JP2009166706A - Driving force transmission system for four-wheel drive vehicle - Google Patents

Driving force transmission system for four-wheel drive vehicle Download PDF

Info

Publication number
JP2009166706A
JP2009166706A JP2008007785A JP2008007785A JP2009166706A JP 2009166706 A JP2009166706 A JP 2009166706A JP 2008007785 A JP2008007785 A JP 2008007785A JP 2008007785 A JP2008007785 A JP 2008007785A JP 2009166706 A JP2009166706 A JP 2009166706A
Authority
JP
Japan
Prior art keywords
wheel drive
wheel
driving force
drive
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008007785A
Other languages
Japanese (ja)
Other versions
JP5112890B2 (en
Inventor
Tadahiko Kato
忠彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Univance Corp
Original Assignee
Univance Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univance Corp filed Critical Univance Corp
Priority to JP2008007785A priority Critical patent/JP5112890B2/en
Publication of JP2009166706A publication Critical patent/JP2009166706A/en
Application granted granted Critical
Publication of JP5112890B2 publication Critical patent/JP5112890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving force transmission system for a four-wheel drive vehicle which is automatically changed to the two-wheel driving system when the traveling condition does not need any four-wheel drive during the four-wheel drive traveling, and capable of preventing degradation of the fuel economy by stopping the rotation in a driven wheel driving force transmission section. <P>SOLUTION: The driving force transmission system comprises a driving force distribution device 40 for outputting the driving force to a driving wheel output shaft and controlling the distribution of the driving force to a driven wheel output shaft, a driven wheel differential device 48 for inputting the driving force from the driven wheel output shaft, a disconnect mechanism 50 for disconnecting the driven wheel differential device 48 from the driven wheel driving shaft, a vehicle speed computation unit 28 for calculating the vehicle speed, a slip ratio computation unit 26 for computing the slip ratio of wheels, and a drive control unit 36 for controlling the driving force distribution device 40 and a disconnect mechanism 50 based on the vehicle speed and the slip ratio. Under the predetermined traveling condition, the transmission of the driving force to the driven wheel output shaft is disconnected, and the driven wheel differential device 48 is disconnected from the driven wheel driving shaft by the disconnect mechanism 50, realizing the two-wheel drive. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、二輪駆動が可能であって、四輪駆動時には走行条件に応じた駆動力を従動輪へ伝達するフルタイム四輪駆動システムに関し、特に、走行条件が四輪駆動を必要としない場合には、自動的に二輪駆動に切り替えることで、四輪駆動時の燃費低下を防止する四輪駆動車用駆動力伝達システムに関する。
The present invention relates to a full-time four-wheel drive system capable of two-wheel drive and transmitting a driving force according to a traveling condition to a driven wheel at the time of four-wheel driving, particularly when the traveling condition does not require four-wheel driving. The present invention relates to a driving force transmission system for a four-wheel drive vehicle that prevents a reduction in fuel consumption during four-wheel drive by automatically switching to two-wheel drive.

従来、ドライバーによる車内切替スイッチ等の操作で四輪駆動と後輪による二輪駆動に切り替えることができる後輪駆動車をベースとする四輪駆動車において、前輪への駆動力の配分制御を中央差動装置(センターデフ)で行う四輪駆動車用駆動力伝達装置としては、例えば図10のものが知られている。   Conventionally, in a four-wheel drive vehicle based on a rear-wheel drive vehicle that can be switched between a four-wheel drive and a two-wheel drive by a rear wheel by an operation of an in-vehicle changeover switch or the like by a driver, control of the distribution of driving force to the front wheels As a driving force transmission device for a four-wheel drive vehicle performed by a moving device (center differential), for example, the one shown in FIG. 10 is known.

図10において、駆動力伝達装置300は四輪駆動車302に設けられ、エンジン304からの駆動力を変速機306で変速して駆動力伝達装置300内の駆動力配分装置308に入力する。   In FIG. 10, the driving force transmission device 300 is provided in the four-wheel drive vehicle 302, and the driving force from the engine 304 is shifted by the transmission 306 and input to the driving force distribution device 308 in the driving force transmission device 300.

二輪駆動走行時に中央差動装置310に備わる断続機構が切断されている場合は、駆動力はそのまま後輪プロペラシャフト314を介して後輪差動装318に伝達され、後輪差動装置318は左後輪320と右後輪322の回転速度差を吸収しつつ左後輪320及び右後輪322に等しいトルクを与え回転させる。   When the intermittent mechanism provided in the central differential device 310 is disconnected during two-wheel drive driving, the driving force is transmitted as it is to the rear wheel differential device 318 via the rear wheel propeller shaft 314, and the rear wheel differential device 318 is While absorbing the difference in rotational speed between the left rear wheel 320 and the right rear wheel 322, the left rear wheel 320 and the right rear wheel 322 are applied with the same torque and rotated.

四輪駆動走行時に中央差動装置310に備わる断続機構が接続されている場合は、駆動力は中央差動装置310に連結されたチェーンベルト機構312と前輪プロペラシャフト316を介して前輪差動装置324にも伝達され、前輪差動装置324は左前輪326と右前輪328の回転速度差を吸収しつつ左前輪326及び右前輪328に等しいトルクを与え回転させる。   When the intermittent mechanism provided in the central differential device 310 is connected during four-wheel drive traveling, the driving force is transmitted through the chain belt mechanism 312 and the front wheel propeller shaft 316 coupled to the central differential device 310. 324 is also transmitted, and the front wheel differential 324 applies the same torque to the left front wheel 326 and the right front wheel 328 to rotate while absorbing the difference in rotational speed between the left front wheel 326 and the right front wheel 328.

中央差動装置310は後輪320、322及び前輪326、328の回転速度差を吸収しつつ所定の前後トルク配分比率で適切にトルクを与え回転させる。   The central differential 310 absorbs a difference in rotational speed between the rear wheels 320 and 322 and the front wheels 326 and 328 and appropriately rotates with a predetermined torque distribution ratio.

図11は、図10の中央差動装置310の実施例をスケルトンで示す説明図である。図11において、中央差動装置310は変速機306からの駆動力を入力する入力軸332、入力軸332に連結した遊星歯車機構344を構成する遊星キャリア346、遊星キャリア346に回転自在に軸支した遊星ギア348、遊星ギア348に係合する外輪ギア350と太陽ギア352、外輪ギア350に連結して後輪プロペラシャフト314に駆動力を出力する後輪出力軸334を備える。   FIG. 11 is an explanatory diagram showing the embodiment of the central differential device 310 of FIG. 10 as a skeleton. In FIG. 11, the central differential device 310 includes an input shaft 332 for inputting a driving force from the transmission 306, a planetary carrier 346 constituting a planetary gear mechanism 344 connected to the input shaft 332, and a shaft support rotatably supported by the planetary carrier 346. A planetary gear 348, an outer ring gear 350 that engages with the planetary gear 348, a sun gear 352, and a rear wheel output shaft 334 that is connected to the outer ring gear 350 and outputs a driving force to the rear wheel propeller shaft 314.

また、前輪出力軸336に駆動力を出力するスプロケット340と、歯部362にスプロケット軸356を介して連結したスプロケット338及びチェーンベルト342で構成するチェーンベルト機構312、入力軸332に連結した歯部358、太陽ギア352に太陽ギア軸354を介して連結した歯部360を備える。   Further, a sprocket 340 that outputs a driving force to the front wheel output shaft 336, a sprocket 338 connected to the tooth portion 362 via the sprocket shaft 356, and a chain belt mechanism 312 constituted by a chain belt 342, and a tooth portion connected to the input shaft 332 358, a tooth portion 360 connected to the sun gear 352 via the sun gear shaft 354.

更に、歯部358、360、362にスプライン係合可能なスリーブ364、スリーブ364をスライドさせ歯部358、360、362とスリーブ364の結合を切り替えるシフト軸366を備え、外輪ギア350の外輪部368と太陽ギア軸354の間にはリミテッドスリップデフとして機能する流体継手370が備わる。   Further, a sleeve 364 that can be spline-engaged with the teeth 358, 360, and 362, and a shift shaft 366 that slides the sleeve 364 to switch the coupling between the teeth 358, 360, and 362 and the sleeve 364 are provided. And a sun gear shaft 354 is provided with a fluid coupling 370 that functions as a limited slip differential.

図11(A)は、四輪駆動の状態を示し、スリーブ364が歯部360、362に係合して、歯部360に連結する太陽ギア352と歯部362に連結するスプロケット338は固定された状態で回転する。すなわち、入力軸332から遊星キャリア346に入力した駆動力は、遊星ギア348、外輪ギア350を介して後輪出力軸334に出力すると共に、遊星ギア348、太陽ギア352、太陽ギア軸354、歯部360、スリーブ364、歯部362、スプロケット338、チェーンベルト342、スプロケット340を介して前輪出力軸336にも出力される。   FIG. 11A shows a four-wheel drive state, in which the sleeve 364 engages with the tooth portions 360 and 362, and the sun gear 352 connected to the tooth portion 360 and the sprocket 338 connected to the tooth portion 362 are fixed. Rotate in the state. That is, the driving force input from the input shaft 332 to the planet carrier 346 is output to the rear wheel output shaft 334 via the planetary gear 348 and the outer ring gear 350, and the planetary gear 348, the sun gear 352, the sun gear shaft 354, the teeth It is also output to the front wheel output shaft 336 via the portion 360, the sleeve 364, the tooth portion 362, the sprocket 338, the chain belt 342, and the sprocket 340.

図11(B)は、二輪駆動の状態を示し、スリーブ364が歯部358、360に係合し、遊星キャリア346と太陽ギア352は固定された状態で回転するため遊星ギア348は自転しない。遊星ギア348が自転しないため外輪ギア350は太陽ギア352と同じ速度で回転する。すなわち、入力軸332から遊星キャリア346に入力した駆動力は、遊星ギア346、外輪ギア348を介して後輪出力軸334にのみ出力される。   FIG. 11B shows a two-wheel drive state, in which the sleeve 364 engages with the tooth portions 358 and 360, and the planetary carrier 346 and the sun gear 352 rotate in a fixed state, so the planetary gear 348 does not rotate. Since the planetary gear 348 does not rotate, the outer ring gear 350 rotates at the same speed as the sun gear 352. That is, the driving force input from the input shaft 332 to the planet carrier 346 is output only to the rear wheel output shaft 334 via the planetary gear 346 and the outer ring gear 348.

また、図10に示すように、前輪差動装置324と前輪駆動軸372との連結を切断可能なディスコネクト機構374を設けたシステムもある。このようなシステムでは、ドライバーの操作で中央差動装置310を図11(A)から図11(B)の二輪駆動状態に切り替えた後にディスコネクト機構374を切断することで、前輪差動装置324及び前輪駆動力伝達区間330の構成要素の回転を止めることができる。   In addition, as shown in FIG. 10, there is also a system provided with a disconnect mechanism 374 capable of disconnecting the connection between the front wheel differential 324 and the front wheel drive shaft 372. In such a system, the front differential gear 324 is disconnected by disconnecting the disconnect mechanism 374 after switching the central differential gear 310 from FIG. 11A to FIG. 11B by the driver's operation. And the rotation of the components of the front wheel driving force transmission section 330 can be stopped.

図12は他の従来例であり、ドライバーによる車内切替スイッチ等の操作で四輪駆動と前輪による二輪駆動に切り替えることができる前輪駆動車をベースとする四輪駆動車において、後輪への駆動力の配分制御を多板クラッチ機構で行う四輪駆動車用駆動力伝達装置である。   FIG. 12 shows another conventional example. In a four-wheel drive vehicle based on a front-wheel drive vehicle that can be switched between a four-wheel drive and a two-wheel drive by a front wheel by an operation of an in-vehicle changeover switch or the like by a driver, This is a four-wheel drive vehicle driving force transmission device that performs force distribution control by a multi-plate clutch mechanism.

図12において、駆動力伝達装置400は四輪駆動車402に設けられ、エンジン404からの駆動力を変速機406で変速して前輪差動装置424及び前輪差動装置424のリングギア412を介し駆動力分岐装置408に入力する。前輪差動装置424は左前輪426と右前輪428の回転速度差を吸収しつつ左前輪426と右前輪428に等しいトルクを与え回転させる。   In FIG. 12, the driving force transmission device 400 is provided in the four-wheel drive vehicle 402, and the driving force from the engine 404 is shifted by a transmission 406 and is transmitted via the front wheel differential device 424 and the ring gear 412 of the front wheel differential device 424. Input to the driving force branching device 408. The front wheel differential device 424 rotates by applying equal torque to the left front wheel 426 and the right front wheel 428 while absorbing the difference in rotational speed between the left front wheel 426 and the right front wheel 428.

また、駆動力分岐装置408の出力はプロペラシャフト414を介して後輪差動装置418内の多板クラッチ機構410に伝達され、二輪駆動時に多板クラッチ機構410が開放されている場合は、駆動力は後輪差動装置418内の差動機構416に伝達されないが、四輪駆動走行時に多板クラッチ機構410が締結されている場合は、駆動力は差動機構416にも伝達され、差動機構416は左後輪420と右後輪422の回転速度差を吸収しつつ左後輪420及び右後輪422に等しいトルクを与え回転させる。   Further, the output of the driving force branching device 408 is transmitted to the multi-plate clutch mechanism 410 in the rear wheel differential device 418 via the propeller shaft 414. If the multi-plate clutch mechanism 410 is released during two-wheel drive, the drive The force is not transmitted to the differential mechanism 416 in the rear wheel differential device 418. However, when the multi-plate clutch mechanism 410 is engaged during four-wheel drive traveling, the driving force is also transmitted to the differential mechanism 416. The moving mechanism 416 applies the same torque to the left rear wheel 420 and the right rear wheel 422 to rotate while absorbing the difference in rotational speed between the left rear wheel 420 and the right rear wheel 422.

図13は、図12の多板クラッチ機構410の実施例をスケルトンで示す説明図である。図13において、多板クラッチ機構410は駆動力分岐装置408からプロペラシャフト414を介して駆動力を入力する入力軸432、差動機構416に駆動力を出力する出力軸434、入力軸432と出力軸434の間で伝達する駆動力の断続あるいは配分をするクラッチ板436、クラッチ板436を押圧するボールカム機構438、ボールカム機構438を作動させる電磁石装置442及びパイロットクラッチ機構440を備える。   FIG. 13 is an explanatory view showing an example of the multi-plate clutch mechanism 410 of FIG. 12 as a skeleton. In FIG. 13, a multi-plate clutch mechanism 410 has an input shaft 432 for inputting driving force from the driving force branching device 408 via the propeller shaft 414, an output shaft 434 for outputting driving force to the differential mechanism 416, an input shaft 432 and an output. A clutch plate 436 that interrupts or distributes the driving force transmitted between the shafts 434, a ball cam mechanism 438 that presses the clutch plate 436, an electromagnet device 442 that operates the ball cam mechanism 438, and a pilot clutch mechanism 440 are provided.

四輪駆動と二輪駆動の切り替え、及び後輪への駆動力配分は電磁石装置442により制御される。入力軸432に駆動力が入力している状態で電磁石装置442のコイル442aに通電すると、コア442bとアーマチュア442cに磁気回路が構成され、コア442bがアーマチュア442cを吸引し、アーマチュア442cの端部442dがパイロットクラッチ機構440のクラッチ板440aを押圧する。   Switching between four-wheel drive and two-wheel drive and distribution of driving force to the rear wheels are controlled by an electromagnet device 442. When the coil 442a of the electromagnet device 442 is energized while driving force is being input to the input shaft 432, a magnetic circuit is formed in the core 442b and the armature 442c, the core 442b attracts the armature 442c, and the end 442d of the armature 442c. Presses the clutch plate 440a of the pilot clutch mechanism 440.

パイロットクラッチ機構440が締結し、入力軸432の回転がボールカム機構438を作動させ、クラッチ板436を押圧する。多板クラッチ機構410は、開放状態と締結状態の間で駆動力配分を制御し、開放状態で出力軸434に駆動力は伝達されず二輪駆動となる。
特開平1−23330号公報
The pilot clutch mechanism 440 is engaged, and the rotation of the input shaft 432 activates the ball cam mechanism 438 and presses the clutch plate 436. The multi-plate clutch mechanism 410 controls the distribution of driving force between the opened state and the engaged state, and in the opened state, the driving force is not transmitted to the output shaft 434, and the two-wheel drive is performed.
JP-A-1-23330

しかしながら、図10に示すような従来の四輪駆動車用動力伝達装置にあっては、後輪による二輪駆動時にも路面との摩擦抵抗により左前輪326及び右前輪328が回転することで、前輪差動装置324、前輪プロペラシャフト316及びチェーンベルト機構312を含む前輪駆動力伝達区間330の各構成要素が回転してしまい、オイルの攪拌抵抗や軸受部の摩擦損失等により燃費低下を招いてしまう問題がある。   However, in the conventional power transmission device for a four-wheel drive vehicle as shown in FIG. 10, the left front wheel 326 and the right front wheel 328 are rotated by the frictional resistance with the road surface even when the rear wheel is driven by two wheels. Each component of the front wheel driving force transmission section 330 including the differential 324, the front wheel propeller shaft 316, and the chain belt mechanism 312 rotates, resulting in a reduction in fuel consumption due to oil agitation resistance, friction loss of the bearing portion, and the like. There's a problem.

また、二輪駆動時の前輪駆動力伝達区間330の各構成要素の回転を止めるためにディスコネクト機構374を設けたシステムでも、二輪駆動ポジションへの切り替えがドライバーの操作に委ねられているため、四輪駆動が必要でない走行状態であっても四輪駆動ポジションのままで走行している限り、前輪駆動力伝達区間330の各構成要素は回転しており、ディスコネクト機構374のないシステムと同様に、オイルの攪拌抵抗や軸受部の摩擦損失等により燃費低下を招いてしまう。   Further, even in a system in which the disconnect mechanism 374 is provided to stop the rotation of each component of the front wheel drive force transmission section 330 during two-wheel drive, switching to the two-wheel drive position is left to the driver's operation. As long as the vehicle is traveling in the four-wheel drive position even in a driving state that does not require wheel drive, each component of the front wheel drive force transmission section 330 is rotating and is similar to the system without the disconnect mechanism 374. Further, fuel consumption is reduced due to oil agitation resistance and friction loss of the bearing portion.

更に、二輪駆動で走行中に路面状態が急激に変化して駆動輪である後輪320、322のスリップが発生した際に、ドライバーが切替スイッチ等を操作して四輪駆動に切り替えようとしても、車体の挙動変化に対してスイッチ操作に時間が掛かり過ぎ、瞬時の危険回避が不可能である。   Furthermore, when the road surface condition changes suddenly during traveling with two-wheel drive and the rear wheels 320 and 322, which are drive wheels, slip, the driver may switch to four-wheel drive by operating the changeover switch or the like. The switch operation takes too much time to change the behavior of the vehicle body, and instant danger avoidance is impossible.

たとえ瞬時にスイッチ操作ができたとしても、図11(B)に示す二輪駆動状態から図11(A)に示す四輪駆動状態への切り替えは、後輪出力軸334に連動する歯部360と前輪出力軸336に連動する歯部362の回転速度が一致していなければスリーブ364との係合が円滑に行われない。後輪320、322にスリップが発生した状態では歯部360と歯部362は回転速度差があり、特に、大きなスリップが急激に発生した場合は四輪駆動への切り替えが困難になる。   Even if the switch operation can be performed instantaneously, the switching from the two-wheel drive state shown in FIG. 11B to the four-wheel drive state shown in FIG. If the rotational speeds of the tooth portions 362 interlocked with the front wheel output shaft 336 do not match, the engagement with the sleeve 364 is not smoothly performed. In a state where slip occurs in the rear wheels 320 and 322, there is a difference in rotational speed between the tooth portion 360 and the tooth portion 362. In particular, when a large slip suddenly occurs, switching to four-wheel drive becomes difficult.

また、図12に示すような従来の四輪駆動車用動力伝達装置にあっても、前輪による二輪駆動時にも路面との摩擦抵抗により左後輪420及び右後輪422が回転することで、後輪差動装置418内の差動機構416が回転してしまい、更に、多板クラッチ機構410を開放して左後輪420、右後輪422に駆動力を伝達しない場合でも、駆動力分岐装置408とプロペラシャフト414は常に回転してしまう。すなわち、前輪による二輪駆動時にも後輪駆動力伝達区間430の各構成要素が回転してしまい、オイルの攪拌抵抗や軸受部の摩擦損失等により燃費低下を招いてしまう問題がある。   Further, even in the conventional power transmission device for a four-wheel drive vehicle as shown in FIG. 12, the left rear wheel 420 and the right rear wheel 422 rotate due to frictional resistance with the road surface even when the two wheels are driven by the front wheels. Even when the differential mechanism 416 in the rear wheel differential device 418 rotates and the multi-plate clutch mechanism 410 is opened and the driving force is not transmitted to the left rear wheel 420 and the right rear wheel 422, the driving force is branched. The device 408 and the propeller shaft 414 will always rotate. In other words, each component of the rear wheel driving force transmission section 430 rotates even when the two wheels are driven by the front wheels, and there is a problem that fuel consumption is reduced due to oil agitation resistance, friction loss of the bearing portion, and the like.

本発明は、四輪駆動走行時に走行条件が四輪駆動を必要としない場合には、自動的に二輪駆動に切り替えると共に、従動輪駆動力伝達区間の回転を止めることで、燃費低下を伴わない四輪駆動車用動力伝達システムを提供することを目的とする。
The present invention automatically switches to two-wheel drive when the driving condition does not require four-wheel drive during four-wheel drive travel, and stops rotation of the driven wheel drive force transmission section, thereby preventing a reduction in fuel consumption. An object is to provide a power transmission system for a four-wheel drive vehicle.

この目的を達成するため本発明は次のように構成する。まず本発明は、二輪駆動が可能であって、通常は四輪駆動時には走行条件に応じた駆動力を従動輪に伝達するフルタイム四輪駆動システムに於いて、動力源からの駆動力を入力軸に入力し駆動輪出力軸に出力すると共に、従動輪出力軸への駆動力配分を制御する駆動力配分装置と、従動輪出力軸からの駆動力を入力し左右従動輪駆動軸に出力すると共に、左右従動輪駆動軸の回転速度差を吸収する従動輪差動装置と、従動輪差動装置と左右従動輪駆動軸の何れか一方又は両方との連結を切断可能なディスコネクト機構と、車体速度を算出する車体速度演算部と、駆動輪及び従動輪のスリップ率を算出するスリップ率演算部と、車体速度及びスリップ率に基づき駆動力配分装置及びディスコネクト機構を制御する駆動制御部とを備え、所定の走行条件の際に駆動力配分装置による従動輪出力軸への駆動力の伝達を絶つと共に、ディスコネクト機構により従動輪差動装置と左右従動輪駆動軸の何れか一方又は両方との連結を切断して従動輪出力軸から従動輪差動装置までの従動輪駆動区間の回転を止め、自動的に二輪駆動とすることを特徴とする。   In order to achieve this object, the present invention is configured as follows. First of all, the present invention is a full-time four-wheel drive system in which two-wheel drive is possible and the drive force according to the driving condition is normally transmitted to the driven wheel during four-wheel drive. A driving force distribution device that controls the distribution of driving force to the driven wheel output shaft and a driving force from the driven wheel output shaft are input and output to the left and right driven wheel driving shafts A driven wheel differential device that absorbs the rotational speed difference between the left and right driven wheel drive shafts, and a disconnect mechanism that can disconnect the driven wheel differential device and either one or both of the left and right driven wheel drive shafts; A vehicle body speed calculation unit for calculating the vehicle body speed, a slip ratio calculation unit for calculating the slip ratios of the driving wheel and the driven wheel, and a drive control unit for controlling the driving force distribution device and the disconnect mechanism based on the vehicle body speed and the slip ratio; With a predetermined run When the condition is met, transmission of the driving force to the driven wheel output shaft by the driving force distribution device is cut off, and the connection between the driven wheel differential device and the left and right driven wheel drive shaft is disconnected by the disconnect mechanism. Thus, the rotation of the driven wheel drive section from the driven wheel output shaft to the driven wheel differential device is stopped, and two-wheel drive is automatically performed.

また、四輪駆動車用駆動力伝達システムは、駆動輪のスリップ率と車体速度の相関で示される駆動方式切替閾値により四輪駆動領域と二輪駆動領域を区切る駆動方式切替条件マップを備え、所定の走行条件として、駆動方式切替条件マップを参照する。   The driving force transmission system for a four-wheel drive vehicle is provided with a drive method switching condition map that divides the four-wheel drive region and the two-wheel drive region by a drive method switching threshold indicated by the correlation between the slip ratio of the drive wheel and the vehicle body speed, The driving method switching condition map is referred to as the driving condition.

ここで、動方式切替条件マップは、四輪駆動時に参照する二輪駆動切替閾値からなる二輪駆動切替条件マップと、二輪駆動時に参照する四輪駆動切替閾値からなる四輪駆動切替条件マップとを備える。   Here, the dynamic system switching condition map includes a two-wheel drive switching condition map composed of a two-wheel drive switching threshold referred to during four-wheel drive and a four-wheel drive switching condition map composed of a four-wheel drive switching threshold referred to during two-wheel drive. .

更に、四輪駆動車用駆動力伝達システムは、アクセル開度を検出するアクセル開度センサを備え、駆動方式切替条件マップをアクセル開度の範囲に応じて複数備えるか、あるいは、車体走行方向の加速度を検出する加速度センサを備え、駆動方式切替条件マップを車体走行方向加速度に応じて複数備える。   Further, the driving force transmission system for a four-wheel drive vehicle includes an accelerator opening sensor that detects an accelerator opening, and includes a plurality of drive system switching condition maps according to the range of the accelerator opening, or An acceleration sensor for detecting acceleration is provided, and a plurality of drive method switching condition maps are provided according to the vehicle body traveling direction acceleration.

あるいは、四輪駆動車用駆動力伝達システムは、所定の走行条件として、前記駆動輪のスリップ率が所定の二輪駆動切替値以下の場合に自動的に二輪駆動とするが、車体速度が所定値以下の場合は自動的に四輪駆動とする。また、二輪駆動時に、前記駆動輪のスリップ率が所定の四輪駆動切替値を超えた場合は自動的に四輪駆動とし、更に、二輪駆動切替値又は四輪駆動切替値をアクセル開度あるいは車体加速度に応じて可変とする。
Alternatively, the driving force transmission system for a four-wheel drive vehicle automatically performs two-wheel drive when the slip ratio of the drive wheel is equal to or less than a predetermined two-wheel drive switching value as a predetermined traveling condition. Four-wheel drive is automatically used in the following cases. In addition, when the slip ratio of the driving wheel exceeds a predetermined four-wheel drive switching value during two-wheel driving, the four-wheel driving is automatically set, and the two-wheel driving switching value or the four-wheel driving switching value is set to the accelerator opening or Variable according to vehicle acceleration.

本発明によれば、四輪駆動走行時に駆動制御装置が四輪駆動を必要としない走行条件と判断した場合には、駆動力配分装置により二輪駆動に切り替えると共に、ディスコネクト機構により従動輪差動装置と左右従動輪駆動軸の何れか一方との連結を切断して従動輪駆動力伝達区間の回転を抑制することで燃費向上を図れる。   According to the present invention, when the driving control device determines that the driving condition does not require four-wheel driving during four-wheel drive driving, the driving force distribution device switches to two-wheel driving and the disconnection mechanism drives the driven wheel differential. It is possible to improve fuel efficiency by cutting the connection between the device and either one of the left and right driven wheel drive shafts and suppressing the rotation of the driven wheel driving force transmission section.

また、二輪駆動走行時に駆動輪のスリップが発生した場合には、瞬時に四輪駆動に切り替えることで危険を回避できる。
Further, when slipping of the drive wheels occurs during two-wheel drive travel, danger can be avoided by switching to four-wheel drive instantaneously.

図1は、本発明による四輪駆動車用駆動力伝達システムの実施形態の機能構成を示したブロック図である。図1において、本実施形態の四輪駆動車用駆動力伝達システム10は、車体情報検出装置12、駆動制御装置24及び駆動力伝達装置38で構成される。   FIG. 1 is a block diagram showing a functional configuration of an embodiment of a driving force transmission system for a four-wheel drive vehicle according to the present invention. In FIG. 1, the driving force transmission system 10 for a four-wheel drive vehicle according to this embodiment includes a vehicle body information detection device 12, a drive control device 24, and a driving force transmission device 38.

車体情報検出装置12は、車輪回転速度検出部14、車体加速度検出部16、変速比検出部18、操舵角センサ20、アクセル開度センサ22を備え、車体の各種状態を検出し駆動制御装置24に出力する。   The vehicle body information detection device 12 includes a wheel rotation speed detection unit 14, a vehicle body acceleration detection unit 16, a transmission ratio detection unit 18, a steering angle sensor 20, and an accelerator opening sensor 22, and detects various states of the vehicle body to drive control device 24. Output to.

車輪回転速度検出部14は前後左右の四輪各々に備わる回転速度センサが検知する各車輪の回転速度を検出し、その車輪回転速度と各種センサー情報により実際の車両速度を演算する。車体加速度検出部16は1又は複数の加速度センサを備え車体に働く加速度を検出し、変速比検出部18は変速機の変速機構あるいは変速制御信号から変速比を検出する。また、操舵角センサ20は操舵装置から転舵輪である前輪の舵角を検出し、アクセル開度センサ22はエンジンのスロットル機構あるいはスロットル制御系からアクセル開度を検出する。   The wheel rotation speed detection unit 14 detects the rotation speed of each wheel detected by a rotation speed sensor provided on each of the front, rear, left and right four wheels, and calculates the actual vehicle speed based on the wheel rotation speed and various sensor information. The vehicle body acceleration detection unit 16 includes one or a plurality of acceleration sensors to detect acceleration acting on the vehicle body, and the gear ratio detection unit 18 detects a gear ratio from a transmission mechanism or a transmission control signal of the transmission. The steering angle sensor 20 detects the steering angle of the front wheels that are steered wheels from the steering device, and the accelerator opening sensor 22 detects the accelerator opening from the throttle mechanism or throttle control system of the engine.

駆動制御装置24は、スリップ率演算部26、車体速度演算部28、切替条件データベース30、切替条件選択部34及び駆動制御部36を備え、スリップ率と車体速度及び四輪駆動か二輪駆動かの駆動方式の切替条件に基づき駆動力伝達装置38を制御する。   The drive control device 24 includes a slip ratio calculation unit 26, a vehicle body speed calculation unit 28, a switching condition database 30, a switching condition selection unit 34, and a drive control unit 36. The driving force transmission device 38 is controlled based on the driving system switching condition.

車体速度演算部28は、車体情報検出装置12から入力する車輪回転速度、車体加速度、変速比、操舵角、アクセル開度の各情報に基づき走行時の実車速である車体速度を算出し、スリップ率演算部26に出力する。   The vehicle body speed calculation unit 28 calculates the vehicle body speed, which is the actual vehicle speed during travel, based on the wheel rotation speed, the vehicle body acceleration, the gear ratio, the steering angle, and the accelerator opening information input from the vehicle body information detection device 12. It outputs to the rate calculating part 26.

車体速度は、二輪駆動時において駆動力が伝達されない従動輪はスリップを発生しないことから、従動輪に備わる回転速度センサが検知する回転速度に基づき容易に算出できる。しかし、四輪駆動時には駆動輪だけではなく従動輪もスリップを発生するために、車体速度の算出は二輪駆動時に比べて困難であり、そのため多くの車体速度算出方法が提案されている。   The vehicle body speed can be easily calculated based on the rotational speed detected by the rotational speed sensor provided on the driven wheel because the driven wheel to which the driving force is not transmitted during two-wheel drive does not generate slip. However, since not only the driving wheels but also the driven wheels slip during four-wheel drive, it is difficult to calculate the vehicle body speed compared to two-wheel drive, and many vehicle body speed calculation methods have been proposed.

本実施形態においては、車輪回転速度、車体加速度、変速比、操舵角、アクセル開度の各情報を用いるとしているが、その具体的手順は限定せず如何なる既知の方法でもかまわない。また、車輪回転速度、車体加速度、変速比、操舵角、アクセル開度の情報を全て用いる必要はなく、更に、記載していない他のセンサによる情報を加えてもかまわない。   In the present embodiment, information on wheel rotation speed, vehicle body acceleration, gear ratio, steering angle, and accelerator opening is used, but the specific procedure is not limited and any known method may be used. Further, it is not necessary to use all the information on the wheel rotation speed, the vehicle body acceleration, the gear ratio, the steering angle, and the accelerator opening, and information by other sensors that are not described may be added.

スリップ率演算部26は、車体速度演算部28から入力する車体速度情報と車輪回転速度検出部14から入力する車輪回転速度情報に基づき、車体速度と車輪速度の比である各車輪のスリップ率を算出する。   The slip ratio calculation unit 26 calculates the slip ratio of each wheel, which is the ratio of the vehicle body speed and the wheel speed, based on the vehicle body speed information input from the vehicle body speed calculation unit 28 and the wheel rotation speed information input from the wheel rotation speed detection unit 14. calculate.

ここで、本願においては、車輪速度とは車輪回転速度と車輪径から導かれる車輪がスリップしていないと仮定した場合の車体の速度であり、車体速度とは各情報に基づき実車速を推定した速度でとする。また、駆動輪とは二輪駆動時に駆動力を伝達する車輪であり、従動輪とは二輪駆動時には駆動力を伝達しないが四輪駆動時には駆動力を伝達する車輪とする。すなわち、二輪駆動時に後輪を駆動するシステムの場合は、前輪が従動輪、後輪が駆動輪となり、二輪駆動時に前輪を駆動するシステムの場合は、前輪が駆動輪、後輪が従動輪となる。   Here, in the present application, the wheel speed is the speed of the vehicle body when it is assumed that the wheel derived from the wheel rotation speed and the wheel diameter is not slipped, and the vehicle body speed is an estimated actual vehicle speed based on each information. With speed. The driving wheel is a wheel that transmits a driving force during two-wheel driving, and the driven wheel is a wheel that does not transmit a driving force during two-wheel driving but transmits a driving force during four-wheel driving. That is, in the case of a system that drives the rear wheels during two-wheel drive, the front wheel is the driven wheel and the rear wheel is the drive wheel, and in the system that drives the front wheels during two-wheel drive, the front wheel is the drive wheel and the rear wheel is the driven wheel. Become.

切替条件データベース30は、駆動方式の切替条件データである領域マップ32を、アクセル開度に対応して複数備え、領域マップ32は、駆動輪のスリップ率と車体速度の相関で表される駆動方式切替閾値により四輪駆動領域と二輪駆動領域に区切られる。   The switching condition database 30 includes a plurality of area maps 32 corresponding to switching conditions data of the driving system corresponding to the accelerator opening, and the area map 32 is a driving system represented by the correlation between the slip ratio of the driving wheel and the vehicle body speed. The vehicle is divided into a four-wheel drive region and a two-wheel drive region by the switching threshold.

切替条件選択部34は、アクセル開度センサ22から入力するアクセル開度情報に基づき、参照する領域マップ32を切替条件データベース30の中から選択し、駆動方式の切替条件データとして駆動制御部36に出力する。   The switching condition selection unit 34 selects an area map 32 to be referred to from the switching condition database 30 based on the accelerator opening information input from the accelerator opening sensor 22, and sends it to the drive control unit 36 as drive system switching condition data. Output.

駆動制御部36は、スリップ率演算部26から入力する駆動輪及び従動輪のスリップ率、車体速度演算部38から入力する車体速度情報、切替条件選択部34から入力する切替条件データ及び駆動力伝達装置38からのフィードバック情報に基づき、四輪駆動か二輪駆動かの駆動方式の選択と制御、四輪駆動時の従動輪への駆動力の配分制御を駆動力伝達装置38に対して行う。   The drive control unit 36 receives the slip ratios of the driving wheels and the driven wheels input from the slip ratio calculation unit 26, vehicle body speed information input from the vehicle body speed calculation unit 38, switching condition data and driving force transmission input from the switching condition selection unit 34. Based on feedback information from the device 38, selection and control of a driving method of four-wheel driving or two-wheel driving and distribution control of driving force to the driven wheel during four-wheel driving are performed on the driving force transmission device 38.

駆動力伝達装置38は、駆動力配分装置40、従動輪トルク検出部44、駆動輪差動装置46、従動輪差動装置48を備え、従動輪差動装置48はディスコネクト機構50及び状態検出部52を有する。   The driving force transmission device 38 includes a driving force distribution device 40, a driven wheel torque detection unit 44, a driving wheel differential device 46, and a driven wheel differential device 48. The driven wheel differential device 48 includes a disconnect mechanism 50 and a state detection. Part 52.

駆動力配分装置40は、駆動制御部36から入力する制御信号に基づき、多板クラッチ機構42を作動して従動輪への駆動力を配分し、従動輪トルク検出部44は従動輪トルクを検出しフィードバック情報として駆動制御部36に出力する。   The driving force distribution device 40 operates the multi-plate clutch mechanism 42 based on the control signal input from the drive control unit 36 to distribute the driving force to the driven wheel, and the driven wheel torque detection unit 44 detects the driven wheel torque. And output to the drive control unit 36 as feedback information.

ディスコネクト機構50は、駆動制御部36から入力する制御信号に基づき従動輪差動装置と左右従動輪駆動軸の何れか一方との連結を切断及び接続し、状態検出部52はディスコネクト機構50の断続状態を検出しフィードバック情報として駆動制御部36に出力する。   The disconnect mechanism 50 disconnects and connects the driven wheel differential device and either one of the left and right driven wheel drive shafts based on a control signal input from the drive control unit 36, and the state detection unit 52 includes the disconnect mechanism 50. The intermittent state is detected and output to the drive control unit 36 as feedback information.

図2は、図1に示す四輪駆動車用駆動力伝達システムにおける領域マップ32を示す説明図である。図2(A)は、アクセル開度が小さい場合に切替状態選択部34が切替条件データベース30から選択する領域マップ32の一例として領域マップ32aを示しており、領域マップ32aは、縦軸を駆動輪のスリップ率γ、横軸を実車速である車体速度Vとして表され、スリップ率γと車体速度Vとの相関で示される駆動方式切替閾値Daにより左上方の四輪駆動領域RFaと右下方の二輪駆動領域RTaに区切られている。   FIG. 2 is an explanatory diagram showing a region map 32 in the driving force transmission system for a four-wheel drive vehicle shown in FIG. FIG. 2A shows a region map 32a as an example of a region map 32 that the switching state selection unit 34 selects from the switching condition database 30 when the accelerator opening is small, and the region map 32a drives the vertical axis. The wheel slip ratio γ, the horizontal axis is represented as the vehicle speed V, which is the actual vehicle speed, and the four-wheel drive region RFa in the upper left and the lower right are driven by the driving method switching threshold Da indicated by the correlation between the slip ratio γ and the vehicle speed V. Are divided into two-wheel drive regions RTa.

図2(B)は、領域マップ32aよりもアクセル開度の大きな場合に選択する領域マップ32の一例として領域マップ32bを示しており、領域マップ32bは、縦軸を駆動輪のスリップ率γ、横軸を実車速である車体速度Vとして表され、スリップ率γと車体速度Vとの相関で示される駆動方式切替閾値Dbにより左上方の四輪駆動領域RFbと右下方の二輪駆動領域RTbに区切られている。   FIG. 2B shows a region map 32b as an example of a region map 32 that is selected when the accelerator opening is larger than the region map 32a. The region map 32b has a vertical axis indicating the slip ratio γ of the drive wheels, The horizontal axis is represented as the vehicle speed V which is the actual vehicle speed, and the upper left four-wheel drive region RFb and the lower right two-wheel drive region RTb are represented by the drive system switching threshold Db indicated by the correlation between the slip ratio γ and the vehicle speed V. It is delimited.

駆動方式切替閾値Da、Dbは、車体速度Vが増加するに従いスリップ率γが上昇する関係にあるが、車体速度Vs以下はスリップ率γに係わらず四輪駆動領域RFa、RFbとしている。これは、四輪駆動車の発進時及び低速時においては、スリップ率γの演算誤差が大きく正確なスリップ率γが把握できないためであり、この場合、燃費向上よりも危険回避を優先して所定の車体速度Vs以下では一意的に四輪駆動とする。   The drive system switching thresholds Da and Db have a relationship in which the slip rate γ increases as the vehicle body speed V increases, but the vehicle speed Vs or less is set to the four-wheel drive regions RFa and RFb regardless of the slip rate γ. This is because the calculation error of the slip ratio γ is large and the accurate slip ratio γ cannot be grasped when the four-wheel drive vehicle starts and at a low speed. In this case, priority is given to avoiding danger over improving fuel efficiency. The four-wheel drive is uniquely set at a vehicle body speed Vs or less.

本実施形態においては、Vsは概ね20Km/hであるが、この数値は任意であり、領域マップ32は、アクセル開度に応じて複数備え、その数も任意である。また、駆動輪がスリップしないアクセル開度がゼロか小さい場合に選択される領域マップ32には、Vsを設けずに車体速度0まで二輪駆動領域があってもよい。   In this embodiment, Vs is approximately 20 Km / h, but this numerical value is arbitrary, and a plurality of area maps 32 are provided according to the accelerator opening, and the number thereof is also arbitrary. Further, the region map 32 selected when the accelerator opening at which the drive wheel does not slip is zero or small may include a two-wheel drive region up to a vehicle body speed of 0 without providing Vs.

図2(A)において、駆動方式切替閾値Daは、路面状態により異なるスリップ率γと車体速度Vの相関値の例である舗装路値STaと砂利路値SGaの中間にあり、速度Vs以上の舗装路においては常に二輪駆動となることを示している。二輪駆動時に、未舗装路に進入する等の路面状態の変化で、スリップ率γが駆動方式切替閾値Daを越える場合、例えば、車体速度Vn時の制御ポイントが二輪駆動領域RTaのPa(スリップ率γa)から四輪駆動領域RFaのPc(スリップ率γc)に移動すると四輪駆動に切り替わる。   In FIG. 2A, the drive system switching threshold Da is in the middle of the pavement road value STa and the gravel road value SGa, which are examples of the correlation value between the slip ratio γ and the vehicle body speed V, which vary depending on the road surface condition, and is equal to or higher than the speed Vs. It shows that it is always two-wheel drive on the paved road. When the slip ratio γ exceeds the drive system switching threshold Da due to a change in road surface condition such as entering an unpaved road during two-wheel drive, for example, the control point at the vehicle body speed Vn is Pa (slip ratio) of the two-wheel drive region RTa. Switching from γa) to Pc (slip rate γc) in the four-wheel drive region RFa switches to four-wheel drive.

また、四輪駆動時の、路面状態の急変による危険回避状態やコーナリング時等の非定常状態以外の、路面状態が安定している定常状態におけるイニシャル制御時に、舗装路に進入する等の路面状態の変化で、駆動輪のスリップ率γが駆動方式切替閾値Daを下回ると二輪駆動に切り替わる。例えば、車体速度Vn時の制御ポイントが四輪駆動領域RFaのPcから二輪駆動領域RTaのPaに移動すると二輪駆動に切り替わる。   Also, road conditions such as entering a paved road during initial control in a steady state where the road surface state is stable, other than a non-steady state such as a danger avoidance state due to a sudden change in road surface state or cornering during four-wheel drive When the slip ratio γ of the drive wheels falls below the drive system switching threshold Da, the two-wheel drive is switched. For example, when the control point at the vehicle body speed Vn moves from Pc in the four-wheel drive region RFa to Pa in the two-wheel drive region RTa, it switches to two-wheel drive.

二輪駆動時に車体が緩やかな加速状態の場合、すなわちアクセル開度が徐々に大きくなり駆動輪トルクが増加すると駆動輪のスリップ率γが増加する。例えば、舗装路の走行時では、図2(A)の舗装路値STaから図2(B)の舗装路値STbに変化することで、制御ポイントがPaからPb(スリップ率γb)に移動し、駆動方式切替閾値Daを越えてしまう。   When the vehicle body is in a moderate acceleration state during two-wheel drive, that is, when the accelerator opening gradually increases and the drive wheel torque increases, the slip ratio γ of the drive wheels increases. For example, when traveling on a paved road, the control point moves from Pa to Pb (slip rate γb) by changing from the paved road value STa in FIG. 2 (A) to the paved road value STb in FIG. 2 (B). The drive method switching threshold value Da will be exceeded.

しかし、このような安定した状態ではスリップ率γが増加しても四輪駆動に切り換える必要は少なく、燃費向上を考慮するとそのまま二輪駆動状態を維持するのが望ましい。そのためには、舗装路における車体速度Vn時の制御ポイントがPaからPbに変化しても、駆動制御部36の制御が四輪駆動領域RFbに移行しない、四輪駆動領域RFbと二輪駆動領域RTbの境界が駆動方式切替閾値Dbである領域マップ32bが有用となる。   However, in such a stable state, there is little need to switch to four-wheel drive even if the slip ratio γ increases, and it is desirable to maintain the two-wheel drive state as it is in consideration of fuel efficiency improvement. For this purpose, even if the control point at the vehicle body speed Vn on the paved road changes from Pa to Pb, the control of the drive control unit 36 does not shift to the four-wheel drive region RFb, and the four-wheel drive region RFb and the two-wheel drive region RTb. An area map 32b in which the boundary is the drive system switching threshold Db is useful.

二輪駆動時に、仮にアクセル開度が領域マップ32bの状態であっても、スリップ率γが駆動方式切替閾値Dbを越える急激な加速状態の場合、例えば制御ポイントPd(スリップ率γd)では四輪駆動に切り替わり、駆動力は従動輪にも配分される。駆動力を従動輪にも配分することで駆動輪のスリップ率γが低下し、駆動方式切替閾値Db以下になると二輪駆動に復帰する。   Even when the accelerator opening is in the state of the region map 32b during two-wheel drive, in the case of a rapid acceleration state where the slip rate γ exceeds the drive method switching threshold Db, for example, four-wheel drive is performed at the control point Pd (slip rate γd). And the driving force is also distributed to the driven wheels. By distributing the driving force to the driven wheels, the slip ratio γ of the driving wheels is reduced, and when the driving system switching threshold value Db or less is reached, the two-wheel driving is resumed.

領域マップ32は、アクセル開度ではなく車体加速度検出部16が検出した車体加速度に応じて複数備えることも可能である。また、四輪駆動と二輪駆動とを切り替える判断の他の方法として、このような領域マップ32を用いずに、所定の車体速度以上、且つ、所定のスリップ率以下では一意的に二輪駆動とすることも可能であり、更に、アクセル開度に応じて二輪駆動に切り替えるスリップ率を変化させること、四輪駆動から二輪駆動に切り替えるスリップ率と二輪駆動から四輪駆動に切り替えるスリップ率を別に設定することも可能である。   A plurality of area maps 32 may be provided according to the vehicle body acceleration detected by the vehicle body acceleration detection unit 16 instead of the accelerator opening. In addition, as another method for determining switching between four-wheel drive and two-wheel drive, two-wheel drive is uniquely set at a predetermined vehicle body speed or higher and a predetermined slip ratio or lower without using such an area map 32. It is also possible to change the slip ratio to switch to two-wheel drive according to the accelerator opening, and set the slip ratio to switch from four-wheel drive to two-wheel drive and the slip ratio to switch from two-wheel drive to four-wheel drive separately It is also possible.

図3は、図1に示す四輪駆動車用駆動力伝達システムにおける駆動方式切替条件の他の実施形態を示す説明図であり、駆動方式切替条件を縦軸に駆動輪のスリップ率γ、横軸に実車速である車体速度Vとするグラフで表している。   FIG. 3 is an explanatory view showing another embodiment of the drive system switching condition in the driving force transmission system for a four-wheel drive vehicle shown in FIG. This is represented by a graph with the vehicle body speed V being the actual vehicle speed on the axis.

図3に示すように、車体速度Vs以下はスリップ率γに係わらず四輪駆動範囲AFとするが、これは図2で述べたように、四輪駆動車の発進時及び低速時においては、スリップ率γの演算誤差が大きく正確なスリップ率γが把握できないためであり、この場合、燃費向上よりも危険回避を優先して所定の車体速度以下では一意的に四輪駆動とする。   As shown in FIG. 3, the vehicle speed Vs or less is set to the four-wheel drive range AF regardless of the slip ratio γ. However, as described with reference to FIG. This is because the calculation error of the slip ratio γ is large and the accurate slip ratio γ cannot be grasped. In this case, priority is given to avoiding the risk over the improvement of the fuel consumption, and the four-wheel drive is uniquely performed below the predetermined vehicle body speed.

また、二輪駆動から四輪駆動に切り替えるスリップ率γfaと、四輪駆動から二輪駆動に切り替えるスリップ率γtaを設定し、グラフ上では車体速度Vに関係しない四輪駆動切替値Fa及び二輪駆動切替値Taで、四輪駆動範囲AFと二輪駆動範囲ATを区切るように示している。   Also, a slip ratio γfa for switching from two-wheel drive to four-wheel drive and a slip ratio γta for switching from four-wheel drive to two-wheel drive are set, and the four-wheel drive switching value Fa and the two-wheel drive switching value that are not related to the vehicle body speed V on the graph. Ta indicates that the four-wheel drive range AF and the two-wheel drive range AT are separated.

切り替え方向により異なるスリップ率γを使用するのは、二輪駆動から四輪駆動への切り替えは危険回避の場合もあるためであり、四輪駆動から二輪駆動に切り替える場合よりも、二輪駆動から四輪駆動に切り替える場合のスリップ率γを低く設定している。すなわち、四輪駆動への切り替え用のスリップ率γfaの方が二輪駆動への切り替え用のスリップ率γtaよりも低い値となっている。   The reason for using a different slip ratio γ depending on the switching direction is that switching from two-wheel drive to four-wheel drive may be a risk avoidance, so that two-wheel drive to four-wheel drive is more effective than switching from four-wheel drive to two-wheel drive. The slip ratio γ when switching to driving is set low. That is, the slip ratio γfa for switching to four-wheel drive is lower than the slip ratio γta for switching to two-wheel drive.

更に、アクセル開度が大きくなるに従いスリップ率γfa、γtaを各々スリップ率γfb、γtbに引き上げ、四輪駆動切替値Fb及び二輪駆動切替値Tbとすることで、二輪駆動の加速時に無用な四輪駆動への切り替えを防止する。   Further, as the accelerator opening increases, the slip ratios γfa and γta are increased to the slip ratios γfb and γtb, respectively, to obtain the four-wheel drive switching value Fb and the two-wheel drive switching value Tb. Prevent switching to drive.

図4は、図1に示す四輪駆動車用駆動力伝達システムにおける駆動力伝達装置38の実施形態を示した説明図であり、二輪駆動は後輪を駆動する方式の車両に適用した場合である。図4において、本実施形態の駆動力伝達装置38は四輪駆動車100に設けられ、駆動力配分装置40、駆動輪差動装置46及び従動輪差動装置48を備える。   FIG. 4 is an explanatory view showing an embodiment of the driving force transmission device 38 in the driving force transmission system for a four-wheel drive vehicle shown in FIG. 1, and the two-wheel drive is applied to a vehicle of a system for driving the rear wheels. is there. In FIG. 4, the driving force transmission device 38 of the present embodiment is provided in the four-wheel drive vehicle 100 and includes a driving force distribution device 40, a driving wheel differential device 46, and a driven wheel differential device 48.

駆動力配分装置40は、入力軸112、後輪出力軸114、多板クラッチ機構42、スプロケット116、118、チェーンベルト120、前輪出力軸122及び従動輪トルク検出部44を備える。   The driving force distribution device 40 includes an input shaft 112, a rear wheel output shaft 114, a multi-plate clutch mechanism 42, sprockets 116 and 118, a chain belt 120, a front wheel output shaft 122, and a driven wheel torque detector 44.

駆動輪差動装置46は、ドライブピニオン124、リングギア126、ピニオン128、130、サイドギア132、134を備え、従動輪差動装置48は、ドライブピニオン144、リングギア146、ピニオン148、150、サイドギア152、154を備える。   The drive wheel differential device 46 includes a drive pinion 124, a ring gear 126, pinions 128 and 130, and side gears 132 and 134. The driven wheel differential device 48 includes a drive pinion 144, a ring gear 146, pinions 148 and 150, and a side gear. 152, 154.

駆動輪差動装置46及び従動輪差動装置48は各々後輪プロペラシャフト106及び前輪プロペラシャフト164を介して駆動力配分装置40に連結される。   The driving wheel differential device 46 and the driven wheel differential device 48 are connected to the driving force distribution device 40 via the rear wheel propeller shaft 106 and the front wheel propeller shaft 164, respectively.

エンジン102からの駆動力は変速機104で変速され、駆動力配分装置40の入力軸112に入力し、二輪駆動時に、入力軸112に同軸に設けられた多板クラッチ機構42が開放されている場合、駆動力はそのまま後輪出力軸114に出力され、自在継手108、後輪プロペラシャフト106、自在継手110を介し、駆動輪差動装置46のドライブピニオン124に伝達される。   The driving force from the engine 102 is shifted by the transmission 104 and input to the input shaft 112 of the driving force distribution device 40, and the multi-plate clutch mechanism 42 provided coaxially with the input shaft 112 is opened during two-wheel drive. In this case, the driving force is output to the rear wheel output shaft 114 as it is, and is transmitted to the drive pinion 124 of the driving wheel differential device 46 via the universal joint 108, the rear wheel propeller shaft 106, and the universal joint 110.

ドライブピニオン124は、リングギア126、ピニオン128、130、サイドギア132、134を介して左後輪駆動軸136及び右後輪駆動軸138を駆動し、左後輪駆動軸136及び右後輪駆動軸138は各々左後輪140及び右後輪142を回転させ駆動力を路面に伝達する。コーナリング時や路面状態の変化等により左後輪140と右後輪142に回転速度差が生じても、駆動輪差動装置46は回転速度差を吸収し、左後輪140及び右後輪142に等しいトルクを与え回転させる。   The drive pinion 124 drives the left rear wheel drive shaft 136 and the right rear wheel drive shaft 138 via the ring gear 126, the pinions 128 and 130, and the side gears 132 and 134, and the left rear wheel drive shaft 136 and the right rear wheel drive shaft. 138 respectively rotates the left rear wheel 140 and the right rear wheel 142 to transmit the driving force to the road surface. Even if a difference in rotational speed occurs between the left rear wheel 140 and the right rear wheel 142 due to cornering or a change in road surface condition, the drive wheel differential 46 absorbs the rotational speed difference, and the left rear wheel 140 and the right rear wheel 142 Apply a torque equal to and rotate.

二輪駆動時に、駆動制御部36がスリップ率演算部26の算出した駆動輪である左後輪140又は右後輪142のスリップ率が四輪駆動領域にあると判断すると、四輪駆動に切換えるために駆動制御部36は多板クラッチ機構42を締結する。多板クラッチ機構42が締結されると、多板クラッチ機構42に同軸に連結されたスプロケット116がチェーンベルト120を介しスプロケット118を回転させることで駆動力は前輪出力軸122にも伝達される。   When the drive control unit 36 determines that the slip rate of the left rear wheel 140 or the right rear wheel 142, which is the drive wheel calculated by the slip rate calculation unit 26, is in the four-wheel drive region during two-wheel drive, The drive controller 36 fastens the multi-plate clutch mechanism 42. When the multi-plate clutch mechanism 42 is fastened, the sprocket 116 connected coaxially to the multi-plate clutch mechanism 42 rotates the sprocket 118 via the chain belt 120, so that the driving force is also transmitted to the front wheel output shaft 122.

従動輪トルク検出部44は、多板クラッチ機構42の多板クラッチの押圧状態を検出し、駆動制御部36にフィードバック情報として出力する。検出値としては、多板クラッチ機構42を駆動するアクチュエータやセンサの種類に応じて油圧、電流値の何れでも構わない。また、従動輪のトルク検出は多板クラッチの押圧状態ではなく、前輪出力軸122等の従動輪に駆動力が伝達される部位のトルク歪みを非接触で検出するトルクセンサを用いることも可能である。   The driven wheel torque detection unit 44 detects the pressing state of the multi-plate clutch of the multi-plate clutch mechanism 42 and outputs it as feedback information to the drive control unit 36. The detected value may be either a hydraulic pressure or a current value depending on the type of actuator or sensor that drives the multi-plate clutch mechanism 42. In addition, the torque detection of the driven wheel is not a pressing state of the multi-plate clutch, and it is also possible to use a torque sensor that detects the torque distortion of the portion where the driving force is transmitted to the driven wheel such as the front wheel output shaft 122 without contact. is there.

前輪出力軸122から出力された駆動力は自在継手166、前輪プロペラシャフト164、自在継手168を介し、従動輪差動装置48のドライブピニオン144に伝達され、ドライブピニオン144は、リングギア146、ピニオン148、150、サイドギア152、154を介して左前輪駆動軸156及び右前輪駆動軸158を駆動し、左前輪駆動軸156及び右前輪駆動軸158は各々左前輪160及び右前輪162を回転させ駆動力を路面に伝達する。   The driving force output from the front wheel output shaft 122 is transmitted to the drive pinion 144 of the driven wheel differential device 48 via the universal joint 166, the front wheel propeller shaft 164, and the universal joint 168. The drive pinion 144 includes the ring gear 146 and the pinion. The left front wheel drive shaft 156 and the right front wheel drive shaft 158 are driven via 148, 150 and the side gears 152, 154, and the left front wheel drive shaft 156 and the right front wheel drive shaft 158 rotate and drive the left front wheel 160 and the right front wheel 162, respectively. Transmit power to the road surface.

ディスコネクト機構50は、四輪駆動時にはサイドギア152と左前輪駆動軸156を連結しており、サイドギア152の回転はそのまま左前輪駆動軸156に伝達される。コーナリング時や路面状態の変化等により左前輪160と右前輪162に回転速度差が生じても、前輪差動装置48は回転速度差を吸収し、左前輪160及び右前輪162に等しいトルクを与え回転させる。   The disconnect mechanism 50 connects the side gear 152 and the left front wheel drive shaft 156 during four-wheel drive, and the rotation of the side gear 152 is transmitted to the left front wheel drive shaft 156 as it is. Even if there is a difference in rotational speed between the left front wheel 160 and the right front wheel 162 due to cornering or changes in road surface conditions, the front wheel differential 48 absorbs the rotational speed difference and gives equal torque to the left front wheel 160 and the right front wheel 162. Rotate.

多板クラッチ機構42の締結力はサーボモータにより連続的に制御され、必要に応じて前輪出力軸122へ伝達する駆動力を増減させることで、前後輪の駆動力配分を制御する。   The fastening force of the multi-plate clutch mechanism 42 is continuously controlled by a servo motor, and the driving force distribution of the front and rear wheels is controlled by increasing or decreasing the driving force transmitted to the front wheel output shaft 122 as necessary.

左前輪160及び右前輪162にも駆動力が配分されたことで、左後輪140及び右後輪142の駆動力が減少し、駆動制御部36がスリップ率演算部26の算出したスリップ率が二輪駆動領域にあると判断すると、今度は多板クラッチ機構42を開放する。多板クラッチ機構42が開放されるとスプロケット116への駆動力が絶たれ、左前輪160及び右前輪162に駆動力が伝達されなくなる。   Since the driving force is also distributed to the left front wheel 160 and the right front wheel 162, the driving force of the left rear wheel 140 and the right rear wheel 142 is reduced, and the slip ratio calculated by the slip ratio calculation unit 26 by the drive control unit 36 is reduced. If it is determined that the vehicle is in the two-wheel drive region, then the multi-plate clutch mechanism 42 is released. When the multi-plate clutch mechanism 42 is released, the driving force to the sprocket 116 is cut off, and the driving force is not transmitted to the left front wheel 160 and the right front wheel 162.

四輪駆動から二輪駆動に切り替わると、ディスコネクト機構50はサイドギア152と左前輪駆動軸156との連結を絶ち、左前輪160及び右前輪162が路面から受ける回転力がリングギア146を回転させることを防止する。これにより、二輪駆動時に燃費低下を招く要因である、前輪を駆動しない二輪駆動時にもリングギア146からスプロケット116までの前輪駆動力伝達区間170が回転してしまう問題を解消できる。   When the four-wheel drive is switched to the two-wheel drive, the disconnect mechanism 50 disconnects the side gear 152 and the left front wheel drive shaft 156, and the rotational force received by the left front wheel 160 and the right front wheel 162 from the road surface causes the ring gear 146 to rotate. To prevent. As a result, it is possible to solve the problem that the front wheel driving force transmission section 170 from the ring gear 146 to the sprocket 116 rotates even during the two-wheel drive that does not drive the front wheels, which is a factor that causes a reduction in fuel consumption during the two-wheel drive.

図4において、仮に、二輪駆動時にサイドギア152と左前輪駆動軸156が連結されていると、例えばサイドギア152とサイドギア154が同方向に同速度で回転する場合、ピニオン148及びピニオン150は自転せずにリングギア146が回転する。   In FIG. 4, if the side gear 152 and the left front wheel drive shaft 156 are connected during two-wheel drive, for example, when the side gear 152 and the side gear 154 rotate at the same speed in the same direction, the pinion 148 and the pinion 150 do not rotate. Then, the ring gear 146 rotates.

サイドギア152とサイドギア154に回転速度差があったとしても同方向の回転であれば回転速度は変化するがリングギア146は回転し、リングギア146が回転することで連結しているドライブピニオン144、自在継手168、前輪プロペラシャフト164、自在継手166、前輪出力軸122、スプロケット118、チェーンベルト120、スプロケット116が回転してしまう。   Even if there is a difference in rotational speed between the side gear 152 and the side gear 154, if the rotation is in the same direction, the rotational speed changes, but the ring gear 146 rotates, and the drive pinion 144 connected by the ring gear 146 rotating, The universal joint 168, the front wheel propeller shaft 164, the universal joint 166, the front wheel output shaft 122, the sprocket 118, the chain belt 120, and the sprocket 116 are rotated.

この、リングギア146からスプロケット116までの前輪駆動力伝達区間170は二輪駆動時には回転する必要のない部位であるにも関わらず、この部分の回転がオイルの攪拌抵抗や軸受部の摩擦損失等を引き起こす。すなわち、左後輪140及び右後輪142から路面に伝わった駆動力が左前輪160及び右前輪162を回転させることで、二輪駆動に必要のない前輪駆動力伝達区間170を回転させ、駆動力の損失となり燃費低下を招いてしまう。   Although the front wheel driving force transmission section 170 from the ring gear 146 to the sprocket 116 is a portion that does not need to be rotated during two-wheel drive, the rotation of this portion reduces oil stirring resistance, friction loss of the bearing portion, and the like. cause. That is, the driving force transmitted from the left rear wheel 140 and the right rear wheel 142 to the road surface rotates the left front wheel 160 and the right front wheel 162, thereby rotating the front wheel driving force transmission section 170 that is not necessary for the two-wheel driving, thereby driving the driving force. Resulting in a reduction in fuel consumption.

そこで、本発明にあっては、二輪駆動時にディスコネクト機構50によりサイドギア152と左前輪駆動軸156の連結を絶つことで、前輪駆動力伝達区間170の回転を防止している。   Therefore, in the present invention, the rotation of the front wheel driving force transmission section 170 is prevented by disconnecting the side gear 152 and the left front wheel drive shaft 156 by the disconnect mechanism 50 during two-wheel drive.

サイドギア152と左前輪駆動軸156の連結が絶たれると、左前輪160の回転はサイドギア152に伝わらず、そのため、右前輪162によるサイドギア154の回転はピニオン148及びピニオン150を介してサイドギア152を反対方向に回転させることが可能で、このピニオン148、150及びサイドギア152の回転抵抗よりも、リングギア146に繋がるドライブピニオン144からスプロケット116までの回転抵抗の方が大きいため、リングギア146は回転しない。   When the connection between the side gear 152 and the left front wheel drive shaft 156 is broken, the rotation of the left front wheel 160 is not transmitted to the side gear 152. Therefore, the rotation of the side gear 154 by the right front wheel 162 is opposite to the side gear 152 via the pinion 148 and the pinion 150. Since the rotational resistance from the drive pinion 144 connected to the ring gear 146 to the sprocket 116 is larger than the rotational resistance of the pinions 148 and 150 and the side gear 152, the ring gear 146 does not rotate. .

リングギア146が回転しないということは、前輪駆動力伝達区間170が回転しないことであり、この場合の駆動力の損失はピニオン148、150、サイドギア152が回転する部分だけとなり、ディスコネクト機構50がなく前輪駆動力伝達区間170が回転してしまう場合と比べて駆動力の損失が少なく、燃費向上が可能である。   The fact that the ring gear 146 does not rotate means that the front wheel driving force transmission section 170 does not rotate. In this case, the driving force is lost only in the portion where the pinions 148 and 150 and the side gear 152 rotate, and the disconnect mechanism 50 As compared with the case where the front wheel driving force transmission section 170 is rotated, the loss of driving force is small and the fuel efficiency can be improved.

状態検出部52は、ディスコネクト機構50が切断されているか接続されているかを検出し、フィードバック情報として駆動制御部36に出力する。   The state detection unit 52 detects whether the disconnect mechanism 50 is disconnected or connected, and outputs it to the drive control unit 36 as feedback information.

なお、本実施形態において、ディスコネクト機構50は従動輪差動装置48内のサイドギア152と左前輪駆動軸156の中間に設置されているが、サイドギア152と左前輪駆動軸156を断続する位置、あるいはサイドギア154と右前輪駆動軸158を断続する位置、又はその両方の位置であれば前輪差動装置48内に設置するか外に設置するかを問わない。更に、ピニオン148、150、サイドギア152、154で構成するユニットをリングギア146と分離し、その連結を断続する方式等の他の機構でも構わない。   In the present embodiment, the disconnect mechanism 50 is installed between the side gear 152 and the left front wheel drive shaft 156 in the driven wheel differential device 48, but the position where the side gear 152 and the left front wheel drive shaft 156 are intermittently connected, Alternatively, whether the side gear 154 and the right front wheel drive shaft 158 are intermittently connected, or both of them, may be installed in the front wheel differential 48 or outside. Further, another mechanism such as a system in which the unit constituted by the pinions 148 and 150 and the side gears 152 and 154 is separated from the ring gear 146 and the connection thereof is interrupted may be used.

図5は、図4の駆動力配分装置40の実施形態を示した断面図である。図5において、駆動力配分装置40はケース172を有し、ケース172の左側にエンジン102からの駆動力を変速機104を介して入力する入力軸112が設けられ、入力軸112は、ケース172の右側に配置された後輪出力軸114に直結されている。   FIG. 5 is a cross-sectional view showing an embodiment of the driving force distribution device 40 of FIG. In FIG. 5, the driving force distribution device 40 has a case 172, and an input shaft 112 for inputting the driving force from the engine 102 via the transmission 104 is provided on the left side of the case 172. Is directly connected to the rear wheel output shaft 114 arranged on the right side of the rear wheel.

入力軸112と同軸に多板クラッチ機構42とボールカム機構174が設けられ、多板クラッチ機構42はクラッチハブ176を入力軸112に固定し、クラッチドラム178を入力軸112に対し回転自在に設けたスプロケット116に固定している。   A multi-plate clutch mechanism 42 and a ball cam mechanism 174 are provided coaxially with the input shaft 112. The multi-plate clutch mechanism 42 fixes the clutch hub 176 to the input shaft 112 and the clutch drum 178 is rotatably provided with respect to the input shaft 112. It is fixed to the sprocket 116.

入力軸112と平行に、後輪出力軸114と反対側に駆動力を出力する前輪出力軸122がケース172の左下側に設けられており、前輪出力軸122にはスプロケット118が接続され、多板クラッチ機構42側のスプロケット116との間にチェーンベルト120を掛けて連結している。   A front wheel output shaft 122 that outputs a driving force to the opposite side of the rear wheel output shaft 114 is provided on the lower left side of the case 172 in parallel with the input shaft 112, and a sprocket 118 is connected to the front wheel output shaft 122. A chain belt 120 is hung and connected to the sprocket 116 on the plate clutch mechanism 42 side.

前輪出力軸122に伝達される従動輪トルクは、サーボモータ装置192の電流値、又は、油圧を介した圧力センサで検出したボールカム機構174の多板クラッチ押圧力を、フィードバック情報として駆動制御部36に出力し演算する。   The driven wheel torque transmitted to the front wheel output shaft 122 is obtained by using the current value of the servo motor device 192 or the multi-plate clutch pressing force of the ball cam mechanism 174 detected by a pressure sensor via hydraulic pressure as feedback information. Output to and calculate.

このような駆動力配分装置40において、二輪駆動時には、多板クラッチ機構42のクラッチハブ176とクラッチドラム178の間が開放され、入力軸112の駆動力は後輪出力軸114に直接伝達される。   In such a driving force distribution device 40, during two-wheel drive, the clutch hub 176 and the clutch drum 178 of the multi-plate clutch mechanism 42 are opened, and the driving force of the input shaft 112 is directly transmitted to the rear wheel output shaft 114. .

四輪駆動時にあっては、多板クラッチ機構42が締結され、入力軸112からの駆動力を多板クラッチ機構42、スプロケット116、チェーンベルト120、スプロケット118を介して前輪出力軸122にも伝達する。   During four-wheel drive, the multi-plate clutch mechanism 42 is engaged, and the driving force from the input shaft 112 is transmitted to the front wheel output shaft 122 via the multi-plate clutch mechanism 42, the sprocket 116, the chain belt 120, and the sprocket 118. To do.

多板クラッチ機構42に対しては、クラッチハブ176とクラッチドラム178の間に設けた複数のクラッチ板180の締結力を制御するボールカム機構174が設けられ、ボールカム機構174は、入力軸112と同軸に相対回転自在に設けられた一対の固定カムプレート182と回転カムプレート184の相対する面に設けたボールカム溝186にボール190を挟んで保持している。   For the multi-plate clutch mechanism 42, a ball cam mechanism 174 that controls the fastening force of a plurality of clutch plates 180 provided between the clutch hub 176 and the clutch drum 178 is provided. The ball cam mechanism 174 is coaxial with the input shaft 112. A ball 190 is held between a pair of fixed cam plate 182 and a ball cam groove 186 provided on the opposing surfaces of the rotating cam plate 184.

サーボモータ装置192は、回転カムプレート184のボールカム溝186とは反対側の端部に形成されたギア部188に係合する駆動ギア194を回転させ、回転カムプレート184の左側には押圧部材196が配置される。押圧部材196は、クラッチハブ176との間に備わる復帰ばね198により、多板クラッチ機構42の開放方向に付勢されている。   The servo motor device 192 rotates a driving gear 194 that engages with a gear portion 188 formed at the end of the rotating cam plate 184 opposite to the ball cam groove 186, and a pressing member 196 is placed on the left side of the rotating cam plate 184. Is placed. The pressing member 196 is biased in the opening direction of the multi-plate clutch mechanism 42 by a return spring 198 provided between the pressing member 196 and the clutch hub 176.

ボールカム機構174は、駆動ギア194により回転カムプレート184が固定カムプレート182に対し所定方向に回転駆動されると、ボールカム溝186に挟まれているボール190による押圧を受けて押圧部材196及び復帰ばね198を軸方向に押し、押圧部材196が多板クラッチ機構42のクラッチ板180を押すことで、駆動ギア194の回転量に応じて伝達トルクを増加させ、最大押付け位置で直結状態となる。   When the rotary cam plate 184 is driven to rotate in a predetermined direction with respect to the fixed cam plate 182 by the drive gear 194, the ball cam mechanism 174 receives pressure from the ball 190 sandwiched between the ball cam grooves 186 and receives the pressing member 196 and the return spring. When 198 is pushed in the axial direction and the pressing member 196 pushes the clutch plate 180 of the multi-plate clutch mechanism 42, the transmission torque is increased according to the amount of rotation of the drive gear 194, and the direct connection state is established at the maximum pressing position.

図6は、図1に示す四輪駆動車用駆動力伝達システムにおける駆動力伝達装置38の他の実施形態を示した説明図であり、二輪駆動は前輪を駆動する方式の車両に適用した場合である。図6において、本実施形態の駆動力伝達装置38は四輪駆動車200に設けられ、駆動力配分装置40、駆動輪差動装置46及び従動輪差動装置48を備える。   FIG. 6 is an explanatory view showing another embodiment of the driving force transmission device 38 in the driving force transmission system for a four-wheel drive vehicle shown in FIG. 1, and the two-wheel drive is applied to a vehicle of a system for driving the front wheels. It is. In FIG. 6, the driving force transmission device 38 of this embodiment is provided in a four-wheel drive vehicle 200 and includes a driving force distribution device 40, a driving wheel differential device 46, and a driven wheel differential device 48.

駆動力配分装置40は、入力軸212、後輪出力軸214、多板クラッチ機構42、ベベルギア216、出力ピニオン218及び従動輪トルク検出部44を備える。   The driving force distribution device 40 includes an input shaft 212, a rear wheel output shaft 214, a multi-plate clutch mechanism 42, a bevel gear 216, an output pinion 218, and a driven wheel torque detection unit 44.

駆動輪差動装置46は、リングギア226、ピニオン228、230、サイドギア232、234を備え、リングギア226は、駆動力配分装置40の入力軸212に連結している。   The driving wheel differential device 46 includes a ring gear 226, pinions 228 and 230, and side gears 232 and 234, and the ring gear 226 is connected to the input shaft 212 of the driving force distribution device 40.

従動輪差動装置48は、ドライブピニオン244、リングギア246、ピニオン248、250、サイドギア252、254、ディスコネクト機構50及び状態検出部52を備え、プロペラシャフト206を介して駆動力配分装置40の出力軸214に連結している。   The driven wheel differential device 48 includes a drive pinion 244, a ring gear 246, pinions 248, 250, side gears 252, 254, a disconnect mechanism 50, and a state detection unit 52, and the driving force distribution device 40 via the propeller shaft 206. It is connected to the output shaft 214.

エンジン202からの駆動力は変速機204で変速され、変速機204の出力ギア224、駆動輪差動装置46のリングギア226を介して駆動力配分装置40の入力軸212に入力するが、二輪駆動時に入力軸212に同軸に設けられた多板クラッチ機構42が開放されている場合は、駆動力は後輪出力軸214に出力されない。   The driving force from the engine 202 is shifted by the transmission 204 and is input to the input shaft 212 of the driving force distribution device 40 via the output gear 224 of the transmission 204 and the ring gear 226 of the driving wheel differential device 46. When the multi-plate clutch mechanism 42 provided coaxially with the input shaft 212 is opened during driving, the driving force is not output to the rear wheel output shaft 214.

リングギア226に入力された駆動力は、ピニオン228、230、サイドギア232、234を介して左前輪駆動軸236及び右前輪駆動軸238を駆動し、左前輪駆動軸236及び右前輪駆動軸238は各々左前輪240及び右前輪242を回転させ駆動力を路面に伝達する。コーナリング時や路面状態の変化等により左前輪240と右前輪242に回転速度差が生じても、駆動輪差動装置46は回転速度差を吸収し、左前輪240及び右前輪242に等しいトルクを与え回転させる。   The driving force input to the ring gear 226 drives the left front wheel drive shaft 236 and the right front wheel drive shaft 238 via the pinions 228 and 230 and the side gears 232 and 234, and the left front wheel drive shaft 236 and the right front wheel drive shaft 238 The left front wheel 240 and the right front wheel 242 are rotated to transmit the driving force to the road surface. Even if there is a difference in rotational speed between the left front wheel 240 and the right front wheel 242 due to cornering or a change in the road surface condition, the drive wheel differential 46 absorbs the rotational speed difference and applies the same torque to the left front wheel 240 and the right front wheel 242. Rotate giving.

二輪駆動時に、駆動制御部36がスリップ率演算部26の算出した駆動輪である左前輪240又は右前輪242のスリップ率が四輪駆動領域にあると判断すると、四輪駆動に切換えるために多板クラッチ機構42を締結する。多板クラッチ機構42が締結されると、多板クラッチ機構42に同軸に連結されたベベルギア216が出力ピニオン218を回転させることで駆動力は後輪出力軸214にも伝達される。   When the drive control unit 36 determines that the slip ratio of the left front wheel 240 or the right front wheel 242 calculated by the slip ratio calculation unit 26 is in the four-wheel drive region during two-wheel drive, the drive control unit 36 may switch to four-wheel drive. The plate clutch mechanism 42 is fastened. When the multi-plate clutch mechanism 42 is fastened, the driving force is transmitted to the rear wheel output shaft 214 as the bevel gear 216 coaxially connected to the multi-plate clutch mechanism 42 rotates the output pinion 218.

後輪出力軸214に伝達される従動輪トルクは、サーボモータ装置292の電流値、又は、油圧を介した圧力センサで検出したボールカム機構274の多板クラッチ押圧力を、フィードバック情報として駆動制御部36に出力し演算する。   The driven wheel torque transmitted to the rear wheel output shaft 214 is obtained by using the current value of the servo motor device 292 or the multi-plate clutch pressing force of the ball cam mechanism 274 detected by a pressure sensor via hydraulic pressure as feedback information. It outputs to 36 and calculates.

後輪出力軸214から出力された駆動力は自在継手208、プロペラシャフト206、自在継手210を介し、従動輪差動装置48のドライブピニオン244に伝達され、ドライブピニオン244は、リングギア246、ピニオン248、250、サイドギア252、254を介して左後輪駆動軸256及び右後輪駆動軸258を駆動し、左後輪駆動軸256及び右後輪駆動軸258は各々左後輪260及び右後輪262を回転させ駆動力を路面に伝達する。   The driving force output from the rear wheel output shaft 214 is transmitted to the drive pinion 244 of the driven wheel differential device 48 via the universal joint 208, the propeller shaft 206, and the universal joint 210. The drive pinion 244 includes the ring gear 246, the pinion The left rear wheel drive shaft 256 and the right rear wheel drive shaft 258 are driven through 248, 250 and the side gears 252, 254, and the left rear wheel drive shaft 256 and the right rear wheel drive shaft 258 are driven by the left rear wheel 260 and the right rear wheel, respectively. The wheel 262 is rotated to transmit the driving force to the road surface.

ディスコネクト機構50は四輪駆動時にはサイドギア254と右後輪駆動軸258を連結しており、サイドギア254の回転はそのまま右後輪駆動軸258に伝達される。コーナリング時や路面状態の変化等により左後輪260と右後輪262に回転速度差が生じても、従動輪差動装置48は回転速度差を吸収し、左後輪260及び右後輪262に等しいトルクを与え回転させる。   The disconnect mechanism 50 connects the side gear 254 and the right rear wheel drive shaft 258 during four-wheel drive, and the rotation of the side gear 254 is transmitted to the right rear wheel drive shaft 258 as it is. Even if a difference in rotational speed occurs between the left rear wheel 260 and the right rear wheel 262 due to cornering or a change in road surface condition, the driven wheel differential device 48 absorbs the rotational speed difference, and the left rear wheel 260 and the right rear wheel 262. Apply a torque equal to and rotate.

多板クラッチ機構42の締結力はサーボモータにより連続的に制御され、必要に応じて後輪出力軸214へ伝達する駆動力を増減させることで、前後輪の駆動力配分を制御する。   The fastening force of the multi-plate clutch mechanism 42 is continuously controlled by a servomotor, and the driving force distribution of the front and rear wheels is controlled by increasing or decreasing the driving force transmitted to the rear wheel output shaft 214 as necessary.

左後輪260及び右後輪262にも駆動力が配分されたことで、左前輪240及び右前輪242の駆動力が減少し、駆動制御部36がスリップ率演算部26の算出したスリップ率が二輪駆動領域にあると判断すると、今度は多板クラッチ機構42を開放する。多板クラッチ機構42が開放されるとベベルギア216への駆動力が絶たれ、左後輪260及び右後輪262に駆動力が伝達されなくなる。   Since the driving force is also distributed to the left rear wheel 260 and the right rear wheel 262, the driving force of the left front wheel 240 and the right front wheel 242 is reduced, and the slip rate calculated by the slip rate calculating unit 26 by the drive control unit 36 is reduced. If it is determined that the vehicle is in the two-wheel drive region, then the multi-plate clutch mechanism 42 is released. When the multi-plate clutch mechanism 42 is released, the driving force to the bevel gear 216 is cut off, and the driving force is not transmitted to the left rear wheel 260 and the right rear wheel 262.

四輪駆動から二輪駆動に切り替わると、ディスコネクト機構50はサイドギア254と右後輪駆動軸258との連結を絶ち、左後輪260及び右後輪262が路面から受ける回転力がリングギア246を回転させることを防止する。これにより、二輪駆動時に燃費低下を招く要因である、後輪を駆動しない二輪駆動時にもリングギア246からベベルギア216までの後輪駆動力伝達区間270が回転してしまう問題を解消できる。   When the four-wheel drive is switched to the two-wheel drive, the disconnect mechanism 50 disconnects the side gear 254 and the right rear wheel drive shaft 258, and the rotational force received by the left rear wheel 260 and the right rear wheel 262 from the road surface causes the ring gear 246 to move. Prevent rotation. As a result, it is possible to solve the problem that the rear wheel driving force transmission section 270 from the ring gear 246 to the bevel gear 216 rotates even during the two-wheel drive that does not drive the rear wheel, which is a factor that causes a reduction in fuel consumption during the two-wheel drive.

図6において、仮に、二輪駆動時にサイドギア254と右後輪駆動軸258が連結されていると、例えばサイドギア252とサイドギア254が同方向に同速度で回転する場合、ピニオン248及びピニオン250は自転せずにリングギア246が回転する。   In FIG. 6, if the side gear 254 and the right rear wheel drive shaft 258 are connected during two-wheel drive, for example, when the side gear 252 and the side gear 254 rotate at the same speed in the same direction, the pinion 248 and the pinion 250 rotate. Without rotation, the ring gear 246 rotates.

サイドギア252とサイドギア254に回転速度差があったとしても同方向の回転であれば回転速度は変化するがリングギア246は回転し、リングギア246が回転することで連結しているドライブピニオン244、自在継手210、プロペラシャフト206、自在継手208、後輪出力軸214、出力ピニオン218、ベベルギア216が回転してしまう。   Even if there is a difference in rotational speed between the side gear 252 and the side gear 254, if the rotation is in the same direction, the rotational speed changes, but the ring gear 246 rotates, and the drive pinion 244 connected by the ring gear 246 rotating, The universal joint 210, the propeller shaft 206, the universal joint 208, the rear wheel output shaft 214, the output pinion 218, and the bevel gear 216 are rotated.

この、リングギア246からベベルギア216までの後輪駆動力伝達区間270は二輪駆動時には回転する必要のない部位であるにも関わらず、この部分の回転がオイルの攪拌抵抗や軸受部の摩擦損失等を引き起こす。すなわち、左前輪240及び右前輪242から路面に伝わった駆動力が左後輪260及び右後輪262を回転させることで、二輪駆動に必要のない後輪駆動力伝達区間270を回転させ、駆動力の損失となり燃費低下を招いてしまう。   Although the rear wheel driving force transmission section 270 from the ring gear 246 to the bevel gear 216 is a portion that does not need to rotate during two-wheel drive, the rotation of this portion causes oil agitation resistance, friction loss of the bearing portion, and the like. cause. That is, the driving force transmitted from the left front wheel 240 and the right front wheel 242 to the road surface rotates the left rear wheel 260 and the right rear wheel 262, thereby rotating the rear wheel driving force transmission section 270 that is not necessary for the two-wheel drive. Loss of power will lead to a reduction in fuel consumption.

そこで、本発明にあっては、二輪駆動時にディスコネクト機構50によりサイドギア254と右後輪駆動軸258の連結を絶つことで、後輪駆動力伝達区間270の回転を防止している。   Therefore, in the present invention, the rotation of the rear wheel driving force transmission section 270 is prevented by disconnecting the side gear 254 and the right rear wheel drive shaft 258 by the disconnect mechanism 50 during two-wheel drive.

サイドギア254と右後輪駆動軸258の連結が絶たれると、右後輪262の回転はサイドギア254に伝わらず、そのため、左後輪260によるサイドギア252の回転はピニオン248及びピニオン250を介してサイドギア254を反対方向に回転させることが可能で、このピニオン248、250、サイドギア254の回転抵抗よりも、リングギア246に繋がるドライブピニオン244からベベルギア216までの回転抵抗の方が大きいため、リングギア246は回転しない。   When the connection between the side gear 254 and the right rear wheel drive shaft 258 is broken, the rotation of the right rear wheel 262 is not transmitted to the side gear 254, so that the rotation of the side gear 252 by the left rear wheel 260 is performed via the pinion 248 and the pinion 250. 254 can be rotated in the opposite direction, and the rotational resistance from the drive pinion 244 to the bevel gear 216 connected to the ring gear 246 is greater than the rotational resistance of the pinions 248 and 250 and the side gear 254. Does not rotate.

リングギア246が回転しないということは、後輪駆動力伝達区間270が回転しないことであり、この場合の駆動力の損失はピニオン248、250、サイドギア254が回転する部分だけとなり、ディスコネクト機構50がなく後輪駆動力伝達区間270が回転してしまう場合と比べて燃費向上が可能である。   The fact that the ring gear 246 does not rotate means that the rear wheel driving force transmission section 270 does not rotate. In this case, the driving force is lost only in the portion where the pinions 248 and 250 and the side gear 254 rotate, and the disconnect mechanism 50 The fuel efficiency can be improved as compared with the case where the rear wheel driving force transmission section 270 is not rotated.

なお、本実施形態において、ディスコネクト機構50は従動輪差動装置48内のサイドギア254と右後輪駆動軸258の中間に設置されているが、サイドギア254と右後輪駆動軸258を断続する位置、あるいはサイドギア252と左後輪駆動軸256を断続する位置、又はその両方の位置であれば従動輪差動装置48内に設置するか外に設置するかを問わない。更に、ピニオン248、250、サイドギア252、254で構成するユニットをリングギア246と分離し、その連結を断続する方式等の他の機構でも構わない。   In this embodiment, the disconnect mechanism 50 is installed between the side gear 254 and the right rear wheel drive shaft 258 in the driven wheel differential device 48, but intermittently connects the side gear 254 and the right rear wheel drive shaft 258. The position or the position where the side gear 252 and the left rear wheel drive shaft 256 are intermittently connected, or the position of both, may be installed in the driven wheel differential 48 or outside. Further, another mechanism such as a system in which the unit constituted by the pinions 248 and 250 and the side gears 252 and 254 is separated from the ring gear 246 and the connection thereof is interrupted may be used.

図7は、図6の駆動力配分装置40の実施形態を示した断面図である。図7において、駆動力配分装置40はケース272を有し、ケース272の左側にエンジン202からの駆動力を変速機204及び駆動輪差動装置46のリングギア226を介して入力する中空の入力軸212が設けられ、入力軸212中空部には、駆動輪差動装置46のサイドギア234から右前輪242へ右前輪駆動軸238が通っている。   FIG. 7 is a cross-sectional view showing an embodiment of the driving force distribution device 40 of FIG. In FIG. 7, the driving force distribution device 40 has a case 272, and a hollow input for inputting the driving force from the engine 202 to the left side of the case 272 via the transmission 204 and the ring gear 226 of the driving wheel differential device 46. The shaft 212 is provided, and the right front wheel drive shaft 238 passes from the side gear 234 of the drive wheel differential device 46 to the right front wheel 242 in the hollow portion of the input shaft 212.

入力軸212と同軸に多板クラッチ機構42とボールカム機構274が設けられ、多板クラッチ機構42は、入力軸212と入力軸212に同軸に回転自在に設けたベベルギア216の間で構成され、ベベルギア216には、入力軸212と直角に出力ピニオン218を介して後輪出力軸214が連結している。   A multi-plate clutch mechanism 42 and a ball cam mechanism 274 are provided coaxially with the input shaft 212, and the multi-plate clutch mechanism 42 is configured between an input shaft 212 and a bevel gear 216 provided coaxially and rotatably on the input shaft 212. A rear wheel output shaft 214 is connected to 216 via an output pinion 218 at a right angle to the input shaft 212.

このような駆動力配分装置40において、二輪駆動時には、多板クラッチ機構42の入力軸212とベベルギア216の間が開放され、入力軸212の駆動力は後輪出力軸214には伝達されない。   In such a driving force distribution device 40, during two-wheel drive, the input shaft 212 of the multi-plate clutch mechanism 42 and the bevel gear 216 are opened, and the driving force of the input shaft 212 is not transmitted to the rear wheel output shaft 214.

四輪駆動時にあっては、多板クラッチ機構42が締結され、入力軸212からの駆動力を多板クラッチ機構42、ベベルギア216、出力ピニオン218を介して後輪出力軸214にも伝達する。   During four-wheel drive, the multi-plate clutch mechanism 42 is engaged, and the driving force from the input shaft 212 is transmitted to the rear wheel output shaft 214 via the multi-plate clutch mechanism 42, the bevel gear 216, and the output pinion 218.

多板クラッチ機構42に対しては、入力軸212とベベルギア216の間に設けた複数のクラッチ板280の締結力を制御するボールカム機構274が設けられ、ボールカム機構274は、入力軸212と同軸に相対回転自在に設けられた一対の固定カムプレート282と回転カムプレート284の相対する面に設けたボールカム溝286にボール290を挟んで保持している。   The multi-plate clutch mechanism 42 is provided with a ball cam mechanism 274 that controls the fastening force of a plurality of clutch plates 280 provided between the input shaft 212 and the bevel gear 216, and the ball cam mechanism 274 is coaxial with the input shaft 212. A pair of fixed cam plate 282 provided so as to be relatively rotatable and a ball cam groove 286 provided on opposing surfaces of the rotating cam plate 284 are held with a ball 290 interposed therebetween.

サーボモータ装置292は、回転カムプレート284のボールカム溝286とは反対側の端部に形成されたギア部288に係合する駆動ギア294を回転させ、回転カムプレート284の左側には押圧部材296が配置される。押圧部材296は、ベベルギア216との間に備わる復帰ばね298により、多板クラッチ機構42の開放方向に付勢されている。   The servo motor device 292 rotates a driving gear 294 that engages with a gear portion 288 formed at the end of the rotating cam plate 284 opposite to the ball cam groove 286, and a pressing member 296 is disposed on the left side of the rotating cam plate 284. Is placed. The pressing member 296 is biased in the opening direction of the multi-plate clutch mechanism 42 by a return spring 298 provided between the pressing member 296 and the bevel gear 216.

ボールカム機構274は、駆動ギア294により回転カムプレート284が固定カムプレート282に対し所定方向に回転駆動されると、ボールカム溝286に挟まれているボール290による押圧を受けて押圧部材296及び復帰ばね298を軸方向に押し、押圧部材296が多板クラッチ機構42のクラッチ板280を押すことで、駆動ギア294の回転量に応じて伝達トルクを増加させ、最大押付け位置で直結状態となる。   When the rotating cam plate 284 is rotationally driven in a predetermined direction with respect to the fixed cam plate 282 by the drive gear 294, the ball cam mechanism 274 receives pressure from the ball 290 sandwiched between the ball cam grooves 286 and receives the pressing member 296 and the return spring. By pressing 298 in the axial direction and the pressing member 296 pressing the clutch plate 280 of the multi-plate clutch mechanism 42, the transmission torque is increased according to the amount of rotation of the drive gear 294, and the direct connection state is established at the maximum pressing position.

図8は、図4の従動輪差動装置48の実施形態を示した断面図であり、ディスコネクト機構50を備える。また、図8に示す断面図の上下左右を反転すれば図6に示す従動輪差動装置48と実質的に同じになる。   FIG. 8 is a cross-sectional view showing an embodiment of the driven wheel differential device 48 of FIG. 4 and includes a disconnect mechanism 50. Further, if the top, bottom, left, and right of the cross-sectional view shown in FIG. 8 are reversed, it becomes substantially the same as the driven wheel differential device 48 shown in FIG.

図8において、従動輪差動装置48はデフケース54の外周部に固定されたリングギア146、デフケース54に固定されたピニオン軸56に回転自在に軸支されたピニオン148及びピニオン150、サイドギア軸58に回転不可に軸支されデフケース54内でピニオン148及びピニオン150と係合するサイドギア152、右前輪駆動軸158に回転不可に軸支されデフケース54内ピニオン148及びピニオン150と係合するサイドギア154を備え、四輪駆動時にリングギア146と係合するドライブピニオン144から入力される駆動力を左前輪160及び右前輪162に伝達する。   In FIG. 8, the driven wheel differential device 48 includes a ring gear 146 fixed to the outer peripheral portion of the differential case 54, a pinion 148 and a pinion 150 rotatably supported by a pinion shaft 56 fixed to the differential case 54, and a side gear shaft 58. The side gear 152 that is pivotally supported by the pinion 148 and the pinion 150 in the differential case 54 and the side gear 154 that is pivotally supported by the right front wheel drive shaft 158 and that engages the pinion 148 and the pinion 150 in the differential case 54. The driving force input from the drive pinion 144 engaged with the ring gear 146 during four-wheel drive is transmitted to the left front wheel 160 and the right front wheel 162.

また、端部156bがサイドギア軸58に回転方向に拘束されずに勘合している左前輪駆動軸156、左前輪駆動軸156の歯部156a及びサイドギア軸58の歯部58aとスプライン結合し、左前輪駆動軸156とサイドギア軸58を連結する位置と連結を解除する位置でスライド可能なスリーブ60、スリーブ60の溝部60aに摺動自在に係合する先端部62aによりスリーブ60をスライドさせるフォーク62、フォーク62に固定され図示しないアクチュエータにより軸方向に駆動されるシフト軸64でディスコネクト機構50を構成し、更に、ディスコネクト機構50の連結状態を検出する状態検出部52を備える。   Further, the end 156b is spline-coupled to the left front wheel drive shaft 156, which is fitted to the side gear shaft 58 without being restricted in the rotational direction, the tooth portion 156a of the left front wheel drive shaft 156, and the tooth portion 58a of the side gear shaft 58, and left A sleeve 60 slidable at a position where the front wheel drive shaft 156 and the side gear shaft 58 are connected to each other and a position where the connection is released; a fork 62 which slides the sleeve 60 by a tip 62a slidably engaged with a groove 60a of the sleeve 60; The disconnect mechanism 50 is configured by a shift shaft 64 that is fixed to the fork 62 and driven in the axial direction by an actuator (not shown), and further includes a state detection unit 52 that detects a connected state of the disconnect mechanism 50.

図8(A)は、二輪駆動時のディスコネクト機構50が非連結状態で、スリーブ60はサイドギア軸58の歯部58aと結合していない。状態検出部52は、駆動制御部36にフィードバック情報として非連結信号を出力する。   In FIG. 8A, the disconnect mechanism 50 during two-wheel drive is in a disconnected state, and the sleeve 60 is not coupled to the tooth portion 58a of the side gear shaft 58. The state detection unit 52 outputs a disconnected signal as feedback information to the drive control unit 36.

この状態では、右前輪駆動軸158の回転はサイドギア154、ピニオン148及びピニオン150を介してサイドギア152に伝わり、リングギア146が回転しないことからサイドギア軸58を右前輪駆動軸158とは反対方向に回転させる。   In this state, the rotation of the right front wheel drive shaft 158 is transmitted to the side gear 152 via the side gear 154, the pinion 148 and the pinion 150, and the ring gear 146 does not rotate, so the side gear shaft 58 is moved in the direction opposite to the right front wheel drive shaft 158. Rotate.

図8(B)は、四輪駆動時にフォーク64がL方向に移動しディスコネクト機構50が連結した状態で、スリーブ60はサイドギア軸58の歯部58aと結合している。状態検出部52は、駆動制御部36にフィードバック情報として連結信号を出力する。   FIG. 8B shows a state where the fork 64 is moved in the L direction and the disconnect mechanism 50 is connected during four-wheel drive, and the sleeve 60 is coupled to the tooth portion 58 a of the side gear shaft 58. The state detection unit 52 outputs a connection signal as feedback information to the drive control unit 36.

この状態では、ドライブピニオン144によりリングギア146が回転し、左前輪駆動軸156と右前輪駆動軸158を同方向に回転させる。二輪駆動に戻る際にはフォーク64がU方向に移動しディスコネクト機構50は非連結状態に戻る。   In this state, the ring gear 146 is rotated by the drive pinion 144, and the left front wheel drive shaft 156 and the right front wheel drive shaft 158 are rotated in the same direction. When returning to the two-wheel drive, the fork 64 moves in the U direction, and the disconnect mechanism 50 returns to the disconnected state.

図9は、図1の駆動力制御装置24の処理手順を示したフローチャートである。まず、本実施形態による四輪駆動車のイグニッションスイッチをオンし電源が投入されると、駆動制御装置24において処理が開始され、ステップS1で、従動輪差動装置48に備わるディスコネクト機構50が接続しているか否かの連結状態を状態検出部52にて検出し、ステップS2で、駆動力配分装置40の駆動力の配分状態を従動輪トルク検出部44にて検出する。   FIG. 9 is a flowchart showing a processing procedure of the driving force control device 24 of FIG. First, when the ignition switch of the four-wheel drive vehicle according to the present embodiment is turned on and the power is turned on, processing is started in the drive control device 24, and in step S1, the disconnect mechanism 50 provided in the driven wheel differential device 48 is installed. The connection state of whether or not it is connected is detected by the state detection unit 52, and the distribution state of the driving force of the driving force distribution device 40 is detected by the driven wheel torque detection unit 44 in step S2.

ステップS3で、ステップS1において検出したディスコネクト機構50の連結状態、及び、ステップS2において検出した従動輪トルク値に基づき、駆動力伝達装置38が四輪駆動状態か二輪駆動状態かを判断し、二輪駆動と判定するとステップS4に進む。   In step S3, based on the connection state of the disconnect mechanism 50 detected in step S1 and the driven wheel torque value detected in step S2, it is determined whether the driving force transmission device 38 is in a four-wheel drive state or a two-wheel drive state. If it is determined that the two-wheel drive, the process proceeds to step S4.

ステップS4で、各輪の車輪速度を車輪回転速度検出部14にて検出し、ステップS5で、ステップS4において検出した従動輪の車輪速度に基づき、車体速度を車体速度演算部28にて計算する。続いてステップS6で、ステップS4において検出した駆動輪と従動輪の車輪速度に基づき、駆動輪のスリップ率をスリップ率演算部26にて計算する。   In step S4, the wheel speed of each wheel is detected by the wheel rotation speed detection unit 14, and in step S5, the vehicle body speed calculation unit 28 calculates the vehicle body speed based on the wheel speed of the driven wheel detected in step S4. . Subsequently, in step S6, the slip ratio calculation unit 26 calculates the slip ratio of the drive wheel based on the wheel speeds of the drive wheel and the driven wheel detected in step S4.

ステップS7で、アクセル開度をアクセル開度センサ22で検出し、ステップS8で、切替条件デーベース30からステップS7において検出したアクセル開度に対応する領域マップ32を切替条件選択部34にて選択する。   In step S7, the accelerator opening is detected by the accelerator opening sensor 22, and in step S8, the switching condition selection unit 34 selects an area map 32 corresponding to the accelerator opening detected in step S7 from the switching condition database 30. To do.

ステップS9で、ステップS5において算出した車体速度、及び、ステップS6において算出した駆動輪のスリップ率が、ステップS8において選択した切替条件の領域マップ32の二輪駆動領域にあるか否かを駆動制御部36にて判断し、二輪駆動領域にあると判定した場合は、四輪駆動に切り替える必要がないためそのままステップS1に戻り、四輪駆動領域にあると判定した場合は、四輪駆動に切り替えるべくステップS10に進む。   In step S9, the drive control unit determines whether the vehicle body speed calculated in step S5 and the slip ratio of the drive wheel calculated in step S6 are in the two-wheel drive region of the region map 32 of the switching condition selected in step S8. If it is determined in 36 that it is determined that the vehicle is in the two-wheel drive region, it is not necessary to switch to four-wheel drive, so the procedure returns to step S1. Proceed to step S10.

ステップS10で、駆動制御部36は駆動力配分装置40に対し、ディスコネクト機構50を接続可能にするシンクロトルクにトルク配分するように多板クラッチ機構42を制御し、従動輪トルク検出部44のフィードバック情報からシンクロトルクにトルク配分されたと判定したらステップS11に進む。   In step S <b> 10, the drive control unit 36 controls the multi-plate clutch mechanism 42 to distribute the torque to the driving force distribution device 40 to the synchro torque that enables the disconnect mechanism 50 to be connected. If it is determined from the feedback information that the torque is distributed to the synchro torque, the process proceeds to step S11.

ここで、シンクロトルクは、図8に示すディスコネクト機構50において、左前輪駆動軸156とサイドギア軸58を連結するためにスリーブ60をL方向にスライドさせる際に、左前輪駆動軸156の回転速度にサイドギア軸58の回転速度を同期させることの可能な従動輪トルクである。   Here, the synchro torque is determined by the rotational speed of the left front wheel drive shaft 156 when the sleeve 60 is slid in the L direction to connect the left front wheel drive shaft 156 and the side gear shaft 58 in the disconnect mechanism 50 shown in FIG. This is the driven wheel torque that can synchronize the rotational speed of the side gear shaft 58 to the wheel.

ステップS11で、駆動制御部36はディスコネクト機構50に対し、連結を接続するよう制御し、状態検出部52のフィードバック情報からディスコネクト機構50が接続されたと判定したら、ステップS12で、駆動制御部36は通常のトルク配分で駆動力配分装置40を制御し、ステップS1に戻る。   In step S11, the drive control unit 36 controls the disconnect mechanism 50 to connect the coupling, and when it is determined from the feedback information of the state detection unit 52 that the disconnect mechanism 50 is connected, in step S12, the drive control unit 36 36 controls the driving force distribution device 40 by normal torque distribution and returns to step S1.

ステップS3で、四輪駆動と判定した場合はステップS13に進み、ステップS13で、駆動制御部36は、従動輪トルク検出部44のフィードバック情報からイニシャルトルク制御の状態か否かを判断し、イニシャルトルク制御と判定したらステップS14に進む。   If it is determined in step S3 that the vehicle is four-wheel drive, the process proceeds to step S13. In step S13, the drive control unit 36 determines whether or not the initial torque control state is obtained from the feedback information of the driven wheel torque detection unit 44. If it determines with torque control, it will progress to step S14.

ここで、イニシャルトルクは、二輪駆動から四輪駆動に切り替えた際の従動輪に配分される定常的なトルクであり、イニシャルトルクで走行している場合は、危機回避的な四輪駆動ではなく安定した四輪走行状態を意味する。すなわち、危機回避的な四輪駆動であれば四輪駆動を維持しなければならず、ステップS13でイニシャルトルク制御でないと判定した場合は、二輪駆動に切り替えるか否かの判定をする必要がないため、そのままステップS1に戻る。   Here, the initial torque is a steady torque distributed to the driven wheels when switching from two-wheel drive to four-wheel drive, and is not a four-wheel drive that avoids crisis when running with the initial torque. It means a stable four-wheel driving state. That is, if the four-wheel drive is a crisis-avoidance four-wheel drive, the four-wheel drive must be maintained. If it is determined in step S13 that the initial torque control is not performed, it is not necessary to determine whether to switch to the two-wheel drive. Therefore, the process returns to step S1 as it is.

ステップS14で、車体情報として各輪の車輪速度、車体加速度、変速比、操舵角及びアクセル開度を検出し、ステップS15で、ステップS14において検出した車体情報に基づき、車体速度を車体速度演算部28にて計算する。続いてステップS16で、ステップS14で検出した駆動輪と従動輪の車輪速度、及び、ステップS15で算出した車体速度に基づき、駆動輪と従動輪のスリップ率をスリップ率演算部26にて計算する。   In step S14, wheel speed, vehicle acceleration, gear ratio, steering angle, and accelerator opening of each wheel are detected as vehicle information. In step S15, the vehicle speed is calculated based on the vehicle information detected in step S14. Calculate at 28. Subsequently, in step S16, the slip ratio calculation unit 26 calculates the slip ratio of the drive wheel and the driven wheel based on the wheel speed of the drive wheel and the driven wheel detected in step S14 and the vehicle body speed calculated in step S15. .

ステップS17で、アクセル開度をアクセル開度センサ22で検出し、ステップS18で、切替条件デーベース30からステップS17において検出したアクセル開度に対応する領域マップ32を切替条件選択部34にて選択する。   In step S17, the accelerator opening is detected by the accelerator opening sensor 22, and in step S18, the switching condition selection unit 34 selects an area map 32 corresponding to the accelerator opening detected in step S17 from the switching condition database 30. To do.

ステップS19で、ステップS15において算出した車体速度、及び、ステップS16において算出した駆動輪と従動輪のスリップ率が、ステップS18において選択した切替条件の領域マップ32の四輪駆動領域にあるか否かを駆動制御部36にて判断し、四輪駆動領域にあると判定した場合は、二輪駆動に切り替える必要がないためそのままステップS1に戻り、二輪駆動領域にあると判定した場合は、二輪駆動に切り替えるべくステップS20に進む。   In step S19, whether the vehicle body speed calculated in step S15 and the slip ratio of the drive wheel and the driven wheel calculated in step S16 are in the four-wheel drive region of the region map 32 of the switching condition selected in step S18. If it is determined by the drive control unit 36 and it is determined that the vehicle is in the four-wheel drive region, it is not necessary to switch to two-wheel drive. Proceed to step S20 to switch.

ステップS20で、駆動制御部36は駆動力配分装置40に対し、従動輪へのトルク配分を停止するように多板クラッチ機構42を制御し、従動輪トルク検出部44のフィードバック情報から多板クラッチ機構42が開放されたと判定したらステップS21に進む。   In step S20, the drive control unit 36 controls the multi-plate clutch mechanism 42 to stop the torque distribution to the driven wheel with respect to the driving force distribution device 40, and the multi-plate clutch is determined from the feedback information of the driven wheel torque detection unit 44. If it is determined that the mechanism 42 has been released, the process proceeds to step S21.

ステップS21で、駆動制御部36はディスコネクト機構50に対し、連結を切断するよう制御し、状態検出部52のフィードバック情報からディスコネクト機構50が切断されたと判定したらステップS1に戻る。   In step S21, the drive control unit 36 controls the disconnect mechanism 50 to disconnect, and if it is determined from the feedback information of the state detection unit 52 that the disconnect mechanism 50 has been disconnected, the process returns to step S1.

本発明は上記の実施形態に限定されず、その目的と利点を損なうことのない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
The present invention is not limited to the above-described embodiment, includes appropriate modifications that do not impair the object and advantages thereof, and is not limited by the numerical values shown in the above-described embodiment.

本発明による四輪駆動車用駆動力伝達システムの実施形態の機能構成を示したブロック図The block diagram which showed the function structure of embodiment of the driving force transmission system for four-wheel drive vehicles by this invention 図1の駆動方式切替条件の領域マップを示す説明図Explanatory drawing which shows the area | region map of the drive system switching condition of FIG. 駆動方式切替条件の他の実施形態を示す説明図Explanatory drawing which shows other embodiment of drive system switching conditions 図1の駆動力伝達装置の実施形態を示した説明図Explanatory drawing which showed embodiment of the driving force transmission apparatus of FIG. 図4の駆動力配分装置の実施形態を示した断面図Sectional drawing which showed embodiment of the driving force distribution apparatus of FIG. 図1の駆動力伝達装置の他の実施形態を示した説明図Explanatory drawing which showed other embodiment of the driving force transmission apparatus of FIG. 図6の駆動力配分装置の実施形態を示した断面図Sectional drawing which showed embodiment of the driving force distribution apparatus of FIG. 図4の従動輪差動装置の実施形態を示した断面図Sectional drawing which showed embodiment of the driven-wheel differential gear of FIG. 図1の駆動力制御装置の処理手順を示したフローチャートThe flowchart which showed the process sequence of the driving force control apparatus of FIG. 従来のFRベースの四輪駆動車用駆動力伝達装置の説明図Explanatory diagram of a conventional FR-based four-wheel drive vehicle driving force transmission device 図10の切断機構を備えた中央差動装置の実施例を示す説明図Explanatory drawing which shows the Example of the center differential with the cutting | disconnection mechanism of FIG. 従来のFFベースの四輪駆動車用駆動力伝達装置の説明図Explanatory diagram of a conventional FF-based four-wheel drive vehicle driving force transmission device 図12の多板クラッチ機構の実施例を示す説明図Explanatory drawing which shows the Example of the multi-plate clutch mechanism of FIG.

符号の説明Explanation of symbols

10:四輪駆動用駆動力伝達システム
12:車体情報検出装置
14:車体速度検出部
16:車体加速度検出部
18:変速比検出部
20:操舵角センサ
22:アクセル開度センサ
24:駆動制御装置
26:スリップ率演算部
28:車体速度演算部
30:切替条件データベース
32:領域マップ
34:切替条件選択部
36:駆動制御部
38:駆動力伝達装置
40:駆動力配分装置
42:多板クラッチ機構
44:従動輪トルク検出部
46:駆動輪差動装置
48:従動輪差動装置
50:ディスコネクト機構
52:状態検出部
54:デフケース
56:ピニオン軸
58:サイドギア軸
60:スリーブ
62:フォーク
64:シフト軸
100、200:四輪駆動車
102,202:エンジン
104,204:変速機
106:後輪プロペラシャフト
108、110、166、168、208、210:自在継手
112、212:入力軸
114、214:後輪出力軸
116、118:スプロケット
120:チェーンベルト
122:前輪出力軸
124、144:ドライブピニオン
126、146、226、246:リングギア
128、130、148、150、228、230、248、250:ピニオン
132、134、152、154、232、234、252、254:サイドギア
136、256:左後輪駆動軸
138、258:右後輪駆動軸
140、260:左後輪
142、262:右後輪
156、236:左前輪駆動軸
158、238:右前輪駆動軸
160、240:左前輪
162、242:右前輪
164:前輪プロペラシャフト
170:前輪駆動力伝達区間
172、272:ケース
174、274:ボールカム機構
176:クラッチハブ
178:クラッチドラム
180、280:クラッチ板
182、282:固定カムプレート
184、284:回転カムプレート
186、286:ボールカム溝
188、288:ギア部
190、290:ボール
192、292:サーボモータ装置
194、294:駆動ギア
196、296:押圧部材
198、298:復帰ばね
206:プロペラシャフト
216:ベベルギア
218:出力ピニオン
224:出力ギア
270:後輪駆動力伝達区間
300、400:駆動力伝達装置
302、402:四輪駆動車
304、404:エンジン
306、406:変速機
308:駆動力配分装置
310、410:多板クラッチ機構
312:チェーンベルト機構
314:後輪プロペラシャフト
316:前輪プロペラシャフト
318、418:後輪差動装置
320、420:左後輪
322、422:右後輪
324、424:前輪差動装置
326、426:左前輪
328、428:右前輪
330:前輪駆動力伝達区間
332、432:入力軸
334:後輪出力軸
336:前輪出力軸
338、340:スプロケット
342:チェーンベルト
344:遊星歯車機構
346:遊星キャリア
348:遊星ギア
350:外輪ギア
352:太陽ギア
354:太陽ギア軸
356:スプロケット軸
358、360、362:歯部
364:スリーブ
366:シフト軸
368:外輪部
370:流体継手
372:前輪駆動軸
374:ディスコネクト機構
408:駆動力分岐装置
412:リングギア
414:プロペラシャフト
416:差動機構
430:後輪駆動力伝達区間
434:出力軸
436:クラッチ板
438:ボールカム機構
440:パイロットクラッチ機構
442:電磁石装置
10: Four-wheel drive driving force transmission system 12: Vehicle information detector 14: Vehicle speed detector 16: Vehicle acceleration detector 18: Gear ratio detector 20: Steering angle sensor 22: Accelerator opening sensor 24: Drive controller 26: Slip rate calculation unit 28: Vehicle speed calculation unit 30: Switching condition database 32: Area map 34: Switching condition selection unit 36: Drive control unit 38: Driving force transmission device 40: Driving force distribution device 42: Multi-plate clutch mechanism 44: driven wheel torque detection unit 46: drive wheel differential device 48: driven wheel differential device 50: disconnect mechanism 52: state detection unit 54: differential case 56: pinion shaft 58: side gear shaft 60: sleeve 62: fork 64: Shift shaft 100, 200: Four-wheel drive vehicle 102, 202: Engine 104, 204: Transmission 106: Rear wheel propeller shaft 108, 11 166, 168, 208, 210: universal joint 112, 212: input shaft 114, 214: rear wheel output shaft 116, 118: sprocket 120: chain belt 122: front wheel output shaft 124, 144: drive pinion 126, 146, 226 246: Ring gear 128, 130, 148, 150, 228, 230, 248, 250: Pinion 132, 134, 152, 154, 232, 234, 252, 254: Side gear 136, 256: Left rear wheel drive shaft 138, 258: Right rear wheel drive shaft 140, 260: Left rear wheel 142, 262: Right rear wheel 156, 236: Left front wheel drive shaft 158, 238: Right front wheel drive shaft 160, 240: Left front wheel 162, 242: Right front wheel 164 : Front wheel propeller shaft 170: Front wheel driving force transmission section 172 and 272: Cases 174 and 2 4: Ball cam mechanism 176: Clutch hub 178: Clutch drum 180, 280: Clutch plate 182, 282: Fixed cam plate 184, 284: Rotating cam plate 186, 286: Ball cam groove 188, 288: Gear portion 190, 290: Ball 192 292: Servo motor device 194, 294: Drive gear 196, 296: Pressing member 198, 298: Return spring 206: Propeller shaft 216: Bevel gear 218: Output pinion 224: Output gear 270: Rear wheel driving force transmission section 300, 400 : Driving force transmission device 302, 402: Four-wheel drive vehicle 304, 404: Engine 306, 406: Transmission 308: Driving force distribution device 310, 410: Multi-plate clutch mechanism 312: Chain belt mechanism 314: Rear wheel propeller shaft 316 : Front wheel propeller shaft 318, 418: Rear wheel differential device 320, 420: Left rear wheel 322, 422: Right rear wheel 324, 424: Front wheel differential device 326, 426: Left front wheel 328, 428: Right front wheel 330: Front wheel driving force transmission Sections 332, 432: Input shaft 334: Rear wheel output shaft 336: Front wheel output shaft 338, 340: Sprocket 342: Chain belt 344: Planetary gear mechanism 346: Planetary carrier 348: Planetary gear 350: Outer ring gear 352: Sun gear 354: Sun gear shaft 356: sprocket shaft 358, 360, 362: tooth portion 364: sleeve 366: shift shaft 368: outer ring portion 370: fluid coupling 372: front wheel drive shaft 374: disconnect mechanism 408: driving force branching device 412: ring gear 414: Propeller shaft 416: Differential mechanism 430: Rear wheel driving force transmission section 434: Output shaft 43 : Clutch plate 438: ball cam mechanism 440: the pilot clutch mechanism 442: electromagnetic device

Claims (10)

二輪駆動が可能であって、四輪駆動時には走行条件に応じた駆動力を従動輪へ伝達するフルタイム四輪駆動システムに於いて、
動力源からの駆動力を入力軸に入力し駆動輪出力軸に出力すると共に、従動輪出力軸への駆動力配分を制御する駆動力配分装置と、
前記従動輪出力軸からの駆動力を入力し左右従動輪駆動軸に出力すると共に、前記左右従動輪駆動軸の回転速度差を吸収する従動輪差動装置と、
前記従動輪差動装置と前記左右従動輪駆動軸の何れか一方又は両方との連結を切断可能なディスコネクト機構と、
車体速度を算出する車体速度演算部と、
駆動輪及び従動輪のスリップ率を算出するスリップ率演算部と、
前記車体速度及び前記スリップ率に基づき前記駆動力配分装置及び前記ディスコネクト機構を制御する駆動制御部と、
を備え、
所定の走行条件の際に前記駆動力配分装置による前記従動輪出力軸への駆動力の伝達を絶つと共に、前記ディスコネクト機構により前記従動輪差動装置と前記左右従動輪駆動軸の何れか一方又は両方との連結を切断して前記従動輪出力軸から前記従動輪差動装置までの従動輪駆動区間の回転を止め、自動的に二輪駆動とすることを特徴とする四輪駆動車用駆動力伝達システム。
In a full-time four-wheel drive system that is capable of two-wheel drive and transmits the driving force according to the driving conditions to the driven wheel during four-wheel drive,
A driving force distribution device that inputs the driving force from the power source to the input shaft and outputs it to the driving wheel output shaft, and controls the driving force distribution to the driven wheel output shaft;
A driven wheel differential device that inputs a driving force from the driven wheel output shaft and outputs the driving force to the left and right driven wheel drive shafts, and absorbs a rotational speed difference between the left and right driven wheel drive shafts;
A disconnect mechanism capable of cutting the connection between the driven wheel differential and either one or both of the left and right driven wheel drive shafts;
A vehicle speed calculation unit for calculating the vehicle speed,
A slip ratio calculator for calculating the slip ratio of the driving wheel and the driven wheel;
A drive control unit for controlling the drive force distribution device and the disconnect mechanism based on the vehicle body speed and the slip ratio;
With
The driving force distribution device interrupts transmission of the driving force to the driven wheel output shaft under a predetermined traveling condition, and the disconnected mechanism causes either one of the driven wheel differential device or the left and right driven wheel drive shafts. Or the connection with both is cut to stop the rotation of the driven wheel drive section from the driven wheel output shaft to the driven wheel differential, and the two-wheel drive is automatically performed. Power transmission system.
請求項1記載の四輪駆動車用駆動力伝達システムに於いて、
前記駆動輪のスリップ率と前記車体速度の相関で示される駆動方式切替閾値により四輪駆動領域と二輪駆動領域に区切られた領域マップを備え、
前記所定の走行条件として、前記領域マップを参照することを特徴とする四輪駆動車用駆動力伝達システム。
The driving force transmission system for a four-wheel drive vehicle according to claim 1,
A region map divided into a four-wheel drive region and a two-wheel drive region by a drive system switching threshold indicated by the correlation between the slip ratio of the drive wheel and the vehicle body speed,
A driving force transmission system for a four-wheel drive vehicle, wherein the region map is referred to as the predetermined traveling condition.
請求項2記載の四輪駆動車用駆動力伝達システムに於いて、前記領域マップは、
四輪駆動時に参照する二輪駆動切替閾値からなる四輪駆動時領域マップと、
二輪駆動時に参照する四輪駆動切替閾値からなる二輪駆動時領域マップと、
を備えることを特徴とする四輪駆動車用駆動力伝達システム。
The driving force transmission system for a four-wheel drive vehicle according to claim 2, wherein the region map is:
A four-wheel drive area map consisting of two-wheel drive switching thresholds to be referred to during four-wheel drive;
Two-wheel drive area map consisting of four-wheel drive switching thresholds to be referred to during two-wheel drive,
A driving force transmission system for a four-wheel drive vehicle.
請求項2及び3記載の四輪駆動車用駆動力伝達システムに於いて、
アクセル開度を検出するアクセル開度センサを備え、
前記領域マップを前記アクセル開度に応じて複数備えることを特徴とする四輪駆動車用駆動力伝達システム。
In the driving force transmission system for a four-wheel drive vehicle according to claim 2 and 3,
It has an accelerator opening sensor that detects the accelerator opening,
A driving force transmission system for a four-wheel drive vehicle, comprising a plurality of the area maps according to the accelerator opening.
請求項2及び3記載の四輪駆動車用駆動力伝達システムに於いて、
車体加速度を検出する加速度センサを備え、
前記領域マップを前記車体加速度に応じて複数備えることを特徴とする四輪駆動車用駆動力伝達システム。
In the driving force transmission system for a four-wheel drive vehicle according to claim 2 and 3,
It has an acceleration sensor that detects vehicle acceleration,
A driving force transmission system for a four-wheel drive vehicle, comprising a plurality of the area maps according to the vehicle body acceleration.
請求項1記載の四輪駆動車用駆動力伝達システムに於いて、
前記所定の走行条件として、前記駆動輪のスリップ率が所定の二輪駆動切替値以下の場合に自動的に二輪駆動とすることを特徴とする四輪駆動車用駆動力伝達システム。
The driving force transmission system for a four-wheel drive vehicle according to claim 1,
A driving force transmission system for a four-wheel drive vehicle, wherein the two-wheel drive is automatically performed when the slip ratio of the drive wheel is equal to or less than a predetermined two-wheel drive switching value as the predetermined traveling condition.
請求項6記載の四輪駆動車用駆動力伝達システムに於いて、
前記所定の走行条件として、前記車体速度が所定値以下の場合は自動的に四輪駆動とすることを特徴とする四輪駆動車用駆動力伝達システム。
The driving force transmission system for a four-wheel drive vehicle according to claim 6,
A driving force transmission system for a four-wheel drive vehicle, wherein, as the predetermined traveling condition, when the vehicle body speed is a predetermined value or less, four-wheel drive is automatically performed.
請求項6記載の四輪駆動車用駆動力伝達システムに於いて、
二輪駆動時に、前記駆動輪のスリップ率が所定の四輪駆動切替値を超えた場合は自動的に四輪駆動とすることを特徴とする四輪駆動車用駆動力伝達システム。
The driving force transmission system for a four-wheel drive vehicle according to claim 6,
A driving force transmission system for a four-wheel drive vehicle, wherein when the two-wheel drive, the slip ratio of the drive wheel exceeds a predetermined four-wheel drive switching value, the four-wheel drive is automatically performed.
請求項6乃至8記載の四輪駆動車用駆動力伝達システムに於いて、
アクセル開度を検出するアクセル開度センサを備え、
前記二輪駆動切替値又は四輪駆動切替値を前記アクセル開度に応じて可変とすることを特徴とする四輪駆動車用駆動力伝達システム。
The drive power transmission system for a four-wheel drive vehicle according to claim 6 to 8,
It has an accelerator opening sensor that detects the accelerator opening,
A driving force transmission system for a four-wheel drive vehicle, wherein the two-wheel drive switching value or the four-wheel drive switching value is variable according to the accelerator opening.
請求項6乃至8記載の四輪駆動車用駆動力伝達システムに於いて、
車体加速度を検出する加速度センサを備え、
前記二輪駆動切替値又は四輪駆動切替値を前記車体加速度に応じて可変とすることを特徴とする四輪駆動車用駆動力伝達システム。
The drive power transmission system for a four-wheel drive vehicle according to claim 6 to 8,
It has an acceleration sensor that detects vehicle acceleration,
A driving force transmission system for a four-wheel drive vehicle, wherein the two-wheel drive switching value or the four-wheel driving switching value is variable according to the vehicle body acceleration.
JP2008007785A 2008-01-17 2008-01-17 Driving force transmission system for four-wheel drive vehicles Expired - Fee Related JP5112890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007785A JP5112890B2 (en) 2008-01-17 2008-01-17 Driving force transmission system for four-wheel drive vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007785A JP5112890B2 (en) 2008-01-17 2008-01-17 Driving force transmission system for four-wheel drive vehicles

Publications (2)

Publication Number Publication Date
JP2009166706A true JP2009166706A (en) 2009-07-30
JP5112890B2 JP5112890B2 (en) 2013-01-09

Family

ID=40968399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007785A Expired - Fee Related JP5112890B2 (en) 2008-01-17 2008-01-17 Driving force transmission system for four-wheel drive vehicles

Country Status (1)

Country Link
JP (1) JP5112890B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540640A (en) * 2010-10-11 2013-11-07 デホ カンパニー リミテッド Tractor
JP2014506542A (en) * 2011-02-18 2014-03-17 ジャガー・ランド・ローバー・リミテッド Vehicle and vehicle control method and control system
JP2014054947A (en) * 2012-09-13 2014-03-27 Toyota Motor Corp Four-wheel drive vehicle
JP2014508675A (en) * 2011-02-18 2014-04-10 ジャガー・ランド・ローバー・リミテッド Automobile, method for controlling auto
JP2014511300A (en) * 2011-02-18 2014-05-15 ジャガー・ランド・ローバー・リミテッド Automobile, method and system for controlling power transmission path of automobile
JP2014097737A (en) * 2012-11-15 2014-05-29 Jtekt Corp Four-wheel drive vehicle
JP2014205453A (en) * 2013-04-15 2014-10-30 日産自動車株式会社 Driving force distribution device
JP2016028961A (en) * 2011-02-18 2016-03-03 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited Automobile, control method of automobile and system
DE102015120394A1 (en) 2014-11-28 2016-06-02 Jtekt Corporation Control device for a vehicle with four-wheel drive
US9415684B2 (en) 2013-10-04 2016-08-16 Toyota Jidosha Kabushiki Kaisha Control device and control method for four-wheel drive vehicle
JP2016185781A (en) * 2015-03-27 2016-10-27 トヨタ自動車株式会社 Hybrid vehicle
JP2017124797A (en) * 2016-01-15 2017-07-20 株式会社ジェイテクト Drive force transmission device and drive force distribution device
EP3305576A1 (en) 2016-10-04 2018-04-11 Jtekt Corporation Control device for driving force transmission device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120140A (en) * 1988-10-28 1990-05-08 Mazda Motor Corp Controller for four-wheel drive vehicle
JPH0930285A (en) * 1995-07-20 1997-02-04 Nissan Motor Co Ltd Four-wheel drive vehicle
JPH10272949A (en) * 1997-03-31 1998-10-13 Mitsubishi Motors Corp Front-rear wheel drive vehicle
JP2007137307A (en) * 2005-11-21 2007-06-07 Nissan Motor Co Ltd Traction control device for four-wheel drive vehicle and traction control method for four-wheel drive vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120140A (en) * 1988-10-28 1990-05-08 Mazda Motor Corp Controller for four-wheel drive vehicle
JPH0930285A (en) * 1995-07-20 1997-02-04 Nissan Motor Co Ltd Four-wheel drive vehicle
JPH10272949A (en) * 1997-03-31 1998-10-13 Mitsubishi Motors Corp Front-rear wheel drive vehicle
JP2007137307A (en) * 2005-11-21 2007-06-07 Nissan Motor Co Ltd Traction control device for four-wheel drive vehicle and traction control method for four-wheel drive vehicle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540640A (en) * 2010-10-11 2013-11-07 デホ カンパニー リミテッド Tractor
US9358884B2 (en) 2011-02-18 2016-06-07 Jaguar Land Rover Limited Vehicle and method of controlling a vehicle
JP2014506542A (en) * 2011-02-18 2014-03-17 ジャガー・ランド・ローバー・リミテッド Vehicle and vehicle control method and control system
JP2014508675A (en) * 2011-02-18 2014-04-10 ジャガー・ランド・ローバー・リミテッド Automobile, method for controlling auto
JP2014511300A (en) * 2011-02-18 2014-05-15 ジャガー・ランド・ローバー・リミテッド Automobile, method and system for controlling power transmission path of automobile
US9365111B2 (en) 2011-02-18 2016-06-14 Jaguar Land Rover Limited Vehicle and method of controlling a vehicle
US9193262B2 (en) 2011-02-18 2015-11-24 Jaguar Land Rover Limited Vehicle and method of controlling a vehicle
JP2016028961A (en) * 2011-02-18 2016-03-03 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited Automobile, control method of automobile and system
JP2014054947A (en) * 2012-09-13 2014-03-27 Toyota Motor Corp Four-wheel drive vehicle
JP2014097737A (en) * 2012-11-15 2014-05-29 Jtekt Corp Four-wheel drive vehicle
US9701196B2 (en) 2012-11-15 2017-07-11 Jtekt Corporation Four-wheel-drive vehicle
EP2733003A3 (en) * 2012-11-15 2018-05-02 Jtekt Corporation Vehicle with part time four-wheel-drive
JP2014205453A (en) * 2013-04-15 2014-10-30 日産自動車株式会社 Driving force distribution device
US9415684B2 (en) 2013-10-04 2016-08-16 Toyota Jidosha Kabushiki Kaisha Control device and control method for four-wheel drive vehicle
DE102015120394A1 (en) 2014-11-28 2016-06-02 Jtekt Corporation Control device for a vehicle with four-wheel drive
US10124801B2 (en) 2014-11-28 2018-11-13 Jtekt Corporation Control apparatus for four-wheel drive vehicle
JP2016185781A (en) * 2015-03-27 2016-10-27 トヨタ自動車株式会社 Hybrid vehicle
JP2017124797A (en) * 2016-01-15 2017-07-20 株式会社ジェイテクト Drive force transmission device and drive force distribution device
EP3305576A1 (en) 2016-10-04 2018-04-11 Jtekt Corporation Control device for driving force transmission device
US10252615B2 (en) 2016-10-04 2019-04-09 Jtekt Corporation Control device for driving force transmission device

Also Published As

Publication number Publication date
JP5112890B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5112890B2 (en) Driving force transmission system for four-wheel drive vehicles
US9266522B2 (en) Driving force transmission controller and vehicle control method
EP2591937B1 (en) Torque-distribution control device for a four-wheel-drive vehicle
EP2634033A1 (en) Four-wheel-drive vehicle and control unit for four-wheel-drive vehicle
JP2005289160A (en) Driving force control method of 4-wheel drive vehicle
JP2015224005A (en) Control device of four-wheel drive vehicle
JP6123942B2 (en) Clutch control device for four-wheel drive vehicle
JP2015074278A (en) Control apparatus for four-wheel-drive vehicle
CN109780152B (en) Control device for vehicle power transmission device
JP2005289163A (en) Control method of 4-wheel drive vehicle
EP2591932B1 (en) Device for controlling torque distribution to left and right wheels on a vehicle
JP5447670B2 (en) Vehicle left and right wheel driving force distribution control device
JP6379691B2 (en) Clutch control device for four-wheel drive vehicle
JP5454688B2 (en) Vehicle left and right wheel driving force distribution control device
JP6988267B2 (en) Driving force control device and vehicle control method
JP2005289161A (en) Driving force control method of 4-wheel drive vehicle
WO2023047587A1 (en) Travel drive control device for four-wheel-drive vehicle
JP6221830B2 (en) Clutch control device for four-wheel drive vehicle
JP2023012117A (en) Power distribution device for four-wheel drive vehicle
JP2005289162A (en) Driving force control method of 4-wheel drive vehicle
JP2018158643A (en) Drive force distribution unit control apparatus
JPS6246719A (en) Transmission torque controller for four-wheel-drive vehicle
JPS6246718A (en) Transmission torque controller for four-wheel-drive vehicle
JPH01109126A (en) Four-wheel-steering four-wheel-drive vehicle
JPH01226444A (en) Transmission torque control device for 4-wheel drive car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5112890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees