JP2009167019A - Method for producing compound semiconductor single crystal - Google Patents

Method for producing compound semiconductor single crystal Download PDF

Info

Publication number
JP2009167019A
JP2009167019A JP2008003366A JP2008003366A JP2009167019A JP 2009167019 A JP2009167019 A JP 2009167019A JP 2008003366 A JP2008003366 A JP 2008003366A JP 2008003366 A JP2008003366 A JP 2008003366A JP 2009167019 A JP2009167019 A JP 2009167019A
Authority
JP
Japan
Prior art keywords
crystal
crucible
single crystal
grown
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008003366A
Other languages
Japanese (ja)
Inventor
Koji Taiho
幸司 大宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008003366A priority Critical patent/JP2009167019A/en
Publication of JP2009167019A publication Critical patent/JP2009167019A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a compound semiconductor single crystal capable of suppressing cracks by relaxing a heat strain. <P>SOLUTION: In a method for producing a compound semiconductor single crystal wherein a crucible 4 and a heater 6 are arranged in a high pressure vessel 2 and a crystal 9 is grown under a seed crystal 8 by pulling the seed crystal 8 up while controlling the output of the heater 6 after bringing the seed crystal 8 into contact with a compound raw material melt 3 in the crucible 4, the crystal 9 is grown by setting the temperature gradient in the direction of growth of the grown crystal 9 at lower than -15°C/cm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱歪みを緩和してクラックを抑制することができる化合物半導体単結晶製造方法に関する。   The present invention relates to a method for producing a compound semiconductor single crystal that can reduce thermal strain and suppress cracks.

LEC(Liquid Encapsulated Czochralski)法でのGaAs(砒化ガリウム)単結晶の製造方法の一例を説明する。PBN(Pyrolitic Boron Nitride)製のルツボにGaAs多結晶25000g、液体封止材としてB23(三酸化硼素)2000gをルツボに入れ、このルツボを圧力容器に収納し、この圧力容器内の圧力が0.9MPaになるように、不活性ガスを充填する。ヒータによりルツボを加熱することで、B23、GaAs多結晶を融解させ、種結晶下端と融液の接触面の温度を調整することにより、種付けし、ヒータの出力を調整しながら種結晶下端と融液の接触面を固化させた後、種結晶が取り付けてある引き上げ軸を一定の速度で回転させながら上昇させる。このようにして、結晶成長を行う。 An example of a method for producing a GaAs (gallium arsenide) single crystal by the LEC (Liquid Encapsulated Czochralski) method will be described. A crucible made of PBN (Pyrolitic Boron Nitride) is charged with 25,000 g of GaAs polycrystal and 2000 g of B 2 O 3 (boron trioxide) as a liquid sealing material. Is filled with an inert gas so as to be 0.9 MPa. By heating the crucible with a heater, the B 2 O 3 and GaAs polycrystals are melted, and the seed crystal is seeded by adjusting the temperature of the contact surface between the lower end of the seed crystal and the melt, while adjusting the output of the heater. After solidifying the contact surface between the lower end and the melt, the lifting shaft to which the seed crystal is attached is raised while rotating at a constant speed. In this way, crystal growth is performed.

特開平2−180794号公報JP-A-2-180794

LEC法によるGaAs単結晶の製造上の問題として、急峻な温度勾配環境下でGaAs単結晶にクラックが生じることが挙げられ、これによって製品歩留まりが大きく低下する。   A problem in manufacturing a GaAs single crystal by the LEC method is that a crack is generated in the GaAs single crystal under a steep temperature gradient environment, which greatly reduces the product yield.

クラックは、結晶固化後における結晶の成長方向(長手方向)の急峻な温度勾配に伴う熱歪みにより発生する。   Cracks are generated by thermal strain accompanying a steep temperature gradient in the crystal growth direction (longitudinal direction) after crystal solidification.

そこで、本発明の目的は、上記課題を解決し、熱歪みを緩和してクラックを抑制することができる化合物半導体単結晶製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a compound semiconductor single crystal manufacturing method capable of solving the above-described problems and reducing thermal strain and suppressing cracks.

上記目的を達成するために本発明は、高圧容器内にルツボとヒータを配置し、ルツボ内の化合物原料融液に種結晶を接触させた後、上記ヒータの出力を調整しつつ種結晶を上昇させることにより、種結晶の下に結晶を成長させる化合物半導体単結晶製造方法において、成長された結晶の成長方向の温度勾配が−15℃/cmより緩やかとなるようにして結晶成長を行うものである。   In order to achieve the above object, according to the present invention, a crucible and a heater are disposed in a high-pressure vessel, and after bringing the seed crystal into contact with the compound raw material melt in the crucible, the seed crystal is raised while adjusting the output of the heater. In the compound semiconductor single crystal manufacturing method in which a crystal is grown under the seed crystal, the crystal growth is performed such that the temperature gradient in the growth direction of the grown crystal becomes gentler than −15 ° C./cm. is there.

成長された結晶が上記ルツボの外周壁を高さで超えないようにしてもよい。   The grown crystal may not exceed the outer peripheral wall of the crucible in height.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)熱歪みを緩和してクラックを抑制することができる。   (1) The thermal strain can be relaxed and cracks can be suppressed.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る化合物半導体単結晶製造方法を実施するLEC法GaAs単結晶製造装置1は、高圧容器2と、化合物原料であるGaAs及びその融液であるGaAs融液3を入れるPBNルツボ(以下、単にルツボ)4と、そのルツボ4を支持するルツボ軸5と、ルツボ4を外周側から加熱するために、ルツボ4の周囲に配置されたヒータ6と、化合物原料と共にルツボ4に投入される液体封止材であるB237と、ルツボ4の中央部に上方から臨み、結晶の元となる種結晶8を保持すると共に、回転しつつ上昇することにより、種結晶8から成長される化合物半導体単結晶であるGaAs単結晶9を引き上げる引上軸(シード軸)10とを備える。 As shown in FIG. 1, an LEC method GaAs single crystal manufacturing apparatus 1 for carrying out a compound semiconductor single crystal manufacturing method according to the present invention includes a high pressure vessel 2, GaAs as a compound raw material, and a GaAs melt as a melt thereof. 3, a PBN crucible (hereinafter simply referred to as a crucible) 4, a crucible shaft 5 that supports the crucible 4, a heater 6 disposed around the crucible 4 to heat the crucible 4 from the outer peripheral side, and a compound raw material Along with the B 2 O 3 7 which is a liquid sealing material put into the crucible 4 and the center part of the crucible 4 from above, the seed crystal 8 which is the base of the crystal is held, and it rises while rotating. And a pulling shaft (seed shaft) 10 for pulling up a GaAs single crystal 9 which is a compound semiconductor single crystal grown from the seed crystal 8.

このLEC法GaAs単結晶製造装置1において、ヒータ6の出力を制御しルツボ4を加熱することで、B23、GaAs多結晶を融解させると共に、種結晶8の先端と融液との接触面の温度を調整し、接触面を固化させ徐々にGaAs単結晶9の結晶径を太らせながら結晶肩部を形成する。所望の外径のGaAs単結晶9を形成するために必要な結晶肩部が形成されたら、種結晶8が取り付けてある引上軸10を一定の速度で回転させながら、上昇させる。このとき、ヒータ6の出力や引き上げ速度を制御することで、GaAs単結晶9の外径を一定に保つ外径制御を行う。 In this LEC GaAs single crystal manufacturing apparatus 1, the output of the heater 6 is controlled to heat the crucible 4, thereby melting the B 2 O 3 and GaAs polycrystals and bringing the tip of the seed crystal 8 into contact with the melt. The temperature of the surface is adjusted, the contact surface is solidified, and a crystal shoulder is formed while gradually increasing the crystal diameter of the GaAs single crystal 9. When the crystal shoulder necessary for forming the GaAs single crystal 9 having a desired outer diameter is formed, the pulling shaft 10 to which the seed crystal 8 is attached is raised while rotating at a constant speed. At this time, the outer diameter of the GaAs single crystal 9 is controlled to be constant by controlling the output of the heater 6 and the pulling speed.

本発明にあっては、成長された結晶9の成長方向の温度勾配が−15℃/cmより緩やかとなるようにして結晶成長を行う。その具体的方法は、成長された結晶9がルツボ4の外周壁を高さで超えないようにすることである。   In the present invention, the crystal growth is performed such that the temperature gradient in the growth direction of the grown crystal 9 becomes gentler than −15 ° C./cm. The specific method is to prevent the grown crystal 9 from exceeding the outer peripheral wall of the crucible 4 in height.

本発明における「ルツボ高さ」とは、図1に示す通り、種結晶8とGaAs融液3の液面との接触位置の高さからルツボ4の外周壁11の最上部の高さまでを指す。   The “crucible height” in the present invention refers to the height from the contact position between the seed crystal 8 and the liquid surface of the GaAs melt 3 to the height of the uppermost portion of the outer peripheral wall 11 of the crucible 4 as shown in FIG. .

図2に示されるように、成長された結晶9の成長方向の温度分布は、GaAs融液3の液面に接している下端が最も温度が高く、その下端からルツボ4の外周壁11と同じ高さまでは、位置が高くなるにしたがい緩やかに温度が下がり、ルツボ4の外周壁11の高さから上にある部分では位置が高くなると急峻に温度が下がる。   As shown in FIG. 2, the temperature distribution in the growth direction of the grown crystal 9 has the highest temperature at the lower end in contact with the liquid surface of the GaAs melt 3, and is the same as the outer peripheral wall 11 of the crucible 4 from the lower end. At the height, the temperature gradually decreases as the position increases, and at the portion above the height of the outer peripheral wall 11 of the crucible 4, the temperature rapidly decreases as the position increases.

図2には、位置(あるいは成長された結晶9の成長方向の長さ)を示す数値も温度を示す数値もないが、図中の「ルツボ高さ」を超えない位置、すなわちルツボ4の外周壁11より下では成長された結晶9の成長方向の温度勾配が−15℃/cmより緩やかであり、「ルツボの高さ」を超える位置、すなわちルツボ4の外周壁11より上では成長された結晶9の成長方向の温度勾配が−15℃/cmより急峻である。よって、成長された結晶9がルツボ4の外周壁11の高さを超えないようにすれば、成長された結晶9の成長方向の温度勾配が−15℃/cmより緩やかとなる。   In FIG. 2, there is neither a numerical value indicating the position (or the length in the growth direction of the grown crystal 9) nor a numerical value indicating the temperature, but a position not exceeding the “crucible height” in the drawing, that is, the outer periphery of the crucible 4. The temperature gradient in the growth direction of the grown crystal 9 is gentler than −15 ° C./cm below the wall 11, and is grown above the “crucible height”, that is, above the outer peripheral wall 11 of the crucible 4. The temperature gradient in the growth direction of the crystal 9 is steeper than −15 ° C./cm. Therefore, if the grown crystal 9 does not exceed the height of the outer peripheral wall 11 of the crucible 4, the temperature gradient in the growth direction of the grown crystal 9 becomes gentler than −15 ° C./cm.

本発明は、成長された結晶9の成長方向の温度勾配が−15℃/cmより緩やかとなるようにして結晶成長を行うことにより、熱歪みを緩和してクラックを抑制することができる。その理由は、以下の実施例により明らかにする。   In the present invention, the crystal growth is performed such that the temperature gradient in the growth direction of the grown crystal 9 becomes gentler than −15 ° C./cm, so that thermal strain can be reduced and cracks can be suppressed. The reason will be clarified by the following examples.

実施例1)PBN製のルツボ4にGaAs多結晶30000gとB232000gを入れ、このルツボ4を高圧容器2に収納し、高圧容器2内の圧力が0.9MPaになるように不活性ガスを充填し、ヒータ6により加熱することで、原料であるGaAs多結晶と、封止材B23を融解させる。本発明では、成長開始時の「ルツボ高さ」を所望の高さとするためにルツボ内に入れるGaAs多結晶の必要量をあらかじめ求めておくとよい。本実施例では成長開始時の「ルツボ高さ」を300mmとするために、上記の通りルツボ内にGaAs多結晶30000g入れることとした。そして、本実施例では上記した製造方法を用いて、結晶径φ130mm、結晶長300mmのGaAs単結晶9を製造した。 Example 1) 30000 g of GaAs polycrystal and 2000 g of B 2 O 3 are placed in a crucible 4 made of PBN, and the crucible 4 is stored in the high-pressure vessel 2 so that the pressure in the high-pressure vessel 2 is 0.9 MPa. By filling the gas and heating by the heater 6, the raw material GaAs polycrystal and the sealing material B 2 O 3 are melted. In the present invention, the required amount of GaAs polycrystals to be placed in the crucible is preferably obtained in advance so that the “crucible height” at the start of growth is a desired height. In this example, in order to set the “crucible height” at the start of growth to 300 mm, 30000 g of GaAs polycrystal was put in the crucible as described above. In this example, a GaAs single crystal 9 having a crystal diameter of 130 mm and a crystal length of 300 mm was manufactured using the manufacturing method described above.

上記実施例1の条件で20本のGaAs単結晶9を製造した結果、クラック発生率は0%であった。   As a result of producing 20 GaAs single crystals 9 under the conditions of Example 1, the crack generation rate was 0%.

実施例2〜4、比較例1〜7)上記実施例1とは、ルツボ高さの条件のみ変更し、他の条件は同じにして同様に20本のGaAs単結晶9を製造し、クラック発生率を調べた。その結果を表1にまとめた。また、製造中におけるGaAs単結晶9の成長方向の温度勾配を測定し、その最大温度勾配を表1に併記した。さらに、図3に、表1をグラフ化して示した。   Examples 2 to 4 and Comparative Examples 1 to 7) Only the crucible height condition was changed from the above Example 1, and the other conditions were the same, and 20 GaAs single crystals 9 were produced in the same manner, and cracks were generated. The rate was examined. The results are summarized in Table 1. Further, the temperature gradient in the growth direction of the GaAs single crystal 9 during the production was measured, and the maximum temperature gradient is also shown in Table 1. Further, FIG. 3 is a graph of Table 1.

なお、「ルツボ高さ」は、図2に示した通り、GaAs融液3の液面から外周壁11の最高部までの距離を言う。結晶長は、図2に示した通り、GaAs融液3の液面に接している下端から種結晶8に接している上端までを言う。   The “crucible height” refers to the distance from the liquid surface of the GaAs melt 3 to the highest portion of the outer peripheral wall 11 as shown in FIG. The crystal length is from the lower end in contact with the liquid surface of the GaAs melt 3 to the upper end in contact with the seed crystal 8 as shown in FIG.

Figure 2009167019
Figure 2009167019

表1、図3に示されるように、ルツボ高さが50〜30cmまでの実施例1〜4では、最大温度勾配が−15℃/cmより緩やかであり、クラックの発生は見られなかった。しかし、ルツボ高さが28cm以下となる比較例1〜7では、最大温度勾配が−15℃/cmより急峻で、クラック発生率が高く、ルツボ高さが低くなるほど、最大温度勾配がいっそう急峻になり、クラック発生率が高まる。   As shown in Table 1 and FIG. 3, in Examples 1 to 4 where the crucible height was 50 to 30 cm, the maximum temperature gradient was gentler than −15 ° C./cm, and no cracks were observed. However, in Comparative Examples 1 to 7 where the crucible height is 28 cm or less, the maximum temperature gradient is steeper than −15 ° C./cm, the crack generation rate is high, and the maximum temperature gradient becomes steeper as the crucible height decreases. This increases the crack generation rate.

このように、実施例1〜4のように、ルツボ高さが結晶長300mmよりも大きいとき、GaAs単結晶9の成長方向の温度勾配が−15℃/cmより緩やかとなるため、クラック発生率を0%にすることができる。比較例1〜7のように、ルツボ高さが結晶長300mmよりも小さいとき、GaAs単結晶9の成長方向の温度勾配が−15℃/cmより急峻となるため、クラック発生率が顕著に高くなる。   Thus, as in Examples 1 to 4, when the crucible height is larger than the crystal length of 300 mm, the temperature gradient in the growth direction of the GaAs single crystal 9 becomes gentler than −15 ° C./cm. Can be reduced to 0%. As in Comparative Examples 1 to 7, when the crucible height is smaller than the crystal length of 300 mm, the temperature gradient in the growth direction of the GaAs single crystal 9 becomes steeper than −15 ° C./cm. Become.

なお、上記の実施例では、結晶長を一定とし、これに応じてルツボ高さを本発明の条件に合うようにしたが、ルツボ高さを一定とし、これに応じて結晶長を本発明の条件に合うようにしてもよい。   In the above embodiment, the crystal length is made constant and the crucible height is adapted to the conditions of the present invention accordingly. However, the crucible height is made constant and the crystal length is made according to the present invention. You may make it meet conditions.

本発明の一実施形態を示すLEC法GaAs単結晶製造装置の構成図である。It is a block diagram of the LEC method GaAs single-crystal manufacturing apparatus which shows one Embodiment of this invention. 成長された結晶の成長方向の温度分布のイメージを示す図である。It is a figure which shows the image of the temperature distribution of the growth direction of the grown crystal. 晶長を一定とした場合のルツボ高さに対する最大温度勾配・クラック発生率特性図である。It is a maximum temperature gradient and crack generation rate characteristic diagram with respect to the crucible height when the crystal length is constant.

符号の説明Explanation of symbols

1 LEC法GaAs単結晶製造装置
2 高圧容器
3 GaAs融液
4 PBNルツボ(ルツボ)
5 ルツボ軸
6 ヒータ
7 液体封止材(B23
8 種結晶
9 GaAs単結晶
10 引上軸
11 外周壁
DESCRIPTION OF SYMBOLS 1 LEC method GaAs single crystal manufacturing apparatus 2 High pressure vessel 3 GaAs melt 4 PBN crucible (crucible)
5 Crucible shaft 6 Heater 7 Liquid sealing material (B 2 O 3 )
8 seed crystal 9 GaAs single crystal 10 pulling shaft 11 outer peripheral wall

Claims (2)

高圧容器内にルツボとヒータを配置し、ルツボ内の化合物原料融液に種結晶を接触させた後、上記ヒータの出力を調整しつつ種結晶を上昇させることにより、種結晶の下に結晶を成長させる化合物半導体単結晶製造方法において、成長された結晶の成長方向の温度勾配が−15℃/cmより緩やかとなるようにして結晶成長を行うことを特徴とする化合物半導体単結晶製造方法。   After placing the crucible and the heater in the high-pressure vessel and bringing the seed crystal into contact with the compound raw material melt in the crucible, the crystal is formed under the seed crystal by raising the seed crystal while adjusting the output of the heater. In the compound semiconductor single crystal manufacturing method to grow, the crystal growth is performed so that the temperature gradient in the growth direction of the grown crystal becomes gentler than −15 ° C./cm. 成長された結晶が上記ルツボの外周壁を高さで超えないようにすることを特徴とする請求項1記載の化合物半導体単結晶製造方法。   2. The method for producing a compound semiconductor single crystal according to claim 1, wherein the grown crystal does not exceed the outer peripheral wall of the crucible in height.
JP2008003366A 2008-01-10 2008-01-10 Method for producing compound semiconductor single crystal Pending JP2009167019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008003366A JP2009167019A (en) 2008-01-10 2008-01-10 Method for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008003366A JP2009167019A (en) 2008-01-10 2008-01-10 Method for producing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JP2009167019A true JP2009167019A (en) 2009-07-30

Family

ID=40968668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008003366A Pending JP2009167019A (en) 2008-01-10 2008-01-10 Method for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2009167019A (en)

Similar Documents

Publication Publication Date Title
JP5633732B2 (en) Sapphire single crystal manufacturing method and sapphire single crystal manufacturing apparatus
JP4844428B2 (en) Method for producing sapphire single crystal
JP4830312B2 (en) Compound semiconductor single crystal and manufacturing method thereof
JP2008031019A (en) Method of manufacturing sapphire single crystal
JP5953884B2 (en) Method for producing sapphire single crystal
JP2008247706A (en) Method for growing corundum single crystal, corundum single crystal and corundum single crystal wafer
JP4844429B2 (en) Method for producing sapphire single crystal
JP2016033102A (en) Sapphire single crystal and method for manufacturing the same
JP5370394B2 (en) Compound semiconductor single crystal substrate
JP7072146B2 (en) Single crystal growth method for iron gallium alloy
KR101530349B1 (en) The insulation structure for a sapphire single crystal growth
JP2009167019A (en) Method for producing compound semiconductor single crystal
JP2009242150A (en) Method for producing oxide single crystal
JP6390568B2 (en) Crucible for growing gallium oxide single crystal and method for producing gallium oxide single crystal
CN105401211B (en) Draw C axles sapphire single crystal growth furnace and method
JP2009057237A (en) Method for producing compound semiconductor single crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP2011251892A (en) InP SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JP7318884B2 (en) Single crystal growth method for iron-gallium alloy
KR101267981B1 (en) Apparatus of growing for single crystal
JP2010150136A (en) Apparatus for producing compound semiconductor single crystal and method for production thereof
JP7078933B2 (en) Seed crystal for growing single crystal of iron gallium alloy
JP2009023867A (en) Manufacturing method of semiconductor crystal and its manufacturing apparatus
JP6464975B2 (en) Oxygen single crystal growth crucible and oxide single crystal growth method
JP2004277267A (en) Apparatus for manufacturing compound semiconductor single crystal