JP2009177641A - 光信号処理装置、光受信装置および光中継装置 - Google Patents

光信号処理装置、光受信装置および光中継装置 Download PDF

Info

Publication number
JP2009177641A
JP2009177641A JP2008015593A JP2008015593A JP2009177641A JP 2009177641 A JP2009177641 A JP 2009177641A JP 2008015593 A JP2008015593 A JP 2008015593A JP 2008015593 A JP2008015593 A JP 2008015593A JP 2009177641 A JP2009177641 A JP 2009177641A
Authority
JP
Japan
Prior art keywords
light
optical
signal processing
medium
signal light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008015593A
Other languages
English (en)
Inventor
Shigeki Watanabe
茂樹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008015593A priority Critical patent/JP2009177641A/ja
Priority to US12/232,684 priority patent/US8243363B2/en
Priority to EP08164874.3A priority patent/EP2083320B1/en
Publication of JP2009177641A publication Critical patent/JP2009177641A/ja
Priority to US13/173,230 priority patent/US8970946B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/299Signal waveform processing, e.g. reshaping or retiming
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/395Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves in optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3536Four-wave interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】簡単な構成によって信号光を均一に増幅すること。
【解決手段】信号光入力部11には信号光が入力される。合波器12は、信号光入力部11から入力された信号光と、信号光とは波長が異なるパルス励起光と、を合波する。第1非線形光学媒質13は、合波器12によって合波された光を通過させる。分散媒質14は、第1非線形光学媒質13を通過した光を通過させる。第2非線形光学媒質15は、分散媒質14を通過した光を通過させる。
【選択図】図1

Description

本発明は、非線形光学効果を用いて信号光を増幅する光信号処理装置、光受信装置および光中継装置に関する。
通信の大容量化および長距離化に伴って、光技術を利用した通信デバイスおよび通信システムが普及してきている。光通信において、伝送速度(データのビットレート)、総伝送容量(1チャネル当たりの伝送速度×チャネル数)および伝送可能な距離は、信号光の波形歪み、位相歪み、または光S/N比(Signal/Noise:信号対雑音比)などによって制限される。
信号光の波形歪みや位相歪みは、伝送路を構成する光ファイバの波長分散(含高次分散)や非線形光学効果などによって発生する。波長分散による波形歪みに対しては、正常分散ファイバと異常分散ファイバとを交互に配置した伝送路や、分散補償ファイバなどの波長分散補償器を用いた分散補償技術が用いられている。
光ファイバにおける信号光の損失に対しては、光ファイバアンプなどの光アンプを用いた損失補償技術が用いられている。光S/N比は、光ファイバにおける信号光の損失によるパワー低下および上記損失を補償する光アンプから発生する自然放出光(ASE:Amplified Spontaneous Emission)雑音や送受信機内の雑音などに依存する。
現状の大きな課題の一つは、40Gb/sや160Gb/sといった高速の信号光の長距離伝送を実現することである。しかし、高精度の波長分散補償器と良質な光アンプを組み合わせても、残留する波形歪みおよび位相歪みや、光アンプから発生するASE雑音による光S/N比の低減が大きい。このため、実用的な伝送距離は、40Gb/sで数百km、160Gb/sでは数km程度に制限されている。
こうした高速の信号光の長距離伝送を実現するためには、歪んだ波形の整形や位相歪みを整形するとともに、累積したASE雑音や位相雑音などを抑圧可能な光信号処理装置の実現が不可欠である。これに対して、光リミッタ機能を利用して信号光の波形を制御する光信号処理装置が開示されている(たとえば、下記特許文献1,2参照。)。
この光信号処理装置では、光ファイバなどの非線形光学媒質に信号光および励起光(パルス励起光)が入力される。この光信号処理装置は、信号光と励起光との相対的なパワーを調節することによって非線形光学効果による信号光の利得を飽和させ、信号光の「1」レベルの強度雑音を抑圧する。
特開2000−31901号公報 特開2000−49703号公報
しかしながら、上述した従来の光信号処理装置では、パルス励起光に光パルスを用いる場合に、信号光と光パルスとのタイミングが合わないと信号光を均一に増幅することができないという問題がある。信号光と光パルスとのタイミングを合わせるためには、クロック再生回路などが必要になる。また、この場合は、信号光の変調方式、ビットレートおよびパルス幅などによって異なるクロック再生回路を設ける必要がある。
このため、複数種類の信号光に対応するためにはクロック再生回路が複数必要となり、装置が大型化、複雑化および高コスト化するという問題がある。これに対して、励起光に連続光を用いることが考えられる。しかしながら、非線形光学効果の発生効率は励起光のピークパワーに依存する。このため、非線形光学効果の発生効率を高めて十分な利得を確保するためには、連続光の全体のパワーを増加させる大出力の線形光アンプなどが必要になるという問題がある。
また、たとえば非線形光学媒質に光ファイバを用いた場合は、連続光のパワーを増加させようとすると光ファイバ内で誘導ブリルアン散乱が生じ、連続光の一部が反射される。したがって、大出力の線形光アンプを用いて連続光のパワーを増加させても、光ファイバ内の連続光のパワーを十分に増加させることは困難である。このため、励起光に連続光を用いる場合には十分な利得を確保することができないという問題がある。
また、信号光が波長多重信号である場合は、波長多重信号における各チャネルの信号光の到着のタイミングはランダムである。このため、各チャネルの信号光に対して波形整形を行うためには波長多重信号をチャネルごとに分岐し、個別に波形整形を行う必要がある。このため、各チャネルに対応した複数の励起光生成回路およびクロック再生回路などが必要になり、装置が大型化、複雑化および高コスト化するという問題がある。
開示の光信号処理装置、光受信装置および光中継装置は、上述した問題点を解消するものであり、簡単な構成によって信号光を均一に増幅することを目的とする。
上述した課題を解決し、目的を達成するため、本発明の光信号処理装置は、信号光が入力される入力手段と、前記入力手段から入力された信号光と、前記信号光とは波長が異なる励起光と、を合波する合波手段と、前記合波手段によって合波された光を通過させる第1非線形光学媒質と、前記第1非線形光学媒質を通過した光を通過させる分散媒質と、前記分散媒質を通過した光を通過させる第2非線形光学媒質とを備えることを要件とする。
上記構成によれば、励起光としてパルス励起光を用いる場合は、互いに波長が異なる信号光およびパルス励起光を分散媒質に対して通過させることで、信号光およびパルス励起光の相対的なタイミングをシフトさせることができる。これにより、第1非線形光学媒質および第2非線形光学媒質のそれぞれにおいて、パルス励起光による信号光の励起タイミングが異なるようにすることができる。このため、信号光に対して時間的により均一な利得を与えることができる。
また、信号光が波長多重信号であり、励起光として連続光を用いる場合は、波長多重信号に含まれる各信号光を分散媒質に対して通過させることで、各信号光の相対的なタイミングをシフトさせることができる。これにより、第1非線形光学媒質および第2非線形光学媒質のそれぞれにおいて各信号光に対して時間的に均一な利得を与えることができる。
開示の光信号処理装置、光受信装置および光中継装置によれば、簡単な構成によって信号光を均一に増幅することができるという効果を奏する。
以下に添付図面を参照して、本発明にかかる光信号処理装置、光受信装置および光中継装置の好適な実施の形態を詳細に説明する。
(実施の形態1)
図1は、実施の形態1にかかる光信号処理装置の機能的構成を示すブロック図である。図1に示すように、実施の形態1にかかる光信号処理装置10は、信号光入力部11と、合波器12と、第1非線形光学媒質13と、分散媒質14と、第2非線形光学媒質15と、を備えている。光信号処理装置10は、非線形光学効果を用いて信号光を増幅する。
信号光入力部11は、他の通信装置から送信された信号光が入力される入力手段である。信号光入力部11へ入力される信号光の波長をλSとする。また、信号光入力部11には、波長が異なる複数の信号光が波長分割多重(WDM:Wavelength Division Multiplexing)された波長多重信号が入力される。信号光入力部11は、入力された信号光を合波器12へ出力する。
合波器12には、信号光入力部11から出力された信号光と、信号光とは波長が異なるパルス励起光と、が入力される。合波器12は、入力された信号光とパルス励起光を合波する合波手段である。合波器12へ入力されるパルス励起光の波長を波長λP(≠λS)とする。合波器12は、合波した信号光およびパルス励起光を第1非線形光学媒質13へ出力する。ここで、合波器12から出力される信号光のパワーをPS−in、合波器12から出力されるパルス励起光のパワーをPPとする。
第1非線形光学媒質13は、合波器12から出力された信号光およびパルス励起光を通過させる。第1非線形光学媒質13を通過した信号光およびパルス励起光は分散媒質14へ出力される。ここで、第1非線形光学媒質13を通過した信号光のパワーをPS−outとする。第1非線形光学媒質13を通過した信号光の波長は、第1非線形光学媒質13を通過する前と同じくλSである。第1非線形光学媒質13は、たとえば光ファイバ、量子井戸構造の半導体光アンプ、または量子ドット構造の半導体光アンプである。
第1非線形光学媒質13は、三光波混合などの2次の非線形光学効果を発生させる媒質であってもよい。たとえば、第1非線形光学媒質13は、擬似位相整合構造を有するLiNbO3導波路(PPLN:Periodically Poled Lithium Niobate)、GaAlAs素子、または2次非線形光学結晶でもよい。この場合は、第1非線形光学媒質13を通過するパルス励起光に応じた三光波混合が発生する。
分散媒質14は、第1非線形光学媒質13から出力された信号光およびパルス励起光を通過させる。分散媒質14はたとえば分散ファイバである。分散媒質14を通過した信号光およびパルス励起光は第2非線形光学媒質15へ出力される。第2非線形光学媒質15は、分散媒質14から出力された信号光およびパルス励起光を通過させる。第2非線形光学媒質15を通過した信号光およびパルス励起光は光信号処理装置の外部へ出力される。
第2非線形光学媒質15の具体例は、第1非線形光学媒質13と同様であるため説明を省略する。なお、パルス励起光を遮断するフィルタを第2非線形光学媒質15の後段に設けてもよい。たとえば、波長λPの光を遮断するフィルタを第2非線形光学媒質15の後段に設ける。これにより、第2非線形光学媒質15を通過した信号光およびパルス励起光のうちの、信号光のみを抽出することができる。
図2は、図1に示した光信号処理装置の具体的な構成例を示すブロック図である。図2において、図1に示した構成と同様の構成については同一の符号を付して説明を省略する。図2に示すように、ここでは、図1に示した構成に加えて励起光生成部21を備えている。この場合は、励起光生成部21および合波器12によって、入力された信号光とパルス励起光を合波する合波手段が構成される。
励起光生成部21は、波長λPのパルス励起光を生成する。励起光生成部21は、生成したパルス励起光を合波器12へ出力する。ここでは、励起光生成部21は、パルス励起光として、信号光入力部11へ入力される信号光の変調速度よりも高い繰り返し周波数(パルス周波数)の光パルス列からなるパルス励起光を生成する。
励起光生成部21は、たとえば、複数の光パルスを時間分割多重することで高い繰り返し周波数のパルス光を生成する。たとえば、パルス励起光を分岐器によって分岐し、一方のパルス励起光を遅延回路によって遅延させ、各パルス励起光を合波器で合波することで時間分割多重を行うことができる。
励起光生成部21は、たとえばパルスレーザ光源である。励起光生成部21によるパルス励起光の生成には、従来のあらゆるパルス生成方法が適用可能である。パルス励起光は、たとえば所望の繰り返し周波数で発振させた半導体モード同期レーザや、ファイバモード同期レーザによって生成される光パルス列である。
励起光生成部21は、具体的には、光源と、LiNbO3強度変調器や電界吸収型(EA:Electronic Absorption)変調器などの強度変調器と、によって構成される。この場合は、パルス励起光は、光源から出力された連続光を、強度変調器において所望の繰り返し周波数の電気信号で変調することで生成される。
または、励起光生成部21から出力されるパルス励起光は、たとえば光位相変調器によって所望の繰り返し周波数の電気信号で変調することで発生する光コム、あるいは光コムを光帯域フィルタなどで所望の帯域だけ抽出して生成した光パルス列であってもよい。または、パルス励起光は、たとえば所望の繰り返し周波数だけ離調したコヒーレント光のビート光による光パルス列であってもよい。
また、パルス励起光は、たとえば非線形ファイバに所望の繰り返し周波数の光パルスを入力して発生するSC(Super Continuum:スーパーコンティニューム)光、あるいはSC光を光帯域フィルタなどで所望の帯域だけ抽出して生成する光パルス列であってもよい。また、励起光生成部21は、第1非線形光学媒質13および第2非線形光学媒質15における信号光パワーを増幅するパワーレベルのパルス励起光を生成する。
また、ここでは、第1非線形光学媒質13および第2非線形光学媒質15としてそれぞれ光ファイバ22および光ファイバ24を用いている。信号光とともにパルス励起光が光ファイバ22および光ファイバ24へ入力されることによって、光ファイバ22および光ファイバ24を通過する信号光に対して、同時に通過するパルス励起光に応じた四光波混合(FWM:Four Wave Mixing)が発生する。
光ファイバ22および光ファイバ24を同材質の光ファイバで構成するとともに、励起光生成部21が、生成するパルス励起光の波長λPを光ファイバ22および光ファイバ24の平均零分散波長とほぼ一致させる構成としてもよい。また、光ファイバ22および光ファイバ24の温度制御などにより、光ファイバ22および光ファイバ24の平均零分散波長をパルス励起光の波長λPとほぼ一致させる構成としてもよい。これにより位相整合をとり、四光波混合による光パラメトリック増幅を効率よく発生させることができる。
また、光信号処理装置10において使用する波長帯域に渡って、光ファイバ22および光ファイバ24に直線状の分散傾斜(3次分散)をもたせる方法も有効である。すなわち、使用する波長帯域に渡って、光ファイバ22および光ファイバ24の4次分散を0に(あるいは十分小さく)する。さらに、光パルスの波長λPを信号光の波長λSよりも長波長側に設定するとともに、非線形位相シフトを用いて位相整合をとってもよい。これらの方法により、四光波混合による光パラメトリック増幅をさらに効率よく発生させることができる。
光ファイバ22および光ファイバ24は、非線形光学効果を発生させるために十分な長さが必要である。光ファイバ22および光ファイバ24の各長さは、光パラメトリック増幅の発生効率がほぼ等しくなるように設定される。または、光ファイバ22および光ファイバ24の各長さは、リミッタ効果が最適となるように設定される。
光ファイバ22および光ファイバ24として、たとえば非線形光学効果を高めた高非線形光ファイバ(HNLF:Highly NonLinear Fiber)などを用いてもよい。高非線形光ファイバには、ゲルマニウム、ビスマスまたはガルコゲナイトなどをコアにドープして非線形屈折率を高めたものを用いることができる。
また、高非線形光ファイバには、モードフィールドを小さく設計(狭小化)することにより光パワー密度を高めたものを用いることができる。また、高非線形光ファイバには、フォトニック結晶ファイバを用いてもよい。また、同様の構成において、光パラメトリック増幅ではなく光ラマン増幅を用いてもよい。光パラメトリック増幅となるか光ラマン増幅となるかは、信号光の波長λSに対するパルス励起光の波長λPの関係により決まる。
また、ここでは、分散媒質14として、単位長さ当たりの波長分散が大きな分散ファイバ23を用いている。たとえば、信号光が1.5μm帯である場合は、平均零分散波長が1.3μmのシングルモードファイバ(SMF:Single Mode Fiber)や分散補償ファイバ(DCF:Dispersion Compensating Fiber)などを分散ファイバ23として用いることができる。
一例として、波長分散が+20ps/nm/kmのシングルモードファイバを用いて、100GHzのパルス列からなるパルス励起光を、信号光に対して5psだけタイミングシフトさせる場合を考える。ここで、信号光とパルス励起光の波長差λS−λPを50nmとすると、長さ5mのシングルモードファイバを用いればよいことがわかる。
また、第1非線形光学媒質13および第2非線形光学媒質15の少なくとも一方の出力端に光帯域フィルタを設けてもよい。この光帯域フィルタには、波長多重された信号光に含まれる複数の信号光の各中心波長付近に透過ピークを有するものを用いる。光信号処理装置10においては、信号光にパルス励起光を合波することで、信号光よりも高い周波数成分が発生する。このため、入力時に比べて信号光のスペクトルが拡大する。
これに対して、第1非線形光学媒質13および第2非線形光学媒質15の少なくとも一方の出力端に光帯域フィルタを設けることで、信号光に発生した高周波成分を等化することができる。光帯域フィルタには、たとえばインターリーバフィルタやファイバグレーティングを組み合わせたものや、共振器構造の周期フィルタなどを用いることができる。共振器構造の周期フィルタには、ファブリ・ペロー・フィルタなどを用いることができる。
図3は、信号光およびパルス励起光の波長位置を示す図である。図3〜図5を用いて、第1非線形光学媒質13における光パラメトリック増幅について説明するが、第2非線形光学媒質15における光パラメトリック増幅も同様である。図3において、横軸は、信号光およびパルス励起光の波長λ(λS,λP)を示している。縦軸は、信号光のパワーPSおよびパルス励起光のパワーPPを示している。(a)は、第1非線形光学媒質13へ入力される信号光およびパルス励起光の波長位置を示している。
(b)は、第1非線形光学媒質13から出力される信号光およびパルス励起光の波長位置を示している。符号31は、信号光の波長位置を示している。符号32は、パルス励起光の波長位置を示している。ここでは、第1非線形光学媒質13へ入力される信号光の波長λSは、第1非線形光学媒質13へ入力されるパルス励起光の波長λPより短いとしているが、逆の場合もある。信号光とパルス励起光との波長差(λP−λS)は、たとえば数nm〜数十nmである。
符号33は、信号光とともにパルス励起光が第1非線形光学媒質13へ入力されたときに発生する四光波混合によって生成される、信号光に対応するアイドラ光を示している。アイドラ光の波長は、パルス励起光を中心として信号光と対称な周波数に対する波長λC(ωC=2ωP−ωS:ωは周波数)となる。このとき、パルス励起光のエネルギーの一部が、信号光およびアイドラ光にほぼ均等に与えられる。これにより、信号光は、符号34に示すように光パラメトリック増幅される。
光パラメトリック増幅による利得は、パルス励起光のパワーPPが信号光のパワーPSに比べて十分に高い場合(たとえば10倍以上)、パルス励起光のパワーPPのほぼ二乗に比例して増加する。一方、パルス励起光のパワーPPが信号光のパワーPSに比べて十分に高くない場合、四光波混合によるパルス励起光のパワーPPの消耗が大きくなるため、符号35に示すようにパルス励起光のパワーPPが減衰するデプレションが発生する。
図4は、信号光の入力パワーと光パラメトリック増幅との関係を示す特性図である。図4において、横軸は、信号光入力部11へ入力される信号光の入力パワーPS-in(dBm)を示している。縦軸は、第1非線形光学媒質13における光パラメトリック増幅による信号光の利得GS(dB)を示している。ここでは、合波器12へ入力されるパルス励起光の入力パワーPPは一定であるものとする。
信号光の入力パワーPS-inが一定のしきい値パワーP1よりも小さい場合、符号41に示すように、光パラメトリック増幅による利得GSは一定(=GS0)である。信号光の入力パワーPS-inがしきい値パワーP1より大きくなると、パルス励起光のデプレションが発生し、光パラメトリック増幅による信号光の利得が急激に飽和する。このため、符号42に示すように、光パラメトリック増幅による信号光の利得GSが減少する。
パルス励起光の入力パワーPPは一定であるとして説明したが、実際に光パラメトリック増幅を飽和させるためには、信号光とパルス励起光との相対的なパワーを調節する。たとえば、励起光生成部21が、信号光入力部11へ入力される信号光のパワーとほぼ等しいパワーのパルス励起光を出力することで、光パラメトリック増幅を飽和させる。
図5は、信号光の入力パワーと出力パワーとの関係を示す特性図である。図5において、横軸は、信号光入力部11へ入力される信号光の入力パワーPS-in(dBm)を示している。縦軸は、第1非線形光学媒質13(または第2非線形光学媒質15)から出力される信号光の出力パワーPS-out(dBm)を示している。
実線は、第1非線形光学媒質13において光パラメトリック増幅されて出力された信号光の出力パワーPS-outを示している。点線は、第1非線形光学媒質13における光パラメトリック増幅による利得GSがゼロであるとした場合の信号光の出力パワーPS-outを示している。ここでは、パルス励起光の入力パワーは一定であるものとする。
信号光の出力パワーPS-outは、信号光の入力パワーPS-inの増加に伴って大きくなる。また、信号光の出力パワーPS-out(実線)は、信号光の入力パワーPS-inが一定のしきい値パワーP1よりも小さい場合は、符号51に示すように、光パラメトリック増幅によって利得GS0分増加する。
信号光の出力パワーPS-out(実線)は、信号光の入力パワーPS-inがしきい値パワーP1よりも大きくなると光パラメトリック増幅による利得GSが減少する(図4参照)ため、符号52に示すように、光パラメトリック増幅による利得GSがゼロである場合の出力パワーPS-out(点線)に近づいていく。
このため、信号光の入力パワーPS-inが増加しても、第1非線形光学媒質13から出力される信号光のパワーPS-outはある値よりも大きくならない。したがって、光信号処理装置10は、信号光の入力パワーPS-inがしきい値パワーP1以下の範囲では線形利得の光アンプとして動作する一方、信号光の入力パワーPS-inがしきい値パワーP1より大きい範囲では出力パワーPS-outの強度揺らぎを抑圧する光リミッタアンプとして動作する。
信号光におけるゼロレベルの強度揺らぎを抑圧するために、第1非線形光学媒質13および第2非線形光学媒質15の少なくとも一方の前段または後段に、過飽和吸収手段を設けてもよい。過飽和吸収手段には、半導体過飽和吸収体、半導体アンプ、マッハツェンダー干渉型光ファイバスィッチ、非線形光ループミラー(NOLM:Nonlinear Optical Loop Mirror)型スィッチなどを用いることができる。
図6は、信号光とパルス励起光のタイミングのシフトを示す図である。図6において、符号61および符号62は、信号光およびパルス励起光の波形をそれぞれ示している。合波器12によって合波された信号光およびパルス励起光が光ファイバ22へ入力されると、符号63に示すように、信号光における、パルス励起光の立ち上がり部分と同じタイミングで入力された部分のみが増幅される。
光ファイバ22から出力された信号光およびパルス励起光が分散ファイバ23を通過すると、信号光およびパルス励起光の相対的なタイミングがシフトする。分散ファイバ23から出力された信号光およびパルス励起光が光ファイバ24へ入力されると、信号光の、パルス励起光の立ち上がり部分と同じタイミングで入力された部分のみが増幅される。
このとき、符号64に示すように、光ファイバ22および光ファイバ24のそれぞれにおいて、信号光とパルス励起光の相対的なタイミングが異なるため、光ファイバ24においては、信号光の、光ファイバ22によって増幅された部分とは異なる部分が増幅される。これにより、符号65に示すように、光ファイバ24から出力された信号光は、各タイミングで均一に増幅され、時間的に均一な利得が与えられた信号光となる。
また、信号光およびパルス励起光の相対的なタイミングをシフトさせる量が、パルス励起光のパルス間隔の約半分となるように分散ファイバ23の長さを設定するとよい。たとえば、パルス励起光がおよそ100GHzのパルス列であれば、各励起光の相対的なタイミングをシフトさせる量が約5psとなるように分散ファイバ23の長さを設定する。
これにより、光ファイバ22および光ファイバ24のそれぞれにおいて、信号光とパルス励起光の相対的なタイミングをパルス励起光の半周期分だけずらすことができる。このため、光ファイバ24において、信号光の、光ファイバ22によって増幅されていない部分を中心として増幅させることができる。
これは、従来のように分散ファイバ23および光ファイバ24を設けない構成において、光ファイバ22に対して2倍の繰り返し周波数のパルス励起光を入力した場合に相当する。すなわち、実施の形態1にかかる光信号処理装置10においては、信号光を均一に増幅するために必要なパルス励起光の繰り返し周波数を従来の半分にすることができる。
図7は、図2に示した光信号処理装置の変形例を示すブロック図である。図7において、図2に示した構成と同様の構成については同一の符号を付して説明を省略する。図7に示すように、図2に示した光信号処理装置10の光ファイバ22の後段に、分散ファイバ23および光ファイバ24の組み合わせ70を複数段設けてもよい。
これにより、複数の分散ファイバ23によって信号光およびパルス励起光の相対的なタイミングを複数回シフトさせ、シフトさせるごとに光ファイバ24によって信号光を増幅することができる。これにより、最終段の光ファイバ24から出力された信号光は、時間的にさらに均一な利得が与えられた信号光となる。
光ファイバ22の後段に設ける組み合わせ70の段数をN(N=2,3,…)とする。この場合は、信号光およびパルス励起光の相対的なタイミングがN回シフトする。このとき、信号光およびパルス励起光の相対的なタイミングをシフトさせる量が、パルス励起光のパルス間隔の約1/(N+1)となるように各分散ファイバ23の長さを設定する。
たとえば、光ファイバ22の後段に分散ファイバ23および光ファイバ24の組み合わせ70を2段設ける場合はN=3となる。この場合は、各分散ファイバ23において、信号光およびパルス励起光の相対的なタイミングをシフトさせる量が、パルス励起光のパルス間隔の約1/3となるように各分散ファイバ23の長さを設定する。
図8は、光信号処理装置の波長多重信号に対する波形整形を示す図である。図8において、符号81A〜81Eは、光信号処理装置10へ入力される波長多重信号に含まれる各信号光(波長λA〜λE)を示している。図8に示すように、光信号処理装置10へ入力される波長多重信号に含まれる各信号光のそれぞれの到着タイミングはランダムである。
これに対して、光信号処理装置10は、分散媒質14、あるいは分散ファイバ23により、各信号光とパルス励起光との相対的なタイミングをシフトさせることで、各信号光の到着タイミングにかかわらず、各信号光を均一に増幅することができる。このため、各チャネルに対応した複数の励起光生成回路およびクロック再生回路などを設けることなく、各信号光を均一に波形整形することができる。
このように、実施の形態1にかかる光信号処理装置10によれば、互いに波長が異なる信号光およびパルス励起光を分散媒質14に対して通過させることで、信号光およびパルス励起光の相対的なタイミングをシフトさせることができる。これにより、第1非線形光学媒質13および第2非線形光学媒質15のそれぞれにおいて、パルス励起光による信号光の励起タイミングが異なるようにすることができる。このため、信号光に対して時間的に均一な利得を与え、信号光を均一に増幅することができる。
また、光信号処理装置10は、分散媒質14および第2非線形光学媒質15を設けるだけで信号光を均一に増幅することができるため、簡単な構成によって実現することができる。たとえば、パルス励起光の繰り返し周波数を高くするために、パルス励起光を、分岐器、遅延回路および合波器などによって時間分割多重する場合に比べて、大幅な小型化、低コスト化を図ることができる。また、光信号処理装置10において光信号処理装置10を時間分割多重する構成とすれば、信号光をさらに均一に増幅することができる。
なお、実施の形態1においては、励起光生成部21が、パルス励起光として、信号光入力部11へ入力される信号光の変調速度よりも高い繰り返し周波数の光パルス列からなるパルス励起光を生成する場合について説明したが、光信号処理装置10の構成はこれに限られない。一般的に、パルス励起光の繰り返し周波数が高いほど信号光を均一に増幅することができるが、光信号処理装置10は、パルス励起光の繰り返し周波数に対する信号光の増幅の均一化の効率を向上させることができる。
また、信号光およびパルス励起光の相対的なタイミングをシフトさせる量が、パルス励起光のパルス間隔の約1/(N+1)となるように各分散ファイバ23の長さを設定する場合について説明したが、光信号処理装置10の構成はこれに限られない。すなわち、信号光およびパルス励起光の相対的なタイミングをシフトさせる量が、パルス励起光のパルス間隔と同じにならないように各分散ファイバ23の長さを設定すれば、信号光に対する増幅の均一化を図ることができる。
(実施の形態2)
図9は、実施の形態2にかかる光信号処理装置の機能的構成を示すブロック図である。図9において、図2に示した構成と同様の構成については同一の符号を付して説明を省略する。図9に示すように、実施の形態2にかかる光信号処理装置10は、図2に示した光信号処理装置10の構成に加えて、分岐器91、偏光調節部92、偏光調節部93および合波器94を備えている。
分岐器91、偏光調節部92、偏光調節部93および合波器94は、励起光生成部21から出力されたパルス励起光を、互いに逆回りの偏光方向の二つの円偏光成分からなるパルス励起光にする偏光調節手段を構成する。分岐器91は、励起光生成部21から出力されたパルス励起光を分岐する。分岐器91は、分岐した各パルス励起光をそれぞれ偏光調節部92および偏光調節部93へ出力する。
偏光調節部92は、分岐器91から出力されたパルス励起光の偏光状態を、右回りの円偏光(円偏光R)となるように調節する。偏光調節部92は、偏光状態を調節したパルス励起光を合波器94へ出力する。偏光調節部93は、分岐器91から出力されたパルス励起光の偏光状態を、左回りの円偏光(円偏光L)となるように調節する。偏光調節部93は、偏光状態を調節したパルス励起光を合波器94へ出力する。
合波器94は、偏光調節部92から出力されたパルス励起光と、偏光調節部93から出力されたパルス励起光と、を合波して合波器12へ出力する。合波器94から合波器12へ出力されるパルス励起光は、互いに逆回りの偏光方向の二つの円偏光成分からなるパルス励起光(円偏光R+L)となる。合波器12へ出力されるパルス励起光に含まれる二つの円偏光成分の各パワーはほぼ同じとなるようにする。
たとえば、分岐器91における分岐比を1:1とすることで、二つの円偏光成分の各パワーを同じにすることができる。合波器12は、信号光入力部11から出力された信号光と、合波器94から出力されたパルス励起光と、を合波する。これにより、信号光入力部11へ入力される信号光の偏光状態にかかわらず、光ファイバ22および光ファイバ24において均一の効率で信号光をパラメトリック増幅することができる。
図10は、図9に示した光信号処理装置の変形例を示すブロック図である。図10において、図9に示した構成と同様の構成については同一の符号を付して説明を省略する。図10に示すように、実施の形態2にかかる光信号処理装置10は、図9に示した光信号処理装置10の構成において、偏光調節部92および偏光調節部93に代えて偏光調節部101および偏光調節部102を備えていてもよい。
分岐器91、偏光調節部101、偏光調節部102および合波器94は、励起光生成部21から出力されたパルス励起光を、互いに直交する二つの直線偏光成分からなるパルス励起光にする偏光調節手段を構成する。分岐器91は、分岐した各パルス励起光をそれぞれ偏光調節部101および偏光調節部102へ出力する。偏光調節部101は、分岐器91から出力されたパルス励起光の偏光状態を直線偏光(直線偏光p)となるように調節する。偏光調節部101は、偏光状態を調節したパルス励起光を合波器94へ出力する。
偏光調節部102は、分岐器91から出力されたパルス励起光の偏光状態を、偏光調節部101から合波器94へ出力されるパルス励起光の偏光方向と直交する直線偏光(直線偏光s)となるように調節する。偏光調節部102は、偏光状態を調節したパルス励起光を合波器94へ出力する。合波器94は、偏光調節部101から出力されたパルス励起光と、偏光調節部102から出力されたパルス励起光と、を合成する。
合波器94から合波器12へ出力されるパルス励起光は、互いに直交する二つの直線偏光成分からなるパルス励起光(直線偏光p+s)となる。合波器12へ出力されるパルス励起光に含まれる二つの直線偏光成分の各パワーはほぼ同じとなるようにする。これにより、信号光入力部11へ入力される信号光の偏光状態にかかわらず、光ファイバ22および光ファイバ24において均一の効率で信号光をパラメトリック増幅することができる。
このように、実施の形態2にかかる光信号処理装置10によれば、実施の形態1にかかる光信号処理装置10の効果を奏するとともに、励起光生成部21から出力されたパルス励起光を、互いに直交する二つの直線偏光成分からなるパルス励起光、または互いに直交する二つの直線偏光成分からなるパルス励起光とすることで、信号光入力部11へ入力される信号光の偏光状態にかかわらず信号光を均一に増幅することができる。
なお、ここでは、励起光生成部21から出力されたパルス励起光を分岐器91によって分岐して、分岐した各パルス励起光の偏光状態をそれぞれ調節する構成について説明したが、励起光生成部をもう一つ設け、この励起光生成部および励起光生成部21から出力された各パルス励起光の偏光状態をそれぞれ調節する構成としてもよい。この場合は、各励起光生成部が出力する各パルス励起光の波長は、所望の励起効果を提供可能な波長域に入るように設定する。
(実施の形態3)
図11は、実施の形態3にかかる光信号処理装置の機能的構成を示すブロック図である。図11において、図2に示した構成と同様の構成については同一の符号を付して説明を省略する。図11に示すように、実施の形態3にかかる光信号処理装置10は、図2に示した光信号処理装置10の構成に加えて、分岐器111と、分岐器112と、パワーモニタ部113と、比較部114と、パワー調節部115と、パワー調節部116と、分岐器117と、偏光モニタ部118と、偏光調節部119と、を備えている。
分岐器111、分岐器112およびパワーモニタ部113は、光ファイバ22へ入力される光のパワーと、光ファイバ22を通過した光のパワーと、をモニタするパワーモニタ手段を構成する。具体的には、分岐器111は、合波器12から光ファイバ22へ出力される光の一部を分岐してパワーモニタ部113へ出力する。分岐器112は、光ファイバ24から外部へ出力される光の一部を分岐してパワーモニタ部113へ出力する。
パワーモニタ部113は、分岐器111から出力された光のパワーをモニタする。パワーモニタ部113は、モニタしたパワーに応じた電気信号を、信号光の増幅前のパワーの情報として比較部114へ出力する。また、パワーモニタ部113は、分岐器112から出力された光のパワーをモニタする。パワーモニタ部113は、モニタしたパワーに応じた電気信号を、信号光の増幅後のパワーの情報として比較部114へ出力する。
比較部114、パワー調節部115およびパワー調節部116は、分岐器111、分岐器112およびパワーモニタ部113によるモニタ結果に基づいて、合波器12によって合波される信号光およびパルス励起光の各パワーを制御するパワー制御手段を構成する。具体的には、比較部114は、パワーモニタ部113から出力された信号光の増幅前のパワーの情報と、信号光の増幅後のパワーの情報と、を比較して信号光の利得を算出する。
比較部114は、算出した利得の情報をパワー調節部115およびパワー調節部116へ出力する。パワー調節部115は、比較部114から出力された利得の情報に基づいて、信号光入力部11から合波器12へ出力される信号光のパワーを調節する。パワー調節部116は、比較部114から出力された利得の情報に基づいて、励起光生成部21から合波器12へ出力されるパルス励起光のパワーを調節する。
パワー調節部115およびパワー調節部116は、比較部114から出力された情報が示す利得が所望の利得となるように、合波器12へ入力される信号光およびパルス励起光の相対的なパワーを調節する。たとえば、パワー調節部115およびパワー調節部116は、信号光の利得が飽和するように信号光およびパルス励起光の相対的なパワーを調節することで、光信号処理装置10を光リミッタアンプとして動作させる。
分岐器117および偏光モニタ部118は、光ファイバ22または光ファイバ24へ入力されるパルス励起光の偏光状態をモニタする偏光モニタ手段を構成する。具体的には、分岐器117は、合波器12から光ファイバ22へ出力される光に含まれるパルス励起光の一部を分岐して偏光モニタ部118へ出力する。分岐器117は、たとえば、パルス励起光の波長λPの光成分のみを分離する光カプラである。
偏光モニタ部118は、分岐器117から出力されたパルス励起光の偏光状態をモニタする。偏光モニタ部118は、たとえば、分岐器117から出力されたパルス励起光の偏光状態を示す情報として、パルス励起光のストークスパラメータを検出する。偏光モニタ部118は、モニタした偏光状態を示す情報を偏光調節部119へ出力する。
偏光調節部119は、偏光モニタ手段によるモニタ結果に基づいて、合波器12によって合波されるパルス励起光の偏光状態を制御する偏光制御手段を構成する。具体的には、偏光調節部119は、光ファイバ22および光ファイバ24で発生する四光波混合などの非線形光学効果の発生効率が最適化されるように、励起光生成部21から合波器12へ出力されるパルス励起光の偏光状態を調節する。
たとえば、偏光調節部119は、偏光モニタ部118から出力されたストークスパラメータと、あらかじめ与えられた目標のストークスパラメータと、の差分が小さくなるようにパルス励起光の偏光状態を調節する。なお、合波器12および光ファイバ22の間に分岐器117を設けて、合波器12から光ファイバ22へ出力される光を分岐する構成について説明したが、図の点線に示すように、光ファイバ22および分散ファイバ23の間、または分散ファイバ23および光ファイバ24の間に分岐器117を設けてもよい。
図12は、図11に示した光信号処理装置の制御の一例を示すフローチャートである。図11に示した光信号処理装置10において、CPU(Central Processing Unit)などによって構成される制御手段を設け、図11に示した各構成を制御して以下のような処理を行う。図12に示すように、まず、偏光モニタ部118が、分岐器117から出力されるパルス励起光に基づいて、光ファイバ22へ入力されるパルス励起光の偏光状態をモニタする(ステップS121)。
つぎに、偏光調節部119が、ステップS121によってモニタされた偏光状態に基づいて、励起光生成部21から合波器12へ出力されるパルス励起光の偏光状態を所望の状態となるように調節する(ステップS122)。つぎに、パワーモニタ部113が、分岐器111から出力された光に基づいて、光ファイバ22および光ファイバ24による増幅の前の信号光のパワーをモニタする(ステップS123)。
つぎに、パワー調節部115が、ステップS123によってモニタされたパワーに基づいて、信号光入力部11から合波器12へ出力される信号光のパワーを調節する(ステップS124)。つぎに、パワーモニタ部113が、分岐器111から出力された光と、分岐器112から出力された光と、に基づいて、光ファイバ22および光ファイバ24による増幅の前後の各信号光のパワーをモニタする(ステップS125)。
つぎに、比較部114が、ステップS125によってモニタされた各パワーに基づいて信号光の利得を算出する(ステップS126)。つぎに、パワー調節部116が、ステップS126によって算出された利得に基づいて、励起光生成部21から出力されるパルス励起光のパワーを調節し(ステップS127)、一連の制御を終了する。
このように、実施の形態3にかかる光信号処理装置によれば、実施の形態1にかかる光信号処理装置10の効果を奏するとともに、光ファイバ22へ入力される光のパワーと、光ファイバ22を通過した光のパワーとをモニタし、モニタ結果に基づいて合波器12によって合波される信号光およびパルス励起光の各パワーを制御することで、光ファイバ22および光ファイバ24において信号光に与える利得を精度よく制御することができる。
また、光ファイバ22または光ファイバ24へ入力されるパルス励起光の偏光状態をモニタし、モニタ結果に基づいて合波器12によって合波されるパルス励起光の偏光状態を制御することで、光ファイバ22および光ファイバ24における非線形光学効果の発生効率を精度よく最適化することができる。
なお、光ファイバ22および光ファイバ24による増幅の前後の各信号光のパワーをモニタする構成について説明したが、光ファイバ24から出力された信号光の品質をモニタして、モニタした品質が最適となるように信号光およびパルス励起光のパワー、またはパルス励起光の偏光状態を制御する構成としてもよい。ここでいう信号光の品質とは、たとえば光S/N比、Q値またはビットエラーレートなどの各種のパラメータである。
(実施の形態4)
図13は、実施の形態4にかかる光通信システムの一例を示すブロック図である。図13に示すように、実施の形態4にかかる光通信システム130は、光送信装置131と、光受信装置132と、から構成されている。光送信装置131は、光強度変調、光位相変調または光周波数変調などで変調した信号光を伝送路を介して光受信装置132へ送信する。伝送路においては、必要に応じて光アンプ134を用いて光増幅中継伝送を行う。
また、光送信装置131は、信号光として波長多重信号を送信する構成としてもよい。光受信装置132は、光信号処理装置10と、光受信機133と、を備えている。光信号処理装置10は、光送信装置131から送信された信号光を波形整形する。光信号処理装置10は、波形整形した信号光を光受信機133へ出力する。光受信機133は、光信号処理装置10の光ファイバ24を通過した信号光を受信する受信手段である。
図14は、実施の形態4にかかる光通信システムの他の例を示すブロック図である。図14において、図13に示した構成と同様の構成については同一の符号を付して説明を省略する。図14に示すように、実施の形態4の他の例にかかる光通信システム140は、光送信装置131と、光中継装置141と、光受信装置142と、を備えている。光送信装置131は、伝送路を介して信号光を光中継装置141へ送信する。
光中継装置141は、光送信装置131から光受信装置142へ送信される信号光を中継する中継装置である。光中継装置141は、光信号処理装置10と、光送信機143と、を備えている。光信号処理装置10は、光送信装置131から送信された信号光を波形整形する。光信号処理装置10は、波形整形した信号光を光送信機143へ出力する。
光送信機143は、光信号処理装置10の光ファイバ24から出力された信号光を光受信装置142へ送信する送信手段である。光受信装置142は、光中継装置141から送信された信号光を受信する。また、光受信装置142も、図13に示した光受信装置132と同様に光信号処理装置10および光受信機133を備える構成としてもよい。図13および図14に示した光信号処理装置10には、実施の形態1〜3に示した各光信号処理装置10を適用することができる。
このように、実施の形態4にかかる光通信システムによれば、上述した各実施の形態にかかる光信号処理装置10を光受信装置132あるいは光中継装置141に適用することができる。これにより、上述した各実施の形態にかかる光信号処理装置10の効果を奏するとともに、光信号処理装置10をたとえばリミッタアンプとして動作させることで、精度の高い波形整形を行うことができる。このため、通信装置間の光アンプ134の数を減らすことができる。また、光アンプ134によって発生するASE雑音を抑圧することができるため、光アンプの数を増やして通信装置間の距離Lを長くすることもできる。
以上説明したように、開示の光信号処理装置、光受信装置および光中継装置によれば、簡単な構成によって信号光を均一に増幅することができる。なお、上記の光信号処理装置10による各々の増幅過程においては、信号光の位相は影響を受けないため、上記波形整形の方法は、光強度変調、光位相変調および光周波数変調などで変調された信号光に適用することが可能である。光位相変調信号光については、位相雑音自体を抑圧するわけではないが、光信号処理装置10を光リミッタアンプとして動作させることによって、強度揺らぎを減らし、強度揺らぎが起因となって発生する位相雑音を低減することができる。
特に光ファイバ伝送においては、光ファイバ内の非線形光学効果により、強度雑音が位相雑音に変換され(AM/PM変換:Amplitude Modulation/Phase Modulation変換)、これが光位相変調信号光の伝送限界を決める要因の一つとなっている。光信号処理装置10を用いることにより、このAM/PM変換雑音を抑圧することが可能である。
また、上述した各実施の形態においては、信号光入力部11に波長多重信号が入力される構成について説明したが、光信号処理装置10の構成はこれに限らず、波長多重されていない信号光が信号光入力部11へ入力される構成としてもよい。この場合も、信号光と光パルスとのタイミングを合わせることができるため、クロック再生回路などを設けることなく信号光を均一に増幅することができる。
ところで、非線形光学媒質である光ファイバ22および光ファイバ24内で信号光が光パラメトリック増幅される際に、パルス励起光のパワーに比例した相互位相変調(XPM:CROSS Phase Modulation)の影響を受ける場合がある。信号光全体に同じ強度のXPMを受ける場合には問題にならないが、光信号処理装置10のように、狭い時間幅のパルスで励起する場合には、ピーク付近ではXPMが大きく、立ち上がり部分および立下り部分ではXPMが小さい。
また、非線形光学効果のスロープが急峻な部分では、傾斜に比例するチャープが発生する場合もある。こうした場合でも、光信号処理装置10によれば、信号光およびパルス励起光の相対的なタイミングをシフトさせることで、XPMの影響を信号光全体に均一に与え、XPMの影響を分散させることができる。
すなわち、各非線形光学媒質におけるパルス励起光のパルスの立ち上がり部分と立ち下り部分がほぼ重なるように、パルス励起光のパルス形状と間隔を調節する。これにより、XPMをピーク付近での値にほぼ一致させるとともに、第1非線形光学媒質13および第2非線形光学媒質15内で信号光が受けるチャープを相殺することができる。このため、XPMの影響を補償した効率のよい光リミッタアンプを実現することができる。
また、上述した各実施の形態においては、合波器12へ入力する励起光としてパルス励起光を用いる構成について説明したが、光信号処理装置10はこのような構成以外にも有用である。たとえば、信号光が波長多重信号であり、合波器12へ入力する励起光として連続光を用いる構成とした場合は、第1非線形光学媒質13および第2非線形光学媒質15において、波長多重信号に含まれる各信号光の相対的なタイミングをシフトさせることができる。これにより、第1非線形光学媒質13および第2非線形光学媒質15における、波長多重信号に含まれる各信号光に対する各利得を均一にすることができる。
また、上述した各実施の形態においては、第1非線形光学媒質13および第2非線形光学媒質15の間に分散媒質14を設ける構成について説明したが、分散媒質14を設ける代わりに、パルス励起光をあらかじめ二つにパワー分岐し、一方を第1非線形光学媒質13へ入力し、他方をタイミング調節した後に第2非線形光学媒質15へ入力してもよい。
これにより、第1非線形光学媒質13および第2非線形光学媒質15のそれぞれにおいて、パルス励起光による信号光の励起タイミングが異なるようになり、信号光を均一に増幅することができる。上述した各実施の形態に関し、さらに以下の付記を開示する。
(付記1)信号光が入力される入力手段と、
前記入力手段から入力された信号光と、前記信号光とは波長が異なる励起光と、を合波する合波手段と、
前記合波手段によって合波された光を通過させる第1非線形光学媒質と、
前記第1非線形光学媒質を通過した光を通過させる分散媒質と、
前記分散媒質を通過した光を通過させる第2非線形光学媒質と、
を備えることを特徴とする光信号処理装置。
(付記2)前記合波手段は、前記励起光としてパルス励起光を合波することを特徴とする付記1に記載の光信号処理装置。
(付記3)前記入力手段には、前記信号光として、複数の信号光が波長多重された波長多重信号が入力されることを特徴とする付記1に記載の光信号処理装置。
(付記4)前記分散媒質は、通過する前記信号光および前記パルス励起光の相対的なタイミングがシフトする長さを有することを特徴とする付記2に記載の光信号処理装置。
(付記5)前記分散媒質は、前記タイミングをシフトさせる量が、前記パルス励起光のパルス間隔の約半分となる長さを有することを特徴とする付記4に記載の光信号処理装置。
(付記6)前記第1非線形光学媒質の後段に、前記分散媒質および前記第2非線形光学媒質の組み合わせを複数段備え、前記分散媒質は、前記第1非線形光学媒質および前記第2非線形光学媒質のうちの前段の非線形光学媒質を通過した光を通過させることを特徴とする付記1に記載の光信号処理装置。
(付記7)前記第1非線形光学媒質の後段に、前記分散媒質および前記第2非線形光学媒質の組み合わせをN段備え、前記分散媒質は、前記タイミングをシフトさせる量が、前記パルス励起光のパルス間隔の約1/(N+1)となる長さを有することを特徴とする付記4に記載の光信号処理装置。
(付記8)前記合波手段によって合波される前記励起光を、互いに逆回りの偏光方向の二つの円偏光成分からなる励起光にする偏光調節手段を備えることを特徴とする付記1に記載の光信号処理装置。
(付記9)前記合波手段によって合波される前記励起光を、互いに直交する二つの直線偏光成分からなる励起光にする偏光調節手段を備えることを特徴とする付記1に記載の光信号処理装置。
(付記10)前記合波手段は、前記パルス励起光として、前記信号光の変調速度よりも高い繰り返し周波数のパルス励起光を合波することを特徴とする付記2に記載の光信号処理装置。
(付記11)前記合波手段は、前記パルス励起光として、複数の光パルスを時間分割多重して生成したパルス励起光を合波することを特徴とする付記10に記載の光信号処理装置。
(付記12)前記合波手段は、前記励起光として、前記第1非線形光学媒質および前記第2非線形光学媒質における前記信号光の利得が飽和するパワーの励起光を合波することを特徴とする付記1に記載の光信号処理装置。
(付記13)前記第1非線形光学媒質および前記第2非線形光学媒質の少なくとも一方の出力端に設けられ、前記複数の信号光の各中心波長付近に透過ピークを有する光帯域フィルタを備えることを特徴とする付記3に記載の光信号処理装置。
(付記14)前記第1非線形光学媒質および前記第2非線形光学媒質は、光ファイバであり、通過する前記信号光に対して、通過する励起光に応じた四光波混合を発生させることを特徴とする付記1に記載の光信号処理装置。
(付記15)前記光ファイバの平均零分散波長は、前記励起光の波長とほぼ一致することを特徴とする付記14に記載の光信号処理装置。
(付記16)前記光ファイバは、モードフィールドを狭小化した高非線形光ファイバであることを特徴とする付記14に記載の光信号処理装置。
(付記17)前記光ファイバは、コアにゲルマニウム、ビスマスまたはガルコゲナイトがドープされた高非線形光ファイバであることを特徴とする付記14に記載の光信号処理装置。
(付記18)前記光ファイバは、フォトニック結晶ファイバであることを特徴とする付記14に記載の光信号処理装置。
(付記19)前記第1非線形光学媒質および前記第2非線形光学媒質は、擬似位相整合構造のLiNbO3導波路であり、通過する前記信号光に対して、通過する励起光に応じた三光波混合を発生させることを特徴とする付記1に記載の光信号処理装置。
(付記20)前記分散媒質は分散ファイバであることを特徴とする付記1に記載の光信号処理装置。
(付記21)前記第1非線形光学媒質および前記第2非線形光学媒質の少なくとも一方の前段または後段に、過飽和吸収手段を備えることを特徴とする付記1に記載の光信号処理装置。
(付記22)前記第1非線形光学媒質へ入力される光のパワーと、前記第2非線形光学媒質を通過した光のパワーと、をモニタするパワーモニタ手段と、
前記パワーモニタ手段によるモニタ結果に基づいて、前記合波手段によって合波される前記信号光および前記励起光の各パワーを制御するパワー制御手段と、
を備えることを特徴とする付記1に記載の光信号処理装置。
(付記23)前記第1非線形光学媒質または前記第2非線形光学媒質へ入力される前記励起光の偏光状態をモニタする偏光モニタ手段と、
前記偏光モニタ手段によるモニタ結果に基づいて、前記合波手段によって合波される前記励起光の偏光状態を制御する偏光制御手段と、
を備えることを特徴とする付記1に記載の光信号処理装置。
(付記24)前記合波手段は、前記励起光として連続光を合波することを特徴とする付記3に記載の光信号処理装置。
(付記25)付記1〜24のいずれか一つに記載の光信号処理装置と、
前記光信号処理装置の前記第2非線形光学媒質を通過した光を受信する受信手段と、
を備えることを特徴とする光受信装置。
(付記26)付記1〜24のいずれか一つに記載の光信号処理装置と、
前記光信号処理装置の前記第2非線形光学媒質を通過した光を送信する送信手段と、
を備えることを特徴とする光中継装置。
実施の形態1にかかる光信号処理装置の機能的構成を示すブロック図である。 図1に示した光信号処理装置の具体的な構成例を示すブロック図である。 信号光およびパルス励起光の波長位置を示す図である。 信号光の入力パワーと光パラメトリック増幅との関係を示す特性図である。 信号光の入力パワーと出力パワーとの関係を示す特性図である。 信号光とパルス励起光のタイミングのシフトを示す図である。 図2に示した光信号処理装置の変形例を示すブロック図である。 光信号処理装置の波長多重信号に対する波形整形を示す図である。 実施の形態2にかかる光信号処理装置の機能的構成を示すブロック図である。 図9に示した光信号処理装置の変形例を示すブロック図である。 実施の形態3にかかる光信号処理装置の機能的構成を示すブロック図である。 図11に示した光信号処理装置の制御の一例を示すフローチャートである。 実施の形態4にかかる光通信システムの一例を示すブロック図である。 実施の形態4にかかる光通信システムの他の例を示すブロック図である。
符号の説明
10 光信号処理装置
12,94 合波器
22,24 光ファイバ
23 分散ファイバ
91,111,112,117 分岐器
130,140 光通信システム
132,142 光受信装置
134 光アンプ
141 光中継装置

Claims (10)

  1. 信号光が入力される入力手段と、
    前記入力手段から入力された信号光と、前記信号光とは波長が異なる励起光と、を合波する合波手段と、
    前記合波手段によって合波された光を通過させる第1非線形光学媒質と、
    前記第1非線形光学媒質を通過した光を通過させる分散媒質と、
    前記分散媒質を通過した光を通過させる第2非線形光学媒質と、
    を備えることを特徴とする光信号処理装置。
  2. 前記合波手段は、前記励起光としてパルス励起光を合波することを特徴とする請求項1に記載の光信号処理装置。
  3. 前記入力手段には、前記信号光として、複数の信号光が波長多重された波長多重信号が入力されることを特徴とする請求項1に記載の光信号処理装置。
  4. 前記分散媒質は、通過する前記信号光および前記パルス励起光の相対的なタイミングがシフトする長さを有することを特徴とする請求項2に記載の光信号処理装置。
  5. 前記分散媒質は、前記タイミングをシフトさせる量が、前記パルス励起光のパルス間隔の約半分となる長さを有することを特徴とする請求項4に記載の光信号処理装置。
  6. 前記第1非線形光学媒質の後段に、前記分散媒質および前記第2非線形光学媒質の組み合わせを複数段備え、前記分散媒質は、前記第1非線形光学媒質および前記第2非線形光学媒質のうちの前段の非線形光学媒質を通過した光を通過させることを特徴とする請求項1に記載の光信号処理装置。
  7. 前記第1非線形光学媒質の後段に、前記分散媒質および前記第2非線形光学媒質の組み合わせをN段備え、前記分散媒質は、前記タイミングをシフトさせる量が、前記パルス励起光のパルス間隔の約1/(N+1)となる長さを有することを特徴とする請求項4に記載の光信号処理装置。
  8. 前記合波手段によって合波される前記励起光を、互いに直交する二つの直線偏光成分からなる励起光にする偏光調節手段を備えることを特徴とする請求項1に記載の光信号処理装置。
  9. 請求項1〜8のいずれか一つに記載の光信号処理装置と、
    前記光信号処理装置の前記第2非線形光学媒質を通過した光を受信する受信手段と、
    を備えることを特徴とする光受信装置。
  10. 請求項1〜8のいずれか一つに記載の光信号処理装置と、
    前記光信号処理装置の前記第2非線形光学媒質を通過した光を送信する送信手段と、
    を備えることを特徴とする光中継装置。
JP2008015593A 2008-01-25 2008-01-25 光信号処理装置、光受信装置および光中継装置 Withdrawn JP2009177641A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008015593A JP2009177641A (ja) 2008-01-25 2008-01-25 光信号処理装置、光受信装置および光中継装置
US12/232,684 US8243363B2 (en) 2008-01-25 2008-09-22 Optical signal processing apparatus, optical receiving apparatus, and optical relay apparatus
EP08164874.3A EP2083320B1 (en) 2008-01-25 2008-09-23 Optical signal processing apparatus, optical receiving apparatus, and optical relay apparatus
US13/173,230 US8970946B2 (en) 2008-01-25 2011-06-30 Optical signal processing apparatus, optical receiving apparatus, and optical relay apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015593A JP2009177641A (ja) 2008-01-25 2008-01-25 光信号処理装置、光受信装置および光中継装置

Publications (1)

Publication Number Publication Date
JP2009177641A true JP2009177641A (ja) 2009-08-06

Family

ID=40591912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015593A Withdrawn JP2009177641A (ja) 2008-01-25 2008-01-25 光信号処理装置、光受信装置および光中継装置

Country Status (3)

Country Link
US (2) US8243363B2 (ja)
EP (1) EP2083320B1 (ja)
JP (1) JP2009177641A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145554A (ja) * 2010-01-15 2011-07-28 Fujitsu Ltd 光増幅器および光増幅装置
WO2012121223A1 (ja) * 2011-03-04 2012-09-13 古河電気工業株式会社 光増幅器、光増幅システム、波長変換器、光増幅方法および光通信システム
JP2020134776A (ja) * 2019-02-21 2020-08-31 富士通株式会社 光通信装置、光伝送システム、波長変換器、及び光通信方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8275263B1 (en) * 2009-06-26 2012-09-25 The Boeing Company Multiplication of phase deviations
US8705167B2 (en) * 2010-08-25 2014-04-22 Fujitsu Limited System and method for compensating for polarization dependent loss
US9634788B2 (en) * 2010-09-03 2017-04-25 Infinera Corporation Optical communication system having low latency
US8891957B2 (en) * 2011-07-13 2014-11-18 Tyco Electronics Subsea Communications Llc Method and system for fault recovery in an optical network
GB2496214B (en) * 2011-11-01 2016-03-16 Fianium Ltd Amplifying optical device pumped or seeded with nonlinearly generated light
WO2013170910A1 (en) * 2012-05-16 2013-11-21 Telefonaktiebolaget L M Ericsson (Publ) Determining properties of an optical communications path in an optical communications network
US9252881B2 (en) * 2013-05-31 2016-02-02 Fujitsu Limited Amplitude noise squeezing on multi-amplitude modulated signals
US8989595B2 (en) * 2013-06-19 2015-03-24 Fujitsu Limited Mitigation of optical signal to noise ratio degradation arising from polarization dependent loss
WO2015064513A1 (en) * 2013-10-30 2015-05-07 Canon Kabushiki Kaisha Optical source device and information acquisition apparatus using the same
JP7106835B2 (ja) 2017-10-06 2022-07-27 富士通株式会社 光伝送装置、波長変換装置、光伝送方法、および波長変換方法
US10725360B2 (en) 2018-05-10 2020-07-28 Ut-Battelle, Llc Gain balanced nonlinear optical interferometer
US11557872B2 (en) * 2018-08-20 2023-01-17 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Multi-wavelength sources based on parametric amplification
EP4007186A1 (en) * 2019-07-29 2022-06-01 NEC Corporation Re-modulation device, demodulation reception device, modulation transmission device, modulation communication system, re-modulation method, and recording medium
KR20220119625A (ko) 2019-11-27 2022-08-30 사이퀀텀, 코퍼레이션 캐스케이드 공진기 광자 쌍 소스
CN112422179B (zh) * 2020-10-22 2022-02-01 西安空间无线电技术研究所 一种基于梳齿切换的可重构光信道灵活提取***和方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183685B2 (ja) 1991-09-13 2001-07-09 富士通株式会社 光通信システム
US5596667A (en) 1992-10-20 1997-01-21 Fujitsu Limited Application of phase conjugate optics to optical systems
JP3412778B2 (ja) 1994-05-13 2003-06-03 日本電信電話株式会社 光変調装置
US5530584A (en) 1994-12-16 1996-06-25 National Research Council Of Canada Control of gain and dispersion of a signal in an optical medium
US5596436A (en) 1995-07-14 1997-01-21 The Regents Of The University Of California Subcarrier multiplexing with dispersion reduction and direct detection
US6049642A (en) 1996-10-09 2000-04-11 Nec Corporation Nonlinear optical switch
US6452945B1 (en) 1998-03-05 2002-09-17 Kestrel Solutions, Inc. Electrical add-drop multiplexing for optical communications networks utilizing frequency division multiplexing
US6101024A (en) * 1998-03-24 2000-08-08 Xtera Communications, Inc. Nonlinear fiber amplifiers used for a 1430-1530nm low-loss window in optical fibers
JP3461121B2 (ja) 1998-07-08 2003-10-27 日本電信電話株式会社 光リミッタ回路
WO2000005622A1 (fr) 1998-07-23 2000-02-03 The Furukawa Electric Co., Ltd. Amplificateur raman, repeteur optique et procede d'amplification raman
JP3472151B2 (ja) 1998-08-03 2003-12-02 日本電信電話株式会社 光2r回路
US6222658B1 (en) 1998-08-06 2001-04-24 Harris Corporation Method and apparatus for a free space optical non-processing satellite transponder
JP3973769B2 (ja) * 1998-08-19 2007-09-12 富士通株式会社 波長変換のための方法及び装置
JP4494557B2 (ja) 1999-03-29 2010-06-30 古河電気工業株式会社 四光子混合用光ファイバのファイバ長の決定方法
JP2001183711A (ja) 1999-12-24 2001-07-06 Matsushita Electric Ind Co Ltd 光周波数変換装置および方法
DE10040446A1 (de) * 2000-08-18 2002-03-07 Siemens Ag Kaskadierbare optische Verstärkeranordnung
TWI226464B (en) * 2000-11-13 2005-01-11 Sumitomo Electric Industries Optical fiber, non-linear optical fiber, optical amplifier using the same optical fiber, wavelength converter and optical fiber manufacture method
JP4487420B2 (ja) * 2000-12-22 2010-06-23 富士通株式会社 光増幅伝送システム
US6587288B2 (en) 2001-03-12 2003-07-01 Optical Coating Laboratory, Inc. Optical attenuation filter
US6529315B2 (en) * 2001-04-27 2003-03-04 Sycamore Networks, Inc Optical amplifier providing dispersion compensation
EP1326354A3 (en) * 2001-12-07 2005-07-20 Sumitomo Electric Industries, Ltd. Optical fiber transmission line, optical cable, and optical transmission system
JP4401626B2 (ja) * 2002-07-05 2010-01-20 富士通株式会社 光信号を処理する方法及び装置
EP1389742A1 (en) 2002-08-14 2004-02-18 Alcatel Optical Amplifier
US20040066550A1 (en) 2002-10-02 2004-04-08 Jay Paul R. Optical pulse reshaping system
JP4436451B2 (ja) 2002-10-23 2010-03-24 独立行政法人科学技術振興機構 光信号増幅3端子装置
JP4107072B2 (ja) * 2002-11-29 2008-06-25 住友電気工業株式会社 光モジュールおよび光伝送システム
US7209664B1 (en) 2003-06-10 2007-04-24 Nortel Networks Limited Frequency agile transmitter and receiver architecture for DWDM systems
US7292792B2 (en) 2003-09-30 2007-11-06 Lucent Technologies Inc. High speed modulation of optical subcarriers
US7239440B2 (en) * 2003-11-18 2007-07-03 Sumitomo Electric Industries, Ltd. Wavelength conversion apparatus
US20060045445A1 (en) 2004-09-01 2006-03-02 Fujitsu Limited Optical switch and optical waveform monitoring device utilizing optical switch
JP4574629B2 (ja) 2004-09-01 2010-11-04 富士通株式会社 光スイッチおよび光スイッチを利用した光波形モニタ装置
JP4629642B2 (ja) 2004-09-01 2011-02-09 富士通株式会社 光スイッチおよび光スイッチを利用した光波形モニタ装置
JP3920297B2 (ja) 2004-09-01 2007-05-30 富士通株式会社 光スイッチおよび光スイッチを利用した光波形モニタ装置
US6959135B1 (en) * 2004-12-21 2005-10-25 Corning Incorporated SBS suppressed nonlinear optical fiber
JP4771833B2 (ja) 2006-03-03 2011-09-14 富士通株式会社 光パラメトリック増幅器
JP4915196B2 (ja) 2006-09-28 2012-04-11 沖電気工業株式会社 光信号品質モニタ装置
KR100921861B1 (ko) 2007-05-29 2009-10-13 광주과학기술원 광파이버 무선 시스템에서의 전광 주파수 상향 변환기 및전광 주파수 상향 변환 방법
JP5343855B2 (ja) 2007-10-11 2013-11-13 富士通株式会社 光パルス生成装置
JP2010026308A (ja) 2008-07-22 2010-02-04 Fujitsu Ltd 光信号処理装置
US8494313B2 (en) 2009-04-06 2013-07-23 Rockstar Consortium Us Lp Monitoring eDC polarization inverse filter coefficients to identify real-time physical intrusion into a core or metro optical network

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145554A (ja) * 2010-01-15 2011-07-28 Fujitsu Ltd 光増幅器および光増幅装置
US8773753B2 (en) 2010-01-15 2014-07-08 Fujitsu Limited Optical amplifier and optical amplifying apparatus
WO2012121223A1 (ja) * 2011-03-04 2012-09-13 古河電気工業株式会社 光増幅器、光増幅システム、波長変換器、光増幅方法および光通信システム
JPWO2012121223A1 (ja) * 2011-03-04 2014-07-17 古河電気工業株式会社 光増幅器、光増幅システム、波長変換器、光増幅方法および光通信システム
US9270076B2 (en) 2011-03-04 2016-02-23 Furukawa Electric Co., Ltd. Optical amplifier, optical amplifying system, wavelength converter, optical amplification method, and optical communication system
JP6133206B2 (ja) * 2011-03-04 2017-05-24 古河電気工業株式会社 光パラメトリック増幅器、光増幅システム、波長変換器、光増幅方法および光通信システム
JP2020134776A (ja) * 2019-02-21 2020-08-31 富士通株式会社 光通信装置、光伝送システム、波長変換器、及び光通信方法
JP7188173B2 (ja) 2019-02-21 2022-12-13 富士通株式会社 光通信装置、光伝送システム、波長変換器、及び光通信方法

Also Published As

Publication number Publication date
US20110255874A1 (en) 2011-10-20
EP2083320A1 (en) 2009-07-29
US20090190207A1 (en) 2009-07-30
US8970946B2 (en) 2015-03-03
US8243363B2 (en) 2012-08-14
EP2083320B1 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP2009177641A (ja) 光信号処理装置、光受信装置および光中継装置
JP5056095B2 (ja) 光波形制御装置、光信号処理装置および光中継装置
EP2148242B1 (en) Polarisation-independent optical waveform shaping device
JP5356271B2 (ja) 光源
JP3419510B2 (ja) 波長分散を補償した光通信システム及び該システムに適用可能な位相共役光発生装置
US7027468B2 (en) Phase-insensitive recovery of clock pulses of wavelength division multiplexed optical signals
JP5381089B2 (ja) 光信号処理装置
JPWO2003104886A1 (ja) 波長分割多重光再生システム及び波長分割多重光再生方法
JP2002077052A (ja) 光信号を処理するための方法、装置及びシステム
JP2009282404A (ja) 光信号処理装置
US20050111499A1 (en) Wavelength conversion apparatus
JP5304650B2 (ja) 光信号処理装置
US6814376B2 (en) Method and system for generating short pulse signals
JP2004287074A (ja) 波長可変の光パルス発生装置
JP5293269B2 (ja) 光雑音抑圧処理を用いた光ファイバ伝送システム及び方法
JP4131833B2 (ja) 光増幅装置およびそれを用いた光中継伝送方式
JP2010079246A (ja) 光波形再生器および光波形再生方法
JP3495036B2 (ja) 波長分散を補償した光通信システム及び該システムに適用可能な位相共役光発生装置
JP2004185021A (ja) 信号光の波形整形のための方法、装置及びシステム
JP2004289863A (ja) 光信号を処理するための方法及び装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405