JP2009179518A - Method of manufacturing crystalline glass substrate and method of manufacturing double-sieded wiring board - Google Patents

Method of manufacturing crystalline glass substrate and method of manufacturing double-sieded wiring board Download PDF

Info

Publication number
JP2009179518A
JP2009179518A JP2008019827A JP2008019827A JP2009179518A JP 2009179518 A JP2009179518 A JP 2009179518A JP 2008019827 A JP2008019827 A JP 2008019827A JP 2008019827 A JP2008019827 A JP 2008019827A JP 2009179518 A JP2009179518 A JP 2009179518A
Authority
JP
Japan
Prior art keywords
heat treatment
glass substrate
substrate
crystallized glass
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008019827A
Other languages
Japanese (ja)
Inventor
Kazuaki Hashimoto
和明 橋本
Kinya Motomura
欣也 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2008019827A priority Critical patent/JP2009179518A/en
Publication of JP2009179518A publication Critical patent/JP2009179518A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a crystalline glass substrate by which variation in the temperature distribution within the surface of a substrate or between the substrates in the heat treatment of a crystallizing step is reduced and the treatment capacity of the heat treatment is remarkably improved. <P>SOLUTION: In the manufacture of the crystallized glass substrate by melting glass containing at least SiO<SB>2</SB>as a main ingredient and forming into the substrate shape and applying at least heat treatment to the glass substrate, the heat treatment step is performed by successively passing the substrate through the multistage of the heating means and after the heating treatment by the heating means of the preceding stage, the substrate is transported to the heating means of the next stage at a speed controlled to ≥1 m/min. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

磁気ヘッド用基板材、両面配線基板の基板等に好適な熱膨張係数の大きな結晶化ガラス基板の製造方法及び両面配線基板の製造方法に関するものである。   The present invention relates to a method of manufacturing a crystallized glass substrate having a large thermal expansion coefficient suitable for a magnetic head substrate material, a substrate of a double-sided wiring substrate, and the like, and a method of manufacturing a double-sided wiring substrate.

結晶化ガラスは、平滑性の良好な平面が容易に得られることから、従来では、例えば薄膜磁気ヘッド用の基板材として用いられてきた。このような結晶化ガラスは、従来の一般的な製法として、所要のガラス成分のものを溶融、成形した後、適当な上昇速度で熱処理を行い、結晶核、一次結晶、二次結晶を順次成長させ、ガラス全体に微結晶を析出させることによって製造されていた。結晶化ガラスにおける析出結晶の微細化技術に関しては、TiOやZrO等の酸化物、弗化物および金属コロイド等の結晶生成の核として利用することが既に知られている。 Crystallized glass has been conventionally used as a substrate material for thin film magnetic heads, for example, because a flat surface with good smoothness can be easily obtained. Such a crystallized glass is a conventional general manufacturing method. After melting and forming the required glass components, heat treatment is performed at an appropriate ascending rate to sequentially grow crystal nuclei, primary crystals, and secondary crystals. And by precipitating microcrystals over the entire glass. Regarding the refinement technique of the precipitated crystal in the crystallized glass, it is already known to use it as a nucleus for crystal formation of oxides such as TiO 2 and ZrO 2 , fluorides and metal colloids.

さらに、LiO−Al−SiO系で感光性の塩化銀、増感剤の酸化セリウムを含むガラスは、紫外線の露光により照射部分に潜像が生じ、これを熱処理すると銀のコロイドが発生し、更に高温ではLiO・SiOの結晶が析出する。この結晶は、弗酸への溶解速度がガラス部分の数十倍も速いので、上述の紫外線露光、熱処理によって、前記露光部分のみを弗酸でエッチング(溶解除去)することが可能である。これを利用して、結晶化ガラス(結晶化された感光性ガラス)基板にスルーホールをあけ、基板の両面の導通をとるためのスルーホールメッキ等を施し、さらに基板の両面に、リチウムタンタレート、リチウムニオベートなどのセラミックス圧電体、各種導体金属、誘電体などを成膜、接着し、所定のパターニングを行うことによって、光・電子部品用実装基板として用いられる両面配線基板が得られる。 Furthermore, Li 2 O—Al 2 O 3 —SiO 2 -based photosensitive silver chloride and a glass containing sensitizer cerium oxide generate a latent image on the irradiated part by exposure to ultraviolet rays. Colloids are generated, and crystals of Li 2 O · SiO 2 precipitate at higher temperatures. Since this crystal has a dissolution rate in hydrofluoric acid several tens of times faster than that of the glass portion, only the exposed portion can be etched (dissolved and removed) with hydrofluoric acid by the above-described ultraviolet exposure and heat treatment. Utilizing this, a through hole is made in a crystallized glass (crystallized photosensitive glass) substrate, through-hole plating for conducting both sides of the substrate is applied, and lithium tantalate is applied to both sides of the substrate. Then, a ceramic piezoelectric body such as lithium niobate, various conductor metals, dielectrics, and the like are formed and bonded, and predetermined patterning is performed to obtain a double-sided wiring board used as a mounting board for optical / electronic components.

ところで、アモルファスガラス状態のものを結晶化させるための前記熱処理は、従来は多くの場合、いわゆるバッチ式熱処理炉を用いて行われていた。すなわち、上記熱処理炉内に配置したセラミックス基板上にガラス基板を載せ、結晶核形成から結晶成長に至る所望の温度条件にて加熱を行い、基板全体を結晶化させていた。このとき、炉内のヒータ面から加熱される基板内部に生じる温度分布により基板が変形するため、このような温度分布が無視できる程度にまで温度上昇速度を遅くすることによって変形を抑制した結晶化ガラス基板を得ていた。   By the way, the heat treatment for crystallizing amorphous glass is conventionally performed in many cases using a so-called batch heat treatment furnace. That is, a glass substrate is placed on a ceramic substrate placed in the heat treatment furnace, and heated at a desired temperature condition from crystal nucleus formation to crystal growth to crystallize the entire substrate. At this time, since the substrate is deformed by the temperature distribution generated inside the substrate heated from the heater surface in the furnace, the crystallization is suppressed by slowing the rate of temperature rise to such an extent that such temperature distribution can be ignored. A glass substrate was obtained.

また、特許文献1には、板状ガラスを板状部材(セッター)の間に1枚づつ挟み込んだ積層物を、ローラハース方式の移送手段により加熱炉内を移送させながら熱処理を行う結晶化ガラスの製造方法が開示されている。   Patent Document 1 discloses a crystallized glass in which a laminate in which sheet glass is sandwiched one by one between sheet members (setters) is heat-treated while being transferred through a heating furnace by a roller hearth type transfer means. A manufacturing method is disclosed.

特開2002−87835号公報JP 2002-87835 A

しかしながら、従来の熱処理方法によると、温度上昇速度をあまり上げられないため、熱処理に要する時間が長時間とならざるを得なく、処理能力に対してエネルギーコスト等が増大してしまうという問題があった。また、前記のような温度分布の不均一が生じると、基板が変形するだけでなく、基板面内の結晶種や結晶粒等が異なっているおそれがある。このように基板面内において結晶種や結晶粒等が異なっている場合、例えば前記両面配線基板の製造において、スルーホールの開き方が異なって孔径がばらついてしまうことや、熱膨張係数が基板面内で異なり基板の反りや基板上に膜を形成して各種用途に使用する際、膜剥れが生じてしまうことが考えられる。   However, according to the conventional heat treatment method, since the temperature rise rate cannot be increased so much, the time required for the heat treatment is inevitably long, and there is a problem that the energy cost increases with respect to the processing capacity. It was. Further, when the temperature distribution is uneven as described above, not only the substrate is deformed but also the crystal seeds and crystal grains in the substrate surface may be different. Thus, when crystal seeds, crystal grains, and the like are different in the substrate surface, for example, in the manufacture of the double-sided wiring substrate, the through-holes are opened differently and the hole diameter varies, and the thermal expansion coefficient is the substrate surface. It is conceivable that film peeling occurs when a substrate is warped or a film is formed on the substrate and used for various purposes.

また、バッチ式熱処理炉の場合、例えばヒータ面に近い位置と離れた位置とでは温度ばらつきがあり、庫内での温度ばらつきが生じることはどうしても避けられない。通常多数枚の基板を熱処理炉に入れて一度に処理するため、基板間での熱処理温度のばらつきが生じ、それが原因で、熱膨張係数、基板形状、基板サイズ等が基板間でばらつくという問題も生じていた。   In the case of a batch type heat treatment furnace, for example, there is a temperature variation between a position close to the heater surface and a position away from the heater surface, and it is inevitable that temperature variation occurs in the warehouse. Usually, a large number of substrates are placed in a heat treatment furnace and processed at the same time, resulting in variations in the heat treatment temperature between the substrates, which causes the thermal expansion coefficient, substrate shape, substrate size, etc. to vary between the substrates. Also occurred.

要するに、従来技術によると、基板面内及び基板間において熱処理時の温度分布の不均一による不具合をなくすことが困難であった。
なお、上記特許文献1の技術によると、熱処理時の温度分布の不均一の問題をある程度は解消することができるが、十分な解決には至らない。
In short, according to the prior art, it has been difficult to eliminate problems due to non-uniform temperature distribution during heat treatment within and between substrates.
According to the technique disclosed in Patent Document 1, the problem of uneven temperature distribution during heat treatment can be solved to some extent, but it cannot be solved sufficiently.

本発明は、上記従来技術の問題点に鑑みなされたものであり、その目的とするところは、第1に、結晶化工程の熱処理時における基板面内あるいは基板間での温度分布のばらつきを低減でき、しかも熱処理時の処理能力の大幅な向上を可能とする結晶化ガラス基板の製造方法を提供することであり、第2に、上記結晶化ガラス基板の製造方法を適用して結晶化したガラス基板を用いる両面配線基板の製造方法を提供することである。   The present invention has been made in view of the above-mentioned problems of the prior art, and the object of the present invention is firstly to reduce variations in temperature distribution within or between substrates during heat treatment in a crystallization process. And a method for producing a crystallized glass substrate capable of greatly improving the processing capability during heat treatment. Second, glass crystallized by applying the method for producing a crystallized glass substrate. It is providing the manufacturing method of the double-sided wiring board which uses a board | substrate.

本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の本発明を完成するに至った。
すなわち、本発明は以下の構成を有する。
As a result of intensive studies to solve the above problems, the present inventors have completed the following present invention.
That is, the present invention has the following configuration.

(構成1)
少なくともSiOを主成分として含有するガラスを溶融し基板状に成形した後、該ガラス基板に少なくとも熱処理工程を施すことにより結晶化ガラス基板を製造する結晶化ガラス基板の製造方法であって、前記熱処理工程は多段の加熱手段を基板が順次通過することによって行われ、前段の加熱手段による熱処理が完了し、次段の加熱手段への基板の搬送速度を1m/分以上とすることを特徴とする結晶化ガラス基板の製造方法である。
(Configuration 1)
A method for producing a crystallized glass substrate, wherein a glass containing at least SiO 2 as a main component is melted and formed into a substrate, and then the crystallized glass substrate is produced by subjecting the glass substrate to at least a heat treatment step, The heat treatment step is performed by sequentially passing the substrate through the multi-stage heating means, the heat treatment by the previous heating means is completed, and the substrate transport speed to the next heating means is 1 m / min or more. This is a method for producing a crystallized glass substrate.

(構成2)
装置内が隔壁にて多数の加熱室に仕切られ、且つローラー搬送機構を有する連続式熱処理装置を用いて前記熱処理工程を実施することを特徴とする構成1に記載の結晶化ガラス基板の製造方法である。
(Configuration 2)
The method for producing a crystallized glass substrate according to Configuration 1, wherein the heat treatment step is performed using a continuous heat treatment apparatus in which the inside of the apparatus is partitioned into a number of heating chambers by partition walls and has a roller transport mechanism. It is.

(構成3)
前記熱処理工程は、最高到達温度を780℃〜900℃の間で調節して行うことを特徴とする構成1又は2に記載の結晶化ガラス基板の製造方法である。
(構成4)
前記熱処理工程に先立って、ガラス基板に紫外線露光を施すことを特徴とする構成1乃至3のいずれか一に記載の結晶化ガラス基板の製造方法である。
(Configuration 3)
The said heat processing process is a manufacturing method of the crystallized glass substrate of the structure 1 or 2 characterized by adjusting and carrying out maximum ultimate temperature between 780 degreeC-900 degreeC.
(Configuration 4)
Prior to the heat treatment step, the glass substrate is subjected to ultraviolet exposure, and the method for producing a crystallized glass substrate according to any one of configurations 1 to 3 is provided.

(構成5)
ガラス基板の表裏両面に形成された電気配線パターンと、前記ガラス基板の表裏両面に連通する、内部に導電性材料が形成された貫通孔とを有し、前記ガラス基板の表裏両面に形成された各前記電気配線パターンが、前記貫通孔に形成された導電性材料を介して電気的に導通された両面配線基板の製造方法であって、前記ガラス基板に前記貫通孔を形成する工程と、前記ガラス基板に対して、少なくとも熱処理を行うことにより前記ガラス基板を結晶化する工程と、前記貫通孔の内部に導電性材料を形成する工程とを有し、前記結晶化工程における熱処理は、構成1乃至4のいずれか一に記載の結晶化ガラス基板の製造方法における熱処理工程を行うことを特徴とする両面配線基板の製造方法である。
(Configuration 5)
An electrical wiring pattern formed on both front and back surfaces of the glass substrate, and a through hole in which a conductive material was formed inside, communicating with both front and back surfaces of the glass substrate, was formed on both front and back surfaces of the glass substrate. Each of the electrical wiring patterns is a method of manufacturing a double-sided wiring board that is electrically connected via a conductive material formed in the through hole, the step of forming the through hole in the glass substrate; The glass substrate includes a step of crystallizing the glass substrate by performing at least a heat treatment, and a step of forming a conductive material inside the through hole. A method for producing a double-sided wiring board, comprising performing a heat treatment step in the method for producing a crystallized glass substrate according to any one of 1 to 4.

本発明の結晶化ガラス基板の製造方法によれば、ガラス基板に少なくとも熱処理工程を施すことにより結晶化ガラス基板を製造する方法であって、前記熱処理工程は多段の加熱手段を基板が順次通過することによって行われ、前段の加熱手段による熱処理が完了し、次段の加熱手段への基板の搬送速度を1m/分以上とすることにより、熱処理時における基板面内あるいは基板間での温度分布のばらつきを低減でき、しかも熱処理時の処理能力を大幅に向上することが可能になる。   According to the method for producing a crystallized glass substrate of the present invention, the crystallized glass substrate is produced by subjecting the glass substrate to at least a heat treatment step, wherein the heat treatment step sequentially passes the substrate through a multi-stage heating means. When the heat treatment by the heating means at the previous stage is completed, and the conveyance speed of the substrate to the heating means at the next stage is set to 1 m / min or more, the temperature distribution in the substrate surface or between the substrates during the heat treatment is increased. Variations can be reduced, and the processing capability during heat treatment can be greatly improved.

また、上記の熱処理工程は、装置内が隔壁にて多数の加熱室に仕切られ、且つローラー搬送機構を有する連続式熱処理装置を好ましく用いることができる。
また、上記の熱処理工程は、熱処理時の最高到達温度を780℃〜900℃の間で調節して行うことが好ましい。
また、上記の熱処理工程に先立って、ガラス基板に紫外線露光を施すことにより、熱膨張係数の大きな結晶化ガラス基板が容易に得られるため、好ましい実施態様である。
Moreover, the said heat processing process can use preferably the continuous-type heat processing apparatus which has the inside of an apparatus divided into many heating chambers with a partition, and has a roller conveyance mechanism.
Moreover, it is preferable to perform said heat processing process, adjusting the highest reached temperature at the time of heat processing between 780 degreeC-900 degreeC.
Moreover, since a crystallized glass substrate having a large thermal expansion coefficient can be easily obtained by subjecting the glass substrate to ultraviolet exposure prior to the above heat treatment step, this is a preferred embodiment.

またさらに、本発明の両面配線基板の製造方法によれば、本発明の結晶化ガラス基板の製造方法を適用してガラス基板を結晶化する工程を有することにより、基板の変形等がなく、熱膨張係数等の特性値のばらつきも少なく、成膜等により接合する電気配線パターンの材質に合わせて所望の熱膨張係数を有する結晶化ガラス基板を形成することができるので、使用環境において温度変化があっても、配線パターンの剥離、切断、基板の反りなどの不具合が起こらず、安定して動作する高信頼性の両面配線基板を得ることができる。   Furthermore, according to the method for manufacturing a double-sided wiring board of the present invention, the method for crystallizing a glass substrate by applying the method for manufacturing a crystallized glass substrate of the present invention prevents the substrate from being deformed and the like. There is little variation in characteristic values such as expansion coefficient, and a crystallized glass substrate having a desired thermal expansion coefficient can be formed according to the material of the electrical wiring pattern to be joined by film formation, etc. Even in such a case, there can be obtained a highly reliable double-sided wiring board that operates stably without causing problems such as peeling, cutting, and warping of the board.

以下、本発明を実施するための最良の形態について詳述する。
まず、本発明による結晶化ガラス基板の製造方法について詳しく説明する。
本発明による結晶化ガラス基板の製造方法は、少なくともSiOを主成分として含有するガラスを溶融し基板状に成形した後、該ガラス基板に少なくとも熱処理工程を施すことにより結晶化ガラス基板を製造する方法である。そして、上記熱処理工程は多段の加熱手段を基板が順次通過することによって行われ、前段の加熱手段による熱処理が完了し、次段の加熱手段への基板の搬送速度を1m/分以上とすることを特徴とする。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
First, the manufacturing method of the crystallized glass substrate by this invention is demonstrated in detail.
In the method for producing a crystallized glass substrate according to the present invention, a glass containing at least SiO 2 as a main component is melted and formed into a substrate shape, and then the crystallized glass substrate is produced by subjecting the glass substrate to at least a heat treatment step. Is the method. Then, the heat treatment step is performed by sequentially passing the substrate through the multi-stage heating means, the heat treatment by the previous heating means is completed, and the conveyance speed of the substrate to the next heating means is 1 m / min or more. It is characterized by.

本発明によれば、熱処理時における基板面内あるいは基板間での温度分布のばらつきを低減でき、しかも熱処理時の処理能力を大幅に向上することが可能になる。   According to the present invention, it is possible to reduce variation in temperature distribution within the substrate surface or between substrates during heat treatment, and to greatly improve the processing capability during heat treatment.

本発明に用いるガラス素材は、少なくともSiOを主成分として含有するものであれば、成分の種類は本発明において特に制約される必要はないが、通常は、例えば重量百分率で、SiO:70〜85%,Al:0.1〜10%,LiO:5〜20%,Ag及び/又はAu:0.001〜0.1%,Sb:0.01〜1%、等を含む多成分系のガラス素材を好ましく用いることができる。本発明の結晶化ガラス基板は、露光感度低下の原因となる不純物を含まないことが好ましいため、上記ガラス成分の合計含有量を90%以上とすることが好ましい。また、これらのガラス成分に加えて、NaO,KO,ZnO,MgO,CaO,SrO,BaO,SnO,F等は必須成分ではないが、ガラスの結晶化特性、熱膨張特性の調整、清澄などの目的で、それぞれ10%未満の範囲で適宜用いることができる。 As long as the glass material used in the present invention contains at least SiO 2 as a main component, the type of the component is not particularly limited in the present invention, but usually, for example, by weight percentage, SiO 2 : 70 Multi-component system containing ˜85%, Al 2 O 3 : 0.1 to 10%, Li 2 O: 5 to 20%, Ag and / or Au: 0.001 to 0.1%, Sb 2 O 3 : 0.01 to 1%, etc. The glass material can be preferably used. Since it is preferable that the crystallized glass substrate of the present invention does not contain impurities that cause a reduction in exposure sensitivity, the total content of the glass components is preferably 90% or more. Further, in addition to these glass components, Na 2 O, K 2 O, ZnO, MgO, CaO, SrO, BaO, SnO 2 , F, etc. are not essential components, but they have glass crystallization characteristics and thermal expansion characteristics. For the purpose of adjustment, clarification, etc., each can be suitably used within a range of less than 10%.

とりわけ、上記のSiOとLiOの含有量が上記の範囲外であると、後の熱処理工程において熱膨張係数を大きくする効果のあるα−石英およびトリジマイトの析出量が少なくなり、例えば13×10−6/℃以上の大きな熱膨張係数が得られにくくなる。 In particular, when the content of the above-mentioned SiO 2 and Li 2 O is outside the above range, the precipitation amount of α-quartz and tridymite, which has an effect of increasing the thermal expansion coefficient in the subsequent heat treatment step, is reduced, for example, 13 It becomes difficult to obtain a large coefficient of thermal expansion of × 10 −6 / ° C. or more.

このようなガラス素材を溶融成形する方法は、本発明においては公知の方法を任意に適用することができる。本発明による結晶化ガラス基板を例えば両面配線基板の基材として用いる場合には、溶融したガラス素材を所定の板状に成形する。   As a method of melt-molding such a glass material, a known method can be arbitrarily applied in the present invention. When the crystallized glass substrate according to the present invention is used as a base material for a double-sided wiring substrate, for example, a molten glass material is formed into a predetermined plate shape.

次に、たとえば板状に成形したガラス基板を本発明にしたがい熱処理工程を施すことにより結晶化工程を実施する。
図1は本発明の熱処理工程に好適な熱処理装置の構成を示す平面概略図、図2はその側面概略構成図である。これら図1及び図2に示す熱処理装置は、装置内が隔壁にて多数の加熱室100,200,300,・・・に仕切られ、且つローラー搬送機構を有する連続式熱処理装置である。
Next, for example, a crystallization process is performed by subjecting a glass substrate formed into a plate shape to a heat treatment process according to the present invention.
FIG. 1 is a schematic plan view showing the structure of a heat treatment apparatus suitable for the heat treatment process of the present invention, and FIG. These heat treatment apparatuses shown in FIGS. 1 and 2 are continuous heat treatment apparatuses that are partitioned into a plurality of heating chambers 100, 200, 300,...

各加熱室100,200,300、・・・内は、図示していない加熱手段(ヒータ)が配置されており、それぞれの加熱室内は所定の温度に設定されている。それぞれの加熱室内においては雰囲気温度を上げたり下げたりしないので、予め設定した温度に常に一定に保たれている。また、ローラ搬送機構により基板1を搬送する場合は、基板1が水平状態を保ちながら移動するため、各加熱室は基板の移動のための大きな空間領域は必要とせず、各加熱室内の空間を必要最小限の小スペースにできる。この観点からも、各加熱室内部での温度ばらつきはほとんどなく、基板面内での温度分布の不均一が起こらないように、各加熱室内において均一かつ安定した熱処理を施すことができる。   In each of the heating chambers 100, 200, 300,..., Heating means (heater) (not shown) is arranged, and each heating chamber is set to a predetermined temperature. In each heating chamber, the atmospheric temperature is not raised or lowered, so that it is always kept constant at a preset temperature. Further, when the substrate 1 is transported by the roller transport mechanism, the substrate 1 moves while maintaining a horizontal state, so that each heating chamber does not require a large space area for moving the substrate, and the space in each heating chamber is not required. It can be made to the minimum necessary space. Also from this point of view, there is almost no temperature variation in each heating chamber, and uniform and stable heat treatment can be performed in each heating chamber so as not to cause uneven temperature distribution in the substrate surface.

基板1はたとえば最初の加熱室100において一定の時間保持され、所定温度の加熱処理をうける。そして、次の加熱室200へ搬送され、ここでも一定の時間、所定温度の加熱処理をうける。こうして、基板1は各加熱室を順次通過していく。   The substrate 1 is, for example, held for a certain time in the first heating chamber 100 and subjected to a heat treatment at a predetermined temperature. Then, it is transported to the next heating chamber 200 where it is subjected to heat treatment at a predetermined temperature for a certain time. Thus, the substrate 1 sequentially passes through each heating chamber.

基板1の搬送は、図2に概略構成を示すように本実施の形態では、ローラ搬送機構を採用している。例えば加熱室100での熱処理が完了すると、基板1の下面に配設されたローラ101〜103、及びローラ104が回転駆動を開始し、基板1は次の加熱室200へ搬送される。なお、ローラの材質、本数や間隔などは、基板1を安定した状態で搬送するのに支障がない限りにおいて任意に構成することができる。ただし、各ローラは熱処理を受けるため、耐熱性の材料で構成したものが望ましい。   As shown in FIG. 2, the substrate 1 is transported by a roller transport mechanism in the present embodiment. For example, when the heat treatment in the heating chamber 100 is completed, the rollers 101 to 103 and the roller 104 disposed on the lower surface of the substrate 1 start to rotate, and the substrate 1 is transported to the next heating chamber 200. The material, number, and interval of the rollers can be arbitrarily configured as long as there is no problem in transporting the substrate 1 in a stable state. However, since each roller is subjected to heat treatment, it is desirable that each roller is made of a heat resistant material.

そして、本発明においては、前段の加熱室における熱処理が完了し、次段の加熱室へ基板を搬送する際の搬送速度を1m/分以上とすることを特徴としている。つまり、各加熱室間の基板の搬送を出来るだけ素早く行う。その理由は、第1に、熱処理工程に要する全体の時間を短縮することが出来る。第2に、各加熱室間の基板の搬送を緩やかに行った場合、基板の搬送方向先端側から次の加熱室内(前段の加熱室よりも例えば高い温度に設定されている)にゆっくりと入っていくため、搬送方向に依存する基板面内での温度分布むらが生じやすく、基板の変形等の要因となる。これに対し、各加熱室間を速やかに搬送した場合には、基板全体が時間差無く次の加熱室での熱処理を受けるため、温度分布むらが起きるのを抑制することが出来る。   In the present invention, the heat treatment in the preceding heating chamber is completed, and the transport speed when transporting the substrate to the next heating chamber is set to 1 m / min or more. That is, the substrate is transferred between the heating chambers as quickly as possible. The first reason is that the overall time required for the heat treatment step can be shortened. Second, if the substrate is transported gently between the heating chambers, it slowly enters the next heating chamber (for example, set to a higher temperature than the previous heating chamber) from the front end side in the substrate transport direction. Therefore, uneven temperature distribution in the substrate surface depending on the transport direction is likely to occur, which causes deformation of the substrate. On the other hand, when the substrate is quickly transferred between the respective heating chambers, the entire substrate is subjected to the heat treatment in the next heating chamber without a time difference, so that uneven temperature distribution can be suppressed.

従って、基板の搬送速度は速いほど望ましいわけであるが、搬送安定性の観点からは、1m/分〜5m/分の範囲内とすることが好適である。   Accordingly, the higher the substrate transport speed, the better. However, from the viewpoint of transport stability, it is preferable to set the transport speed within the range of 1 m / min to 5 m / min.

本実施の形態では、上述のように、基板の移動手段としてローラ搬送機構を採用しているが、基板を次の加熱室へ瞬時に搬送できる手段であればローラ搬送機構に制約される必要はない。ただし、ローラ搬送機構は、基板を水平状態のまま速やかに搬送でき、極く小さな空間内での搬送が可能であること、基板を保持移動させるための特別な手段が要らないこと、搬送ローラの回転駆動制御だけで済むため制御機構が簡単に構成できること、等の理由から本発明には特に好適である。   In this embodiment, as described above, the roller transport mechanism is adopted as the substrate moving means. However, any means that can instantaneously transport the substrate to the next heating chamber need not be restricted by the roller transport mechanism. Absent. However, the roller transport mechanism can transport the substrate quickly in a horizontal state, can be transported in a very small space, requires no special means for holding and moving the substrate, The present invention is particularly suitable for the present invention because the control mechanism can be easily configured because only rotational drive control is required.

本発明において、上記熱処理は、熱処理温度を780℃〜900℃の間で調節して行うことが望ましい。ただし、この熱処理温度は最高到達温度であって、その到達温度までは所望の昇温速度で段階的にあるいは連続的に温度を上昇させ、また一定時間保持させ、結晶核形成、一次結晶、二次結晶等を順次成長させることが望ましい。図3は、このような熱処理時の温度条件(熱処理スケジュール)のほんの一例を示したもので、温度と時間との関係をあらわす曲線図である。本発明の熱処理工程を前述の図1及び図2に示すような連続式熱処理装置を用いて実施する場合、例えば図3に示すような熱処理時の温度条件に従って、各加熱室での熱処理条件を設定することになる。したがって、結晶化工程のための熱処理工程では、熱処理を何段で行うか(あるいは加熱室をいくつ配置するか)等の設計は、基本的には熱処理時の温度条件にしたがって決定される。   In the present invention, the heat treatment is desirably performed by adjusting the heat treatment temperature between 780 ° C. and 900 ° C. However, this heat treatment temperature is the highest temperature, and until that temperature is reached, the temperature is raised stepwise or continuously at a desired rate of temperature rise and held for a certain period of time to form crystal nuclei, primary crystals, It is desirable to sequentially grow secondary crystals and the like. FIG. 3 shows only one example of the temperature condition (heat treatment schedule) during such heat treatment, and is a curve diagram showing the relationship between temperature and time. When the heat treatment process of the present invention is performed using the continuous heat treatment apparatus as shown in FIGS. 1 and 2, the heat treatment conditions in each heating chamber are set according to the temperature conditions during the heat treatment as shown in FIG. 3, for example. Will be set. Therefore, in the heat treatment step for the crystallization step, the design such as how many steps of heat treatment (or how many heating chambers are arranged) is basically determined according to the temperature conditions during the heat treatment.

たとえば前述のガラス素材の場合、最高到達温度に達する温度上昇の過程及び最高到達温度での処理過程において、LiO・SiO結晶の析出・成長、LiO・SiO結晶のLiO・2SiO結晶への転移(結晶相の転移)、LiO・2SiO結晶の析出・成長が順次好ましく起こり、例えば800℃以上の熱処理温度では、LiO・SiO、LiO・2SiO、及びSiOの3種類、もしくはLiO・2SiO、及びSiOの2種類の結晶が異なる比率で析出しているものと考えられる。 For example, in the case of the glass material described above, Li 2 O · SiO 2 crystal precipitation / growth, Li 2 O · SiO 2 crystal Li 2 O in the process of increasing the temperature to reach the highest temperature and in the process at the highest temperature.・ Transition to 2SiO 2 crystal (transition of crystal phase) and precipitation / growth of Li 2 O.2SiO 2 crystal occur in sequence, for example, at a heat treatment temperature of 800 ° C. or higher, Li 2 O.SiO 2 , Li 2 O. 2SiO 2, and 3 types of SiO 2, or Li 2 O · 2SiO 2, and two crystals of SiO 2 is considered to have deposited in different ratios.

なお、熱処理温度が780℃未満であると、上述の結晶相転移が起こらず、本発明に好ましい結晶種の析出が少なくなる。一方、熱処理温度が900℃を超えると、一部溶解してしまい、基板として用いる場合の物性を劣化させるおそれがある。   Note that when the heat treatment temperature is lower than 780 ° C., the above-described crystal phase transition does not occur, and precipitation of crystal seeds preferable for the present invention decreases. On the other hand, when the heat treatment temperature exceeds 900 ° C., it partially dissolves and there is a risk of deteriorating physical properties when used as a substrate.

また、本発明においては、このようなガラス結晶化させる熱処理に先立って(つまり結晶化前のアモルファスガラスの状態で)、紫外線露光を行ってもよい。本発明においては、露光エネルギー(露光量)を例えば1〜20J/cmの間で適宜調節して紫外線露光を行い、この紫外線露光後に本発明による熱処理を施して、アモルファス状態のガラスを結晶化させることにより、たとえば12×10−6/℃から17×10−6/℃の大きな熱膨張係数を有する結晶化ガラス基板を得ることができる。 In the present invention, ultraviolet exposure may be performed prior to such heat treatment for crystallizing glass (that is, in the state of amorphous glass before crystallization). In the present invention, the exposure energy (exposure amount) is appropriately adjusted between, for example, 1 to 20 J / cm 2 to perform UV exposure, and after this UV exposure, the heat treatment according to the present invention is applied to crystallize the amorphous glass. By doing so, for example, a crystallized glass substrate having a large thermal expansion coefficient of 12 × 10 −6 / ° C. to 17 × 10 −6 / ° C. can be obtained.

本発明者らの検討によると、従来の結晶化ガラスの場合、850℃〜880℃の熱処理工程を経ることで、LiO・2SiOが主結晶として析出し、10×10−6/℃〜11×10−6/℃程度の熱膨張係数が得られることが確認されている。しかし、これだけでは熱膨張係数を十分に上げられない。上述の熱処理に先立って所定の紫外線露光を施した場合、上記の熱膨張係数の値を超える12×10−6/℃〜17×10−6/℃という高い熱膨張係数のものが得られる。従来の結晶化ガラスに含まれる熱膨張係数を大きくする効果のあるα−石英などの結晶成分以外に、石英と同じく二酸化ケイ素の変態の一つであるトリジマイト(tridymite、リン珪石)などの熱膨張係数の特に大きい結晶成分が含まれているものと推察される。つまり、ガラス結晶化のための熱処理に先立って所定の紫外線露光を施すことにより得られる結晶化ガラスは、結晶種で特徴付けると、結晶種として少なくともα−石英及びトリジマイトを含む結晶化ガラスであるといえる。 According to the study by the present inventors, in the case of conventional crystallized glass, Li 2 O.2SiO 2 is precipitated as a main crystal through a heat treatment step of 850 ° C. to 880 ° C., and 10 × 10 −6 / ° C. It has been confirmed that a thermal expansion coefficient of about ˜11 × 10 −6 / ° C. can be obtained. However, this alone cannot sufficiently increase the thermal expansion coefficient. When predetermined ultraviolet exposure is performed prior to the above heat treatment, a material having a high thermal expansion coefficient of 12 × 10 −6 / ° C. to 17 × 10 −6 / ° C. exceeding the value of the above thermal expansion coefficient is obtained. In addition to crystalline components such as α-quartz, which have the effect of increasing the thermal expansion coefficient contained in conventional crystallized glass, thermal expansion of tridymite, which is one of the transformations of silicon dioxide, is the same as quartz. It is assumed that a crystal component having a particularly large coefficient is included. That is, the crystallized glass obtained by performing predetermined ultraviolet light exposure prior to the heat treatment for glass crystallization is characterized by crystal seeds, and is a crystallized glass containing at least α-quartz and tridymite as crystal seeds. I can say that.

次に、本発明の具体的な適用例として、本発明による結晶化ガラス基板を用いる両面配線基板の製造工程を説明する。図4はこのような両面配線基板の製造工程を示す概略断面図である。
同図(a)は、感光性ガラスからなる板状の基板1である。この感光性ガラスは、LiO−Al−SiO系の成分に加えて感光性の塩化銀、増感剤の酸化セリウムを含有する。
Next, as a specific application example of the present invention, a manufacturing process of a double-sided wiring board using the crystallized glass substrate according to the present invention will be described. FIG. 4 is a schematic sectional view showing the manufacturing process of such a double-sided wiring board.
FIG. 1A shows a plate-like substrate 1 made of photosensitive glass. This photosensitive glass contains photosensitive silver chloride and sensitizer cerium oxide in addition to Li 2 O—Al 2 O 3 —SiO 2 -based components.

この感光性ガラス基板1上にフォトマスク2(透光性基板21上に所定のホールパターン22を有する)を密着させ、所定の露光3を行う(同図(b)参照)。感光性ガラス基板1の照射部分に潜像が生じ、これを熱処理すると銀コロイドが発生し、更にLiO・SiOの結晶が析出し、結晶化部11を形成する(同図(c)参照)。この結晶は、弗酸への溶解速度がガラス部分の数十倍も速いので、上記照射部分のみを弗酸でエッチング(溶解除去)することにより、感光性ガラス基板1に貫通孔(スルーホール)12をあける(同図(d)参照)。 A photomask 2 (having a predetermined hole pattern 22 on the translucent substrate 21) is brought into close contact with the photosensitive glass substrate 1, and predetermined exposure 3 is performed (see FIG. 5B). A latent image is formed in the irradiated portion of the photosensitive glass substrate 1, and when this is heat-treated, a silver colloid is generated, and a crystal of Li 2 O.SiO 2 is precipitated to form a crystallized portion 11 ((c) in the figure). reference). Since this crystal has a dissolution rate in hydrofluoric acid several tens of times faster than that of the glass portion, by etching (dissolving and removing) only the irradiated portion with hydrofluoric acid, through holes (through holes) are formed in the photosensitive glass substrate 1. 12 is opened (see (d) in the figure).

次に、このようなスルーホール12のあけられた感光性ガラス基板1に対して、本発明に従い結晶化のための熱処理を行って、結晶化ガラス基板10を得る(同図(e)参照)。   Next, the photosensitive glass substrate 1 having such through holes 12 is heat-treated for crystallization according to the present invention to obtain a crystallized glass substrate 10 (see FIG. 5E). .

次いで、基板10の両面の導通をとるための上記貫通孔12の内壁にスルーホールメッキ等による導体膜を形成し、その後、絶縁性樹脂を貫通孔12内に充填する方法でもよいが、本発明においては、例えば国際公開第2005/027605号に開示されているように、上記貫通孔12に金属銅からなる銅ポスト4を充填する方法が好適である(同図(f)参照)。銅ポスト4は、電解メッキ法を用い、まず貫通孔12の一方の開口部を銅で閉塞し、その後、閉塞した一方の開口部から他方の開口部に向かって更に銅をメッキしていくことにより充填する。この方法によると、基板10の表裏両面が確実に電気的に接続可能となるとともに、両面配線基板全体として高い耐熱性を確保することが可能になる。   Next, a method of forming a conductor film by through-hole plating or the like on the inner wall of the through hole 12 for conducting both surfaces of the substrate 10 and then filling the through hole 12 with an insulating resin may be used. For example, as disclosed in, for example, International Publication No. 2005/027605, a method of filling the through hole 12 with a copper post 4 made of metallic copper is preferable (see FIG. 5F). The copper post 4 uses an electrolytic plating method. First, one opening portion of the through hole 12 is closed with copper, and then copper is further plated from the one opening portion to the other opening portion. Fill with. According to this method, both the front and back surfaces of the substrate 10 can be reliably electrically connected, and high heat resistance can be secured for the entire double-sided wiring substrate.

上記貫通孔12への銅ポスト4の充填後、基板10の両面に、密着力強化層を形成してもよい。この密着力強化層は、結晶化ガラス基板10と、後に配線パターンとして形成されるセラミックス圧電体、各種導体金属、誘電体などの単一又は積層薄膜5A,5Bとの密着力を向上させるためのものであり、例えばスパッタクロム層、スパッタクロム銅層、スパッタ銅層などの単一又は積層膜などを用いると好適である。
さらに基板10の両面にそれぞれ配線パターンを形成するため、セラミックス圧電体、各種導体金属、誘電体などの単一又は積層薄膜5A,5Bを成膜、あるいは接着し(同図(g)参照)、この薄膜5A,5Bに例えばフォトリソグラフィ法により所定のパターニングを行うことによって、同図(h)に示すような光・電子部品用実装基板として用いられる両面配線基板6が得られる。
After filling the through holes 12 with the copper posts 4, adhesion reinforcing layers may be formed on both surfaces of the substrate 10. This adhesion strengthening layer is for improving the adhesion between the crystallized glass substrate 10 and a single or laminated thin film 5A, 5B such as a ceramic piezoelectric body, various conductor metals, dielectrics, etc., to be formed later as a wiring pattern. For example, it is preferable to use a single or laminated film such as a sputtered chromium layer, a sputtered chromium copper layer, or a sputtered copper layer.
Further, in order to form wiring patterns on both surfaces of the substrate 10, a single or laminated thin film 5A, 5B such as a ceramic piezoelectric material, various conductor metals, dielectrics, etc. is formed or bonded (see (g) in the figure) By performing predetermined patterning on the thin films 5A and 5B by, for example, a photolithography method, a double-sided wiring substrate 6 used as an optical / electronic component mounting substrate as shown in FIG.

本発明によれば、上述の図2(e)の結晶化工程において、本発明に従い熱処理を行うことにより、基板の変形等がなく、熱膨張係数等の特性値のばらつきも少なく、(g)の工程で接合する薄膜5A,5Bの材質に合わせて所望する熱膨張係数を有する結晶化ガラス基板を形成することができる。そのため、製造プロセスや使用環境中に著しい温度変化が生じても配線パターンの剥離や基板の反りといった問題が起こらず、高信頼性の両面配線基板とすることができる。また、上述の図2(e)の結晶化工程において、本発明に従い熱処理を行うことにより、基板面内において結晶種や結晶粒のばらつきが抑えられ、スルーホールの孔径のばらつきを抑えた両面配線基板とすることができる。   According to the present invention, by performing the heat treatment according to the present invention in the crystallization process of FIG. 2 (e) described above, there is no deformation of the substrate, and there is little variation in the characteristic values such as the thermal expansion coefficient. A crystallized glass substrate having a desired coefficient of thermal expansion can be formed in accordance with the materials of the thin films 5A and 5B to be joined in the step. Therefore, even if a significant temperature change occurs in the manufacturing process or use environment, problems such as peeling of the wiring pattern and warping of the substrate do not occur, and a highly reliable double-sided wiring substrate can be obtained. Further, in the crystallization process of FIG. 2 (e) described above, by performing the heat treatment according to the present invention, variation in crystal seeds and crystal grains in the substrate surface can be suppressed, and variation in through hole diameter can be suppressed. It can be a substrate.

次に、実施例により、本発明をさらに具体的に説明する。併せて、比較例についても説明する。
(実施例1)
重量百分率でSiO:79%,Al:5%,LiO:10.5%,KO:3.75%,ZnO:0.5%,Ag:0.055%,Sb:0.2%を含むガラス素材を公知の方法で溶融し、所定の大きさの板状に成形した。
Next, the present invention will be described more specifically with reference to examples. In addition, a comparative example will be described.
Example 1
Including percentage by weight of SiO 2 : 79%, Al 2 O 3 : 5%, Li 2 O: 10.5%, K 2 O: 3.75%, ZnO: 0.5%, Ag: 0.055%, Sb 2 O 3 : 0.2% A glass material was melted by a known method and formed into a plate shape of a predetermined size.

この板状のガラス基板を100枚準備し、前述の図1、図2に示すような連続式熱処理装置を用いてロングランテストを行った。
なお、熱処理条件は、最高到達温度850℃、2時間とし、最高到達温度に達するまでの昇温条件は適宜設定した。
こうして熱処理後、放冷し、100枚の結晶化ガラス基板を得た。
100 plate-like glass substrates were prepared, and a long run test was performed using a continuous heat treatment apparatus as shown in FIGS.
The heat treatment conditions were set to a maximum temperature of 850 ° C. for 2 hours, and the temperature increase conditions until the maximum temperature was reached were set as appropriate.
Thus, after heat processing, it stood to cool and obtained 100 crystallized glass substrates.

以上のようにして得られた100枚の結晶化ガラス基板は、いずれも基板の変形等はなかった。また、基板面内に生じていた温度分布のばらつきは、±2℃程度にまで低減でき、さらには基板間での温度ばらつきもほとんど認められなかった。   None of the 100 crystallized glass substrates obtained as described above were deformed. In addition, the variation in temperature distribution that occurred in the substrate surface could be reduced to about ± 2 ° C., and furthermore, there was almost no temperature variation between the substrates.

さらに、得られた100枚の結晶化ガラス基板について、熱膨張係数の測定を行ったところ、いずれの基板も10×10−6/℃〜11×10−6/℃の範囲内であり、ばらつきは小さかった。なお、熱膨張係数の測定は、示差熱分析装置(THERMO PLUS TMA8310、理学電気社製)を用いて行った。 Furthermore, when the thermal expansion coefficient was measured about 100 crystallized glass substrates obtained, all the substrates were in the range of 10 × 10 −6 / ° C. to 11 × 10 −6 / ° C. Was small. The thermal expansion coefficient was measured using a differential thermal analyzer (THERMO PLUS TMA8310, manufactured by Rigaku Corporation).

以上説明したように、本発明の実施例によれば、結晶化工程の熱処理時における基板面内あるいは基板間での温度分布のばらつきを低減でき、また得られた熱膨張係数等の特性値のばらつきも低減できた。しかも熱処理に要する時間を従来のバッチ式と比べると大幅に低減できた(約4分の1以下)。したがって、処理能力の大幅な向上、エネルギーコストの大幅な低減等が可能である。   As described above, according to the embodiment of the present invention, it is possible to reduce the variation in temperature distribution within the substrate surface or between the substrates during the heat treatment in the crystallization process, and to obtain the characteristic values such as the obtained thermal expansion coefficient. The variation was also reduced. In addition, the time required for the heat treatment can be greatly reduced compared to the conventional batch method (about one quarter or less). Therefore, it is possible to greatly improve the processing capacity and greatly reduce the energy cost.

(比較例)
上記実施例と同様の組成のガラス素材を溶融し、所定の大きさの板状に成形した。
この板状のガラス基板を100枚準備し、従来のバッチ式熱処理装置を用いて結晶化工程の熱処理を行った。ただし、上記熱処理装置は一度に50枚しか処理できないため、100枚の基板を2回に分けて行った。
なお、熱処理条件は、実施例と同様、最高到達温度850℃、2時間とし、最高到達温度に達するまでの昇温条件は実施例と同様適宜設定した。
こうして熱処理後、放冷し、100枚の結晶化ガラス基板を得た。
(Comparative example)
A glass material having the same composition as in the above example was melted and formed into a plate having a predetermined size.
100 plate-like glass substrates were prepared, and the heat treatment of the crystallization process was performed using a conventional batch heat treatment apparatus. However, since the heat treatment apparatus can process only 50 substrates at a time, 100 substrates were divided into two.
The heat treatment conditions were the same as in the example, the maximum temperature reached 850 ° C. and 2 hours, and the temperature increase conditions until the maximum temperature was reached were set as appropriate as in the example.
Thus, after heat processing, it stood to cool and obtained 100 crystallized glass substrates.

以上のようにして得られた100枚の結晶化ガラス基板は、一部に基板の変形等がみられた。また、基板面内に生じていた温度分布のばらつきは、±10℃と大きく、さらには基板間での温度ばらつきも認められた。
さらに、得られた100枚の結晶化ガラス基板について、実施例と同様に熱膨張係数の測定を行ったところ、いずれの基板も9×10−6/℃〜12×10−6/℃の範囲内であり、基板間でのばらつきはやや大きかった。
The 100 crystallized glass substrates obtained as described above were partially deformed. Further, the variation in temperature distribution that occurred in the substrate surface was as large as ± 10 ° C., and further, temperature variation between substrates was recognized.
Furthermore, when the obtained 100 crystallized glass substrates were measured for the thermal expansion coefficient in the same manner as in the Examples, all the substrates were in the range of 9 × 10 −6 / ° C. to 12 × 10 −6 / ° C. The variation between the substrates was slightly large.

以上説明したように、比較例によれば、結晶化工程の熱処理時における基板面内あるいは基板間での温度分布のばらつきの低減を図ることが困難である。しかも、熱処理に要する時間が長時間(36時間程度)であり、処理能力の向上、エネルギーコスト等の低減も図れない。   As described above, according to the comparative example, it is difficult to reduce variation in temperature distribution within the substrate surface or between substrates during the heat treatment in the crystallization process. In addition, the time required for the heat treatment is long (about 36 hours), and it is impossible to improve the processing capacity and reduce the energy cost.

(実施例2)
本実施例は、本発明の結晶化ガラス基板の製造方法を適用した両面配線基板の製造例であり、ここでも前述の図2を参照しながら説明する。
重量百分率でSiO:79%,Al:5%,LiO:10.5%,KO:3.75%,ZnO:0.5%,Ag:0.055%,Sb:0.2%を含むガラス素材を公知の方法で溶融し、所定の大きさの板状に成形し、感光性ガラス基板1を100枚準備した(図2(a)参照)。
(Example 2)
The present embodiment is an example of manufacturing a double-sided wiring board to which the method for manufacturing a crystallized glass substrate of the present invention is applied, and will be described with reference to FIG.
Including percentage by weight of SiO 2 : 79%, Al 2 O 3 : 5%, Li 2 O: 10.5%, K 2 O: 3.75%, ZnO: 0.5%, Ag: 0.055%, Sb 2 O 3 : 0.2% A glass material was melted by a known method and formed into a plate having a predetermined size to prepare 100 photosensitive glass substrates 1 (see FIG. 2A).

この各感光性ガラス基板1上にフォトマスク2(透光性基板21上に所定のホールパターン22を有する)を密着させ、所定の紫外線露光3を行った(同図(b)参照)。感光性ガラス基板1の照射部分に潜像が生じ、これを約400℃で熱処理を行って、貫通孔形成部分を結晶化し、結晶化部11を形成した(同図(c)参照)。その後、希フッ化水素酸(約10%溶液)を感光性ガラス基板10の両面にスプレーして、上記結晶化部11(照射部分)のみをエッチング(溶解除去)することにより、感光性ガラス基板1に孔径が20μmの貫通孔(スルーホール)12を形成した(同図(d)参照)。   A photomask 2 (having a predetermined hole pattern 22 on the translucent substrate 21) was brought into close contact with each photosensitive glass substrate 1, and predetermined ultraviolet exposure 3 was performed (see FIG. 5B). A latent image was generated in the irradiated portion of the photosensitive glass substrate 1, and this was heat-treated at about 400 ° C. to crystallize the through-hole forming portion, thereby forming a crystallized portion 11 (see FIG. 4C). Thereafter, dilute hydrofluoric acid (about 10% solution) is sprayed on both surfaces of the photosensitive glass substrate 10 to etch (dissolve and remove) only the crystallized portion 11 (irradiated portion), thereby photosensitive glass substrate. A through hole (through hole) 12 having a hole diameter of 20 μm was formed in 1 (see FIG. 4D).

次に、このような貫通孔12のあけられた各感光性ガラス基板1に対して、紫外線露光および熱処理を行って、結晶化ガラス基板基板10を得た(同図(e)参照)。具体的には、後で配線パターンとして基板の両面に成膜する銅薄膜の熱膨張係数(16×10−6/℃)を考慮し、600WXe−Hgランプを用い、露光量が、8.5J/cmとなるように露光時間を設定して紫外線露光を行った。また、露光後の熱処理は、100枚のガラス基板に対して、本発明に従い実施例1と同様の連続式熱処理装置を用いて行い、熱処理条件は、最高到達温度850℃、2時間とした。そして熱処理後、ガラス基板10を放冷した。得られた結晶化ガラス基板10の熱膨張係数を測定したところ、いずれの基板も略16×10−6/℃であり、銅の熱膨張係数と同様であった。また、孔径のばらつきは、±1μmと揃っており良好であった。 Next, each photosensitive glass substrate 1 having such through holes 12 was subjected to ultraviolet exposure and heat treatment to obtain a crystallized glass substrate 10 (see FIG. 5E). Specifically, in consideration of the thermal expansion coefficient (16 × 10 −6 / ° C.) of a copper thin film to be formed on both sides of the substrate later as a wiring pattern, a 600 WXe-Hg lamp is used and the exposure amount is 8.5 J. The exposure time was set to be / cm 2 and ultraviolet exposure was performed. Further, the heat treatment after the exposure was performed on 100 glass substrates using the continuous heat treatment apparatus similar to that of Example 1 according to the present invention, and the heat treatment conditions were set to a maximum temperature of 850 ° C. and 2 hours. After the heat treatment, the glass substrate 10 was allowed to cool. When the thermal expansion coefficient of the obtained crystallized glass substrate 10 was measured, all the substrates were about 16 × 10 −6 / ° C., which was the same as the thermal expansion coefficient of copper. Moreover, the variation of the hole diameter was as good as ± 1 μm.

次に、結晶化ガラス基板10の両面の導通をとるため、国際公開第2005/027605号に開示された方法に従い、上記貫通孔12に金属銅からなる銅ポスト4を充填した(同図(f)参照)。具体的には、まず、DCスパッタ装置を使用し、結晶化ガラス基板10の裏面に電極層を形成した。この電極層は、基板10に近い側から順に、0.05μm厚のクロム層、0.05μm厚のクロム銅層(クロム:銅=4:96原子%)、1.5μm厚の銅層の3層構造とした。電極層を形成した後、電解メッキ法を用いて、まず電極層が形成された裏面における貫通孔12の開口部を銅メッキで閉塞した。この際、電極層が形成された基板10の裏面側が、陽極に対向するような状態で通電し、電流密度を3A/dmとした。その後、基板10表面側の貫通孔12の開口部が陽極と対向するように配置し直して、電解メッキを行い、閉塞した一方の開口部から他方の開口部に向かって更に銅をメッキしていくことにより貫通孔12を充填した。この際の電流密度は0.5A/dmとした。
基板10表面側に突出した電解メッキ銅層はラップ法を用いて除去し、次いで、基板10裏面側の電解メッキ銅層および電極層はエッチングにより除去して、貫通孔12を銅ポスト4で充填した。
Next, according to the method disclosed in International Publication No. 2005/027605, the through hole 12 was filled with a copper post 4 made of metallic copper in order to conduct both surfaces of the crystallized glass substrate 10 (see FIG. )reference). Specifically, first, an electrode layer was formed on the back surface of the crystallized glass substrate 10 using a DC sputtering apparatus. This electrode layer is composed of a chromium layer having a thickness of 0.05 μm, a chromium copper layer having a thickness of 0.05 μm (chrome: copper = 4: 96 atomic%), and a copper layer having a thickness of 1.5 μm in this order from the side closer to the substrate 10. A layer structure was adopted. After the electrode layer was formed, the opening of the through hole 12 on the back surface on which the electrode layer was formed was first closed with copper plating using an electrolytic plating method. At this time, the back surface side of the substrate 10 where the electrode layer is formed is energized in the state as opposed to the anode, and the current density 3A / dm 2. After that, the opening of the through hole 12 on the surface side of the substrate 10 is repositioned so as to face the anode, electrolytic plating is performed, and copper is further plated from one closed opening to the other opening. The through hole 12 was filled by going. The current density at this time was 0.5 A / dm 2 .
The electrolytically plated copper layer protruding to the front surface side of the substrate 10 is removed using a lapping method, and then the electrolytically plated copper layer and the electrode layer on the back surface side of the substrate 10 are removed by etching, and the through holes 12 are filled with the copper posts 4. did.

上記貫通孔12への銅ポスト4の充填後、基板10の表裏両面に、DCスパッタ装置を使用し、密着力強化層を形成した。この密着力強化層は、基板10に近い側から順に、0.05μm厚のクロム層、0.05μm厚のクロム銅層(クロム:銅=4:96原子%)、1.5μm厚の銅層の3層構造とした。
次に、基板10両面の密着力強化層上に、電解メッキにより、配線パターンを形成するための銅膜を約3.5μm厚に成膜した(同図(g)参照)。次いで、フォトリソグラフィ法を用いて、基板10の両面の銅膜をパターニングした。つまり、まず基板10の両面にポジ型フォトレジストを塗布し、所望の配線パターンに応じた露光、現像を行ってレジストパターンを形成した。次いで、このレジストパターンをマスクとして、銅膜および密着力強化層のウェットエッチングを行い、結晶化ガラス基板10の両面に所定の配線パターンを形成した両面配線基板を得た(同図(h)参照)。
こうして、100枚の両面配線基板を作製した。
After filling the through holes 12 with the copper posts 4, a DC sputtering device was used on both the front and back surfaces of the substrate 10 to form adhesion enhancing layers. This adhesion strengthening layer includes a chromium layer having a thickness of 0.05 μm, a chromium copper layer having a thickness of 0.05 μm (chromium: copper = 96: 96 atomic%), and a copper layer having a thickness of 1.5 μm. The three-layer structure was used.
Next, a copper film for forming a wiring pattern was formed on the adhesion strengthening layer on both surfaces of the substrate 10 to a thickness of about 3.5 μm by electrolytic plating (see FIG. 5G). Next, the copper films on both sides of the substrate 10 were patterned using a photolithography method. That is, first, a positive photoresist was applied to both surfaces of the substrate 10, and exposure and development according to a desired wiring pattern were performed to form a resist pattern. Next, using this resist pattern as a mask, wet etching of the copper film and the adhesion strengthening layer was performed to obtain a double-sided wiring board in which a predetermined wiring pattern was formed on both surfaces of the crystallized glass substrate 10 (see FIG. 11 (h)). ).
Thus, 100 double-sided wiring boards were produced.

得られた100枚の両面配線基板は、基板の熱膨張係数等の特性値のばらつきは少なく、たとえば使用環境において著しい温度変化があっても、配線パターンの剥離、切断、基板の反りなどの不具合が起こらず、安定して動作する高信頼性の両面配線基板を得ることができた。   The obtained 100 double-sided wiring boards have little variation in characteristic values such as the thermal expansion coefficient of the board. For example, even if there is a significant temperature change in the usage environment, problems such as peeling of the wiring pattern, cutting, warping of the board, etc. It was possible to obtain a highly reliable double-sided wiring board that does not occur and operates stably.

本発明に好適に用いられる連続式熱処理装置の平面概略図である。1 is a schematic plan view of a continuous heat treatment apparatus preferably used in the present invention. 上記熱処理装置の側面概略構成図である。It is a side surface schematic block diagram of the said heat processing apparatus. 熱処理時の温度条件の一例を示す温度と時間との関係をあらわす曲線図である。It is a curve figure showing the relationship between temperature and time which shows an example of the temperature conditions at the time of heat processing. 本発明による結晶化ガラス基板を用いる両面配線基板の製造工程を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing process of the double-sided wiring board using the crystallized glass substrate by this invention.

符号の説明Explanation of symbols

1 感光性ガラス基板
2 フォトマスク
3 露光
4 銅ポスト
5A,5B 薄膜
6 両面配線基板
10 結晶化ガラス基板
12 貫通孔(スルーホール)
100,200,300・・・ 加熱室
DESCRIPTION OF SYMBOLS 1 Photosensitive glass substrate 2 Photomask 3 Exposure 4 Copper post 5A, 5B Thin film 6 Double-sided wiring substrate 10 Crystallized glass substrate 12 Through-hole (through hole)
100, 200, 300 ... heating chamber

Claims (5)

少なくともSiOを主成分として含有するガラスを溶融し基板状に成形した後、該ガラス基板に少なくとも熱処理工程を施すことにより結晶化ガラス基板を製造する結晶化ガラス基板の製造方法であって、
前記熱処理工程は多段の加熱手段を基板が順次通過することによって行われ、前段の加熱手段による熱処理が完了し、次段の加熱手段への基板の搬送速度を1m/分以上とすることを特徴とする結晶化ガラス基板の製造方法。
A method for producing a crystallized glass substrate, wherein a glass containing at least SiO 2 as a main component is melted and formed into a substrate, and then a crystallized glass substrate is produced by subjecting the glass substrate to at least a heat treatment step,
The heat treatment step is performed by sequentially passing the substrate through the multi-stage heating means, the heat treatment by the previous heating means is completed, and the conveyance speed of the substrate to the next heating means is 1 m / min or more. A method for producing a crystallized glass substrate.
装置内が隔壁にて多数の加熱室に仕切られ、且つローラー搬送機構を有する連続式熱処理装置を用いて前記熱処理工程を実施することを特徴とする請求項1に記載の結晶化ガラス基板の製造方法。   2. The production of a crystallized glass substrate according to claim 1, wherein the heat treatment step is performed using a continuous heat treatment apparatus in which the inside of the apparatus is partitioned into a plurality of heating chambers by partition walls and has a roller transport mechanism. Method. 前記熱処理工程は、最高到達温度を780℃〜900℃の間で調節して行うことを特徴とする請求項1又は2に記載の結晶化ガラス基板の製造方法。   3. The method for producing a crystallized glass substrate according to claim 1, wherein the heat treatment step is performed by adjusting a maximum attainable temperature between 780 ° C. and 900 ° C. 3. 前記熱処理工程に先立って、ガラス基板に紫外線露光を施すことを特徴とする請求項1乃至3のいずれか一に記載の結晶化ガラス基板の製造方法。   The method for producing a crystallized glass substrate according to any one of claims 1 to 3, wherein the glass substrate is subjected to ultraviolet exposure prior to the heat treatment step. ガラス基板の表裏両面に形成された電気配線パターンと、前記ガラス基板の表裏両面に連通する、内部に導電性材料が形成された貫通孔とを有し、前記ガラス基板の表裏両面に形成された各前記電気配線パターンが、前記貫通孔に形成された導電性材料を介して電気的に導通された両面配線基板の製造方法であって、
前記ガラス基板に前記貫通孔を形成する工程と、
前記ガラス基板に対して、少なくとも熱処理を行うことにより前記ガラス基板を結晶化する工程と、
前記貫通孔の内部に導電性材料を形成する工程とを有し、
前記結晶化工程における熱処理は、請求項1乃至4のいずれか一に記載の結晶化ガラス基板の製造方法における熱処理工程を行うことを特徴とする両面配線基板の製造方法。
An electrical wiring pattern formed on both front and back surfaces of the glass substrate, and a through hole in which a conductive material was formed inside, communicating with both front and back surfaces of the glass substrate, was formed on both front and back surfaces of the glass substrate. Each of the electrical wiring patterns is a manufacturing method of a double-sided wiring board that is electrically conducted through a conductive material formed in the through hole,
Forming the through hole in the glass substrate;
A step of crystallizing the glass substrate by performing at least a heat treatment on the glass substrate;
Forming a conductive material inside the through hole,
The method for manufacturing a double-sided wiring board, wherein the heat treatment in the crystallization step is performed in the method for manufacturing a crystallized glass substrate according to any one of claims 1 to 4.
JP2008019827A 2008-01-30 2008-01-30 Method of manufacturing crystalline glass substrate and method of manufacturing double-sieded wiring board Pending JP2009179518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008019827A JP2009179518A (en) 2008-01-30 2008-01-30 Method of manufacturing crystalline glass substrate and method of manufacturing double-sieded wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008019827A JP2009179518A (en) 2008-01-30 2008-01-30 Method of manufacturing crystalline glass substrate and method of manufacturing double-sieded wiring board

Publications (1)

Publication Number Publication Date
JP2009179518A true JP2009179518A (en) 2009-08-13

Family

ID=41033777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008019827A Pending JP2009179518A (en) 2008-01-30 2008-01-30 Method of manufacturing crystalline glass substrate and method of manufacturing double-sieded wiring board

Country Status (1)

Country Link
JP (1) JP2009179518A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043408A (en) * 2013-08-26 2015-03-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board and manufacturing method of the same
JP2016532304A (en) * 2013-09-06 2016-10-13 チャン ユチュン Application of liquid glass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163542A (en) * 1984-09-03 1986-04-01 Hoya Corp Crystallized glass having high thermal expansion coefficient and its preparation
JPS63166736A (en) * 1986-07-12 1988-07-09 Sumita Kogaku Glass Seizosho:Kk Photosensitive crystallized glass having low expansion coefficient
JPH04331743A (en) * 1991-04-30 1992-11-19 Hoya Corp Crystallized glass
JPH07133120A (en) * 1993-11-08 1995-05-23 Ohara Inc Device for continuously forming crystallized glass
JPH09102125A (en) * 1995-10-05 1997-04-15 Ngk Insulators Ltd Production of crystallized glass substrate for magnetic disk
JP2003204152A (en) * 1999-05-27 2003-07-18 Hoya Corp Manufacturing method for double-sided wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163542A (en) * 1984-09-03 1986-04-01 Hoya Corp Crystallized glass having high thermal expansion coefficient and its preparation
JPS63166736A (en) * 1986-07-12 1988-07-09 Sumita Kogaku Glass Seizosho:Kk Photosensitive crystallized glass having low expansion coefficient
JPH04331743A (en) * 1991-04-30 1992-11-19 Hoya Corp Crystallized glass
JPH07133120A (en) * 1993-11-08 1995-05-23 Ohara Inc Device for continuously forming crystallized glass
JPH09102125A (en) * 1995-10-05 1997-04-15 Ngk Insulators Ltd Production of crystallized glass substrate for magnetic disk
JP2003204152A (en) * 1999-05-27 2003-07-18 Hoya Corp Manufacturing method for double-sided wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043408A (en) * 2013-08-26 2015-03-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board and manufacturing method of the same
JP2016532304A (en) * 2013-09-06 2016-10-13 チャン ユチュン Application of liquid glass

Similar Documents

Publication Publication Date Title
US6511793B1 (en) Method of manufacturing microstructure using photosensitive glass substrate
KR101262551B1 (en) Method of manufacturing flexible electronic device using a roll-shaped mother substrate
JP3756041B2 (en) Manufacturing method of multilayer printed wiring board
US7556719B2 (en) Method of producing wired circuit board
TWI670242B (en) Glass-ceramic compositions and laminated glass articles incorporating the same
JPWO2005027605A1 (en) Manufacturing method of double-sided wiring glass substrate
JP2012234796A (en) Method of producing conductive laminated film
JP2007230817A (en) Float glass and its manufacturing method as well as panel for display using the float glass
JP2009179518A (en) Method of manufacturing crystalline glass substrate and method of manufacturing double-sieded wiring board
KR101328275B1 (en) Chemical peel-off method of manufacturing flexible electronic device, flexible electronic device and flexible substrate
JP6931538B2 (en) Mask blanks and photomasks
JP4980274B2 (en) Method for manufacturing crystallized glass substrate and method for manufacturing double-sided wiring substrate
JP2003017837A (en) Method of manufacturing printed wiring board
JPS5812315A (en) Manufacture of thin film coil
KR20190003025A (en) The glass circuit board and its fabrication method
JP2003226548A (en) Photosensitive glass, method of processing the same, method of manufacturing member for ink jet printer, and method of manufacturing semiconductor substrate
JP3761862B2 (en) Manufacturing method of double-sided wiring board
JP5947401B2 (en) Copper metallized wiring ceramic substrate and manufacturing method thereof
US20150010864A1 (en) Meta-Photoresist for Lithography
JPH10239697A (en) Substrate with transparent conductive film and its manufacture
JPH09199011A (en) Manufacture of substrate with pillar for self-emission type display
JPH04263490A (en) Manufacture of thin film circuit
JP5850077B2 (en) Ag alloy film and sputtering target for forming Ag alloy film
JP3175310B2 (en) Method for producing glass substrate with low heat shrinkage
JP2016066647A (en) Two-layered copper-clad laminate and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101110

A977 Report on retrieval

Effective date: 20111222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111227

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122