリッタ3から出力される水平偏波のDQPSK信号光SHは、光カプラ4Hにおいて1:1のパワー比で2分岐されて、Iブランチ側に送られる信号光SHIと、Qブランチ側に送られる信号光SHQとなる。同様に、偏波ビームスプリッタ3から出力される垂直偏波のDQPSK信号光SQは、光カプラ4Qにおいて1:1のパワー比で2分岐されて、Iブランチ側に送られる信号光SVIと、Qブランチ側に送られる信号光SVQとなる。
光カプラ4Hで分岐されたIブランチ側の信号光SHIは、光サーキュレータ10I1を通過して遅延干渉計5Iの第1ポートPI1に入力され、該遅延干渉計5Iを図1で左から右方向に伝搬し、1シンボル時間の遅延とπ/4の移相を与えて干渉させた光が第3ポートPI3および第4ポートPI4からそれぞれ出力される。また、光カプラ4Hで分岐されたQブランチ側の信号光SHQは、光サーキュレータ10Q1を通過して遅延干渉計5Qの第1ポートPQ1に入力され、該遅延干渉計5Qを図1で左から右方向に伝搬し、1シンボル時間の遅延と−π/4の移相を与えて干渉させた光が第3ポートPQ3および第4ポートPQ4からそれぞれ出力される。そして、遅延干渉計5Iの第3、第4ポートPI3,PI4からの出力光がバランスド光検出器6HIに入力されて差動光電変換検出が行われると共に、遅延干渉計5Qの第3、第4ポートPQ3,PQ4からの出力光がバランスド光検出器6HQに入力されて差動光電変換検出が行われる。
一方、光カプラ4Vで分岐されたIブランチ側の信号光SVIは、光サーキュレータ10I2を通過して遅延干渉計5Iの第3ポートPI3に入力され、該遅延干渉計5Iを図1で右から左方向に伝搬し、1シンボル時間の遅延とπ/4の移相を与えて干渉させた光が第1ポートPI1および第2ポートPI2からそれぞれ出力される。また、光カプラ4Vで分岐されたQブランチ側の信号光SVQは、光サーキュレータ10Q2を通過して遅延干渉計5Qの第3ポートPQ3に入力され、該遅延干渉計5Qを図1で右から左方向に伝搬し、1シンボル時間の遅延と−π/4の移相を与えて干渉させた光が第1ポートPQ1および第2ポートPQ2からそれぞれ出力される。そして、遅延干渉計5Iの第1、第2ポートPI1,PI2からの出力光がバランスド光検出器6VIに入力されて差動光電変換検出が行われると共に、遅延干渉計5Qの第1、第2ポートPQ1,PQ2からの出力光がバランスド光検出器6VQに入力されて差動光電変換検出が行われる。
各バランスド光検出器6HI〜6VIから出力される電流信号は、受信回路7のTIA71HI〜71VIで電圧信号に変換された後、LIA72HI〜72VIで増幅されて識別回路73HI〜73VIにそれぞれ送られる。各識別回路73HI〜73VIでは、LIA72HI〜72VIの出力信号の論理判定が行われ、識別回路73HI,73HQから出力される各信号が合波器74Hで合波されることで、水平偏波のDQPSK信号光SHを復調した受信データDHが再生されると共に、識別回路73VQ,73VIから出力される各信号が合波器74Vで合波されることで、垂直偏波のDQPSK信号光SVを復調した受信データDVが再生される。
このとき、受信回路7で処理される信号のうちの、ここでは水平偏波に対応する側の信号について、Iブランチ側のTIA71HIの出力信号およびQブランチ側の識別回路73HQの出力信号が制御回路8のミキサ81Iで互いに掛け合わされ、該ミキサ81Iの出力信号がマイクロコントローラ82に送られる。また、Qブランチ側のTIA71HQの出力信号およびIブランチ側の識別回路73HIの出力信号が制御回路8のミキサ81Qで互いに掛け合わされ、該ミキサ81Qの出力信号がマイクロコントローラ82に送られる。そして、マイクロコントローラ82では、各ミキサ81I,81Qからの出力信号を用いて所定の演算処理が実行されることで、IブランチおよびQブランチでの位相誤差がモニタされ、該位相誤差が実質的に零となるように各遅延干渉計5I,5Qでの移相量を最適化する制御信号CI,CQが生成される。この制御信号CI,CQに従って、基板5に付設されたヒータやペルチェ等の温度調整手段が制御されることにより、遅延干渉計5Iの移相量が正確に「π/4」に設定され、遅延干渉計5Qの移相量が正確に「−π/4」に設定される。すなわち、各遅延干渉計5I,5Qを伝搬した光の相対的な位相差がπ/2に最適化される。
なお、上記のような制御回路8による各遅延干渉計5I,5Qのフィードバック制御の具体的な内容は、上述した特許文献1(特開2007−20138号公報)等に詳しく記載されているため、ここでの説明を省略する。
上記のように第1実施形態の光受信装置によれば、1組の遅延干渉計5I,5Qが形成された1つの基板5および4つの光サーキュレータ10I1〜10Q2を組み合わせて、各遅延干渉計5I,5Qに対し、水平偏波の信号光SHおよび垂直偏波の信号光SVが双方向から与えられるようにしたことで、水平/垂直偏波に対応した遅延干渉計の構成を共通化することができ、偏波多重を行わない場合の遅延干渉計と基本的に同様な簡略な構成の遅延干渉計により、DQPSK偏波多重信号光を受信することが可能になる。また、遅延干渉計の共通化により、遅延干渉計の光位相差をフィードバック制御するための構成も簡略化されるので、遅延干渉計の温度調整に要する電力や回路部品の特性バラツキによる影響を低減することができる。よって、小型で低消費電力かつ低コストの光受信装置を提供することが可能になる。
次に、本発明の第2実施形態について説明する。
図3は、本発明によるDQPSK偏波多重方式に対応した光受信装置の第2実施形態を示す構成図である。
図3において、本光受信装置の構成が上述した第1実施形態の構成と異なる点は、第1実施形態におけるIブランチに対応した遅延干渉計5Iおよび光サーキュレータ10I1,10I2に相当する構成を、偏波ビームスプリッタ20I1,20I2、ハーフミラー21I1,21I2および全反射ミラー22I1,22I2を組み合わせた空間光学系で構成すると共に、第1実施形態におけるQブランチに対応した遅延干渉計5Qおよび光サーキュレータ10Q1,10Q2に相当する構成を、偏波ビームスプリッタ20Q1,20Q2、ハーフミラー21Q1,21Q2および全反射ミラー22Q1,22Q2を組み合わせた空間光学系で構成するようにし、当該構成の適用に伴って光カプラ4H,4Vに偏波保持型のデバイスを用いるようにした点である。上記以外の光受信装置の構成は第1実施形態の場合と同様であるため、ここでの説明を省略する。
偏波ビームスプリッタ20I1は、光カプラ4Hで分岐された水平偏波の信号光SHI(実線)が図3で左側に位置する端面に入力されると共に、ハーフミラー21I1から出力される垂直偏波の信号光SVI(破線)が右側の端面に入力される。この偏波ビームスプリッタ20I1は、水平偏波を直進させる一方、垂直偏波の伝搬方向を略90度曲げる特性を有しており、左側の端面に入力された水平偏波の信号光SHIを右側の端面より出力してハーフミラー21I1に送り、右側の端面に入力された垂直偏波の信号光SVIをここでは上側の端面より出力してバランスド光検出器6VIに送る。
偏波ビームスプリッタ20Q1は、光カプラ4Hで分岐された水平偏波の信号光SHQ(実線)が図3で左側に位置する端面に入力されると共に、ハーフミラー21Q1から出力される垂直偏波の信号光SVQ(破線)が右側の端面に入力される。この偏波ビームスプリッタ20Q1も、水平偏波を直進させる一方、垂直偏波の伝搬方向を略90度曲げる特性を有しており、左側の端面に入力された水平偏波の信号光SHIを右側の端面より出力してハーフミラー21Q1に送り、右側の端面に入力された垂直偏波の信号光SVQをここでは下側の端面より出力してバランスド光検出器6VQに送る。
偏波ビームスプリッタ20I2は、光カプラ4Vで分岐された垂直偏波の信号光SVI(破線)が図3で右側に位置する端面に入力されると共に、ハーフミラー21I2から出力される水平偏波の信号光SHI(実線)が左側の端面に入力される。この偏波ビームスプリッタ20I2は、垂直偏波を直進させる一方、水平偏波の伝搬方向を略90度曲げる特性を有しており、右側の端面に入力された垂直偏波の信号光SVIを左側の端面より出力してハーフミラー21I2に送り、左側の端面に入力された水平偏波の信号光SHIをここでは上側の端面より出力してバランスド光検出器6HIに送る。
偏波ビームスプリッタ20Q2は、光カプラ4Vで分岐された垂直偏波の信号光SVQ(破線)が図3で右側に位置する端面に入力されると共に、ハーフミラー21Q2から出力される水平偏波の信号光SHQ(実線)が左側の端面に入力される。この偏波ビームスプリッタ20Q2も、垂直偏波を直進させる一方、水平偏波の伝搬方向を略90度曲げる特性を有しており、右側の端面に入力された垂直偏波の信号光SVQを左側の端面より出力してハーフミラー21Q2に送り、左側の端面に入力された水平偏波の信号光SHQをここでは下側の端面より出力してバランスド光検出器6HQに送る。
ハーフミラー21I1は、偏波ビームスプリッタ20I1の対向端面に対して45度傾けて配置されており、偏波ビームスプリッタ20I1から出力される水平偏波の信号光SHIの一部を反射して全反射ミラー22I1に送り、残りの透過光をハーフミラー21I2に送る。また、ハーフミラー21I2を透過してハーフミラー21I1に入力される垂直偏波の信号光SVIの一部を反射してバランスド光検出器6VIに送り、残りの透過光を偏波ビームスプリッタ20I1に送る。さらに、全反射ミラー22I1で反射されてハーフミラー21I1に入力される垂直偏波の信号光SVIの一部を反射して偏波ビームスプリッタ20I1に送り、残りの透過光をバランスド光検出器6VIに送る。
ハーフミラー21Q1は、偏波ビームスプリッタ20Q1の対向端面に対して45度傾けて配置されており、偏波ビームスプリッタ20Q1から出力される水平偏波の信号光SHQの一部を反射して全反射ミラー22Q1に送り、残りの透過光をハーフミラー21Q2に送る。また、ハーフミラー21Q2を透過してハーフミラー21Q1に入力される垂直偏波の信号光SVQの一部を反射してバランスド光検出器6VQに送り、残りの透過光を偏波ビームスプリッタ20Q1に送る。さらに、全反射ミラー22Q1で反射されてハーフミラー21Q1に入力される垂直偏波の信号光SVQの一部を反射して偏波ビームスプリッタ20Q1に送り、残りの透過光をバランスド光検出器6VQに送る。
ハーフミラー21I2は、偏波ビームスプリッタ20I2の対向端面に対して45度傾けて配置されており、偏波ビームスプリッタ20I2から出力される垂直偏波の信号光SVIの一部を反射して全反射ミラー22I2に送り、残りの透過光をハーフミラー21I1に送る。また、ハーフミラー21I1を透過してハーフミラー21I2に入力される水平偏波の信号光SHIの一部を反射してバランスド光検出器6HIに送り、残りの透過光を偏波ビームスプリッタ20I2に送る。さらに、全反射ミラー22I2で反射されてハーフミラー21I2に入力される水平偏波の信号光SHIの一部を反射して偏波ビームスプリッタ20I2に送り、残りの透過光をバランスド光検出器6HIに送る。
ハーフミラー21Q2は、偏波ビームスプリッタ20Q2の対向端面に対して45度傾けて配置されており、偏波ビームスプリッタ20Q2から出力される垂直偏波の信号光SVQの一部を反射して全反射ミラー22Q2に送り、残りの透過光をハーフミラー21Q1に送る。また、ハーフミラー21Q1を透過してハーフミラー21Q2に入力される水平偏波の信号光SHQの一部を反射してバランスド光検出器6HQに送り、残りの透過光を偏波ビームスプリッタ20Q2に送る。さらに、全反射ミラー22Q2で反射されてハーフミラー21Q2に入力される水平偏波の信号光SHQの一部を反射して偏波ビームスプリッタ20Q2に送り、残りの透過光をバランスド光検出器6HQに送る。
全反射ミラー22I1,22I2は、反射面がハーフミラー21I1,21I2と平行になるように配置されており、図示を省略したアクチュエータ等の位置調整手段によりハーフミラー21I1,21I2との間の距離が可変とされている。また、全反射ミラー22Q1,22Q2は、反射面がハーフミラー21Q1,21Q2と平行になるように配置されており、図示を省略したアクチュエータ等の位置調整手段によりハーフミラー21Q1,21Q2との間の距離が可変とされている。上記の位置調整手段は、上述した第1実施形態の場合の遅延干渉計の温度調整手段に相当する機能を有し、制御回路8から出力される制御信号CI,CQに従ってアクチュエータ等の動作が制御される。
上記のような構成の光受信装置では、Iブランチについて、ハーフミラー21I1およびハーフミラー21I2の間の光路長と、ハーフミラー21I1から全反射ミラー22I1および全反射ミラー22I2を経由してハーフミラー22I2に至る光路長との差に応じて、1シンボル時間の遅延とπ/4の移相が与えられることになる。また、Qブランチについては、ハーフミラー21Q1およびハーフミラー21Q2の間の光路長と、ハーフミラー21Q1から全反射ミラー22Q1および全反射ミラー22Q2を経由してハーフミラー22Q2に至る光路長との差に応じて、1シンボル時間の遅延と−π/4の移相が与えられることになる。このようなハーフミラーおよび全反射ミラーを用いて構成された1組の遅延干渉計に対し、4つの偏波ビームスプリッタ20I1〜20Q2を組み合わせて、水平偏波の信号光SHおよび垂直偏波の信号光SVが双方向から与えられるようにしても、上述した第1実施形態の場合と同様の作用効果を得ることができる。また、光サーキュレータに代えて偏波ビームスプリッタを用いたことで、光受信装置の更なる小型化も可能になる。
なお、上記第2実施形態の構成については、遅延干渉計を通過した信号光を各バランスド光検出器で受光する際、ハーフミラーからバランスド光検出器に直接入力される光の光路長と、ハーフミラーから偏波ビームスプリッタを経由してバランスド光検出器に入力される光の光路長とが異なり、該光路長差が問題になる可能性がある。これを回避するためには、例えば図4に示すように、各バランスド光検出器6HI,6HQ,6VQ,6VIについて、2つの入力光のうちの一方の光路上に、上記の光路長差に対応した複屈折板23HI,23HQ,23VQ,23VIを挿入して、2つの入力光の光路長を合わせるようにすればよい。ここでは、複屈折板を用いる一例を示したが、これと同等の機能を持つ公知の光デバイスを光路長調整部として使用することも勿論可能である。
次に、本発明の第3実施形態について説明する。
上述した第1および第2実施形態の構成では、伝送路1を伝送されたDQPSK偏波多重信号光Sが、遅延干渉計に与えられる前に、水平偏波の信号光SHと垂直偏波の信号光SVとに分離されるようにした。これに対して第3実施形態は、DQPSK偏波多重信号光を偏波分離せずに遅延干渉計に与えた後に、IブランチおよびQブランチに対応した各遅延干渉計から出力される信号光を水平偏波および垂直偏波に分離して受信するようにした構成例を説明する。
図5は、上記第3実施形態の光受信装置の構成を示す図である。
図5の光受信装置では、伝送路1を伝送されてきたDQPSK偏波多重信号光Sが、偏波コントローラ2を介して分岐部としての光カプラ(CPL)30に入力される。光カプラ30では、入力光が1:1のパワー比で2分岐されて、第1および第2のDQPSK信号光SI,SQが基板5に出力される。光カプラ30からのDQPSK信号光SIは、Iブランチ側の遅延干渉計5Iの第1ポートPI1に入力されて該遅延干渉計5Iを伝搬し、1シンボル時間の遅延とπ/4の移相を与えて干渉させた光が第3ポートPI3および第4ポートPI4からそれぞれ出力される。同様に、光カプラ30からのDQPSK信号光SQは、Qブランチ側の遅延干渉計5Qの第1ポートPQ1に入力されて該遅延干渉計5Qを伝搬し、1シンボル時間の遅延と−π/4の移相を与えて干渉させた光が第3ポートPQ3および第4ポートPQ4からそれぞれ出力される。
遅延干渉計5Iの第3、第4ポートPI3,PI4からの各出力光、および、遅延干渉計5Qの第3、第4ポートPQ3,PQ4からの各出力光は、偏波軸が同一の方向に揃えられた偏波ビームスプリッタ31I1,31I2,31Q1,31Q2にそれぞれ入力され、水平偏波の信号光と垂直偏波の信号光とに分離される。そして、偏波ビームスプリッタ31I1,31I2からそれぞれ出力される水平偏波の信号光がバランスド光検出器6HIに入力され、偏波ビームスプリッタ31Q1,31Q2からそれぞれ出力される水平偏波の信号光がバランスド光検出器6HQに入力される。また、偏波ビームスプリッタ31I1,31I2からそれぞれ出力される垂直偏波の信号光がバランスド光検出器6VIに入力され、偏波ビームスプリッタ31Q1,31Q2からそれぞれ出力される垂直偏波の信号光がバランスド光検出器6VQに入力される。
バランスド光検出器6HI〜6VQから出力される電流信号は、受信回路7にそれぞれ入力され、上述した第1実施形態の場合と同様の信号処理が実行されて、水平偏波に対応した受信データDHおよび垂直偏波に対応した受信データDVが再生されると共に、該受信回路7で処理される所要の信号を用いて制御回路8で所定の演算処理が実行されることで、IブランチおよびQブランチでの位相誤差がモニタされ、そのモニタ結果に応じて各遅延干渉計5I,5Qのフィードバック制御が行われる。また、各遅延干渉計5I,5Qのフィードバック制御と同時に、水平偏波および垂直偏波にそれぞれ対応した受信信号レベルが共に最大となるように、入力段の偏波コントローラ2のフィードバック制御が行われ、光カプラ30を介して各遅延干渉計5I,5Qに与えられる信号光の偏波状態の最適化が図られる。
上記のような第3実施形態の光受信装置によれば、伝送路1からのDQPSK偏波多重信号光Sを偏波分離せずに基板5上の各遅延干渉計5I,5Qの第1ポートPI1,PQ1に与え、各遅延干渉計5I,5Qの第3ポートPI3,PQ3および第4ポートPI4,PQ4からの各出力光を偏波ビームスプリッタ31I1,31I2,31Q1,31Q2で水平偏波および垂直偏波に分離して受信するようにしても、IブランチおよびQブランチに対応した1組の遅延干渉計5I,5Qが形成された基板5を1つだけ使用してDQPSK偏波多重信号光Sを受信することができ、上述した第1実施形態の場合と同様の作用効果を得ることが可能である。
なお、上記の第3実施形態では、各遅延干渉計5I,5Qの第3、第4ポートにそれぞれ対応させて4つの偏波ビームスプリッタ31I1,31I2,31Q1,31Q2を配置する構成例を示したが、遅延干渉計5Iに対応する偏波ビームスプリッタ31I1,31I2を一体化すると共に、遅延干渉計5Qに対応する偏波ビームスプリッタ31Q1,31Q2を一体化するか、または、すべての偏波ビームスプリッタ31I1,31I2,31Q1,31Q2を一体化してもよい。これにより、光受信装置をより小型化することが可能である。
以上の各実施形態に関して、さらに以下の付記を開示する。
(付記1) 偏波状態の異なる1組のDQPSK信号光が偏波多重されたDQPSK偏波多重信号光を受信する光受信装置において、
入力されるDQPSK偏波多重信号光を水平偏波のDQPSK信号光および垂直偏波のDQPSK信号光に分離する偏波分離部と、
前記偏波分離部で分離された水平偏波のDQPSK信号光を2つに分岐し、水平偏波の第1信号光および水平偏波の第2信号光を生成する第1の分岐部と、
前記偏波分離部で分離された垂直偏波のDQPSK信号光を2つに分岐し、垂直偏波の第1信号光および垂直偏波の第2信号光を生成する第2の分岐部と、
前記水平偏波の第1信号光および前記垂直偏波の第1信号光が伝搬する第1のブランチと、
前記水平偏波の第2信号光および前記垂直偏波の第2信号光が伝搬する第2のブランチと、
前記第1のブランチ上に配置された第1の遅延干渉部と、
前記第2のブランチ上に配置された第2の遅延干渉部と、
前記第1の遅延干渉部に対して、前記水平偏波の第1信号光および前記垂直偏波の第1信号光を、互いの伝搬方向が逆になるように与え、かつ、前記第2の遅延干渉部に対して、前記水平偏波の第2信号光および前記垂直偏波の第2信号光を、互いの伝搬方向が逆になるように与えると共に、前記第1の遅延干渉部を伝搬した前記水平偏波の第1信号光および前記垂直偏波の第1信号光を取り出し、かつ、前記第2の遅延干渉部を伝搬した前記水平偏波の第2信号光および前記垂直偏波の第2信号光を取り出す信号光入出力部と、
前記信号光入出力部で取り出された前記水平偏波の第1信号光、前記垂直偏波の第1信号光、前記水平偏波の第2信号光および前記垂直偏波の第2信号光をそれぞれ受光して電気信号に変換する第1乃至第4の光電変換部と、
前記第1乃至第4の光電変換部から出力される各電気信号を処理することにより、前記水平偏波のDQPSK信号光を復調した受信データおよび前記垂直偏波のDQPSK信号光を復調した受信データを再生する受信処理部と、
前記受信処理部の処理結果に基づいて前記第1および第2の遅延干渉部をフィードバック制御する制御部と、を備えたことを特徴とするDQPSK偏波多重方式に対応した光受信装置。
(付記2) 前記第1および第2の遅延干渉部は、それぞれ、第1乃至第4ポートを有し、一方のアームに光遅延要素、他方のアームに移相要素を含んだマッハツェンダ光導波路型の遅延干渉計を用いて構成され、
前記信号光入出力部は、前記第1の遅延干渉部の第1ポートに前記水平偏波の第1信号光を与えると共に、前記第1の遅延干渉部を伝搬して第1ポートから出力される前記垂直偏波の第1信号光を取り出す第1の光サーキュレータと、前記第2の遅延干渉部の第1ポートに前記水平偏波の第2信号光を与えると共に、前記第2の遅延干渉部を伝搬して第1ポートから出力される前記垂直偏波の第2信号光を取り出す第2の光サーキュレータと、前記第1の遅延干渉部の第3ポートに前記垂直偏波の第1信号光を与えると共に、前記第1の遅延干渉部を伝搬して第3ポートから出力される前記水平偏波の第1信号光を取り出す第3の光サーキュレータと、前記第2の遅延干渉部の第3ポートに前記垂直偏波の第2信号光を与えると共に、前記第2の遅延干渉部を伝搬して第3ポートから出力される前記水平偏波の第2信号光を取り出す第4の光サーキュレータと、を備え、
前記第1の光電変換部は、前記第3の光サーキュレータおよび前記第1の遅延干渉部の第4ポートから出力される前記水平偏波の第1信号光を受光し、
前記第2の光電変換部は、前記第1の光サーキュレータおよび前記第1の遅延干渉部の第2ポートから出力される前記垂直偏波の第1信号光を受光し、
前記第3の光電変換部は、前記第4の光サーキュレータおよび前記第2の遅延干渉部の第4ポートから出力される前記水平偏波の第2信号光を受光し、
前記第4の光電変換部は、前記第2の光サーキュレータおよび前記第2の遅延干渉部の第2ポートから出力される前記垂直偏波の第2信号光を受光する、ことを特徴とする付記1に記載のDQPSK偏波多重方式に対応した光受信装置。
(付記3) 前記制御部は、前記第1の遅延干渉部を伝搬した信号光および前記第2の遅延干渉部を伝搬した信号光の間の光位相差がπ/2となるように、前記第1および第2の遅延干渉部の各移相要素の温度を調整することを特徴とする付記2に記載のDQPSK偏波多重方式に対応した光受信装置。
(付記4) 前記第1および第2の遅延干渉部は、それぞれ、所定の間隔で対称に配置された第1および第2のハーフミラーと、該第1および第2のハーフミラーに対して反射面が平行となるように配置された第1および第2の全反射ミラーとを組み合わせた遅延干渉計を用いて構成され、
前記信号光入出力部は、
前記第1の遅延干渉部の前記第1のハーフミラーに前記水平偏波の第1信号光を与えると共に、前記第1の遅延干渉部を伝搬して前記第1のハーフミラーから2方向に出力される前記垂直偏波の第1信号光のうちの一方を取り出す第1の偏波ビームスプリッタと、
前記第2の遅延干渉部の前記第1のハーフミラーに前記水平偏波の第2信号光を与えると共に、前記第2の遅延干渉部を伝搬して前記第1のハーフミラーから2方向に出力される前記垂直偏波の第2信号光のうちの一方を取り出す第2の偏波ビームスプリッタと、
前記第1の遅延干渉部の前記第2のハーフミラーに前記垂直偏波の第1信号光を与えると共に、前記第1の遅延干渉部を伝搬して前記第2のハーフミラーから2方向に出力される前記水平偏波の第1信号光のうちの一方を取り出す第3の偏波ビームスプリッタと、
前記第2の遅延干渉部の前記第2のハーフミラーに前記垂直偏波の第2信号光を与えると共に、前記第2の遅延干渉部を伝搬して前記第2のハーフミラーから2方向に出力される前記水平偏波の第2信号光のうちの一方を取り出す第4の偏光ビームスプリッタと、を備え、
前記第1の光電変換部は、前記第3の偏波ビームスプリッタから出力される前記水平偏波の第1信号光、および、前記第1の遅延干渉部の前記第2のハーフミラーから2方向に出力される前記水平偏波の第1信号光のうちの他方を受光し、
前記第2の光電変換部は、前記第1の偏波ビームスプリッタから出力される前記垂直偏波の第1信号光、および、前記第1の遅延干渉部の前記第1のハーフミラーから2方向に出力される前記垂直偏波の第1信号光のうちの他方を受光し、
前記第3の光電変換部は、前記第4の偏波ビームスプリッタから出力される前記水平偏波の第2信号光、および、前記第2の遅延干渉部の前記第2のハーフミラーから2方向に出力される前記水平偏波の第2信号光のうちの他方を受光し、
前記第4の光電変換部は、前記第2の偏波ビームスプリッタから出力される前記垂直偏波の第2信号光、および、前記第2の遅延干渉部の前記第1のハーフミラーから2方向に出力される前記垂直偏波の第2信号光のうちの他方を受光する、ことを特徴とする付記1に記載のDQPSK偏波多重方式に対応した光受信装置。
(付記5) 前記制御部は、前記第1の遅延干渉部を伝搬した信号光および前記第2の遅延干渉部を伝搬した信号光の間の光位相差がπ/2となるように、前記第1および第2の遅延干渉部それぞれの、対向する前記ハーフミラーおよび前記全反射ミラーの間の光路長を調整することを特徴とする付記4に記載のDQPSK偏波多重方式に対応した光受信装置。
(付記6) 前記第1乃至第4の光電変換部のそれぞれで受光される2つの信号光の各光路長を合わせるための第1乃至第4の光路長調整部を備えたことを特徴とする付記4に記載のDQPSK偏波多重方式に対応した光受信装置。
(付記7) 前記第1乃至第4の光路長調整部は、それぞれ、複屈折板を用いて構成されたことを特徴とする付記6に記載のDQPSK偏波多重方式に対応した光受信装置。
(付記8) 偏波状態の異なる1組のDQPSK信号光が偏波多重されたDQPSK偏波多重信号光を受信する光受信装置において、
入力されるDQPSK偏波多重信号光の偏波状態を制御する偏波コントローラと、
前記偏波コントローラから出力されるDQPSK偏波多重信号光を2つに分岐し、第1のDQPSK偏波多重信号光および第2のDQPSK偏波多重信号光を生成する分岐部と、
前記第1のDQPSK偏波多重信号光が入力ポートに与えられる第1の遅延干渉部と、
前記第2のDQPSK偏波多重信号光が入力ポートに与えられる第2の遅延干渉部と、
前記第1の遅延干渉部の2つの出力ポートのうちの一方に接続された第1の偏波ビームスプリッタと、
前記第1の遅延干渉部の2つの出力ポートのうちの他方に接続され、前記第1の偏波ビームスプリッタと同一方向の偏波軸を有する第2の偏波ビームスプリッタと、
前記第2の遅延干渉部の2つの出力ポートのうちの一方に接続され、前記第1の偏波ビームスプリッタと同一方向の偏波軸を有する第3の偏波ビームスプリッタと、
前記第2の遅延干渉部の2つの出力ポートのうちの他方に接続され、前記第1の偏波ビームスプリッタと同一方向の偏波軸を有する第4の偏波ビームスプリッタと、
前記第1および第2の偏波ビームスプリッタからそれぞれ出力される水平偏波の信号光を受光して電気信号にそれぞれ変換する第1の光電変換部と、
前記第3および第4の偏波ビームスプリッタからそれぞれ出力される水平偏波の信号光を受光して電気信号にそれぞれ変換する第2の光電変換部と、
前記第1および第2の偏波ビームスプリッタからそれぞれ出力される垂直偏波の信号光を受光して電気信号にそれぞれ変換する第3の光電変換部と、
前記第3および第4の偏波ビームスプリッタからそれぞれ出力される垂直偏波の信号光を受光して電気信号にそれぞれ変換する第4の光電変換部と、
前記第1乃至第4の光電変換部から出力される各電気信号を処理することにより、水平偏波のDQPSK信号光を復調した受信データおよび垂直偏波のDQPSK信号光を復調した受信データを再生する受信処理部と、
前記受信処理部の処理結果に基づいて、前記第1および第2の遅延干渉部、並びに、前記偏波コントローラをフィードバック制御する制御部と、
を備えたことを特徴とするDQPSK偏波多重方式に対応した光受信装置。
(付記9) 前記第1および第2の遅延干渉部は、それぞれ、一方のアームに光遅延要素、他方のアームに移相要素を含んだマッハツェンダ光導波路型の遅延干渉計を用いて構成され、
前記制御部は、前記第1の遅延干渉部を伝搬した信号光および前記第2の遅延干渉部を伝搬した信号光の間の光位相差がπ/2となるように、前記第1および第2の遅延干渉部の各移相要素の温度を調整することを特徴とする付記8に記載のDQPSK偏波多重方式に対応した光受信装置。
(付記10) 前記制御部は、前記受信処理部における水平偏波および垂直偏波にそれぞれ対応した受信信号レベルが共に最大となるように前記偏波コントローラを制御することを特徴とする付記8に記載のDQPSK偏波多重方式に対応した光受信装置。
(付記11) 前記第1乃至第4の偏波ビームスプリッタのうちの少なくとも2つを一体化したことを特徴とする付記8に記載のDQPSK偏波多重方式に対応した光受信装置。
(付記12) 前記第1乃至第4の偏波ビームスプリッタのすべてを一体化したことを特徴とする付記11に記載のDQPSK偏波多重方式に対応した光受信装置。
本発明によるDQPSK偏波多重方式に対応した光受信装置の第1実施形態を示す構成図である。 上記第1実施形態における受信回路および制御回路の具体的な構成例を示す図である。 本発明によるDQPSK偏波多重方式に対応した光受信装置の第2実施形態を示す構成図である。 上記第2実施形態に関連した応用例の構成を示す図である。 本発明によるDQPSK偏波多重方式に対応した光受信装置の第3実施形態を示す構成図である。 DQPSK偏波多重方式に対応した光受信装置の典型的な構成例を示す図である。
符号の説明
1…伝送路
2…偏波コントローラ(PC)
3,20I1,20I2,20Q1,20Q2,31I1,31I2,31Q1,31Q2…偏波ビームスプリッタ
H,4V,30…光カプラ(CPL)
5…基板
H,5V…遅延干渉計
HI,6HQ,6VQ,6VI…バランスド光検出器(O/E)
7…受信回路
8…制御回路
21I1,21I2,21Q1,21Q2…ハーフミラー
22I1,22I2,22Q1,22Q2…全反射ミラー
23HI,23HQ,23VQ,23VI…複屈折板
71HI,71HQ,71VQ,71VI…トランスインピーダンスアンプ(TIA)
72HI,72HQ,72VQ,72VI…リミッタアンプ(LIA)
73HI,73HQ,73VQ,73VI…識別回路
74H,74V…合波器
81I,81Q…ミキサ
82…マイクロコントローラ
I,CQ…制御信号
H,DV…受信データ
I1〜PI4,PQ1〜PQ4…遅延干渉計の第1〜第4ポート
S…DQPSK偏波多重信号光
H…水平偏波の信号光
V…垂直偏波の信号光

Claims (10)

  1. 偏波状態の異なる1組のDQPSK信号光が偏波多重されたDQPSK偏波多重信号光を受信する光受信装置において、
    入力されるDQPSK偏波多重信号光を水平偏波のDQPSK信号光および垂直偏波のDQPSK信号光に分離する偏波分離部と、
    前記偏波分離部で分離された水平偏波のDQPSK信号光を2つに分岐し、水平偏波の第1信号光および水平偏波の第2信号光を生成する第1の分岐部と、
    前記偏波分離部で分離された垂直偏波のDQPSK信号光を2つに分岐し、垂直偏波の第1信号光および垂直偏波の第2信号光を生成する第2の分岐部と、
    前記水平偏波の第1信号光および前記垂直偏波の第1信号光が伝搬する第1のブランチと、
    前記水平偏波の第2信号光および前記垂直偏波の第2信号光が伝搬する第2のブランチと、
    前記第1のブランチ上に配置された第1の遅延干渉部と、
    前記第2のブランチ上に配置された第2の遅延干渉部と、
    前記第1の遅延干渉部に対して、前記水平偏波の第1信号光および前記垂直偏波の第1信号光を、互いの伝搬方向が逆になるように与え、かつ、前記第2の遅延干渉部に対して、前記水平偏波の第2信号光および前記垂直偏波の第2信号光を、互いの伝搬方向が逆になるように与えると共に、前記第1の遅延干渉部を伝搬した前記水平偏波の第1信号光および前記垂直偏波の第1信号光を取り出し、かつ、前記第2の遅延干渉部を伝搬した前記水平偏波の第2信号光および前記垂直偏波の第2信号光を取り出す信号光入出力部と、
    前記信号光入出力部で取り出された前記水平偏波の第1信号光、前記垂直偏波の第1信号光、前記水平偏波の第2信号光および前記垂直偏波の第2信号光をそれぞれ受光して電気信号に変換する第1乃至第4の光電変換部と、
    前記第1乃至第4の光電変換部から出力される各電気信号を処理することにより、前記水平偏波のDQPSK信号光を復調した受信データおよび前記垂直偏波のDQPSK信号光を復調した受信データを再生する受信処理部と、
    前記受信処理部の処理結果に基づいて前記第1および第2の遅延干渉部をフィードバック制御する制御部と、を備えたことを特徴とするDQPSK偏波多重方式に対応した光受信装置。
  2. 前記第1および第2の遅延干渉部は、それぞれ、第1乃至第4ポートを有し、一方のアームに光遅延要素、他方のアームに移相要素を含んだマッハツェンダ光導波路型の遅延干渉計を用いて構成され、
    前記信号光入出力部は、前記第1の遅延干渉部の第1ポートに前記水平偏波の第1信号光を与えると共に、前記第1の遅延干渉部を伝搬して第1ポートから出力される前記垂直偏波の第1信号光を取り出す第1の光サーキュレータと、前記第2の遅延干渉部の第1ポートに前記水平偏波の第2信号光を与えると共に、前記第2の遅延干渉部を伝搬して第1ポートから出力される前記垂直偏波の第2信号光を取り出す第2の光サーキュレータと、前記第1の遅延干渉部の第3ポートに前記垂直偏波の第1信号光を与えると共に、前記第1の遅延干渉部を伝搬して第3ポートから出力される前記水平偏波の第1信号光を取り出す第3の光サーキュレータと、前記第2の遅延干渉部の第3ポートに前記垂直偏波の第2信号光を与えると共に、前記第2の遅延干渉部を伝搬して第3ポートから出力される前記水平偏波の第2信号光を取り出す第4の光サーキュレータと、を備え、
    前記第1の光電変換部は、前記第3の光サーキュレータおよび前記第1の遅延干渉部の第4ポートから出力される前記水平偏波の第1信号光を受光し、
    前記第2の光電変換部は、前記第1の光サーキュレータおよび前記第1の遅延干渉部の第2ポートから出力される前記垂直偏波の第1信号光を受光し、
    前記第3の光電変換部は、前記第4の光サーキュレータおよび前記第2の遅延干渉部の第4ポートから出力される前記水平偏波の第2信号光を受光し、
    前記第4の光電変換部は、前記第2の光サーキュレータおよび前記第2の遅延干渉部の第2ポートから出力される前記垂直偏波の第2信号光を受光する、ことを特徴とする請求項1に記載のDQPSK偏波多重方式に対応した光受信装置。
  3. 前記制御部は、前記第1の遅延干渉部を伝搬した信号光および前記第2の遅延干渉部を伝搬した信号光の間の光位相差がπ/2となるように、前記第1および第2の遅延干渉部の各移相要素の温度を調整することを特徴とする請求項2に記載のDQPSK偏波多重方式に対応した光受信装置。
  4. 前記第1および第2の遅延干渉部は、それぞれ、所定の間隔で対称に配置された第1および第2のハーフミラーと、該第1および第2のハーフミラーに対して反射面が平行となるように配置された第1および第2の全反射ミラーとを組み合わせた遅延干渉計を用いて構成され、
    前記信号光入出力部は、
    前記第1の遅延干渉部の前記第1のハーフミラーに前記水平偏波の第1信号光を与えると共に、前記第1の遅延干渉部を伝搬して前記第1のハーフミラーから2方向に出力される前記垂直偏波の第1信号光のうちの一方を取り出す第1の偏波ビームスプリッタと、
    前記第2の遅延干渉部の前記第1のハーフミラーに前記水平偏波の第2信号光を与えると共に、前記第2の遅延干渉部を伝搬して前記第1のハーフミラーから2方向に出力される前記垂直偏波の第2信号光のうちの一方を取り出す第2の偏波ビームスプリッタと、
    前記第1の遅延干渉部の前記第2のハーフミラーに前記垂直偏波の第1信号光を与えると共に、前記第1の遅延干渉部を伝搬して前記第2のハーフミラーから2方向に出力される前記水平偏波の第1信号光のうちの一方を取り出す第3の偏波ビームスプリッタと、
    前記第2の遅延干渉部の前記第2のハーフミラーに前記垂直偏波の第2信号光を与えると共に、前記第2の遅延干渉部を伝搬して前記第2のハーフミラーから2方向に出力される前記水平偏波の第2信号光のうちの一方を取り出す第4の偏光ビームスプリッタと、を備え、
    前記第1の光電変換部は、前記第3の偏波ビームスプリッタから出力される前記水平偏波の第1信号光、および、前記第1の遅延干渉部の前記第2のハーフミラーから2方向に出力される前記水平偏波の第1信号光のうちの他方を受光し、
    前記第2の光電変換部は、前記第1の偏波ビームスプリッタから出力される前記垂直偏波の第1信号光、および、前記第1の遅延干渉部の前記第1のハーフミラーから2方向に出力される前記垂直偏波の第1信号光のうちの他方を受光し、
    前記第3の光電変換部は、前記第4の偏波ビームスプリッタから出力される前記水平偏波の第2信号光、および、前記第2の遅延干渉部の前記第2のハーフミラーから2方向に出力される前記水平偏波の第2信号光のうちの他方を受光し、
    前記第4の光電変換部は、前記第2の偏波ビームスプリッタから出力される前記垂直偏波の第2信号光、および、前記第2の遅延干渉部の前記第1のハーフミラーから2方向に出力される前記垂直偏波の第2信号光のうちの他方を受光する、ことを特徴とする請求項1に記載のDQPSK偏波多重方式に対応した光受信装置。
  5. 前記制御部は、前記第1の遅延干渉部を伝搬した信号光および前記第2の遅延干渉部を伝搬した信号光の間の光位相差がπ/2となるように、前記第1および第2の遅延干渉部それぞれの、対向する前記ハーフミラーおよび前記全反射ミラーの間の光路長を調整することを特徴とする請求項4に記載のDQPSK偏波多重方式に対応した光受信装置。
  6. 前記第1乃至第4の光電変換部のそれぞれで受光される2つの信号光の各光路長を合わせるための第1乃至第4の光路長調整部を備えたことを特徴とする請求項4に記載のDQPSK偏波多重方式に対応した光受信装置。
  7. 偏波状態の異なる1組のDQPSK信号光が偏波多重されたDQPSK偏波多重信号光を受信する光受信装置において、
    入力されるDQPSK偏波多重信号光の偏波状態を制御する偏波コントローラと、
    前記偏波コントローラから出力されるDQPSK偏波多重信号光を2つに分岐し、第1のDQPSK偏波多重信号光および第2のDQPSK偏波多重信号光を生成する分岐部と、
    前記第1のDQPSK偏波多重信号光が入力ポートに与えられる第1の遅延干渉部と、
    前記第2のDQPSK偏波多重信号光が入力ポートに与えられる第2の遅延干渉部と、
    前記第1の遅延干渉部の2つの出力ポートのうちの一方に接続された第1の偏波ビームスプリッタと、
    前記第1の遅延干渉部の2つの出力ポートのうちの他方に接続され、前記第1の偏波ビームスプリッタと同一方向の偏波軸を有する第2の偏波ビームスプリッタと、
    前記第2の遅延干渉部の2つの出力ポートのうちの一方に接続され、前記第1の偏波ビームスプリッタと同一方向の偏波軸を有する第3の偏波ビームスプリッタと、
    前記第2の遅延干渉部の2つの出力ポートのうちの他方に接続され、前記第1の偏波ビームスプリッタと同一方向の偏波軸を有する第4の偏波ビームスプリッタと、
    前記第1および第2の偏波ビームスプリッタからそれぞれ出力される水平偏波の信号光を受光して電気信号にそれぞれ変換する第1の光電変換部と、
    前記第3および第4の偏波ビームスプリッタからそれぞれ出力される水平偏波の信号光を受光して電気信号にそれぞれ変換する第2の光電変換部と、
    前記第1および第2の偏波ビームスプリッタからそれぞれ出力される垂直偏波の信号光を受光して電気信号にそれぞれ変換する第3の光電変換部と、
    前記第3および第4の偏波ビームスプリッタからそれぞれ出力される垂直偏波の信号光を受光して電気信号にそれぞれ変換する第4の光電変換部と、
    前記第1乃至第4の光電変換部から出力される各電気信号を処理することにより、水平偏波のDQPSK信号光を復調した受信データおよび垂直偏波のDQPSK信号光を復調した受信データを再生する受信処理部と、
    前記受信処理部の処理結果に基づいて、前記第1および第2の遅延干渉部、並びに、前記偏波コントローラをフィードバック制御する制御部と、
    を備えたことを特徴とするDQPSK偏波多重方式に対応した光受信装置。
  8. 前記第1および第2の遅延干渉部は、それぞれ、一方のアームに光遅延要素、他方のアームに移相要素を含んだマッハツェンダ光導波路型の遅延干渉計を用いて構成され、
    前記制御部は、前記第1の遅延干渉部を伝搬した信号光および前記第2の遅延干渉部を伝搬した信号光の間の光位相差がπ/2となるように、前記第1および第2の遅延干渉部の各移相要素の温度を調整することを特徴とする請求項7に記載のDQPSK偏波多重方式に対応した光受信装置。
  9. 前記制御部は、前記受信処理部における水平偏波および垂直偏波にそれぞれ対応した受信信号レベルが共に最大となるように前記偏波コントローラを制御することを特徴とする請求項7に記載のDQPSK偏波多重方式に対応した光受信装置。
  10. 前記第1乃至第4の偏波ビームスプリッタのうちの少なくとも2つを一体化したことを特徴とする請求項7に記載のDQPSK偏波多重方式に対応した光受信装置。
JP2008021996A 2008-01-31 2008-01-31 Dqpsk偏波多重方式に対応した光受信装置 Withdrawn JP2009182888A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008021996A JP2009182888A (ja) 2008-01-31 2008-01-31 Dqpsk偏波多重方式に対応した光受信装置
US12/232,607 US7689074B2 (en) 2008-01-31 2008-09-19 Optical reception apparatus compatible with DQPSK polarization multiplexing format

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008021996A JP2009182888A (ja) 2008-01-31 2008-01-31 Dqpsk偏波多重方式に対応した光受信装置

Publications (1)

Publication Number Publication Date
JP2009182888A true JP2009182888A (ja) 2009-08-13

Family

ID=40931794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008021996A Withdrawn JP2009182888A (ja) 2008-01-31 2008-01-31 Dqpsk偏波多重方式に対応した光受信装置

Country Status (2)

Country Link
US (1) US7689074B2 (ja)
JP (1) JP2009182888A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194876A (ja) * 2008-02-18 2009-08-27 Ntt Electornics Corp 低電力化波長選択装置
JP2012015634A (ja) * 2010-06-29 2012-01-19 Nippon Telegr & Teleph Corp <Ntt> 偏波多重差動位相変調光伝送システムにおける受信装置
KR20190062006A (ko) * 2017-11-28 2019-06-05 한국전자통신연구원 편광 분리 및 결합을 위한 장치

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1893324A (zh) * 2005-07-08 2007-01-10 富士通株式会社 光dqpsk接收机的相位监测装置、相位控制装置及其方法
JP5038219B2 (ja) * 2008-04-11 2012-10-03 株式会社日立製作所 光受信装置
US9520950B2 (en) * 2008-06-10 2016-12-13 Ciena Corporation Optical communications system having chromatic dispersion and polarization mode dispersion compensation
GB2485202B (en) * 2010-11-05 2017-08-30 Oclaro Tech Ltd Demodulator and optical arrangement thereof
EP2495893B1 (en) * 2011-03-04 2016-12-07 Karlsruher Institut für Technologie Optical detector for detecting optical signal beams, method to detect optical signals, and use of an optical detector to detect optical signals
GB2546279B (en) * 2016-01-12 2019-08-21 Phoelex Ltd An optical apparatus
CN108599855B (zh) * 2018-03-15 2020-12-01 电子科技大学 一种灵活可调的多电平全光2r再生装置
CN115225162B (zh) * 2022-08-29 2023-01-24 北京中科国光量子科技有限公司 一种基于往返式延迟干涉仪的集成自相干接收光芯片
CN115102630B (zh) * 2022-08-29 2022-11-04 北京中科国光量子科技有限公司 一种基于偏振无关延迟干涉仪的自相干接收装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288777B2 (ja) * 1999-08-11 2009-07-01 ソニー株式会社 マルチキャリア信号送信装置及びマルチキャリア信号受信装置
CN1893324A (zh) 2005-07-08 2007-01-10 富士通株式会社 光dqpsk接收机的相位监测装置、相位控制装置及其方法
JP4695989B2 (ja) 2006-01-27 2011-06-08 富士通株式会社 差動m位相偏移変調信号の復調用干渉計
JP4620642B2 (ja) * 2006-07-31 2011-01-26 富士通株式会社 多値変調受信装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194876A (ja) * 2008-02-18 2009-08-27 Ntt Electornics Corp 低電力化波長選択装置
JP2012015634A (ja) * 2010-06-29 2012-01-19 Nippon Telegr & Teleph Corp <Ntt> 偏波多重差動位相変調光伝送システムにおける受信装置
KR20190062006A (ko) * 2017-11-28 2019-06-05 한국전자통신연구원 편광 분리 및 결합을 위한 장치
KR102533259B1 (ko) * 2017-11-28 2023-05-18 한국전자통신연구원 편광 분리 및 결합을 위한 장치

Also Published As

Publication number Publication date
US20090196610A1 (en) 2009-08-06
US7689074B2 (en) 2010-03-30

Similar Documents

Publication Publication Date Title
JP2009182888A (ja) Dqpsk偏波多重方式に対応した光受信装置
US10935820B2 (en) Method and system for integrated power combiners
JP4170298B2 (ja) 差分4位相偏移変調方式に対応した光受信器および光受信方法
US7613403B2 (en) Differential multilevel modulated optical signal receiver apparatus
JP5737874B2 (ja) 復調器及び光送受信機
US9077454B2 (en) Optical detector for detecting optical signal beams, method to detect optical signals, and use of an optical detector to detect optical signals
US8588560B2 (en) Optical 90-degree hybrid circuit
US7873286B2 (en) Optical receiver systems and methods for polarization demultiplexing, PMD compensation, and DXPSK demodulation
CN107925484B (zh) 一种单片集成相干光接收器芯片
US7573641B2 (en) Free-space optical hybrid
WO2011027895A1 (ja) Plc型復調器及び光伝送システム
JP5243607B2 (ja) 光90度ハイブリッド回路
US20130128907A1 (en) Coherent Micro-mixer
JP2008092123A (ja) 1次偏波モード分散の補償方法および補償器、並びに、それを用いた光伝送システム
CN101860397B (zh) 连续平衡路径补偿的光电接收机及其补偿方法
US7864433B1 (en) Free-space optical hybrid

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405