JP2009135598A - 画像読み取り表示装置 - Google Patents

画像読み取り表示装置 Download PDF

Info

Publication number
JP2009135598A
JP2009135598A JP2007307849A JP2007307849A JP2009135598A JP 2009135598 A JP2009135598 A JP 2009135598A JP 2007307849 A JP2007307849 A JP 2007307849A JP 2007307849 A JP2007307849 A JP 2007307849A JP 2009135598 A JP2009135598 A JP 2009135598A
Authority
JP
Japan
Prior art keywords
image data
image
pixels
data
color image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007307849A
Other languages
English (en)
Inventor
Masahiro Mochizuki
正裕 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007307849A priority Critical patent/JP2009135598A/ja
Publication of JP2009135598A publication Critical patent/JP2009135598A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Abstract

【課題】画像データを転送する際の帯域幅が制限される場合に、フレームレートと画質を両立させる。
【解決手段】画像読み取り装置は、撮像部と、前記撮像部からの画像信号をデジタル化してRAW画像データに変換するRAW画像データ生成部と、前記RAW画像データを補正して1次カラー画像データを生成する1次カラー画像データ生成部と、前記1次カラー画像データを間引き処理して2次カラー画像データを生成する2次カラー画像データ生成部と、前記RAW画像データ,前記1次カラー画像データ,前記2次カラー画像データのいずれかを出力データとして選択するデータ選択部と、前記出力データを出力するデジタルインターフェイスとで構成され、画像表示装置は、前記出力データを入力するデジタルインターフェースと、前記出力データの種類に応じた復元方法で画像を再構築する画像処理部と、前記再構築した画像を表示する表示部とを設けた。
【選択図】 図1

Description

本発明は、読み取った画像データを転送して表示する装置に関する。
撮像素子などで読み取った画像データをパソコンなど別の装置に転送して、パソコンの画面に表示する画像読み取り表示装置の例として、カメラ付きの顕微鏡にパソコンを接続して、パソコンの画面で被検物の観察を行う顕微鏡システムが知られている。
ところが、顕微鏡からパソコンに画像データを転送するインターフェースの帯域幅や画像データ自体の容量との関係で、画像データの転送に時間が掛かる場合がある。
そこで、画像データを転送する際の帯域幅が不足する場合に、転送する画像を圧縮したり、転送する画像自体を削除することによって帯域幅の不足に対応する方法が検討されていた(例えば、特許文献1参照)。
特開平2003−219337号公報
例えば、画像を転送するインターフェースとして、USBインターフェース(USB2.0規格)を用いた場合の伝送帯域幅は、論理上480Mbps(=60MByte/sec)であるが、実際にはオーバーヘッドなど冗長部分を考えると、実質的な伝送帯域幅はその半分程度の約30MByte/secになる。
一方、1280×1024サイズのRGB画像データを転送する際のデータ量は、RGB3色で各色1Byteとして、1280×1024×3=3.9MByteとなる。伝送帯域幅が30MByte/secの場合、先のSXGAサイズの画像は、1秒間に約7.6フレーム(=30,000,000/(1280×1024×3))しか転送できない計算になる。
ところが、近年のCCD撮像素子の高速化によりSXGAサイズの画像を撮像できるCCD撮像素子は1秒間に30フレーム以上の動作が可能となっており、上記のような7.6フレーム/秒のフレームレートでは高解像かつ高速表示のニーズに対応することができない。
また、画像を圧縮して転送すると、画像を復元する際の処理速度の問題や画質が劣化するなどの問題が生じる。また、帯域幅に応じて転送する画像自体を削除する場合も、フレーム数が少なくなってしまうという問題が生じる。
上記課題に鑑み、本発明の目的は、画像データを転送する際の帯域幅が制限される場合でも、画質をあまり損なうことなく効率よく画像転送を行い、高速表示を可能にすることができる画像読み取り表示装置を提供することである。
本発明に係る画像読み取り表示装置は、読み取った画像データを外部に転送する画像読み取り装置と、前記画像読み取り装置が転送した画像データを表示する画像表示装置とからなる画像読み取り表示装置において、前記画像読み取り装置は、結像された被写体像を電気信号に変換する撮像部と、前記撮像素子で電気信号に変換された画像信号をデジタル化してRAW画像データに変換するRAW画像データ生成部と、前記RAW画像データ生成部が生成したRAW画像データを補正して1次カラー画像データを生成する1次カラー画像データ生成部と、前記1次カラー画像データ生成部が生成した1次カラー画像データを間引き処理を行って2次カラー画像データを生成する2次カラー画像データ生成部と、前記RAW画像データ,前記1次カラー画像データ,前記2次カラー画像データのいずれかを出力データとして選択するデータ選択部と、前記データ選択部が選択した出力データを外部に出力するデジタルインターフェイスとで構成され、前記画像表示装置は、前記画像読み取り装置から転送される画像データを入力するデジタルインターフェースと、前記デジタルインターフェースを介して入力した画像データの種類に応じた復元方法で画像を再構築する画像処理部と、前記画像処理部が再構築した画像を表示する表示部とで構成されることを特徴とする。
特に、前記1次カラー画像データ生成部は、RGBカラー画像データを生成し、前記2次カラー画像データ生成部は、前記RGBカラー画像データからYUVカラー画像データを生成した後、Y画素を千鳥状に間引く処理を行うことを特徴とする。
また、前記画像表示装置の前記画像処理部は、前記デジタルインターフェースを介して入力した画像データが2次カラー画像データである場合に、2次カラー画像データによる画像を構成する画素間の輝度変化の方向判定を行って、間引かれた画素の補間を行うことを特徴とする。
特に、前記画像表示装置の前記画像処理部は、前記間引かれた画素の上下の画素間または左右の画素間いずれかの差分値が規定値以上の場合に、上下の画素または左右の画素の平均値で間引かれた画素の補間を行い、前記間引かれた画素の上下の画素間および左右の画素間の両方の差分値が規定値以上の場合に、上下左右の画素の平均値で間引かれた画素の補間を行うことを特徴とする。
また、前記デジタルインターフェースは、USBなどの汎用インターフェースで構成されることを特徴とする。
さらに、前記画像表示装置は、パソコンであることを特徴とする。
本発明によれば、画像データを転送する際の帯域幅が制限される場合でも、画質をあまり損なうことなく効率よく画像転送を行い、且つ表示することができる。
(第1の実施形態)
第1の実施形態に係る画像読み取り表示装置101について、図面を用いて詳しく説明する。図1において、画像読み取り表示装置101は、画像読み取り装置102と、画像表示装置に相当するパソコン103とで構成される。
画像読み取り装置102は、Cマウント105を介して顕微鏡104に取り付けられた撮像部106と、ケーブル107を介して撮像部106で撮像された画像信号を入力する制御部108とで構成される。また、画像読み取り装置102のUSBインターフェース109から転送される画像データは、USBケーブル110を介してパソコン103に送られる。尚、本実施形態ではUSBインターフェース109を用いているが、IEEE1394規格のインターフェースやLANインターフェースなど、これ以外のデジタルインターフェースを用いても構わない。
図1に示したように、本実施形態では、顕微鏡104で観察する画像を画像読み取り装置102が読み取って画像データをパソコン103に転送し、パソコン103の画面に被検物151の画像を表示して観察する顕微鏡システムの一例である。
図1において、顕微鏡104は、鏡脚111と、ステージ112と、フォーカスハンドル113と、対物レンズ114と、鏡体115とで構成される。観察者は、パソコン103の画面に表示される観察画像を見ながら、顕微鏡104のフォーカスハンドル113を回してステージ112を上下させ、被検物151にフォーカスを合わせて観察する。
次に、画像読み取り装置102の構成について、図2を用いて詳しく説明する。図2は、図1で説明した撮像部106と制御部108の構成例を示すブロック図である。
図2において、例えば、図1の撮像部106は、CCD撮像素子201と、AFE(アナログフロントエンド)202とで構成される。図1の制御部108は、画像処理部203と、バッファ204と、TG(タイミングジェネレータ)205と、システムバス206と、CPU207と、ROM208と、RAM209と、USBインターフェース109とで構成される。尚、TG205は、撮像部106に含めても構わない。また、図2に示した画像読み取り表示装置101の構成は一例であり、例えば、顕微鏡104の鏡体115に装着可能なCマウント105に対応するカメラと、そのカメラで撮影した画像を入力するための画像入力インターフェースを有するパソコンとで構成しても構わない。
制御部108は、システムバス206を介してCPU207によって制御される。また、CPU207はROM208に予め記憶されたプログラムに従って動作する。さらに、CPU207は、USBインターフェース109およびUSBケーブル110を介して接続されるパソコン103から送られてくる制御コマンドに応じて制御部108の各部を制御する。また、RAM209は、CPU207によって用いられ、動作のための設定値などを記憶したり、バッファ204に記憶された画像データや画像処理部203から読み出した画像データなどを記憶する。
図2において、顕微鏡104で観察する被検物151の画像は、CCD撮像素子201で電気信号に変換されてAFE202に出力される。この時、TG205からCCD撮像素子201に画像信号を出力するタイミングを与える。
AFE202は、CCD撮像素子201から読み出された画像信号に、相関二重サンプリング回路(CDS回路)を通してノイズ除去を行ったり、適正レベルに増幅した後、A/D変換器によってデジタル画像データに変換して画像処理部203に出力する。尚、これらの処理もTG205から与えられるタイミング信号に従って行われる。
画像処理部203は、AFE202から入力した画像データに対して、色変換処理などを行う。ここで、CCD撮像素子201で撮影されてAFE202から出力される画像データはRAW画像データと呼ばれ、CCD撮像素子201の受光面にマトリクス状に配置された画素毎に読み出された生の(未処理の)画像データである。尚、画像処理部203がCCD撮像素子201からRAW画像データを入力するタイミングはTG205から与えられる。
ここで、RAW画像データについて詳しく説明する。一般に知られているJPEG規格などのカラー画像は、RGB各色の諧調は8bit(256階調)に制限されているのに対し、RAW画像データの場合は、CCD撮像素子201のハード的な諧調に応じて決まる。例えば、CCD撮像素子201が12bit入力に対応している場合は、RGB各色の諧調が12bit(4,096諧調)のRAW画像データが得られるので、ビット落ちなどが少ない高精度な色補正を行うことができる。
次にRAW画像データの画素配置について説明する。図3(a)はCCD撮像素子201の画素配置を示した図で、分かり易いように、列C1〜列C4,行R1〜行R4の4×4画素を描いてある。ベイヤー配列と呼ばれる方法でRGB各色のカラーフィルタが所定の規則に従って各画素に配置されている。例えば、行R1と行R3の奇数行では、列C1はRフィルタ、列C2はGフィルタ、列C3はRフィルタ、列C4はGフィルタのようにRとGのカラーフィルタが交互に配置されている。同様に、行R2と行R4の偶数行では、列C1はGフィルタ、列C2はBフィルタ、列C3はGフィルタ、列C4はBフィルタのようにGとBのカラーフィルタが交互に配置されている。
一方、図3(b)は、表示モニタ111に表示する際の画素配置を示した図である。尚、実際には、図3(a)のCCD撮像素子201の画素配置と同様に、表示モニタ111にもRGB各色のカラーフィルタ毎に画素が配置されているが、図3(b)ではRGBで表現できる1単位を表示モニタ111の1画素として描いてある。特に、図3(b)では、分かり易いように、表示モニタ111の画素配置をCCD撮像素子201の画素配置と同じ、列C1〜列C4,行R1〜行R4の4×4画素として描いてある。以降、列C1〜列C4,行R1〜行R4の各画素を(行番号,列番号)で示し、CCD撮像素子201の画素を撮像画素、表示モニタ111の画素を表示画素と称する。
図3(b)において、行R2で列C2の位置にある表示画素(R2,C2)は、色の3原色であるRGBの各色データが含まれた画素で様々な色を表示できる画素であるが、表示画素(R2,C2)に対応するCCD撮像素子201の撮像画素(R2,C2)は、Bのみである。そこで、画像処理部203は、RAW/RGB変換部211を有し、CCD撮像素子201から読み出したRAW画像データをRGB画像データに変換する処理を行う。
RAW画像データをRGB画像データに変換する処理は、例えば、表示画素(R2,C2)に対応するCCD撮像素子201の撮像画素(R2,C2)の周辺の8つの撮像画素(R1,C1),(R1,C2),(R1,C3),(R2,C1),(R2,C3),(R3,C1),(R3,C2),(R3,C3)から、RデータとGデータとを求めて、表示画素(R2,C2)のRGBデータとする変換処理が行われる。変換処理の一例を示すと、Rデータは、Rフィルタが配置された撮像画素(R1,C1),(R1,C3),(R3,C1),(R3,C3)の4つの画素のデータを平均して表示画素(R2,C2)のRデータとし、同様に、Gデータは、Rフィルタが配置された撮像画素(R1,C2),(R2,C1),(R2,C3),(R3,C2)の4つの画素のデータを平均して表示画素(R2,C2)のGデータとする。このような処理を繰り返すことによって、CCD撮像素子201のRAW画素データから、表示モニタ111に表示するRGB画素データに変換することができる。尚、RAW画像データをRGB画像データに変換する際に、上記のように周辺画素の平均ではなく、周辺画素の位置に応じて重み付けを行ったり、或いは計算に用いる周辺画素の数や位置を変えても構わない。
このように、図2に示した画像処理部203のRAW/RGB変換部211は、CCD撮像素子201から読み出したRAW画像データをRGB画像データに変換して、バッファ204に一時的に記憶する。尚、これらの一連の処理を、1次カラー画像データ生成処理と称する。
また、画像処理部203は、RAW/RGB変換部211が生成したRGB画像データをYUV信号と呼ばれる輝度色差信号に変換するRGB/YUV変換部212を有する。
RGB/YUV変換部212は、RGB画像データから輝度信号(Y)と2つの色差信号(UおよびV)とに変換する。変換式を(式1),(式2),(式3)に示す。
Y= 0.299R+0.587G+0.114B …(式1)
U=−0.169R−0.331G+0.500B …(式2)
V= 0.500R−0.419G−0.081B …(式3)
上記の(式1),(式2),(式3)に示したように、YUV画像データは、RGB画像データのR,G,Bデータに所定の係数を掛けて加減算して求めることができる。
ここで、RGB画像データからYUV画像データへ変換する利点について簡単に説明しておく。一般に、人間の眼は輝度信号に敏感で詳細な形状まで判別できるが、色信号には鈍感で詳細な形状は知覚しにくいという性質がある。RGB画像データのままだと、Rデータ,Gデータ,Bデータの全てに輝度信号情報が含まれているので、例えば、RGBいずれかのデータの階調数を少なくすると輝度信号の階調数も少なくなってしまう。これに対して、例えば、YUV画像データのYデータの階調数は変えずに、UデータおよびVデータの階調数を少なくしても、Yデータの解像度は維持されるため、画質の劣化が分かりにくく、扱う画像データ量を少なくすることができる。
次に、RGB画像データからYUV画像データへの変換例について図4を用いて説明する。図4は、図3(b)で説明した列C1〜列C4,行R1〜行R4の4×4画素各画素のRGB画像データを(式1),(式2),(式3)に代入してYUV画像データに変換した後の様子をYUVそれぞれについて描いた図である。図4(a)は(式1)に従って求めた輝度信号Yの画素配置を示し、図4(b)は(式2)に従って求めた色差信号Uの画素配置を示し、図4(c)は(式3)に従って求めた色差信号Vの画素配置を示している。尚、実際に画面に表示される1画素は、同じ画素位置の輝度信号Yと色差信号Uと色差信号Vとで表示される。例えば、表示画素(R1,C1)は、輝度信号Y00と色差信号U00と色差信号V00とで表示される。
また、YUV画像データからRGB画像データへ戻す場合は、(式1),(式2),(式3)の逆の計算をすればよい。変換式を(式4),(式5),(式6)に示す。
R= 1.000Y +1.402V …(式4)
G= 1.000Y−0.344U−0.714V …(式5)
B= 1.000Y+1.772U …(式6)
上記の(式4),(式5),(式6)に示したように、RGB画像データは、YUV画像データのY,U,Vデータに所定の係数を掛けて加減算して求めることができる。
このようにして、図3(b)のRGB画像データを再生できる。但し、上記の場合は、RGB画像データを画素毎にYUV画像データに変換して、再び、同じ画素毎にYUV画像データをRGB画像データに変換し直しただけで、YUV画像データの階調数や画素数などを変更しない限り可逆性がある。
次に、YUV画像データの間引きについて説明する。図5は、YUV422と呼ばれている間引き方法を示した図である。尚、図5は、図4と同様に、図5(a),図5(b),図5(c)の順に、輝度信号Y,色差信号U,色差信号Vの画素配置を示している。
図5では、輝度信号Yの画素数は変えずに、色差信号UおよびVの画素数を1/2に少なくする。例えば、図5(a)の輝度信号Yは4×4の16画素であるが、図5(b)の色差信号Uおよび図5(c)の色差信号Vは2×4の8画素に間引かれている。この場合、図3(b)の行R2と行R4の色差信号U10,U11,U12,U13およびU30,U31,U32,U33を間引いて、行R1と行R3の色差信号U00,U01,U02,U03およびU20,U21,U22,U23で置き換え、図4(b)に示すように、行R1と行R2および行R2と行R4はそれぞれ同じ色差信号を用いている。また、色差信号Vについても、図5(c)に示すように、色差信号Cの場合と同様に、行R1と行R2および行R2と行R4はそれぞれ同じ色差信号を用いている。
このように、色差信号UおよびVの画素数を1/2に間引くことによって、図4の画像データ量に比べて、2/3に少なくすることができる。尚、図5では、色差信号UおよびVの列方向の2画素を1画素に間引く場合を示したが、行方向の2画素を1画素に間引いても構わない。
次に、YUV411と呼ばれる間引き方法について、図6を用いて説明する。尚、図6は、図4および図5と同様に、図6(a),図6(b),図6(c)の順に、輝度信号Y,色差信号U,色差信号Vの画素配置を示している。
図6では、輝度信号Yの画素数は変えずに、色差信号UおよびVの画素数を1/4に少なくする。例えば、図6(a)の輝度信号Yは4×4の16画素であるが、図6(b)の色差信号Uおよび図6(c)の色差信号Vは2×2の4画素に間引かれている。この場合、図3(b)の行R2と行R4および列C2と列C4の色差信号U10,U11,U12,U13,U30,U31,U32,U33,U01,U21,U03,U23とを間引いて、色差信号U00,U02,U20,U22で置き換え、図6(b)に示すように、4画素を1つの色差信号で表す。また、色差信号Vについても、図6(c)に示すように、色差信号Cの場合と同様に、4画素を1つの色差信号で表す。
このように、色差信号UおよびVの画素数を1/4に間引くことによって、図4の画像データ量に比べて、1/2に少なくすることができる。
以上、説明したように、YUV422やYUV411による間引きによって、転送する画像データ量を少なくすることができるが、伝送路の帯域幅によってはさらに画像データ量を少なくする必要が生じる。
次に、本実施形態の特徴である間引き方法について、図7を用いて説明する。尚、図7は、図4,図5,図6と同様に、図7(a),図7(b),図7(c)の順に、輝度信号Y,色差信号U,色差信号Vの画素配置を示している。
図7において、図7(b)の色差信号Uおよび図7(c)の色差信号Vは、図6(b)の色差信号Uおよび図6(c)の色差信号Vと全く同じである。図6のYUV411の場合と異なるのは、図6(a)輝度信号Yの画素数を1/2に少なくしていることである。つまり、図6(a)の輝度信号Yは4×4の16画素であるが、図7(a)の輝度信号Yは、図6(a)と同じ4×4の配置になっているが、輝度信号Y01,Y04,Y10,Y30,Y21,Y23,Y30,Y32が間引かれている。このように、輝度信号Yの画素配置を千鳥状に1/2に間引くことによって、図4の画像データ量に比べて、1/3に少なくすることができる。特に、輝度信号Yの画素サイズは、色差信号UおよびVの画素サイズのように大きくしていないので、輝度信号Yの解像度をできるだけ高く維持することができる。つまり、輝度信号Yは千鳥状に間引いているので、斜め方向の画素ピッチの解像度を維持している。
尚、上記の説明では、分かり易いように、4×4の16画素で説明したが、n行k列の画素数の場合でも、図8に示すように、千鳥状に間引くことができる。
次に、本実施形態に係る画像読み取り表示装置101の画像転送時の処理について、図9のフローチャートを用いて詳しく説明する。尚、この処理は、図1に示したように、画像読み取り装置102は、撮像部106が顕微鏡104の鏡体115にCマウント105を介して装着されている。また、画像読み取り装置102のUSBインターフェース109にはUSBケーブル110を介してパソコン103が接続され、パソコン103は顕微鏡画像を表示する画像表示ソフトウェアが立ち上げられている。以下のフローチャートは、パソコン103の画像表示ソフトウェアを中心とした処理である。
(ステップS201)パソコン103の画像表示ソフトウェア上で画像転送処理を開始する。
(ステップS202)パソコン103の画面で表示する画像の表示サイズを入力する。例えば、640×480(VGA)や1280×1024(SXGA)などを入力する。この時、パソコン103側では、画像読み取り装置102が接続されているUSBインターフェースの伝送帯域幅(伝送速度)をシステム情報として把握できるので、画像の表示サイズが入力されると、これに対応する画像データを転送した場合のフレームレートを予測することができる。
例えば、SXGAサイズの画像の場合、RGB画像データのデータ量は、RGB3色で各色1Byteとして、1280×1024×3=3.9MByteとなる。
一方、USBインターフェースの伝送帯域幅は、例えばUSB2.0規格の場合は論理上480Mbps(=60MByte/sec)であるが、実際にはオーバーヘッドなど冗長部分を考えると、実質的な伝送帯域幅はその半分程度の約30MByte/secである。
これらの情報から、パソコン103の画像表示ソフトウェアは、伝送路の帯域幅が30MByte/secの場合、先のSXGAサイズの画像は、1秒間に約7.6フレーム(=30,000,000/(1280×1024×3))のフレームレートになると計算することができる。
(ステップS203)予め設定された希望フレームレート(本実施形態では例えば初期値を15フレーム/秒とする)に応じて、転送する画像モードを選択する。画像モードの種類は、例えば、RAW画像データ,RGB画像データ,YUV422画像データ,YUV411画像データ,YUV411間引き画像データの5種類の画像モードからフレームレートに応じてパソコン103の画像表示ソフトウェアが自動的に選択する。
例えば、SXGA画像サイズでUSBインターフェースの伝送帯域幅が30MByteの場合は、先に述べたように約7.6フレーム/秒になるので、YUV422画像データを選択すると約11.4フレーム/秒になり、YUV411画像データを選択すると約15.2フレーム/秒になり、YUV411間引き画像データを選択すると約22.8フレーム/秒になることが予測できる。例えば、パソコン103の画像表示ソフトウェアは、希望フレームレートが15フレーム/秒以上に設定されていた場合はYUV411画像データを自動的に選択し、希望フレームレートが20フレーム/秒以上に設定されていた場合はYUV411間引き画像データを自動的に選択する。ここでは、希望フレームレートの初期値が15フレーム/秒なので、YUV411画像データが選択される。
(ステップS204)パソコン103の画像表示ソフトウェアは、YUV411画像データで転送するように、USBケーブル110を介して画像読み取り装置102にコマンドを送る。USBインターフェース109を介してこのコマンドを受け取った画像読み取り装置102のCPU207は、画像処理部203のRGB/YUV変換部212にYUV411間引き画像データを生成するよう指令する。さらに、CPU207は、RGB/YUV変換部212が生成してバッファ204に出力したYUV411画像データを読み出して、パソコン103に転送する。
(ステップS205)パソコン103の画像表示ソフトウェアは、パソコン103の画面に表示する画像のフレームレートを確認する。フレームレートが所定値以下になった場合はステップS206に進み、フレームレートが所定値より大きい場合はステップS204に戻る。例えば、ステップS203でYUV411画像データを選択して転送中に、伝送帯域幅が一時的に狭くなったり、画像読み取り装置102またはパソコン103の処理が追いつかなくなって、フレームレートが15フレーム/秒より小さくなった場合は、ステップS206に進む。
(ステップS206)パソコン103の画像表示ソフトウェアは、フレームレートが所定値以下になったため、転送する画像データ量が少ない画像モードに切り替えるよう画像読み取り装置102にコマンドを送り、フレームレートが上がる方向に調整する。例えば、RGB画像データの場合はYUV422画像データに切り替え、YUV422画像データの場合はYUV411画像データに切り替え、YUV411画像データの場合はYUV411間引き画像データに切り替える。
例えば、ステップS203でYUV411画像データを選択して転送中に、フレームレートが15フレーム/秒より小さくなった場合は、画像モードをYUV411間引き画像データに切り替えるよう画像読み取り装置102にコマンドを送り、ステップS204に戻る。
尚、RAW画像データは階調数が同じ場合はRGB画像データの1/3のデータ量であるが、パソコン103の画像表示ソフトウェア側でRAW画像データからRGB画像データへの変換処理を行う必要がある。
このように、本実施形態に係る画像読み取り表示装置101は、画像データを転送する際の帯域幅に応じて、希望フレームレートになるように、転送する画像データの画像モード切り替えるので、フレームレートを損なうことなく画像データを転送することができる。
次に、画像読み取り装置102からUSBインターフェース109およびUSBケーブル110を介して転送されてきた画像データをパソコン103側で画面に表示する場合の処理について説明する。尚、ここでは、画像モードがYUV411間引き画像データで送られてきた場合の表示処理について説明する。RAW画像データ,RGB画像データ,YUV422画像データ,YUV411画像データの各画像モードで送られてきた場合の表示処理は、図3〜図6で説明したように表示用の画素が構成されるだけなので、詳細な説明については省略する。YUV411間引き画像データは、図7で説明したように、輝度信号Yの画素が千鳥状に間引かれているので、パソコン103の画面に表示する前に、間引かれた画素の輝度信号をパソコン103の画像表示ソフトウェア側で復元する必要がある。
図10は、画像モードがYUV411間引き画像データの場合に、間引かれた画素の輝度信号を復元するための方向判定処理を示したフローチャートである。尚、方向判定処理とは、間引かれた画素の上下または左右方向のレベル差が規定値より大きいか否かを判定して、その判定結果に応じて間引かれた画素の補間方法を切り替える処理である。
(ステップS301)輝度信号Yの方向判定処理を開始する。
(ステップS302)判定フラグ(Y_HV_GLGA)を初期化する。つまり、Y_HV_GLGA=0000bとする。尚、bはバイナリデータを示し、4ビットの判定フラグ(Y_HV_GLGA)の最下位ビット(1ビット目)は上下方向の判定結果を示し、3ビット目は左右方向の判定結果を示す。また、各ビットが0の場合は、規定値より小さいことを示す。
(ステップS303)間引かれた画素の上下方向の差分(ここでは、差の絶対値とする)を算出する。つまり、間引かれた画素Y(n,k)の上側の画素Y((n-1),k)と下側の画素Y((n+1),k)との差分を求める。例えば、図8において、間引かれた画素Y12の値を復元する場合に、画素Y12の上下方向の画素Y02と画素Y22との差分を求める。尚、分かり易いようにY(n,k)と記載したがこれはYnkと同じものを意味し、n=1でk=2の場合はY(1,2)=Y12となり、この場合のY((n+1),k)はY22となる。
(ステップS304)ステップS303で求めた上下方向の差分が規定値a以上か否かを判別する。上下方向の差分が規定値a以上の場合はステップS305に進み、規定値aより小さい場合はステップS306に進む。
(ステップS305)判定フラグ(Y_HV_GLGA)の上下方向ビットを1にする。つまり、Y_HV_GLGA=0001bとする。処理後、ステップS306に進む。
(ステップS306)間引かれた画素の左右方向の差分(ここでは、差の絶対値とする)を算出する。つまり、間引かれた画素Y(n,k)の左側の画素Y(n,(k-1))と右側の画素Y(n,(k+1))との差分を求める。例えば、図8において、間引かれた画素Y12の値を復元する場合に、画素Y12の左右方向の画素Y11と画素Y13との差分を求める。
(ステップS307)ステップS306で求めた左右方向の差分が規定値b以上か否かを判別する。左右方向の差分が規定値b以上の場合はステップS308に進み、規定値bより小さい場合はステップS309に進む。
(ステップS308)判定フラグ(Y_HV_GLGA)の左右方向ビットを1にする。つまり、Y_HV_GLGA=0100bとする。処理後、ステップS309に進む。
(ステップS309)判定フラグ(Y_HV_GLGA)の上下方向ビットの判定を行う。上下方向ビットが1の場合はステップS310へ進み、上下方向ビットが0の場合はステップS311へ進む。
(ステップS310)間引かれた画素の値を間引かれた画素の上下方向の画素の平均値とする。つまり、間引かれた画素Y(n,k)の上側の画素Y((n-1),k)と下側の画素Y((n+1),k)との平均値を(式7)より求める。処理後、ステップS314に進む。
Y(n,k)=(Y((n-1),k)+Y((n+1),k)/2 …(式7)
(ステップS311)判定フラグ(Y_HV_GLGA)の左右方向ビットの判定を行う。左右方向ビットが1の場合はステップS312へ進み、左右方向ビットが0の場合はステップS313へ進む。
(ステップS312)間引かれた画素の値を間引かれた画素の左右方向の画素の平均値とする。つまり、間引かれた画素Y(n,k)の左側の画素Y(n,(k-1))と右側の画素Y(n,(k+1))との平均値を(式8)より求める。処理後、ステップS314に進む。
Y(n,k)=(Y(n,(k-1))+Y(n,(k+1))/2 …(式8)
(ステップS313)間引かれた画素の上下方向の画素間の差分または左右方向の画素間の差分のいずれにおいても規定値より小さかった場合は、間引かれた画素の周囲の画素(間引かれた画素の上下左右の4つの画素)の平均値を間引かれた画素の値とする。つまり、間引かれた画素Y(n,k)の上側の画素Y((n-1),k)と下側の画素Y((n+1),k)と左側の画素Y(n,(k-1))と右側の画素Y(n,(k+1))との平均値を(式9)より求める。
Y(n,k)=(Y((n-1),k)+Y((n+1),k)+Y(n,(k-1))+Y(n,(k+1))/4 …(式9)
(ステップS314)輝度信号Yの方向判定処理を終了する。
このように、YUV411間引き画像データを用いることで、画像データを転送する際の伝送路(USBインターフェースなど)の帯域幅が制限される場合でも、画質をあまり損なうことなく効率よく画像転送を行い、極端にフレームレートを落とすことなく、パソコン103の画面に高速表示することができる。また、間引かれた画素の輝度信号Yを復元する際に、方向判定処理を行うことにより、精度の高い画像の復元が可能となり、画質劣化を少なくすることができる。
尚、本実施形態では、間引かれた画素の上下画素および左右画素の4つの周辺画素の値から方向判定を行って補間するようにしたが、上方向に2画素,下方向に2画素,左方向に2画素,右方向に2画素など、同方向の複数画素の値を用いても構わない。また、この場合は、平均値ではなく、間引かれた画素に近い画素の値の寄与度を重くするなど、重み付けを行っても求めるようにしても構わない。例えば、図8において、間引かれた画素Y21の右方向の2つの画素Y22と画素Y24とを用いる場合、間引かれた画素Y21に近い画素Y22を0.7で重み付けし、画素Y22より遠い画素Y24を0.3で重み付けする。右方向や上下方向についても同様に重み付けする。このように重み付け処理することで、処理量は増加するがより高精度に間引かれた画素の値を復元することができる。
第1の実施形態に係る画像読み取り表示装置101を用いた顕微鏡システムの構成図である。 第1の実施形態に係る画像読み取り装置102のブロック図である。 RAW画像データとRGB画像データとの関係を示す説明図である。 YUV画像データの画素配置を示す説明図である。 YUV422画像データの画素配置を示す説明図である。 YUV411画像データの画素配置を示す説明図である。 YUV411間引き画像データの画素配置を示す説明図である。 YUV411間引き画像データの輝度信号Yの配置を示す説明図である。 第1の実施形態に係る画像読み取り表示装置101の画像転送時の処理を示すフローチャートである。 第1の実施形態に係る画像読み取り表示装置101の方向判定処理を示すフローチャートである。
符号の説明
101・・・画像読み取り表示装置 102・・・画像読み取り装置
103・・・パソコン 104・・・顕微鏡
106・・・撮像部 108・・・制御部
109・・・USBインターフェース 110・・・USBケーブル
113・・・フォーカスハンドル 151・・・被検物
201・・・CCD撮像素子 203・・・画像処理部
207・・・CPU 211・・・RAW/RGB変換部
212・・・RGB/YUV変換部

Claims (6)

  1. 読み取った画像データを外部に転送する画像読み取り装置と、前記画像読み取り装置が転送した画像データを表示する画像表示装置とからなる画像読み取り表示装置において、
    前記画像読み取り装置は、
    結像された被写体像を電気信号に変換する撮像部と、
    前記撮像素子で電気信号に変換された画像信号をデジタル化してRAW画像データに変換するRAW画像データ生成部と、
    前記RAW画像データ生成部が生成したRAW画像データを補正して1次カラー画像データを生成する1次カラー画像データ生成部と、
    前記1次カラー画像データ生成部が生成した1次カラー画像データを間引き処理を行って2次カラー画像データを生成する2次カラー画像データ生成部と、
    前記RAW画像データ,前記1次カラー画像データ,前記2次カラー画像データのいずれかを出力データとして選択するデータ選択部と、
    前記データ選択部が選択した出力データを外部に出力するデジタルインターフェイスと
    で構成され、
    前記画像表示装置は、
    前記画像読み取り装置から転送される画像データを入力するデジタルインターフェースと、
    前記デジタルインターフェースを介して入力した画像データの種類に応じた復元方法で画像を再構築する画像処理部と、
    前記画像処理部が再構築した画像を表示する表示部と
    で構成される
    ことを特徴とする画像読み取り表示装置。
  2. 請求項1に記載の画像読み取り表示装置において、
    前記1次カラー画像データ生成部は、RGBカラー画像データを生成し、
    前記2次カラー画像データ生成部は、前記RGBカラー画像データからYUVカラー画像データを生成した後、Y画素を千鳥状に間引く処理を行う
    ことを特徴とする画像読み取り表示装置。
  3. 請求項1または2に記載の画像読み取り表示装置において、
    前記画像表示装置の前記画像処理部は、前記デジタルインターフェースを介して入力した画像データが2次カラー画像データである場合に、2次カラー画像データによる画像を構成する画素間の輝度変化の方向判定を行って、間引かれた画素の補間を行う
    ことを特徴とする画像読み取り表示装置。
  4. 請求項3に記載の画像読み取り表示装置において、
    前記画像表示装置の前記画像処理部は、前記間引かれた画素の上下の画素間または左右の画素間いずれかの差分値が規定値以上の場合に、上下の画素または左右の画素の平均値で間引かれた画素の補間を行い、前記間引かれた画素の上下の画素間および左右の画素間の両方の差分値が規定値以上の場合に、上下左右の画素の平均値で間引かれた画素の補間を行う
    ことを特徴とする画像読み取り表示装置。
  5. 請求項1から4のいずれか一項に記載の画像読み取り表示装置において、
    前記デジタルインターフェースは、USBなどの汎用インターフェースで構成されることを特徴とする画像読み取り表示装置。
  6. 請求項1から5のいずれか一項に記載の画像読み取り表示装置において、
    前記画像表示装置は、パソコンであることを特徴とする画像読み取り表示装置。
JP2007307849A 2007-11-28 2007-11-28 画像読み取り表示装置 Withdrawn JP2009135598A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307849A JP2009135598A (ja) 2007-11-28 2007-11-28 画像読み取り表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307849A JP2009135598A (ja) 2007-11-28 2007-11-28 画像読み取り表示装置

Publications (1)

Publication Number Publication Date
JP2009135598A true JP2009135598A (ja) 2009-06-18

Family

ID=40867083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307849A Withdrawn JP2009135598A (ja) 2007-11-28 2007-11-28 画像読み取り表示装置

Country Status (1)

Country Link
JP (1) JP2009135598A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413281A (zh) * 2010-12-13 2012-04-11 松翰科技股份有限公司 影像撷取装置及其影像资料的传输方法
US9569817B2 (en) 2014-11-28 2017-02-14 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and non-transitory computer readable storage medium
JP2019012998A (ja) * 2017-06-15 2019-01-24 ブラックマジック デザイン ピーティーワイ リミテッドBlackmagic Design Pty Ltd Raw画像処理システム及び方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413281A (zh) * 2010-12-13 2012-04-11 松翰科技股份有限公司 影像撷取装置及其影像资料的传输方法
US9569817B2 (en) 2014-11-28 2017-02-14 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and non-transitory computer readable storage medium
JP2019012998A (ja) * 2017-06-15 2019-01-24 ブラックマジック デザイン ピーティーワイ リミテッドBlackmagic Design Pty Ltd Raw画像処理システム及び方法
US11363246B2 (en) 2017-06-15 2022-06-14 Blackmagic Design Pty Ltd Raw image processing system and method
JP7182907B2 (ja) 2017-06-15 2022-12-05 ブラックマジック デザイン ピーティーワイ リミテッド カメラの画像データ処理方法およびカメラ
US11770512B2 (en) 2017-06-15 2023-09-26 Blackmagic Design Pty Ltd Raw image processing system and method

Similar Documents

Publication Publication Date Title
KR101422096B1 (ko) 화상 처리장치 및 화상 처리방법
US8274576B2 (en) Still image and moving image capturing device
JP2010183357A (ja) 固体撮像素子、カメラシステムおよび固体撮像素子の駆動方法
KR20120098802A (ko) 화상처리장치
RU2432614C2 (ru) Устройство обработки изображения, способ обработки изображения и программа
JP2009077274A (ja) 画像処理装置、画像処理方法、及び撮像装置
JP2007067571A (ja) 画像処理装置
JP2007109204A (ja) 画像処理装置及び画像処理方法
JP2009164778A (ja) 撮像装置
JP4504412B2 (ja) 画像処理装置及び画像処理方法
JP2009135598A (ja) 画像読み取り表示装置
KR20050031911A (ko) 촬상 장치
KR20220030877A (ko) 다양한 인트라-프레임 아날로그 비닝을 사용하는 이미지 센서
JP3902525B2 (ja) 画像信号処理装置
US20110170776A1 (en) Image distortion correcting method and image processing apparatus
KR100763656B1 (ko) 이미지 센서 및 이미지 처리 방법
WO2014156669A1 (ja) 画像処理装置および画像処理方法
US11212477B2 (en) Image processing device, image processing method, and image processing system
JP5705027B2 (ja) 画像処理装置、画像処理装置の制御方法、およびプログラム、並びに記録媒体
JPH07322149A (ja) 撮像装置
JP6069857B2 (ja) 撮像装置
JP2009147875A (ja) 画像読み取り表示装置
JPWO2015083502A1 (ja) 画像処理装置、該方法および該プログラム
JP7289642B2 (ja) 画像処理装置、画像処理装置の制御方法、及びプログラム
JP2002359856A (ja) データ変換回路およびデジタル・カメラ

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201