JP2009170387A - Manufacturing method of membrane-electrode assembly - Google Patents

Manufacturing method of membrane-electrode assembly Download PDF

Info

Publication number
JP2009170387A
JP2009170387A JP2008010442A JP2008010442A JP2009170387A JP 2009170387 A JP2009170387 A JP 2009170387A JP 2008010442 A JP2008010442 A JP 2008010442A JP 2008010442 A JP2008010442 A JP 2008010442A JP 2009170387 A JP2009170387 A JP 2009170387A
Authority
JP
Japan
Prior art keywords
membrane
catalyst layer
polymer electrolyte
electrolyte membrane
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008010442A
Other languages
Japanese (ja)
Other versions
JP5040000B2 (en
Inventor
Wataru Otsu
亘 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008010442A priority Critical patent/JP5040000B2/en
Publication of JP2009170387A publication Critical patent/JP2009170387A/en
Application granted granted Critical
Publication of JP5040000B2 publication Critical patent/JP5040000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane-electrode assembly capable of improving dimensional stability of a polymer electrolyte membrane, and excellent in power generating performance. <P>SOLUTION: This manufacturing method of the membrane-electrode assembly is equipped with a process to bond a membrane-catalyst layer complex having a catalyst layer provided on the surface of the polymer electrolyte membrane to a gas diffusion layer sheet forming a gas diffusion layer by thermocompression bonding. In this manufacturing method, a heat treatment cycle to alternately perform a heating process to heat the membrane-catalyst layer complex to a temperature higher than a heating temperature in the thermocompression bonding and a process to expose it under an environment having a normal temperature and normal humidity (23±5°C, 50±10% RH) one at a time is applied at least once to the polymer electrolyte membrane or the membrane-catalyst layer complex, and the membrane-catalyst layer complex in which the catalyst layer is provided or the catalyst layer of the membrane-catalyst layer complex to which the heat treatment cycle is applied and the gas diffusion layer are bonded by thermocompression bonding to the surface of the polymer electrolyte membrane to which the heat treatment cycle is applied under a drying condition having humidity of 1% RH or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、膜・電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane / electrode assembly.

燃料電池は、電気的に接続された2つの電極に燃料と酸化剤を供給し、電気化学的に燃料の酸化を起こさせることで、化学エネルギーを直接電気エネルギーに変換する。火力発電とは異なり、燃料電池はカルノーサイクルの制約を受けないので、高いエネルギー変換効率を示す。燃料電池は、通常、電解質膜を一対の電極で挟持した膜・電極接合体を基本構造とする単セルを複数積層して構成されている。中でも、電解質膜として高分子電解質膜を用いた固体高分子電解質型燃料電池は、小型化が容易であること、低い温度で作動すること、などの利点があることから、特に携帯用、移動体用電源として注目されている。   A fuel cell directly converts chemical energy into electrical energy by supplying fuel and an oxidant to two electrically connected electrodes and causing the fuel to be oxidized electrochemically. Unlike thermal power generation, fuel cells are not subject to the Carnot cycle, and thus exhibit high energy conversion efficiency. A fuel cell is usually formed by laminating a plurality of single cells having a basic structure of a membrane / electrode assembly in which an electrolyte membrane is sandwiched between a pair of electrodes. Among them, a solid polymer electrolyte fuel cell using a polymer electrolyte membrane as an electrolyte membrane has advantages such as easy miniaturization and operation at a low temperature. It is attracting attention as a power source.

水素を燃料、酸素を酸化剤とする固体高分子電解質型燃料電池において、アノード(燃料極)では(1)式の反応が進行する。
2 → 2H+ + 2e- ・・・(1)
(1)式で生じる電子は、外部回路を経由し、外部の負荷で仕事をした後、カソード(酸化剤極)に到達する。そして、(1)式で生じたプロトンは、水と水和した状態で、電気浸透により高分子電解質膜内をアノード側からカソード側に移動する。
一方、カソードでは(2)式の反応が進行する。
4H+ + O2 + 4e- → 2H2O ・・・(2)
In a solid polymer electrolyte fuel cell using hydrogen as a fuel and oxygen as an oxidant, the reaction of formula (1) proceeds at the anode (fuel electrode).
H 2 → 2H + + 2e (1)
The electrons generated by the equation (1) reach the cathode (oxidant electrode) after working with an external load via an external circuit. Then, the proton generated in the formula (1) moves in the polymer electrolyte membrane from the anode side to the cathode side by electroosmosis while being hydrated with water.
On the other hand, the reaction of the formula (2) proceeds at the cathode.
4H + + O 2 + 4e → 2H 2 O (2)

固体高分子電解質型燃料電池において、高分子電解質膜の両面に設けられる電極は、通常、高分子電解質膜側から順に触媒層とガス拡散層とが積層した構造を有する。触媒層は上記(1)式又は(2)式の電極反応が進行する場であり、白金や白金合金等の電極触媒をカーボン粒子等の導電性粒子に担持させたものと、高分子電解質とを主成分とする構成が一般的である。ガス拡散層は、触媒層への反応ガスの拡散性の確保や電極の導電性の確保を目的として設けられており、一般的にカーボンペーパーやカーボンクロス等の導電性多孔質体が用いられる。   In a solid polymer electrolyte fuel cell, the electrodes provided on both surfaces of the polymer electrolyte membrane usually have a structure in which a catalyst layer and a gas diffusion layer are laminated in order from the polymer electrolyte membrane side. The catalyst layer is a place where the electrode reaction of the above formula (1) or (2) proceeds, and an electrode catalyst such as platinum or platinum alloy supported on conductive particles such as carbon particles, a polymer electrolyte, Is generally the main component. The gas diffusion layer is provided for the purpose of ensuring the diffusibility of the reaction gas to the catalyst layer and ensuring the conductivity of the electrode, and generally a conductive porous body such as carbon paper or carbon cloth is used.

固体高分子電解質型燃料電池は、高分子電解質膜のプロトン伝導性を確保するため、反応ガスを加湿することがしばしば行われる。また、上記したようにカソードにおいては、電極反応により水が生成する。従って、固体高分子電解質膜の膜・電極接合体は、燃料電池が作動中か非作動中かによって、また、反応ガスの加湿状態、作動温度、反応ガスの供給量等の作動条件によって、その含水状態が大きく異なる。
高分子電解質膜は、一般的に、水を吸収して膨潤しやすい特性を有していることから、膜・電極接合体の含水状態の変化に伴い、その乾湿状態(乾燥、湿潤)が変化し、収縮(乾燥)と膨潤(湿潤)を繰り返す。膜・電極接合体において、高分子電解質膜は外周端近傍を含む領域が拘束された状態であるため、乾湿状態の変化により収縮する際、該高分子電解質膜内には応力が発生する。その結果、高分子電解質膜に割れや破れ等の損傷が生じたり、発生したしわや歪により、隣接する層との界面において剥離が生じやすい。これら高分子電解質膜の損傷や隣接層との剥離は、膜・電極接合体の発電性能を著しく低下させ、燃料電池の耐久性低下の大きな要因の1つとなる。
そこで、従来、固体高分子電解質膜の寸法変化を抑制する様々な技術が提案されている(例えば、特許文献1、2)。
In solid polymer electrolyte fuel cells, the reaction gas is often humidified in order to ensure proton conductivity of the polymer electrolyte membrane. In addition, as described above, water is generated at the cathode by the electrode reaction. Therefore, the membrane / electrode assembly of the solid polymer electrolyte membrane depends on whether the fuel cell is operating or not operating, and depending on the operating conditions such as the humidification state of the reaction gas, the operation temperature, the supply amount of the reaction gas, etc. The water content is very different.
Since polymer electrolyte membranes generally have the property of easily absorbing water and swelling, their wet and dry conditions (dry and wet) change with changes in the water content of the membrane / electrode assembly. And repeatedly shrink (dry) and swell (wet). In the membrane / electrode assembly, since the polymer electrolyte membrane is in a state where the region including the vicinity of the outer peripheral edge is constrained, stress is generated in the polymer electrolyte membrane when shrinking due to a change in the wet and dry state. As a result, the polymer electrolyte membrane is easily damaged such as cracking or tearing, and peeling is likely to occur at the interface with the adjacent layer due to the generated wrinkles or strain. Damage to the polymer electrolyte membrane and separation from the adjacent layer significantly reduce the power generation performance of the membrane / electrode assembly, which is one of the major factors in reducing the durability of the fuel cell.
Therefore, various techniques for suppressing the dimensional change of the solid polymer electrolyte membrane have been proposed (for example, Patent Documents 1 and 2).

特開2007−12537号公報JP 2007-12537 A 特開2006−66160号公報JP 2006-66160 A

特に、製膜時の残留ひずみがある高分子電解質膜の場合、高分子電解質膜表面に触媒層を設けた膜・触媒層複合体と、ガス拡散層を構成するガス拡散層シートとを、熱圧着により接合する際に、高分子電解質膜が熱収縮し、触媒層‐ガス拡散層において剥離が生じやすい。このような熱圧着における高分子電解質膜の熱収縮を抑制すべく、膜・触媒層複合体とガス拡散層シートの熱圧着条件を、高温且つ低湿度状態とし、高分子電解質膜が熱収縮した状態で熱圧着する方法も検討されているが、この場合、得られた膜・電極接合体を常温常湿環境下にさらすことで、電解質膜が膨潤し、高分子電解質膜や触媒層にシワやわれが発生してしまうという問題がある。   In particular, in the case of a polymer electrolyte membrane having a residual strain during film formation, a membrane / catalyst layer composite in which a catalyst layer is provided on the surface of the polymer electrolyte membrane and a gas diffusion layer sheet constituting the gas diffusion layer are heated. When joining by pressure bonding, the polymer electrolyte membrane is thermally contracted, and peeling is likely to occur in the catalyst layer-gas diffusion layer. In order to suppress the thermal contraction of the polymer electrolyte membrane in such thermocompression bonding, the thermocompression bonding conditions of the membrane / catalyst layer composite and the gas diffusion layer sheet were set to a high temperature and low humidity state, and the polymer electrolyte membrane thermally contracted. In this case, the membrane / electrode assembly obtained is exposed to a normal temperature and humidity environment, and the electrolyte membrane swells and wrinkles the polymer electrolyte membrane and the catalyst layer. There is a problem that burns will occur.

本発明は上記実情を鑑みて成し遂げられたものであり、高分子電解質膜の寸法安定性を高めることが可能であり、発電性能及び耐久性に優れた膜・電極接合体を提供することを目的とする。   The present invention has been accomplished in view of the above circumstances, and it is possible to improve the dimensional stability of a polymer electrolyte membrane and to provide a membrane / electrode assembly excellent in power generation performance and durability. And

本発明の第一の膜・電極接合体の製造方法は、高分子電解質膜の表面に触媒層が設けられた膜・触媒層複合体と、ガス拡散層を構成するガス拡散層シートとを、加熱圧着により接合する工程を備える膜・電極接合体の製造方法であって、前記高分子電解質膜の表面に前記触媒層を設けた膜・触媒層複合体に対して、前記加熱圧着における加熱温度以上に加熱する加熱工程と、常温常湿(23±5℃、50±10%RH)環境下に晒す工程と、を1回ずつ交互に行う熱処理サイクルを少なくとも1回施し、前記熱処理サイクルを施した前記膜・触媒層複合体の触媒層と、前記ガス拡散層シートとを、湿度1%RH以下の乾燥条件下、加熱圧着により接合することを特徴とする。   The first membrane / electrode assembly production method of the present invention comprises a membrane / catalyst layer composite in which a catalyst layer is provided on the surface of a polymer electrolyte membrane, and a gas diffusion layer sheet constituting the gas diffusion layer, A method for producing a membrane / electrode assembly comprising a step of joining by thermocompression bonding, wherein the heating temperature in the thermocompression bonding is applied to a membrane / catalyst layer composite in which the catalyst layer is provided on the surface of the polymer electrolyte membrane. At least one heat treatment cycle in which the heating step of heating as described above and the step of exposing to a normal temperature and normal humidity (23 ± 5 ° C., 50 ± 10% RH) environment are performed at least once is performed, and the heat treatment cycle is performed. The catalyst layer of the membrane / catalyst layer composite and the gas diffusion layer sheet are bonded by thermocompression bonding under dry conditions of a humidity of 1% RH or less.

また、本発明の第二の膜・電極接合体の製造方法は、高分子電解質膜の表面に触媒層が設けられた膜・触媒層複合体と、ガス拡散層を構成するガス拡散層シートとを、加熱圧着により接合する工程を備える膜・電極接合体の製造方法であって、前記高分子電解質膜に対して、前記加熱圧着における加熱温度以上に加熱する加熱工程と、常温常湿(23±5℃、50±10%RH)環境下に晒す工程とを、1回ずつ交互に行う熱処理サイクルを少なくとも1回施し、前記熱処理サイクルを施した前記高分子電解質膜の表面に触媒層を設けて膜・触媒層複合体を作製し、該膜・触媒層複合体の触媒層と、前記ガス拡散層シートとを、湿度1%RH以下の乾燥条件下、加熱圧着により接合することを特徴とする。   The second membrane / electrode assembly production method of the present invention comprises a membrane / catalyst layer composite in which a catalyst layer is provided on the surface of a polymer electrolyte membrane, a gas diffusion layer sheet constituting the gas diffusion layer, and Is a method of manufacturing a membrane / electrode assembly comprising a step of bonding by thermocompression bonding, a heating step of heating the polymer electrolyte membrane to a temperature higher than the heating temperature in the thermocompression bonding, and normal temperature and normal humidity (23 ± 5 ° C., 50 ± 10% RH) and the step of exposing to the environment alternately at least once, and a catalyst layer is provided on the surface of the polymer electrolyte membrane subjected to the heat treatment cycle The membrane / catalyst layer composite is prepared, and the catalyst layer of the membrane / catalyst layer composite and the gas diffusion layer sheet are joined by thermocompression bonding under a dry condition of a humidity of 1% RH or less. To do.

本発明によれば、上記熱処理サイクルにより、高分子電解質膜の残留歪みが開放され、温度及び湿度変化、具体的には、高温乾燥状態から常温常湿状態へ変化及び常温常湿状態から高温乾燥状態へ変化した際の、該高分子電解質膜の寸法変化が抑制され、膜・電極接合体における高分子電解質膜及び電極のしわや割れ、電解質膜−触媒層間及び触媒層−ガス拡散層間の剥離等の発生を防止することができる。   According to the present invention, the above heat treatment cycle releases the residual strain of the polymer electrolyte membrane, changes in temperature and humidity, specifically, changes from a high temperature dry state to a normal temperature normal humidity state, and normal temperature normal humidity to high temperature drying. The dimensional change of the polymer electrolyte membrane when it changes to a state is suppressed, and the polymer electrolyte membrane and electrode wrinkles and cracks in the membrane-electrode assembly, separation between the electrolyte membrane-catalyst layer and the catalyst layer-gas diffusion layer Etc. can be prevented.

前記熱処理サイクルの加熱工程における加熱温度は、130℃以上であることが好ましく、前記熱処理サイクルの加熱工程における湿度は1%RH以下であることが好ましい。   The heating temperature in the heating step of the heat treatment cycle is preferably 130 ° C. or higher, and the humidity in the heating step of the heat treatment cycle is preferably 1% RH or lower.

本発明によれば、高分子電解質膜の表面に触媒層を形成した膜・触媒層複合体とガス拡散層シートとを接合して得られる膜・電極接合体において、高分子電解質膜の寸法安定性を高めることが可能であり、膜・触媒層複合体とガス拡散層シートの接合の際に収縮した高分子電解質膜が、常温常湿状態や燃料電池作動環境のような高湿状態に晒された際に膨潤するのに伴い、該高分子電解質膜及び該高分子電解質膜の表面に形成された電極にシワや割れ等が発生するのを防止することができる。さらには電解質膜−触媒層間の剥離、触媒層−ガス拡散層間の剥離を抑制することができる。
従って、本発明によれば、上記のような高分子電解質膜や触媒層のシワや割れ、膜・電極接合体の各層間における剥離等に起因する、膜・電極接合体の性能低下を抑制することが可能であり、長期間にわたって安定した発電性能を示す耐久性に優れた膜・電極接合体を提供することができる。
According to the present invention, in a membrane / electrode assembly obtained by joining a membrane / catalyst layer composite having a catalyst layer formed on the surface of a polymer electrolyte membrane and a gas diffusion layer sheet, the dimensional stability of the polymer electrolyte membrane is improved. The polymer electrolyte membrane shrunk when the membrane / catalyst layer composite and the gas diffusion layer sheet are joined is exposed to high humidity conditions such as normal temperature and normal humidity conditions and fuel cell operating environments. It is possible to prevent the polymer electrolyte membrane and the electrodes formed on the surface of the polymer electrolyte membrane from being wrinkled or cracked as they swell. Furthermore, peeling between the electrolyte membrane and the catalyst layer and peeling between the catalyst layer and the gas diffusion layer can be suppressed.
Therefore, according to the present invention, the deterioration of the performance of the membrane / electrode assembly caused by wrinkles or cracks in the polymer electrolyte membrane or catalyst layer as described above, peeling between layers of the membrane / electrode assembly, etc. is suppressed. Therefore, it is possible to provide a membrane / electrode assembly having excellent durability and stable power generation performance over a long period of time.

本発明の第一の膜・電極接合体の製造方法は、高分子電解質膜の表面に触媒層が設けられた膜・触媒層複合体と、ガス拡散層を構成するガス拡散層シートとを、加熱圧着により接合する工程を備える膜・電極接合体の製造方法であって、前記高分子電解質膜の表面に前記触媒層を設けた膜・触媒層複合体に対して、前記加熱圧着における加熱温度以上に加熱する加熱工程と、常温常湿(23±5℃、50±10%RH)環境下に晒す工程とを、1回ずつ交互に行う熱処理サイクルを少なくとも1回施し、前記熱処理サイクルを施した前記膜・触媒層複合体の触媒層と、前記ガス拡散層シートとを、湿度1%RH以下の乾燥条件下、加熱圧着により接合することを特徴とする。   The first membrane / electrode assembly production method of the present invention comprises a membrane / catalyst layer composite in which a catalyst layer is provided on the surface of a polymer electrolyte membrane, and a gas diffusion layer sheet constituting the gas diffusion layer, A method for producing a membrane / electrode assembly comprising a step of joining by thermocompression bonding, wherein the heating temperature in the thermocompression bonding is applied to a membrane / catalyst layer composite in which the catalyst layer is provided on the surface of the polymer electrolyte membrane. At least one heat treatment cycle in which the heating step for heating as described above and the step of exposing to a normal temperature and normal humidity (23 ± 5 ° C., 50 ± 10% RH) environment are performed at least once is performed, and the heat treatment cycle is performed. The catalyst layer of the membrane / catalyst layer composite and the gas diffusion layer sheet are bonded by thermocompression bonding under dry conditions of a humidity of 1% RH or less.

本発明により提供される膜・電極接合体を含む単セルの構成例について図1を参照しながら説明する。図1は、本発明により提供される膜・電極接合体を含む単セルの一実施形態(単セル100)を模式的に示す横断面図である。
単セル100は、電解質膜1の一面側に燃料極(アノード)2、及び酸化剤極(カソード)3が設けられた膜・電極接合体6を有している。燃料極2は電解質膜1に近い側から燃料極側触媒層4a、燃料極側ガス拡散層5aがこの順序で積層して構成されている。酸化剤極3も同様に電解質膜1に近い側から酸化剤極側触媒層4b、酸化剤極側ガス拡散層5bがこの順序で積層して構成されている。
尚、本実施形態において、各電極(燃料極、酸化剤極)は、共に、触媒層とガス拡散層とが積層した構造を有しているが、触媒層のみからなる単層構造であってもよいし、触媒層とガス拡散層の他に機能層を設けた構造でもよい。
A configuration example of a single cell including a membrane-electrode assembly provided by the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view schematically showing an embodiment (unit cell 100) of a unit cell including a membrane-electrode assembly provided by the present invention.
The single cell 100 includes a membrane / electrode assembly 6 in which a fuel electrode (anode) 2 and an oxidant electrode (cathode) 3 are provided on one surface side of the electrolyte membrane 1. The fuel electrode 2 is formed by laminating a fuel electrode side catalyst layer 4a and a fuel electrode side gas diffusion layer 5a in this order from the side close to the electrolyte membrane 1. Similarly, the oxidant electrode 3 is formed by laminating the oxidant electrode side catalyst layer 4b and the oxidant electrode side gas diffusion layer 5b in this order from the side close to the electrolyte membrane 1.
In this embodiment, each electrode (fuel electrode, oxidant electrode) has a structure in which a catalyst layer and a gas diffusion layer are laminated, but has a single-layer structure composed of only the catalyst layer. Alternatively, a structure in which a functional layer is provided in addition to the catalyst layer and the gas diffusion layer may be used.

この膜・電極接合体6は、二つのセパレータ7a、7bで狭持され、単セル100が構成される。各セパレータ7a、7bの片面には、反応ガス(燃料ガス、酸化剤ガス)の流路を形成する溝が設けられており、これらの溝と燃料極2、酸化剤極3の外面とで燃料ガス流路8a、酸化剤ガス流路8bが画成されている。燃料ガス流路8aは、燃料極2に燃料ガス(水素を含む又は水素を発生させる気体)を供給するための流路であり、酸化剤ガス流路8bは、酸化剤極3に酸化剤ガス(酸素を含む又は酸素を発生させる気体)を供給するための流路である。   The membrane / electrode assembly 6 is sandwiched between two separators 7 a and 7 b to form a single cell 100. On one side of each of the separators 7a and 7b, grooves for forming a flow path of the reaction gas (fuel gas and oxidant gas) are provided. The fuel is formed by these grooves and the outer surfaces of the fuel electrode 2 and the oxidant electrode 3. A gas flow path 8a and an oxidant gas flow path 8b are defined. The fuel gas channel 8 a is a channel for supplying a fuel gas (a gas containing hydrogen or generating hydrogen) to the fuel electrode 2, and the oxidant gas channel 8 b is an oxidant gas to the oxidant electrode 3. It is a flow path for supplying (a gas containing or generating oxygen).

本発明の第一の膜・電極接合体の製造方法は、膜・触媒層複合体とガス拡散層シートとの加熱圧着工程前に、予め、膜・触媒層複合体に上記熱処理サイクルを施すことで、該膜・触媒層複合体を構成する高分子電解質膜の残留歪みを解放し、膜・電極接合体形成後における高分子電解質膜の乾湿状態に伴う寸法変化を抑制可能とするものである。   The first method for producing a membrane / electrode assembly of the present invention is to subject the membrane / catalyst layer composite to the heat treatment cycle in advance before the thermocompression bonding step of the membrane / catalyst layer composite and the gas diffusion layer sheet. Thus, the residual strain of the polymer electrolyte membrane constituting the membrane / catalyst layer composite is released, and the dimensional change accompanying the dry / wet state of the polymer electrolyte membrane after the membrane / electrode assembly is formed can be suppressed. .

製膜時に残留歪みが生じた高分子電解質膜は、ガス拡散層シートとの加熱圧着時の加熱によって、その残留歪みが解放されるが、ガス拡散層シートとの加熱圧着によって外周部近傍(触媒層外周部)が膜厚方向に押圧された状態で拘束されるため、残留歪みは解放されきらず、歪みが残留した状態が保持されることとなる。その結果、ガス拡散層シートと接合され膜・電極接合体を形成した後、保管時及び移送時等の常温常湿環境や、燃料電池の作動環境等、高分子電解質膜がガス拡散層シートとの加熱圧着時と比較して高い湿潤状態になる環境下において、高分子電解質膜は膨潤する。それに伴い、該高分子電解質膜や、該高分子電解質膜の表面に形成された触媒層にシワや割れが発生したり、さらには、触媒層−ガス拡散層間の剥離、触媒層−電解質膜間の剥離が生じる場合がある。高分子電解質膜及び触媒層におけるシワや割れ、高分子電解質膜−触媒層間の剥離や触媒層−ガス拡散層間の剥離は、膜・電極接合体のプロトン伝導性、水移動性、電子伝導性を低下させる大きな要因の1つであり、燃料電池の耐久性をも低下させる。   The polymer electrolyte membrane that has undergone residual strain during film formation is released from the residual strain by heating during thermocompression bonding with the gas diffusion layer sheet. Since the outer periphery of the layer) is restrained while being pressed in the film thickness direction, the residual strain is not released and the state where the strain remains is maintained. As a result, after being joined to the gas diffusion layer sheet to form a membrane / electrode assembly, the polymer electrolyte membrane is separated from the gas diffusion layer sheet in a normal temperature and humidity environment such as storage and transfer, and a fuel cell operating environment. The polymer electrolyte membrane swells in an environment where the wet state is higher than that during the thermocompression bonding. Along with this, wrinkles and cracks occur in the polymer electrolyte membrane and the catalyst layer formed on the surface of the polymer electrolyte membrane, and further, peeling between the catalyst layer and the gas diffusion layer, and between the catalyst layer and the electrolyte membrane. Peeling may occur. Wrinkles and cracks in the polymer electrolyte membrane and catalyst layer, exfoliation between the polymer electrolyte membrane and the catalyst layer, and exfoliation between the catalyst layer and the gas diffusion layer can affect the proton conductivity, water mobility, and electron conductivity of the membrane / electrode assembly. This is one of the major factors that reduce the durability of the fuel cell.

本発明者は、上記問題を解決すべく、鋭意検討した結果、ガス拡散層シートと接合され、その外周部近傍が拘束される前に、高分子電解質膜の残留歪みを解放することによって、膜・電極接合体形成後における高分子電解質膜の寸法変化を抑制することが可能であること、高分子電解膜の残留歪みを解放する方法として、ガス拡散層シートとの加熱圧着における加熱温度以上に加熱する工程及び常温常湿環境下に晒す工程を少なくとも1回ずつ交互に行うことが有効であること、を見出した。
ガス拡散層シートとの加熱圧着における加熱温度以上に加熱されることで、高分子電解質膜は、製膜時の残留歪みによって伸びた高分子電解質の配向が通常の配向となり、残留歪みが解放され、収縮する。さらに、この加熱工程後に、常温常湿環境に晒されることで、高分子電解質膜は湿度変化により吸湿し、水による可塑化効果により残留歪みの解放が加速される。
As a result of intensive investigations to solve the above problems, the present inventor joined the gas diffusion layer sheet and released the residual strain of the polymer electrolyte membrane before the vicinity of the outer periphery thereof was restrained, whereby the membrane・ It is possible to suppress the dimensional change of the polymer electrolyte membrane after the electrode assembly is formed, and as a method of releasing the residual distortion of the polymer electrolyte membrane, the heating temperature is higher than the heating temperature in the thermocompression bonding with the gas diffusion layer sheet. It has been found that it is effective to alternately perform the heating step and the step of exposing to a normal temperature and humidity environment at least once.
By heating above the heating temperature in the thermocompression bonding with the gas diffusion layer sheet, the polymer electrolyte membrane becomes the normal orientation of the polymer electrolyte stretched by the residual strain during film formation, and the residual strain is released. Shrink. Furthermore, after this heating step, the polymer electrolyte membrane absorbs moisture due to changes in humidity by being exposed to a normal temperature and humidity environment, and the release of residual strain is accelerated by the plasticizing effect of water.

以上のように、本発明によれば、膜・電極接合体を構成する高分子電解質膜の乾湿状態に伴う寸法変化を抑制することが可能であるため、高分子電解質膜の寸法変化に起因する該高分子電解質膜及び触媒層のシワや割れ等の発生、さらには、触媒層−ガス拡散層間の剥離及び触媒層−高分子電解質膜間の剥離を防止することができる。従って、本発明によれば、プロトン伝導性、水移動性、電子伝導性等が高く、優れた発電性能を示すと共に、長期間にわたって安定した発電性能を維持する耐久性に優れた膜・電極接合体を提供することができる。   As described above, according to the present invention, it is possible to suppress the dimensional change accompanying the dry and wet state of the polymer electrolyte membrane that constitutes the membrane-electrode assembly, which is caused by the dimensional change of the polymer electrolyte membrane. Generation | occurrence | production of the wrinkles, a crack, etc. of this polymer electrolyte membrane and a catalyst layer, Furthermore, peeling between a catalyst layer-gas diffusion layer and peeling between a catalyst layer-polymer electrolyte membrane can be prevented. Therefore, according to the present invention, the membrane / electrode joint has high proton conductivity, water mobility, electron conductivity, etc., exhibits excellent power generation performance, and has excellent durability for maintaining stable power generation performance over a long period of time. The body can be provided.

以下、本発明の膜・電極接合体の製造方法について詳しく説明していく。
本発明の製造方法は、高分子電解質膜の表面に触媒層が設けられた膜・触媒層複合体と、ガス拡散層を構成するガス拡散層シートとを加熱圧着によって接合する工程を備え、該加熱圧着工程の前に、膜・触媒層複合体に対して熱処理サイクルを施すものである。
Hereinafter, the production method of the membrane / electrode assembly of the present invention will be described in detail.
The production method of the present invention comprises a step of joining a membrane / catalyst layer composite in which a catalyst layer is provided on the surface of a polymer electrolyte membrane and a gas diffusion layer sheet constituting the gas diffusion layer by thermocompression bonding, Before the thermocompression bonding step, the membrane / catalyst layer composite is subjected to a heat treatment cycle.

高分子電解質膜としては、固体高分子型燃料電池の電解質膜として利用可能なものであれば特に限定されず、例えば、ナフィオン(商品名、デュポン社製)等のパーフルオロカーボンスルホン酸樹脂に代表されるフッ素系高分子電解質を含むものや炭化水素系高分子電解質を含むもの等が挙げられる。
ここで、炭化水素系高分子電解質とは、典型的にはフッ素を全く含まないが、本発明による効果が充分に得られることから、部分的にフッ素置換されていてもよい。炭化水素系高分子電解質として、具体的には、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル等のエンジニアリングプラスチックにスルホン酸基、カルボン酸基、リン酸基、ボロン酸基等のプロトン伝導性基を導入したものが挙げられる。
The polymer electrolyte membrane is not particularly limited as long as it can be used as an electrolyte membrane of a solid polymer fuel cell. For example, it is represented by perfluorocarbon sulfonic acid resin such as Nafion (trade name, manufactured by DuPont). And those containing a fluorine-based polymer electrolyte and those containing a hydrocarbon-based polymer electrolyte.
Here, the hydrocarbon-based polymer electrolyte typically does not contain any fluorine, but may be partially substituted with fluorine since the effects of the present invention are sufficiently obtained. Specific examples of hydrocarbon polymer electrolytes include engineering ether plastics such as polyether ether ketone, polyether ketone, polyether sulfone, polyphenylene sulfide, and polyphenylene ether. And those having a proton conductive group such as a group introduced therein.

高分子電解質膜の表面に触媒層を形成する方法としては特に限定されず、例えば、触媒インクを用いる方法が挙げられる。触媒インクは、少なくとも電極触媒を溶媒中に溶解、分散させることで得られる。電極触媒としては、燃料電池において一般的に用いられているものを使用することができ、燃料極における水素の酸化反応、酸化剤極における酸素の還元反応に対して触媒活性を有していればよく、例えば、白金、又は、ルテニウム、鉄、ニッケル、マンガン等の金属と白金との合金等が挙げられる。触媒インク中に含有される電極触媒は、一種類のみであってもよいし、白金と白金合金の組み合わせ、種類の異なる白金合金の組み合わせのように2種以上を組み合わせてもよい。   The method for forming the catalyst layer on the surface of the polymer electrolyte membrane is not particularly limited, and examples thereof include a method using a catalyst ink. The catalyst ink is obtained by dissolving and dispersing at least the electrode catalyst in a solvent. As the electrode catalyst, those generally used in fuel cells can be used, and they have catalytic activity for hydrogen oxidation reaction at the fuel electrode and oxygen reduction reaction at the oxidant electrode. For example, platinum or an alloy of platinum and a metal such as ruthenium, iron, nickel, manganese, and the like can be given. The electrode catalyst contained in the catalyst ink may be only one type, or a combination of two or more types such as a combination of platinum and a platinum alloy or a combination of different types of platinum alloys.

電極触媒は、通常、予め導電性粒子に担持させた状態で触媒インク中に配合される。導電性粒子に担持させた状態で触媒インク中に含有させることで、電極触媒の分散性を確保することができるからである。また、電極触媒の電子伝達性が向上するという利点もある。
電極触媒を担持させる導電性粒子は、導電性を有するものであれば特に限定されず、カーボンブラック等の炭素粒子等が挙げられる。多くの電極触媒を担持できる表面積を有することから、炭素粒子が好ましく用いられ、中でもカーボンブラックが好ましい。カーボンブラックとしては、例えば、ケッチェンブラック、ファーネスブラック、アセチレンブラック等が挙げられる。導電性粒子は、球状であっても、或いは、繊維状のようなアスペクト比が比較的大きなものであってもよい。
The electrode catalyst is usually blended in the catalyst ink in a state where it is previously supported on conductive particles. This is because the dispersibility of the electrode catalyst can be ensured by including it in the catalyst ink in a state of being supported on conductive particles. There is also an advantage that the electron transfer property of the electrode catalyst is improved.
The electroconductive particle which carries an electrode catalyst will not be specifically limited if it has electroconductivity, Carbon particles, such as carbon black, etc. are mentioned. Since it has a surface area capable of supporting many electrode catalysts, carbon particles are preferably used, and carbon black is particularly preferable. Examples of carbon black include ketjen black, furnace black, and acetylene black. The conductive particles may be spherical or may have a relatively large aspect ratio such as a fibrous shape.

また、触媒インクには、触媒層へのプロトン伝導性付与や、電極触媒の固定等を目的として、高分子電解質を含有させることができる。高分子電解質としては、一般的に燃料電池の電解質膜を構成するものとして用いられているものを特に制限されることなく使用することができ、例えば、上記高分子電解質膜に含有される高分子電解質として例示したものが挙げられる。   The catalyst ink can contain a polymer electrolyte for the purpose of imparting proton conductivity to the catalyst layer, fixing the electrode catalyst, and the like. As a polymer electrolyte, what is generally used as what constitutes an electrolyte membrane of a fuel cell can be used without particular limitation. For example, a polymer contained in the polymer electrolyte membrane can be used. What was illustrated as an electrolyte is mentioned.

触媒インクの溶媒としては、電極触媒を分散させた触媒インク、特に、電極触媒と高分子電解質を分散させた触媒インクを調製することができるものであればよく、使用する電極触媒、高分子電解質等によって適宜選択すればよい。例えば、メタノール、エタノール、プロパノール、プロピレングリコール等のアルコール類や、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド等、或いは、これらの混合物や水との混合物を用いることができるが、これに限定されない。   Any catalyst ink may be used as long as it can prepare a catalyst ink in which an electrode catalyst is dispersed, in particular, a catalyst ink in which an electrode catalyst and a polymer electrolyte are dispersed. What is necessary is just to select suitably by etc. For example, alcohols such as methanol, ethanol, propanol, propylene glycol, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, or a mixture thereof A mixture with water can be used, but is not limited thereto.

このようにして得られた触媒インクを、高分子電解質膜の表面に塗布、乾燥するか、或いは、転写基材表面に塗布、乾燥し、得られる触媒層転写シートを用いて、高分子電解質膜表面に触媒層を転写することで、高分子電解質膜上に触媒層が設けられた膜・触媒層複合体を得ることができる。触媒インクの塗布方法は、特に限定されず、インクジェット法やスプレー法、ドクターブレード法、グラビア印刷法、ダイコート法等、一般的な方法を用いることができる。触媒インクの乾燥方法は特に限定されず、減圧乾燥、加熱乾燥、減圧乾燥と加熱乾燥の併用等が挙げられる。   The catalyst ink thus obtained is applied to the surface of the polymer electrolyte membrane and dried, or is applied to the surface of the transfer substrate and dried, and the resulting catalyst layer transfer sheet is used to obtain the polymer electrolyte membrane. By transferring the catalyst layer to the surface, a membrane / catalyst layer composite in which the catalyst layer is provided on the polymer electrolyte membrane can be obtained. The method for applying the catalyst ink is not particularly limited, and general methods such as an inkjet method, a spray method, a doctor blade method, a gravure printing method, and a die coating method can be used. The drying method of the catalyst ink is not particularly limited, and examples thereof include vacuum drying, heat drying, combined use of vacuum drying and heat drying.

膜・触媒層複合体は、まず、後続するガス拡散層シートとの加熱圧着工程(以下、ガス拡散層加熱圧着工程ということがある)の前に、熱処理サイクルが施される。熱処理サイクルは、ガス拡散層加熱圧着工程における加熱温度以上に加熱する加熱工程(以下、単に加熱工程ということがある)と、常温常湿環境下にさらす工程(以下、常温常湿工程ということがある)とを、少なくとも1回ずつ交互に行うものである。   The membrane / catalyst layer composite is first subjected to a heat treatment cycle prior to a subsequent heat-pressing step with the gas diffusion layer sheet (hereinafter also referred to as a gas diffusion layer thermo-pressing step). The heat treatment cycle includes a heating step (hereinafter simply referred to as a heating step) for heating to a temperature higher than the heating temperature in the gas diffusion layer thermocompression bonding step and a step for exposure to a normal temperature and normal humidity environment (hereinafter referred to as a normal temperature and normal humidity step). Are alternately performed at least once.

加熱工程において、加熱温度は、ガス拡散層加熱圧着工程における加熱温度以上であれば特に限定されないが、電解質膜を充分に乾燥させる観点から、通常、110℃以上、特に130℃以上であることが好ましく、また、電解質膜の熱分解を防止する観点から、通常、200℃以下、特に150℃以下であることが好ましい。
また、電解質膜を充分に乾燥させる必要があることから、加熱工程は1%RH以下の乾燥条件下、行うことが好ましい。
In the heating step, the heating temperature is not particularly limited as long as it is equal to or higher than the heating temperature in the gas diffusion layer thermocompression bonding step, but it is usually 110 ° C. or higher, particularly 130 ° C. or higher from the viewpoint of sufficiently drying the electrolyte membrane. In addition, from the viewpoint of preventing thermal decomposition of the electrolyte membrane, it is usually preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower.
Moreover, since it is necessary to dry an electrolyte membrane fully, it is preferable to perform a heating process on the dry conditions of 1% RH or less.

加熱工程は、膜・触媒層複合体を構成する高分子電解質膜全体が残留歪みを解放できるように、高分子電解質膜の中央部までが加熱温度に達するよう、加熱時間を設定することが好ましい。具体的な加熱時間は、高分子電解質膜を構成する成分の種類、触媒層を構成する成分の種類、高分子電解質膜及び触媒層の厚み等によって異なるが、通常、3分〜20分程度でよい。   In the heating step, the heating time is preferably set so that the polymer electrolyte membrane reaches the heating temperature so that the entire polymer electrolyte membrane constituting the membrane / catalyst layer composite can release residual strain. . The specific heating time varies depending on the type of components constituting the polymer electrolyte membrane, the type of components constituting the catalyst layer, the thickness of the polymer electrolyte membrane and the catalyst layer, etc., but is usually about 3 to 20 minutes. Good.

加熱工程後、膜・触媒層複合体は、常温常湿(23±5℃、50±10%RH)環境下に晒される(常温常湿工程)。常温常湿工程の時間は、常温常湿工程の目的、すなわち、電解質膜に充分吸湿させる観点から、通常、3分〜20分程度でよい。   After the heating step, the membrane / catalyst layer composite is exposed to a normal temperature and normal humidity (23 ± 5 ° C., 50 ± 10% RH) environment (normal temperature and normal humidity step). The time for the room temperature and humidity process is usually about 3 to 20 minutes from the purpose of the room temperature and humidity process, that is, from the viewpoint of sufficiently absorbing the electrolyte membrane.

熱処理サイクルは、加熱工程と常温常湿工程とを少なくとも1回ずつ交互に行えば、具体的なサイクル数(加熱工程1回と常温常湿工程1回を1サイクルとする)は特に限定されないが、高分子電解質膜の残留歪みを充分に解放するため、また、熱履歴による高分子電解質膜の劣化を抑制するためには、通常、1〜5回、特に、1〜3回とすることが好ましい。   The heat treatment cycle is not particularly limited as long as the heating step and the normal temperature and normal humidity step are alternately performed at least once, and the specific number of cycles (one heating step and one normal temperature and normal humidity step is one cycle) is not particularly limited. In order to sufficiently release the residual strain of the polymer electrolyte membrane and to suppress deterioration of the polymer electrolyte membrane due to thermal history, it is usually 1 to 5 times, particularly 1 to 3 times. preferable.

熱処理サイクルを施した膜・触媒層複合体は、ガス拡散層を構成するガス拡散層シートと加熱圧着により接合される(ガス拡散層加熱圧着工程)。   The membrane / catalyst layer composite subjected to the heat treatment cycle is joined to the gas diffusion layer sheet constituting the gas diffusion layer by thermocompression bonding (gas diffusion layer thermocompression bonding step).

ガス拡散層を構成するガス拡散層シートとしては、触媒層に効率良くガスを供給することができるガス拡散性、導電性、及びガス拡散層を構成する材料として要求される強度を有するもの、例えば、カーボンペーパー、カーボンクロス、カーボンフェルト等の炭素質多孔質体や、チタン、アルミニウム、銅、ニッケル、ニッケル−クロム合金、銅及びその合金、銀、アルミ合金、亜鉛合金、鉛合金、チタン、ニオブ、タンタル、鉄、ステンレス、金、白金等の金属から構成される金属メッシュ又は金属多孔質体等の導電性多孔質体から構成されるものが挙げられる。該導電性多孔質体の厚さは、50〜300μm程度であることが好ましい。   As the gas diffusion layer sheet constituting the gas diffusion layer, one having gas diffusibility, conductivity, and strength required as a material constituting the gas diffusion layer, which can efficiently supply gas to the catalyst layer, for example, Carbonaceous porous bodies such as carbon paper, carbon cloth, carbon felt, titanium, aluminum, copper, nickel, nickel-chromium alloy, copper and its alloys, silver, aluminum alloy, zinc alloy, lead alloy, titanium, niobium , Tantalum, iron, stainless steel, gold, platinum, and the like, and those made of a conductive porous material such as a metal mesh or a metal porous material. The thickness of the conductive porous body is preferably about 50 to 300 μm.

ガス拡散層シートとしては、上記したような導電性多孔質体の表面をポリテトラフルオロエチレンのようなフッ素系樹脂等の撥水性樹脂で被覆したものを用いることもできる。
さらに、ガス拡散層シートの触媒層側表面には、必要に応じて、撥水層を設けることもできる。撥水層は、通常、炭素粒子や炭素繊維等の導電性粉粒体、ポリテトラフルオロエチレン(PTFE)等の撥水性樹脂等を含む多孔質構造を有するものである。撥水層は、必ずしも必要なものではないが、触媒層及び電解質膜内の水分量を適度に保持しつつ、ガス拡散層の排水性を高めることができる上に、触媒層とガス拡散層間の電気的接触を改善することができるという利点がある。
As the gas diffusion layer sheet, a sheet in which the surface of the conductive porous body as described above is coated with a water-repellent resin such as a fluorine-based resin such as polytetrafluoroethylene can also be used.
Furthermore, a water-repellent layer can be provided on the catalyst layer side surface of the gas diffusion layer sheet, if necessary. The water-repellent layer usually has a porous structure containing conductive particles such as carbon particles and carbon fibers, water-repellent resin such as polytetrafluoroethylene (PTFE), and the like. The water-repellent layer is not always necessary, but it can improve the drainage of the gas diffusion layer while maintaining an appropriate amount of water in the catalyst layer and the electrolyte membrane. There is an advantage that electrical contact can be improved.

ガス拡散層シートの触媒層側表面に撥水層を形成する方法は特に限定されない。例えば、炭素粒子等の導電性粉粒体と撥水性樹脂、及び必要に応じてその他の成分を、エタノール、プロパノール、プロピレングリコール等の有機溶剤、水又はこれらの混合物等の溶剤と混合した撥水層インクを、ガス拡散層シートの触媒層に面する側に塗布し、その後、乾燥及び/又は焼成すればよい。撥水層の厚さは、通常、1〜50μm程度でよい。撥水層インクをガス拡散層シートに塗布する方法としては、例えば、スクリーン印刷法、スプレー法、ドクターブレード法、グラビア印刷法、ダイコート法等が挙げられる。   The method for forming the water repellent layer on the catalyst layer side surface of the gas diffusion layer sheet is not particularly limited. For example, water repellent obtained by mixing conductive particles such as carbon particles, water repellent resin, and other components as necessary with an organic solvent such as ethanol, propanol, propylene glycol, water or a mixture thereof. The layer ink may be applied to the side of the gas diffusion layer sheet facing the catalyst layer, and then dried and / or fired. The thickness of the water repellent layer may usually be about 1 to 50 μm. Examples of the method of applying the water repellent layer ink to the gas diffusion layer sheet include a screen printing method, a spray method, a doctor blade method, a gravure printing method, and a die coating method.

ガス拡散層加熱圧着工程において、加熱温度は、触媒層中に含有される高分子電解質のガラス転移温度に応じて、適宜設定すればよいが、通常、熱圧着性の観点から、100〜150℃、特に、130〜150℃とすることが好ましい。
また、ガス拡散層加熱圧着工程は、電解質膜を充分に乾燥させることが望ましいことから、湿度1%RH以下にて、行うことが好ましい。
ガス拡散層加熱圧着工程において、膜・触媒層複合体とガス拡散層シートとを重ね合わせた積層体に加える圧力は、加熱温度、触媒層とガス拡散層シートの熱圧着性等に応じて適宜設定すればよいが、通常、1〜5MPa、特に1〜3MPaが好ましい。
In the gas diffusion layer thermocompression bonding step, the heating temperature may be appropriately set according to the glass transition temperature of the polymer electrolyte contained in the catalyst layer, but is usually 100 to 150 ° C. from the viewpoint of thermocompression bonding. In particular, it is preferable to set it as 130-150 degreeC.
The gas diffusion layer thermocompression bonding step is preferably performed at a humidity of 1% RH or less because it is desirable to sufficiently dry the electrolyte membrane.
In the gas diffusion layer thermocompression bonding step, the pressure applied to the laminate obtained by stacking the membrane / catalyst layer composite and the gas diffusion layer sheet is appropriately determined according to the heating temperature, the thermocompression bonding property of the catalyst layer and the gas diffusion layer sheet, etc. It may be set, but usually 1 to 5 MPa, particularly 1 to 3 MPa is preferable.

尚、ここまでは、膜・触媒層複合体に対して熱処理サイクルを施す形態(第一の膜・電極接合体の製造方法)について説明してきたが、高分子電解質膜のみに対して熱処理サイクルを施し、該熱処理サイクルを施した高分子電解質膜表面に触媒層を形成して膜・触媒層複合体を作製し、ガス拡散層シートと加熱圧着してもよい(第2の膜・電極接合体の製造方法)。高分子電解質膜に対する熱処理サイクル、触媒層の形成方法、ガス拡散層シートとの加熱圧着については、上記同様とすることができる。   Up to this point, the mode of applying a heat treatment cycle to the membrane / catalyst layer composite (the manufacturing method of the first membrane / electrode assembly) has been described, but the heat treatment cycle is applied only to the polymer electrolyte membrane. Then, a catalyst layer may be formed on the surface of the polymer electrolyte membrane subjected to the heat treatment cycle to produce a membrane / catalyst layer composite, which may be thermocompression bonded to the gas diffusion layer sheet (second membrane / electrode assembly). Manufacturing method). The heat treatment cycle for the polymer electrolyte membrane, the method for forming the catalyst layer, and thermocompression bonding with the gas diffusion layer sheet can be the same as described above.

[膜・触媒層複合体における高分子電解質膜の寸法変化]
以下のようにして、膜・触媒層複合体A及びBにおける高分子電解質膜の面方向における面内の寸法変化を測定した。尚、膜・触媒層複合体をガス拡散層シートと加熱圧着した後は、電極周辺部が拘束されることにより、該膜・触媒層複合体の高分子電解質膜の面内寸法は外観上ほぼ一定となることから、本実験においては、膜・触媒層複合体を、ガス拡散層シートとの加熱圧着条件と同様の条件(温度、圧力、湿度)に晒すことで、ガス拡散層シートとの加熱圧着を模擬的に行った(図2において「GDLと熱圧着(130℃)」と表示)。
[Dimensional change of polymer electrolyte membrane in membrane / catalyst layer composite]
In-plane dimensional change in the surface direction of the polymer electrolyte membrane in the membrane / catalyst layer composites A and B was measured as follows. After the membrane / catalyst layer composite is thermocompression-bonded to the gas diffusion layer sheet, the in-plane dimensions of the polymer electrolyte membrane of the membrane / catalyst layer composite are almost the same in appearance because the electrode periphery is constrained Therefore, in this experiment, the membrane / catalyst layer composite was exposed to the same conditions (temperature, pressure, humidity) as the thermocompression bonding conditions with the gas diffusion layer sheet. Thermocompression bonding was simulated (indicated as “GDL and thermocompression bonding (130 ° C.)” in FIG. 2).

(参考実験1)
白金を担持したカーボンブラック(Pt/C触媒、Pt担持率:50wt%)5gと、高分子電解質(20wt%フッ素系高分子電解質溶液)25gと、エタノール、水を攪拌混合し、触媒インクを調製した。
高分子電解質膜(炭化水素系高分子電解質膜、膜厚20μm)の両面に上記触媒インクをスプレー塗布、乾燥し、膜・触媒層複合体Aを形成した。このとき、触媒層の単位面積当たりのPt量が0.4mg/cm2となるように触媒インクを塗布した。
得られた膜・触媒層複合体Aを常温常湿に10分間晒し、高分子電解質膜の面方向の寸法(図2では「初期状態(常温常湿)」と表示)を測定した。
次に膜・触媒層複合体Aを、150℃、1%RH雰囲気下に10分間晒し、高分子電解質膜の面方向の寸法(図2では「加熱工程(乾燥)」と表示)を測定した。
続いて、上記膜・触媒層複合体Aを、常温常湿に10分間晒し、高分子電解質膜の面方向の寸法(図2では、「常温常湿(1)」と表示)を測定した。
その後、上記膜・触媒層複合体Aを、1%RH雰囲気下、130℃に加熱及び3MPaの加圧を行い、高分子電解質膜の面方向の寸法(図2では「GDLと熱圧着(130℃)」と表示)を測定した。
続いて、上記膜・触媒層複合体Aを、常温常湿に10分間晒し、高分子電解質膜の面方向の寸法(図2では「常温常湿(2)」と表示)を測定した。
(Reference Experiment 1)
5 g of platinum-supported carbon black (Pt / C catalyst, Pt support ratio: 50 wt%), 25 g of a polymer electrolyte (20 wt% fluorine-based polymer electrolyte solution), ethanol and water are mixed with stirring to prepare a catalyst ink. did.
The catalyst ink was spray-coated on both sides of a polymer electrolyte membrane (hydrocarbon polymer electrolyte membrane, film thickness 20 μm) and dried to form a membrane / catalyst layer composite A. At this time, the catalyst ink was applied so that the amount of Pt per unit area of the catalyst layer was 0.4 mg / cm 2 .
The obtained membrane / catalyst layer composite A was exposed to normal temperature and humidity for 10 minutes, and the dimension in the surface direction of the polymer electrolyte membrane (shown as “initial state (normal temperature and normal humidity)” in FIG. 2) was measured.
Next, the membrane / catalyst layer composite A was exposed to an atmosphere of 150 ° C. and 1% RH for 10 minutes, and the dimension in the surface direction of the polymer electrolyte membrane (shown as “heating step (dry)” in FIG. 2) was measured. .
Subsequently, the membrane / catalyst layer composite A was exposed to normal temperature and humidity for 10 minutes, and the dimension in the surface direction of the polymer electrolyte membrane (shown as “normal temperature and normal humidity (1)” in FIG. 2) was measured.
Thereafter, the membrane / catalyst layer composite A is heated to 130 ° C. and pressurized to 3 MPa in a 1% RH atmosphere, and the dimensions in the surface direction of the polymer electrolyte membrane (in FIG. 2, “GDL and thermocompression bonding (130 ° C.) ”).
Subsequently, the membrane / catalyst layer composite A was exposed to normal temperature and humidity for 10 minutes, and the dimension in the surface direction of the polymer electrolyte membrane (shown as “normal temperature and normal humidity (2)” in FIG. 2) was measured.

上記にて測定した膜・触媒層複合体Aを構成する高分子電解質膜の面方向の寸法から、各状態における高分子電解質膜の面内寸法変化率を算出した。結果を図2に示す。
尚、ここで、高分子電解質膜の面方向の寸法とは、高分子電解質膜上に形成された触媒層の長辺の寸法である。また、面内寸法変化率は、初期状態(常温常湿)の面内寸法を100%とし、面内寸法変化率={(各状態における面内寸法−初期状態の面内寸法)/初期状態の面内寸法}×100%から算出した。
The in-plane dimensional change rate of the polymer electrolyte membrane in each state was calculated from the dimensions in the surface direction of the polymer electrolyte membrane constituting the membrane / catalyst layer composite A measured above. The results are shown in FIG.
Here, the dimension in the surface direction of the polymer electrolyte membrane is the dimension of the long side of the catalyst layer formed on the polymer electrolyte membrane. The in-plane dimensional change rate is the initial state (normal temperature and humidity) with the in-plane dimension being 100%, and the in-plane dimensional change rate = {(in-plane dimension in each state−in-plane dimension in initial state) / initial state. Of in-plane dimensions} × 100%.

(参考実験2)
上記膜・電極複合体Aと同様にして膜・触媒層複合体Bを作製し、常温常湿に10分間晒し、高分子電解質膜の面方向の寸法(図2では、「常温常湿(1)」と表示)を測定した。
次に、上記膜・触媒層複合体Bを、1%RH雰囲気下、130℃に加熱及び3MPaの加圧を行い、高分子電解質膜の面方向の寸法(図2では「GDLと熱圧着(130℃)」と表示)を測定した。
続いて、上記膜・触媒層複合体Bを、常温常湿に10分間晒し、高分子電解質膜の面方向の寸法(図2では「常温常湿(2)」と表示)を測定した。
(Reference Experiment 2)
A membrane / catalyst layer composite B was prepared in the same manner as the membrane / electrode composite A, and was exposed to normal temperature and humidity for 10 minutes, and the dimension in the surface direction of the polymer electrolyte membrane (in FIG. 2, “normal temperature and normal humidity (1 ) ”) Was measured.
Next, the membrane / catalyst layer composite B was heated to 130 ° C. and pressurized to 3 MPa in a 1% RH atmosphere, and the dimension in the surface direction of the polymer electrolyte membrane (“GDL and thermocompression bonding ( 130 ° C.) ”).
Subsequently, the membrane / catalyst layer composite B was exposed to normal temperature and humidity for 10 minutes, and the dimension in the surface direction of the polymer electrolyte membrane (shown as “normal temperature and normal humidity (2)” in FIG. 2) was measured.

上記にて測定した膜・触媒層複合体Bを構成する高分子電解質膜の面方向の寸法から、各状態における高分子電解質膜の面内寸法変化率を算出した。結果を図2に示す。
尚、面内寸法変化率は、常温常湿(2)の面内寸法を100%とし、面内寸法変化率={(各状態における面内寸法−常温常湿(2)の面内寸法)/常温常湿(2)の面内寸法}×100%から算出した。
The in-plane dimensional change rate of the polymer electrolyte membrane in each state was calculated from the dimensions in the surface direction of the polymer electrolyte membrane constituting the membrane / catalyst layer composite B measured above. The results are shown in FIG.
The in-plane dimensional change rate is 100% of the in-plane dimension of room temperature and normal humidity (2), and the in-plane dimensional change rate = {(in-plane dimension in each state−in-plane dimension of normal temperature and normal humidity (2)). / In-plane dimension of room temperature and normal humidity (2)} × 100%.

(結果)
図2より、予め、1%RHという乾燥条件下、ガス拡散層シート(GDL)との熱圧着における加熱温度(130℃)よりも高い温度(150℃)で加熱する加熱工程と、該加熱工程後、常温常湿環境下に晒す工程とからなる熱処理サイクルを施した、参考実験1の膜・触媒層複合体Aは、該熱処理サイクルを施さなかった参考実験2の膜・触媒層複合体Bと比較して、ガス拡散層シート(GDL)との熱圧着から常温常湿雰囲気(常温常湿(2))下に移行した際の寸法変化率(膨潤率)が小さかった(膜・触媒層複合体A:約1.5%、膜・触媒層複合体B:約2.5%)。
すなわち、上記熱処理サイクルを施すことにより、乾燥条件下、膜・触媒層複合体とガス拡散層シートとを熱圧着したのち、該膜・触媒層複合体を構成する高分子電解質膜が膨潤等寸法変化することにより、膜・触媒層複合体にシワや割れ等が発生するのを抑制することが確認された。
(result)
From FIG. 2, a heating step of heating at a temperature (150 ° C.) higher than a heating temperature (130 ° C.) in thermocompression bonding with the gas diffusion layer sheet (GDL) in advance under a drying condition of 1% RH, and the heating step Thereafter, the membrane / catalyst layer composite A of Reference Experiment 1 that was subjected to a heat treatment cycle comprising a step of exposing to a room temperature and humidity environment was the membrane / catalyst layer composite B of Reference Experiment 2 that was not subjected to the heat treatment cycle. Compared with the gas diffusion layer sheet (GDL), the dimensional change rate (swelling rate) when moving from thermocompression bonding to a room temperature and normal humidity atmosphere (normal temperature and normal humidity (2)) was small (membrane / catalyst layer) Composite A: about 1.5%, membrane / catalyst layer composite B: about 2.5%).
That is, by subjecting the membrane / catalyst layer composite and the gas diffusion layer sheet to thermocompression bonding under dry conditions by applying the above heat treatment cycle, the polymer electrolyte membrane constituting the membrane / catalyst layer composite is swollen to the same dimension. By changing, it was confirmed that the membrane / catalyst layer composite was restrained from wrinkling or cracking.

本発明により得られる膜・電極接合体を備える単セルの一形態例を示す図である。It is a figure which shows one example of a single cell provided with the membrane electrode assembly obtained by this invention. 参考実験1及び参考実験2における結果を示すグラフである。It is a graph which shows the result in the reference experiment 1 and the reference experiment 2. FIG.

符号の説明Explanation of symbols

1…電解質膜
2…燃料極
3…酸化剤極
4…触媒層(4a:燃料極側触媒層、4b:酸化剤極側触媒層)
5…ガス拡散層(5a:燃料極側ガス拡散層、5b:酸化剤極側ガス拡散層)
6…膜・電極接合体
7…セパレータ(7a:燃料極側セパレータ、7b:酸化剤極側セパレータ)
8…反応ガス流路(8a:燃料ガス流路、8b:酸化剤ガス流路)
100…単セル
DESCRIPTION OF SYMBOLS 1 ... Electrolyte membrane 2 ... Fuel electrode 3 ... Oxidant electrode 4 ... Catalyst layer (4a: Fuel electrode side catalyst layer, 4b: Oxidant electrode side catalyst layer)
5. Gas diffusion layer (5a: fuel electrode side gas diffusion layer, 5b: oxidant electrode side gas diffusion layer)
6 ... Membrane / electrode assembly 7 ... Separator (7a: fuel electrode side separator, 7b: oxidant electrode side separator)
8 ... reactive gas flow path (8a: fuel gas flow path, 8b: oxidant gas flow path)
100 ... Single cell

Claims (4)

高分子電解質膜の表面に触媒層が設けられた膜・触媒層複合体と、ガス拡散層を構成するガス拡散層シートとを、加熱圧着により接合する工程を備える膜・電極接合体の製造方法であって、
前記高分子電解質膜の表面に前記触媒層を設けた膜・触媒層複合体に対して、前記加熱圧着における加熱温度以上に加熱する加熱工程と、常温常湿(23±5℃、50±10%RH)環境下に晒す工程とを、1回ずつ交互に行う熱処理サイクルを少なくとも1回施し、
前記熱処理サイクルを施した前記膜・触媒層複合体の触媒層と、前記ガス拡散層シートとを、湿度1%RH以下の乾燥条件下、加熱圧着により接合する、膜・電極接合体の製造方法。
Process for producing membrane / electrode assembly comprising a step of joining a membrane / catalyst layer composite having a catalyst layer on the surface of a polymer electrolyte membrane and a gas diffusion layer sheet constituting the gas diffusion layer by thermocompression bonding Because
A heating step of heating the membrane / catalyst layer composite having the catalyst layer on the surface of the polymer electrolyte membrane to a temperature higher than the heating temperature in the thermocompression bonding, normal temperature and normal humidity (23 ± 5 ° C., 50 ± 10 % RH) at least one heat treatment cycle in which the step of exposing to the environment is alternately performed one by one,
A method for producing a membrane / electrode assembly, wherein the catalyst layer of the membrane / catalyst layer composite subjected to the heat treatment cycle and the gas diffusion layer sheet are joined by thermocompression bonding under a dry condition of humidity of 1% RH or less. .
高分子電解質膜の表面に触媒層が設けられた膜・触媒層複合体と、ガス拡散層を構成するガス拡散層シートとを、加熱圧着により接合する工程を備える膜・電極接合体の製造方法であって、
前記高分子電解質膜に対して、前記加熱圧着における加熱温度以上に加熱する加熱工程と、常温常湿(23±5℃、50±10%RH)環境下に晒す工程とを、1回ずつ交互に行う熱処理サイクルを少なくとも1回施し、
前記熱処理サイクルを施した前記高分子電解質膜の表面に触媒層を設けて膜・触媒層複合体を作製し、該膜・触媒層複合体の触媒層と、前記ガス拡散層シートとを、湿度1%RH以下の乾燥条件下、加熱圧着により接合する、膜・電極接合体の製造方法。
Process for producing membrane / electrode assembly comprising a step of joining a membrane / catalyst layer composite having a catalyst layer on the surface of a polymer electrolyte membrane and a gas diffusion layer sheet constituting the gas diffusion layer by thermocompression bonding Because
A heating step of heating the polymer electrolyte membrane to a temperature higher than the heating temperature in the thermocompression bonding and a step of exposing to a room temperature and normal humidity (23 ± 5 ° C., 50 ± 10% RH) environment are alternately performed once. At least one heat treatment cycle
A catalyst layer is provided on the surface of the polymer electrolyte membrane subjected to the heat treatment cycle to produce a membrane / catalyst layer composite, and the catalyst layer of the membrane / catalyst layer composite and the gas diffusion layer sheet are combined with humidity. A method for producing a membrane / electrode assembly, which is bonded by thermocompression bonding under a dry condition of 1% RH or less.
前記熱処理サイクルの加熱工程における加熱温度が130℃以上である、請求項1又は2に記載の膜・電極接合体の製造方法。   The method for producing a membrane-electrode assembly according to claim 1 or 2, wherein the heating temperature in the heating step of the heat treatment cycle is 130 ° C or higher. 前記熱処理サイクルの加熱工程における湿度が1%RH以下である、請求項1乃至3のいずれかに記載の膜・電極接合体の製造方法。   The method for producing a membrane-electrode assembly according to any one of claims 1 to 3, wherein the humidity in the heating step of the heat treatment cycle is 1% RH or less.
JP2008010442A 2008-01-21 2008-01-21 Manufacturing method of membrane / electrode assembly Expired - Fee Related JP5040000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010442A JP5040000B2 (en) 2008-01-21 2008-01-21 Manufacturing method of membrane / electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010442A JP5040000B2 (en) 2008-01-21 2008-01-21 Manufacturing method of membrane / electrode assembly

Publications (2)

Publication Number Publication Date
JP2009170387A true JP2009170387A (en) 2009-07-30
JP5040000B2 JP5040000B2 (en) 2012-10-03

Family

ID=40971313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010442A Expired - Fee Related JP5040000B2 (en) 2008-01-21 2008-01-21 Manufacturing method of membrane / electrode assembly

Country Status (1)

Country Link
JP (1) JP5040000B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193907A (en) * 2008-02-18 2009-08-27 Toyota Motor Corp Manufacturing method of membrane-electrode assembly for fuel cell, and membrane-electrode assembly for fuel cell obtained by the manufacturing method
JP2012113921A (en) * 2010-11-24 2012-06-14 Honda Motor Co Ltd Method for manufacturing electrolyte membrane-electrode assembly for fuel cell
JP2012164422A (en) * 2011-02-03 2012-08-30 Honda Motor Co Ltd Method and apparatus of manufacturing membrane electrode assembly for fuel cell
JP2012243430A (en) * 2011-05-17 2012-12-10 Toyota Motor Corp Fuel cell and method for manufacturing fuel cell

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119065A (en) * 2002-09-24 2004-04-15 Aisin Seiki Co Ltd Manufacturing method of membrane electrode jointed assembly of solid polymer fuel cell
JP2005108770A (en) * 2003-10-01 2005-04-21 Matsushita Electric Ind Co Ltd Manufacturing method of electrolyte membrane electrode joint body
JP2005209402A (en) * 2004-01-20 2005-08-04 Aisin Seiki Co Ltd Manufacturing method of membrane-electrode assembly of solid polymer fuel cell
JP2006032182A (en) * 2004-07-20 2006-02-02 Honda Motor Co Ltd Film/electrode structure for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2006032179A (en) * 2004-07-20 2006-02-02 Honda Motor Co Ltd Film/electrode structure for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2006032181A (en) * 2004-07-20 2006-02-02 Honda Motor Co Ltd Film/electrode structure for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2006066160A (en) * 2004-08-26 2006-03-09 Nissan Motor Co Ltd Fuel cell film/electrode junction and manufacturing method thereof
JP2006107804A (en) * 2004-10-01 2006-04-20 Nissan Motor Co Ltd Manufacturing method of membrane-electrode junction for polymer electrolyte fuel cell
JP2006286560A (en) * 2005-04-05 2006-10-19 Asahi Glass Co Ltd Membrane for solid polymer fuel cell and manufacturing method of electrode jointed conjugate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119065A (en) * 2002-09-24 2004-04-15 Aisin Seiki Co Ltd Manufacturing method of membrane electrode jointed assembly of solid polymer fuel cell
JP2005108770A (en) * 2003-10-01 2005-04-21 Matsushita Electric Ind Co Ltd Manufacturing method of electrolyte membrane electrode joint body
JP2005209402A (en) * 2004-01-20 2005-08-04 Aisin Seiki Co Ltd Manufacturing method of membrane-electrode assembly of solid polymer fuel cell
JP2006032182A (en) * 2004-07-20 2006-02-02 Honda Motor Co Ltd Film/electrode structure for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2006032179A (en) * 2004-07-20 2006-02-02 Honda Motor Co Ltd Film/electrode structure for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2006032181A (en) * 2004-07-20 2006-02-02 Honda Motor Co Ltd Film/electrode structure for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2006066160A (en) * 2004-08-26 2006-03-09 Nissan Motor Co Ltd Fuel cell film/electrode junction and manufacturing method thereof
JP2006107804A (en) * 2004-10-01 2006-04-20 Nissan Motor Co Ltd Manufacturing method of membrane-electrode junction for polymer electrolyte fuel cell
JP2006286560A (en) * 2005-04-05 2006-10-19 Asahi Glass Co Ltd Membrane for solid polymer fuel cell and manufacturing method of electrode jointed conjugate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193907A (en) * 2008-02-18 2009-08-27 Toyota Motor Corp Manufacturing method of membrane-electrode assembly for fuel cell, and membrane-electrode assembly for fuel cell obtained by the manufacturing method
JP2012113921A (en) * 2010-11-24 2012-06-14 Honda Motor Co Ltd Method for manufacturing electrolyte membrane-electrode assembly for fuel cell
JP2012164422A (en) * 2011-02-03 2012-08-30 Honda Motor Co Ltd Method and apparatus of manufacturing membrane electrode assembly for fuel cell
JP2012243430A (en) * 2011-05-17 2012-12-10 Toyota Motor Corp Fuel cell and method for manufacturing fuel cell

Also Published As

Publication number Publication date
JP5040000B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP2008004453A (en) Membrane electrode assembly for fuel cell
JP5024386B2 (en) Fuel cell single cell
JP5298365B2 (en) Fine pore layer paste, membrane electrode assembly and fuel cell
JP5040000B2 (en) Manufacturing method of membrane / electrode assembly
KR100832213B1 (en) Direct oxidation fuel cell and production method thereof
JP2009140652A (en) Membrane-electrode assembly manufacturing method
JP2004247294A (en) Power generation element for fuel cell, its manufacturing method, and fuel cell using power generation element
JP2009123356A (en) Method of manufacturing membrane-electrode assembly, and membrane-electrode assembly
JP2008269847A (en) Ink for fuel cell catalyst layer, its manufacturing method, and membrane electrode assembly for fuel cell
JP2010056004A (en) Method for manufacturing membrane-electrode assembly
JP5326458B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2010170895A (en) Method and device for manufacturing membrane electrode assembly
JP2008258060A (en) Manufacturing method of membrane-electrode assembly
JP2009176523A (en) Membrane-electrode assembly
JP2009080974A (en) Fuel cell
JP2001126737A (en) Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
JP2008166117A (en) Manufacturing method of membrane-electrode assembly for fuel cell
JP2005011590A (en) Membrane electrode junction, and manufacturing method of membrane electrode junction intermediate body using the same
JP5194869B2 (en) Manufacturing method of membrane / electrode assembly for fuel cell
JP2004071324A (en) Polymer electrolyte fuel cell and its manufacturing method
JP5439947B2 (en) Membrane electrode assembly, transfer substrate for production of membrane electrode assembly, coating transfer substrate for electrode catalyst layer for production of membrane electrode assembly, and polymer electrolyte fuel cell
JP2006128014A (en) Manufacturing method for fiber-reinforced solid polymer electrolyte
JP2010257669A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
JP2007103291A (en) Manufacturing method of membrane/electrode assembly for direct methanol fuel cell
JP2008112598A (en) Membrane-electrode assembly for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees