JP2009128541A - 反射防止構造体の製造方法 - Google Patents

反射防止構造体の製造方法 Download PDF

Info

Publication number
JP2009128541A
JP2009128541A JP2007302317A JP2007302317A JP2009128541A JP 2009128541 A JP2009128541 A JP 2009128541A JP 2007302317 A JP2007302317 A JP 2007302317A JP 2007302317 A JP2007302317 A JP 2007302317A JP 2009128541 A JP2009128541 A JP 2009128541A
Authority
JP
Japan
Prior art keywords
substrate
electron beam
manufacturing
antireflection structure
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007302317A
Other languages
English (en)
Inventor
Takamasa Tamura
隆正 田村
Kazuhiro Yamada
和宏 山田
Kazuhiko Ishimaru
和彦 石丸
Makoto Umetani
梅谷  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007302317A priority Critical patent/JP2009128541A/ja
Publication of JP2009128541A publication Critical patent/JP2009128541A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Lens Barrels (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

【課題】微小凹凸部を有する反射防止構造体を製造する。
【解決手段】本発明の製造方法は、所定の波長よりも大きい表面粗さの粗面27pを有する基板27を準備する工程と、面電子源23を用いた電子ビームリソグラフィによって、所定の波長以下の平均ピッチを有する複数の微小凹凸部29を基板27の粗面27pに形成する工程とを含む。
【選択図】図8

Description

本発明は、反射防止構造体の製造方法に関する。
近年、光の反射を抑制する反射防止処理が表面に施された種々の光学素子が提案されている。反射防止処理としては、例えば、屈折率の比較的低い膜(低屈折率膜)や、低屈折率膜と屈折率の比較的高い膜(高屈折率膜)とが交互に積層された多層膜からなる反射防止膜を表面に形成する処理が挙げられる(例えば、特許文献1)。
しかしながら、このような低屈折率膜や多層膜からなる反射防止膜は、形成に際して蒸着法やスパッタリング法等の煩雑な工程を要する。このため、生産性が低く、生産コストが高いという問題がある。また、低屈折率膜や多層膜からなる反射防止膜は、波長依存性及び入射角依存性が比較的大きいという問題もある。
このような問題に鑑み、入射角依存性及び波長依存性の比較的小さな反射防止処理として、例えば、光学素子の表面に入射光の波長以下のピッチで微小凹凸部を規則的に形成する処理が提案されている(例えば、非特許文献1)。この処理を行うことによって、素子と空気との界面における急激な屈折率変化が抑制され、素子と空気との界面において緩やかに屈折率が変化することとなる。このため、光学素子の表面における反射が低減され、光学素子内への高い光入射率を実現することができる。
また、特許文献2には、微小凹凸部を粗面に形成する技術が開示されている。
特開2001−127852号公報 特表2001−517319号公報 ダニエル H.ラグイン(Daniel H. Raguin) G. マイケル モリス(G. Michael Morris)著、「アナリシス オブ アンチリフレクション ストラクチャード サーフェス ウィズ コンティニュアス ワン ディメンジョナル サーフェス プロファイルズ (Analysis of antireflection−structured surfaces with continuous one−dimensional surface profiles)」アプライド・オプティクス(Applied Optics)、第32巻 第14号(Vol.32,No.14)、P.2582−2598、1993年
本発明の目的は、微小凹凸部を有する反射防止構造体を製造するための方法を提供することにある。
すなわち、本発明は、
所定の波長以上の光の反射を抑制する反射防止構造体の製造方法であって、
前記所定の波長よりも大きい表面粗さの粗面を有する基板を準備する工程と、
面電子源を用いた電子ビームリソグラフィによって、前記所定の波長以下の平均ピッチを有する複数の微小凹凸部を前記基板の前記粗面に形成する工程と、
を含む、反射防止構造体の製造方法を提供する。
他の側面において、本発明は、
所定の波長以上の光の反射を抑制する反射防止構造体の製造方法であって、
面電子源を用いた電子ビームリソグラフィによって、前記所定の波長以下の平均ピッチを有する複数の微小凹凸部を有するシート部材又は原型を作製する工程と、
所定の波長よりも大きい表面粗さの粗面を有する基板を準備する工程と、
前記シート部材又は前記原型を用いて成形されたシート部材を前記基板の前記粗面に貼り合わせる工程と、
を含む、反射防止構造体の製造方法を提供する。
本発明によれば、ナノメートルサイズの微細加工が可能な、面電子源を用いた電子ビームリソグラフィによって、基板の粗面に微小凹凸部を形成する。そのため、微小凹凸部を高精度で形成できる。また、面電子源を用いた電子ビームリソグラフィでは、基板に向けて平行電子流が照射されるため、ビームを集束させずに露光が行われる。したがって、通常の電子ビーム描画のように焦点深度に依存せず、基板を加工することができる。また、平行電子流(弾道電子放出)は、電子放出角と速度分散が小さいので、粗面に対する加工も可能である。このような理由から、本発明の電子ビームリソグラフィによれば、確実に粗面上に微小凹凸部を形成できる。また、本発明では、面電子ビームによる一括露光が行われるため、点状電子ビームなどと比較してスループットが高いという利点もある。
以下、添付の図面を参照しつつ本発明の実施形態について説明する。先に、本発明の製造方法によって製造するべき反射防止構造体について説明し、その後、反射防止構造体の製造方法について説明する。
図1は反射防止構造体の一例たる拡散板1の斜視図である。図2は拡散板1の部分断面図である。拡散板1は、表示装置をはじめ、撮像装置、照明装置、プロジェクタ等の光学機器の構成部材に適用できる。半導体レーザ素子、LED素子、電球、冷陰極管等の発光素子、電荷結合素子(CCD)やCMOS等のイメージセンサ、パワーメータ、エネルギーメータ、反射率測定機器等の光検出器、マイクロレンズアレイ等に適用することもできる。
拡散板1は平面視略矩形状の面材であり、光を拡散透過させるもの(詳細には、以下に説明する微小凹凸部11によって反射が抑制される光を少なくとも拡散透過させるもの)である。拡散板1は、例えばディスプレイ等の前面に配置され、ディスプレイ表面における光の反射(外光の映り込み等)を抑制するものである。尚、拡散板1の材質は特に限定されるものではないが、樹脂製又はガラス製であってもよい。また、微粒子等が分散混入されていてもよい。
拡散板1の表面10には、図2に示すように、入射光20の波長以下の周期(好ましくは、入射光20のうち最も短い波長の光の波長以下の周期)で規則的に配列された複数の微小凹凸部11が形成されている。このため、拡散板1の表面10と空気層との間の急激な屈折率変化が抑制され、微小凹凸部11が形成された表面10の表層部において屈折率がなだらかに変化することとなる。従って、図3に示すように、微小凹凸部11を形成することによって拡散板1の表面10における反射が効果的に抑制される。
微小凹凸部11は、所定の波長(例えば400nm)以下の平均ピッチを有するものであれば不規則に配列していてもよく、反射を抑制する効果は規則的な配列の場合と同様に得られる。微小凹凸部11が規則的に配列されている場合、平均ピッチが周期に一致することになる。
微小凹凸部11は、表面10と空気層との間の界面における屈折率変化をなだらかにする機能を有するものである限りにおいて特にその形状は限定されるものではなく、例えば、略円錐状(頂部が面取り又はR面取りされていてもよい)の凹部又は凸部、角錐台状の凹部又は凸部、線条(断面形状が、三角形状(頂部がR面取りされていてもよい)、台形状、矩形状等)の凹部又は凸部であってもよい。
また、高い反射抑制効果を実現する観点から、微小凹凸部11の平均ピッチ(又は周期)が入射光20の波長以下であることが好ましい。一方、微小凹凸部11の高さが入射光20の波長の0.4倍以上であることが好ましく、入射光20の波長の1倍以上、さらには3倍以上であることがより好ましい。厳密には、入射光20が波長幅をもったものであるような場合には、微小凹凸部11の周期は、入射光20の最短波長以下であることが好ましく、微小凹凸部11の高さは入射光20の最長波長の0.4倍以上(好ましくは1倍以上、さらには3倍以上)であることが好ましい。
一方、表面10は、所定の波長(例えば400nm)よりも大きい表面粗さRcを有する粗面である。後述するように、表面10の表面粗さRcは、微小凹凸部11に由来する粗さ成分をフィルタリングすることによって測定される値でありうる。表面10は、図2に示すように非周期的な凹凸を有する面であってもよいし、図18を参照して後述するように周期的な凹凸を有する面であってもよい。
微小凹凸部11の配列が周期的である場合において、微小凹凸部11の周期は、表面10を平面視したときに観察される任意の1つの微小凹凸部11と、その微小凹凸部11から最も近い位置にある他の1つの微小凹凸部11との頂部間距離Pで規定される。頂部間距離Pは、STM(Scanning Tunneling Microscope)、AFM(Atomic Force Microscope)、SEM(Scanning Electron Microscope)等の表面観察手段によって正確に計測できる。また、微小凹凸部11の配列が非周期的である場合には、上記距離Pの平均値が平均ピッチとして規定される。微小凹凸部11の高さHは、谷底から微小凹凸部11の頂部までの距離の平均値(例えば10個の微小凹凸部11の平均値)で規定される。RzJIS(JIS B0601:2001)の定義は、上記規定に含まれるため、RzJISの測定値を、微小凹凸部の値としてよい。なお、RzJIS(JIS B0601:2001)は、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜き取り部分の平均線から縦倍率の方向に測定した、最も高い山頂から5番目までの山頂の標高の絶対値の平均値と、もっとも低い谷底から5番目までの谷底の標高の絶対値の平均値との和を求め、この値をマイクロメートル(μm)で表したものである。
尚、微小凹凸部11は入射光20のすべてに対して反射抑制効果を発揮するようなものである必要は必ずしもない。例えば、入射光20の波長が、紫外光、近紫外光、可視光、近赤外光、赤外光を含む広い波長範囲にわたるものの、400nm以上700nm以下の波長の光の反射のみを抑制すればよい場合は、微小凹凸部11の周期は400nm以下であることが好ましい。一方、微小凹凸部11の高さは700nmの0.4倍以上、すなわち280nm以上であることが好ましい。
微小凹凸部11は、その高さが表面10の各部で相互に異なるように形成されていてもよいが、作製容易性の観点から、高さが相互に略同一となるように形成されていることが好ましい。また、例えば、微小凹凸部11が錐体状の凹部や錐体状の凸部であるような場合には、複数の微小凹凸部11は、その錐体の底部中心と頂部とを結ぶ中心軸が相互に略平行となるように形成されているとよい。この場合、射出成形による拡散板1の作製が容易となる。一方、同様の理由により、微小凹凸部11が断面三角形状の線条凹部又は線条凸部であるような場合には、複数の微小凹凸部11は、横断面における底部中心と頂部とを結ぶ中心軸が、各部(例えば、1mm四方の大きさの各部)において相互に略平行となるように形成されていてもよい。
以上のように、表面10には複数の微小凹凸部11が形成されているため、表面10における光の反射が抑制される。しかしながら、表面10が滑面であるような場合には、十分に表面10における正反射を抑制することができない。
図4は入射角45度で入射する光の反射光強度を表すグラフである。
図4に示すように滑面上に微小凹凸部11を形成した場合は、射出角が約45度である反射光、すなわち正反射が観測される。このように、微小凹凸部11が形成されている表面10が滑面である場合は、入射光20の正反射を十分に抑制することができない。それに対して、図4に示すように、入射光20の波長よりも大きな表面粗さの粗面に微小凹凸部11を形成した場合は、正反射が実質的に観測されない。ここで、図1に示す拡散板1では、図2に示すように、微小凹凸部11は、入射光20の波長よりも大きな表面粗さの粗面である表面10に形成されている。詳細には、表面10は、ISO4287:1997(JIS B0601:2001に対応する)で規定される平均高さRcで入射光20の波長よりも大きな表面粗さに形成されている。従って、拡散板1では、表面10における正反射もまた十分に抑制される。但し、この正反射の発生を抑制する効果は、表面10の表面粗さがあまりに大きすぎると低下する傾向にある。表面10の表面粗さRcの好適な範囲は100μm以下である。より好ましくは50μmであり、さらに好ましくは30μmである。
また、図3に示すように、滑面に微小凹凸部11を形成した場合には、比較的大きな入射角の光に対しては十分な反射抑制効果を付与することができない。すなわち、反射率が入射角に依存することとなる。それに対して、微小凹凸部11が形成された表面10が、表面10への入射光の波長よりも大きな表面粗さに形成されている場合、図3に示すように、反射率の入射角依存性が小さく、比較的大きな入射角の光に対しても高い反射抑制効果が得られる。
図5はθと反射率との相関を表すグラフである。尚、図5中に示すθは表面10の粗さ形状の接平面(言い換えれば、表面10の微小凹凸部11を含めた形状から高周波成分として微小凹凸部11をカットオフした形状における接平面)13の法線ベクトルN2と表面10の基準面12の法線ベクトルN1とのなす角の大きさ(図7参照)である。接平面13と表面10との接点は、表面10と基準面12との交点CL(3次元座標上では交点CLが環状の線になる)に定められる。なお、基準面12は、JIS B0601:2001に規定された「平均線(ろ波うねり曲線(カットオフ波長λc:0.5mm))」を意味する。
図5に示すように、θが0度(すなわち、滑面)である場合は、微小凹凸部11が形成されていた場合であっても、例えば50度を超えるような大きな入射角、さらには70度を超えるような大きな入射角の場合は、入射角の増大と共に反射率が増大する傾向にある。それに対して、θが0度から大きくなるにつれて反射率の入射角依存性が低減され、大きな入射角の光に対しても高い反射抑制効果が得られるようになる。
具体的に、θが5度以下である部分が占める単位面積(例えば、1mm四方)当たりの割合が80%未満であることが好ましい。言い換えれば、θが5度以上である部分が占める単位面積当たりの割合が20%以上であることが好ましい。この場合、入射角が89度の光の反射率を滑面に微小凹凸部11を形成する場合と比較して約3割以上低減することができる。また、θが10度以下である部分が占める単位面積当たりの割合が90%未満であることが好ましい。言い換えれば、θが10度以上である部分が占める単位面積当たりの割合が10%以上であることが好ましい。この場合も、入射角が89度の光の反射率を滑面に微小凹凸部11を形成する場合と比較して約3割以上低減することができる。
より好ましくは、θが5度以下である部分が占める単位面積当たりの割合が50%未満であることが好ましい。言い換えれば、θが5度以上である部分が占める単位面積当たりの割合が50%以上であることが好ましい。また、θが10度以下である部分が占める単位面積当たりの割合が80%未満であることが好ましい。言い換えれば、θが10度以上である部分が占める単位面積当たりの割合が20%以上であることが好ましい。この場合、入射角が89度の光の反射率を滑面に微小凹凸部11を形成する場合と比較して約5割以上低減することができる。
さらに好ましくは、θが5度以下である部分が占める単位面積当たりの割合が30%未満であることが好ましい。言い換えれば、θが5度以上である部分が占める単位面積当たりの割合が70%以上であることが好ましい。また、θが10度以下である部分が占める単位面積当たりの割合が50%未満であることが好ましい。言い換えれば、θが10度以上である部分が占める単位面積当たりの割合が50%以上であることが好ましい。この場合、入射角が89度の光の反射率を滑面に微小凹凸部11を形成する場合と比較して約7割以上低減することができる。
次に、θの平均値(θave)の好ましい範囲について説明する。
図6はθaveと反射率との相関を表すグラフである。
図6に示すように、θaveが大きくなるにつれて入射角依存性が低下し、入射角が比較的大きな光に対しても高い反射抑制効果が得られるようになる。具体的に、θaveが5度以上であることが好ましい。この場合、入射角が89度の光の反射率を滑面に微小凹凸部11を形成する場合と比較して約3割以上低減することができる。より好ましくは、θaveが10度以上である。この場合、入射角が89度の光の反射率を滑面に微小凹凸部11を形成する場合と比較して約5割以上低減することができる。さらに好ましくは、θaveが15度以上である。この場合、入射角が89度の光の反射率を滑面に微小凹凸部11を形成する場合と比較して約6割以上低減することができる。
また、θの分布のピーク(最も頻度が高いθの値)が0度よりも大きいことが好ましく、2度以上、さらには5度以上であることが好ましい。
また、ここでは、拡散板1の表面10に微小凹凸部11が直接形成されている例について説明したが、微小凹凸部11を形成したシールを貼着又は粘着させることにより表面10を形成してもよい。言い換えれば、拡散板1は一体でなくてもよく、複数の構成部材により構成されているものであってもよい。
また、ここでは、微小凹凸部11が表面10の全面にわたって形成されている例について説明したが、微小凹凸部11を表面10の全面にわたって必ずしも設ける必要はなく、必要に応じた箇所のみに微小凹凸部11を形成してもよい。この場合に、微小凹凸部11を設けた箇所のみならず、表面10のその他の箇所も微小凹凸部11を設けた箇所と同等の表面粗さの粗面としても構わず、また、それ以下の表面粗さの滑面としてもよい。さらに、微小凹凸部11を設けていない箇所には反射率が比較的低い膜と比較的高い膜との多層膜からなるような他の反射防止構造を形成してもよい。また、微小凹凸部11が形成されている領域内においても、必要に応じて微小凹凸部11の高さや周期(ピッチ)を調節してもよい。
次に、反射防止構造体の製造方法について説明する。拡散板1などの反射防止構造体は、反射防止構造体となるべき基板の表面を粗化することによって粗面を形成し、その粗面に微小凹凸部を形成することによって製造することができる。また、始めに原型を作製し、次に原型から複製型を作製し、最後に複製型を用いて樹脂などの材料を成形することによって反射防止構造体を製造してもよい。量産向きなのは後者であるため、本明細書では後者の方法を中心に説明する。
<<原型の作製>>
1.基板の粗化
まず、原型の作製に使用する基板を準備する。基板の材料は特に限定されず、ガラス、金属、セラミック及び樹脂から選ばれるいずれかによって構成されているとよい。また、基板は透明であってもよいし、不透明であってもよい。後述するように、本実施形態においては、面電子源を用いた電子ビームリソグラフィによって微小凹凸部を形成する。
基板の表面の粗化は、機械的及び/又は化学的な方法によって行うことができる。機械的な方法として、サンドブラスト又はサンドペーパーによって粗化する方法がある。サンドブラストに代えて、ショットブラスト又はウェットブラストを採用してもよい。これらの方法によって粗化を行えば、基板の表面は、非周期的な凹凸を有する粗面となる。
基板の表面の粗化は、形成される粗面の表面粗さが所定の波長よりも大きくなるように行われる。具体的には、図7を参照して説明したように、基板の粗面の接平面の法線ベクトルと基板の基準面の法線ベクトルとのなす角度の平均値が5度以上となるように行えばよい。あるいは、平均高さRcが100μm以下(好ましくは50μm以下、さらに好ましくは30μm以下)となるように行えばよい。ブラスト処理によって粗化を行う場合には、こうした要件を満足するように、投射物の硬さ、平均粒径、投射速度等の処理条件を決定すればよい。サンドペーパーを用いて粗化を行う場合には、サンドペーパーの適切な番手を選択すればよい。凹凸が不足すると、先に説明したように、反射防止効果が不十分となる。
また、バイトのような工具で基板の表面を微細加工(研削加工又は切削加工)することによって、基板の表面を直接的に粗化してもよい。この方法によれば、凹凸のピッチや高さを自由に設定できる。具体的には、基板の表面に対するバイトの刃の角度を制御することにより、図7に示す角度θを自由に設定できる。つまり、基板の表面を直接加工する方法は、上記角度θを厳密に設定したい場合や周期的な凹凸を有する粗面を形成したい場合に推奨される方法である。また、レーザを用いて基板の表面を粗化してもよい。使用するレーザの種類や出力を制御することによって、工具による機械加工と同様に、上記角度θの制御が可能である。
一方、化学的な方法としては、基板の表面に酸又はアルカリを接触させて、基板の表面を腐蝕させる方法を例示できる。例えば、基板が単結晶(例えば単結晶シリコン)のように異方性を示す材料によって構成されている場合には、異方性エッチングを利用することによって、基板の表面にマイクロメートルサイズの凹凸(例えばテクスチャ構造)を形成することができる。もちろん、機械的な方法と化学的な方法とを組み合わせてもよい。
2.面電子源を用いた電子ビームリソグラフィによる微小凹凸部の形成
次に、面電子源を用いた電子ビームリソグラフィによって基板の粗面に微小凹凸部を形成する。以下、本明細書では、面電子源を用いた電子ビームリソグラフィを、単に「電子ビームリソグラフィ」と記載することがある。基板として用いる材料は、電子ビームに対して感光性を有さない。したがって、本実施の形態では、電子ビームリソグラフィの工程として、基板の粗面にレジスト層を形成する工程と、レジスト層に面電子ビームを照射する露光工程と、感光領域を除去する現像工程と、パターニングされたレジスト層をマスクとして用いるエッチング工程とを行う。
図8は、微小凹凸部を形成する工程の一例を示す説明図である。なお、面電子源を用いた電子ビームリソグラフィとは、面電子ビームを利用して微細なパターンを形成する技術である。本発明の露光工程では、面電子源と、面電子源と露光対象との間に配置されて、所定の形状にパターン化された吸収材とを備えた公知の露光装置を用いることができる。例えば、特開平2004−103942号公報に記載された露光装置などを使用できる。
まず、図8(a)に示すように、基板27の粗面27p上に電子ビームに対して感光性を有するレジスト層28を形成する。レジスト層28は、スピンコーティング、スプレーコーティング、ディップコーティングなどの方法で液状の電子ビームレジストを塗布することによって形成できる。電子ビームレジストとしては、例えばアクリル系レジストを用いることができる。レジスト層28の厚さは、例えば100nm〜500nmである。予めフィルム化した電子ビームレジストを基板27に積層及び圧着させてもよい。なお、粗化されていない基板にレジスト層を形成し、その後、型押しによってレジスト層とともに基板に凹凸を付与する方法も考えられる。
次に、図8(b)に示すように、面電子源23から吸収材22を介して、基板27に粗面27pのある側から面電子ビーム24を照射する(露光工程)。吸収材22は、所定のパターンを有し且つ電子ビームを吸収する材料によって構成されている。すなわち、吸収材22は、電子ビーム透過領域と電子ビーム吸収領域とを有するものであり、マスクとして機能する。吸収材22が存在しない領域が電子ビーム透過領域である。吸収材22は、例えばTa、Ni、Au、Ag、Cu、Cr、Fe、W、Ptなどの材料を用いて形成できる。露光工程の前に吸収材22を形成する工程がさらに含まれていてもよい。その場合は、例えば、電子ビームを吸収する材料を用い、当該材料に点状電子ビーム描画によって所定のパターンを形成して、吸収材22を作製する。本実施形態において、吸収材22のパターン形状は、例えば、微小凹凸部の配列を反映した格子パターンやドットパターンである。ドットパターンの場合、ドットの形状は円に限られず、三角形や六角形であってもよい。吸収材22の厚さは、電子ビームを完全に吸収できる厚さとしてもよく、部分的に厚さを変更してもよい。吸収材22の厚さを部分的に変更することにより、吸収材22における電子ビームの透過率を部分的に異ならせることができる。これにより、基板27の粗面27pに、パターン化された吸収材22の厚さに対応した3次元パターンに露光することも可能となり、微小凹凸部を精度良く形成できる。
露光工程の終了後、基板27を、キシレンなどを主成分とする現像液に浸漬する(現像工程)。電子ビームによって露光された部分は、分子鎖が切断されるため、現像液に溶解する。未露光部分は、溶解しない。現像工程を経て、図8(c)に示すように、電子ビームレジストからなる微細構造28が基板27上に形成される。なお、電子ビームレジストはネガ型およびポジ型のいずれであってもよい。
次に、現像されたレジスト層(電子ビームレジストからなる微細構造28)をマスクとして基板27をエッチングする(エッチング工程)。基板27のエッチングには、ウエットエッチングを採用してもよいし、ドライエッチングを採用してもよい。例えば、基板27が石英ガラスによって構成されている場合、CHF3とO2との混合ガスを用いてドライエッチングを行えばよい。エッチング工程を経て、図8(d)に示すように、基板27の粗面27pに微小凹凸部29が形成される。
基板27のエッチングに供する時間は、電子ビームレジストからなる微細構造28の消失に要する時間を目安に定めることができる。具体的には、微細構造28の消失に要する時間よりも若干長めにエッチング時間を定めるとよい。このようにすれば、頂部の鈍りが少ない微小凹凸部29を精度よく形成できる。エッチング工程を経て十分な高さの微小凹凸部29が形成された後にもレジスト層28(微細構造28)が残存する場合には、レジスト層28を除去するためのアッシング工程を行ってもよい。
なお、図9(a)に示すように、電子ビームレジストを塗布するよりも前に基板27の粗面27pに下地層30を形成してもよい。下地層30は、電子ビームに対して感光性を有さない材料を主成分として含む層でありうる。具体的には、下地層30として、感光性を有さない材料、例えばCr、Ni又はFeなどの金属をスパッタリング法、蒸着法、メッキ法などの方法で基板27の粗面27pに堆積させる。次に、図9(b)に示すように、下地層30の上に電子ビームレジストを塗布し、レジスト層28を形成する。
次に、図8を参照して説明した手順で露光工程及び現像工程を行い、電子ビームレジストからなる微細構造28を形成する(図9(c))。次に、現像されたレジスト層である微細構造28をマスクとして下地層30を選択エッチングする。下地層30の選択エッチングには、ウエットエッチングを採用することができる。このようにして、レジスト層28及び下地層30を含む複合構造31が形成される。最後に、図8を参照して説明した手順で複合構造31をマスクとして基板27のドライエッチングを行い、微小凹凸部29を形成する。このような方法によれば、図8を参照して説明した方法よりも微小凹凸部29の高さを稼ぎやすい。なぜなら、基板27とレジスト層28との間に下地層30(金属マスク)を挟むと、エッチング選択比を大きくとれるからである。微小凹凸部29の高さを稼ぐには、レジスト層28をある程度厚く形成する必要があるが、電子ビームレジストは長時間のエッチングでの劣化が著しいので、厚すぎるのも問題がある。こうした問題の解消に下地層30は貢献する。
<<複製型の作製>>
次に、微小凹凸部を有する基板から複製型を作製する。図10に示すのは、微小凹凸部を有する基板から電鋳によって複製型を作製する工程の説明図である。まず、図10(a)(b)に示すように、微小凹凸部29を有する基板27を無電解Niメッキ浴63に浸漬し、微小凹凸部29を被覆する無電解Niメッキ層64を形成する。次に、図10(c)に示すように、基板27を電解Niメッキ浴65に浸漬して通電し、基板27上に電解Niメッキ層66を形成する。電解Niメッキ層66の厚さは、例えば0.3〜40.0mm程度確保するとよい。無電解Niメッキ浴63としてはNi/B溶液、電解Niメッキ浴65としてはスルファミン酸ニッケル電解液などの公知のメッキ浴を用いることができる。基板27が導電性を有する場合には、図10(b)に示す無電解メッキ工程を省略してもよい。
最後に、図10(d)に示すように、無電解Niメッキ層64及び電解Niメッキ層66を有する基板27を塩基溶液67に浸漬し、Niメッキ層64,66の部分から基板27の部分を除去する。これにより、微小凹凸部68が表面66p(粗面)に形成されたNi複製型66が得られる(図10(e))。基板27の除去が難しい場合には、選択エッチングによって基板27を溶解させてもよい。さらに、基板27と複製型66との線膨張係数や弾性係数などの特性の差を利用して両者を分離させてもよい。なお、Niメッキに代えて、CuメッキやSnメッキなどの他の金属メッキを採用してもよいし、これらの2種以上を組み合わせてもよい。
さらに、上記方法で作製したNi複製型66を1次複製型として用い、2次複製型を作製することもできる。まず、図11(a)(b)に示すように、1次複製型としてのNi複製型66に離型膜69を形成する。離型膜69は、例えば、Ni複製型66の表層部を酸化することによって形成された酸化ニッケル層である。次に、図11(c)に示すように、Ni複製型66に電解Niメッキ浴65に浸漬して通電し、離型膜69を介してNi複製型66上に電解Niメッキ層80を形成する。その後、図11(d)に示すように、電解Niメッキ層80とNi複製型66とを離型膜69の位置で機械的に離間させる。これにより、微小凹凸部81を有する2次複製型としてのNi複製型80が得られる(図11(e))。
以上の操作を繰り返せば、同一の表面形状を有する複製型を何重にも作製できる。これらの複製型は、樹脂やガラスの成形型として用いることができるため、反射防止構造体の量産に好適である。
次に、図12を参照して、微小凹凸部を有する基板からプレス成形によって複製型を作製する方法を説明する。この方法の趣旨は、微小凹凸部を有する基板を別途準備した材料に押し付け、当該基板の表面の形状をその材料に転写することにある。微小凹凸部を有する基板として、図8を参照して説明した基板27を用いることができる。基板27が石英ガラスのような硬質な材料によって構成されていると、加圧によって微小な凹凸が損傷を受けにくいので好適である。
図12に示すように、まず、微小凹凸部29を有する基板27の粗面27pに保護膜91を形成する。保護層91は、例えばIr−Rh合金を主成分として含む層であり、スパッタリング法などの方法によって10〜150nm程度の厚さに形成することができる。一方で、凹部93gを有する下型93を準備する。下型93は、耐熱性に優れた材料、例えばWCなどの超硬合金によって構成されているとよい。下型93の凹部93gの内面に保護層97を形成した後、基板27の形状を転写するべきガラス材料94を凹部93gに収容する。保護層97は、例えばIr−Rh合金によって構成することができる。ガラス材料94として、基板27の構成材料よりもガラス転移点が低いガラス、例えばクラウン系ホウケイ酸ガラス(ガラス転移点Tg:501℃、屈伏点At:549℃)を用いるとよい。ガラス材料94の表面には、離型を容易化するための離型膜95を形成する。
離型膜95は、Pt、Pd、Ir、Rh、Os、Ru、Re、W及びTaからなる群より選ばれる1つの金属もしくはこれらの金属を含有する合金、カーボン(ダイアモンドライクカーボンDLCを含む)、窒化ホウ素などで構成されているとよい。離型膜95の厚さは10〜150nm程度である。このような範囲の厚さとすることにより、微細構造が陥没しにくくなる。また、離型膜95を設けることによって、ガラス材料94が基板27に直接接触し、融着することを防止できる。
次に、図12(b)に示すように、基板27及び下型93を窒素ガスなどの不活性ガスで雰囲気が置換された加熱炉96に収容する。そして、ガラス材料94のガラス転移点Tgを超える温度、好ましくは屈伏点Atを少し超えるぐらいの温度(例えば590℃前後)まで加熱炉93内を昇温する。その後、基板27とガラス材料94との間に加圧力を作用させる(図12(c))。両者の間に加圧力を作用させた状態を所定時間(例えば数分間)維持した後、積極的な冷却を行わず、上型としての基板27をガラス材料94から離す。その後、ガラス材料94を徐冷することにより、表面(粗面)に微小凹凸部98が形成されたガラス製2次複製型94が得られる。
<<拡散板の成形>>
拡散板1のような成形品は、図10を参照して説明した複製型66を用いた射出成形法によって製造することができる。図13(a)に示すように、まず、作製した複製型66をインサート型として、上金型101と下金型102との間に組み込む。樹脂を充填するキャビティSHを形成する部分にシランカップリング剤を塗布して離型層103を形成し、型締めする。次に、図13(b)(c)に示すように、金型101,102を加熱し、溶融樹脂をキャビティSHに射出する。図13(d)に示すように、金型101,102の温度を下げて樹脂を固化させ、型開きする。これにより、反射防止構造体としての樹脂成型品105A(拡散板1)が得られる。射出する樹脂の種類に特に制限はなく、アクリル樹脂、フッ素樹脂、オレフィン系樹脂、ポリカーボネート樹脂など射出成形が可能な種々の樹脂を用いることができる。
次に、反射防止構造体の他の製造方法について説明する。拡散板1などの反射防止構造体は、以下に説明する方法によっても製造することができる。図14(a)(b)に示すように、まず、電子ビームリソグラフィによって、所定の波長以下の平均ピッチを有する複数の微小凹凸部122を有する原型120を作製する。つまり、平滑な面に微小凹凸部122を形成する。次に、図14(c)に示すように、プレス成形によって、原型120の表面形状をシート部材124に転写する。なお、原型120に代えて、電子ビーム感光材料からなるシート部材に微小凹凸部を直接形成してもよい。
一方、所定の波長よりも大きい表面粗さの粗面を有する基板128(図14(e)参照)を別途準備する。この基板128は、レンズ鏡筒など最終製品を構成する部品でありうる。そして、原型120を用いて成形したシート部材124(又は電子ビームリソグラフィによって微小凹凸部を直接作り込んだシート部材)を基板128の粗面128pに貼り合わせる。貼り合わせは、接着剤を用いて行うことができる。粗面128pにシート部材124が追従できるように、シート部材124の厚さが調節されているとよい。以上のようにして、微小凹凸部126を有する基板128(例えば光学部品)が得られる。
次に、本発明の方法によって製造できる反射防止構造体の他のいくつかの例について説明する。本発明の方法によって製造される反射防止構造体は、拡散板1のように光透過性を有するものに限定されず、例えば、光吸収性を有するものであってもよい。
図15は反射防止構造体を適用した撮像装置の構成を表す概略図である。
撮像装置201は、装置本体203と、光学ユニットとしてのレンズ鏡筒ユニット202とを備えている。ここでは、レンズ鏡筒ユニット202が装置本体203に取り付けられている例を説明するが、レンズ鏡筒ユニット202は、例えば、装置本体203に着脱可能に構成されていてもよい。
レンズ鏡筒ユニット202は、筒状(具体的には円筒状)のレンズ鏡筒205と、レンズ鏡筒205の内部に収納された光学系204とを備えている。一方、装置本体203には、光学系204の光軸AX上に位置するように配置された撮像素子206を備えている。光学系204は、この撮像素子206の撮像面上に光学像を結像するためのものであり、光学系204により撮像面上に結像された光学像は撮像素子206によって電気信号に変換され、例えば、装置本体203内に設けられたメモリ(外付けメモリであってもよい)に記憶されたり、装置本体203に接続されたケーブルを介して他の装置へと出力されるようになっている。尚、撮像素子206は、例えば、CCD(charge coupled device)、CMOS(complementary metal−oxide semiconductor)等により構成することができる。
光学系204は撮像素子206の撮像面上に好適に光学像を結像させることができるものであれば特に限定されることはなく、例えば図15に示すように、第1レンズ(群)L1、第2レンズ(群)L2、及び第3レンズ(群)L3の3つのレンズ(群)により構成されていてもよい。また、それら3つのレンズ(群)L1〜L3のうちの少なくともいずれかが光軸AX方向に変位自在であり、フォーカシング及び/又は変倍が可能な構成であってもよい。
図16はレンズ鏡筒205の正面図である。
図17はレンズ鏡筒205の一部を拡大した断面図である。レンズ鏡筒205の内周面には、微小凹凸部を有する反射防止構造体が設けられている。レンズ鏡筒205に設けられた反射防止構造体は、例えば図14で説明した射出成形法によって製造できるものであり、レンズ鏡筒205を構成する部材そのものであってもよいし、レンズ鏡筒205の内周面に貼り付けられた粘着シートであってもよい。
レンズ鏡筒205は像側から光学系204に入射する光(一般的には、可視光)を吸収するように構成されている。このため、像側からレンズ鏡筒ユニット202に入射する光学系204の包括画角以上の光束や光学系204を構成するレンズ等の表面における反射に起因する迷光はレンズ鏡筒205によって吸収される。従って、撮像装置201は、ゴーストやフレア等の発生が抑制され、高い光学性能を有する。
具体的には、光吸収性の材料(例えば、染料や顔料)をレンズ鏡筒205に分散混入させる構成としてもよい。又は、レンズ鏡筒205を実質的に光吸収性の材料により形成してもよい。可視光を吸収する光吸収性の材料としては、シアン、マゼンタ、イエロー等の複数の色素を混合することによって得られる黒色染料(例えば、有本化学工業株式会社製Plast Black 8950や8970)や、カーボンブラックなどが挙げられる。また、それら顔料や染料を分散混入させる母体は、例えば、ガラス、アクリル樹脂やポリカーボネート樹脂等の樹脂(好ましくは、ガラス転移温度が90℃以上170℃以下の樹脂)やガラス繊維含有樹脂などであってもよい。さらには、レンズ鏡筒205にゴミや塵等が付着するのを抑制する観点から、レンズ鏡筒205は帯電防止材料を含有するものであることが好ましい。また、レンズ鏡筒205は、耐光性(特に紫外光に対する耐光性)が高いものであることが好ましい。
レンズ鏡筒205は像側からレンズ鏡筒ユニット202に入射する光(厳密にはそのうち反射を抑制すべき波長の光)を吸収するものであり、且つ、その光の反射を抑制するための微小凹凸部11(図2参照)が内周面210に複数形成されているために、レンズ鏡筒205の内周面210における光の反射は大幅に低減される。
通常、光を透過させるレンズ等の光学素子においては、例えば50度を超えるような大きな入射光の反射は考慮する必要性は小さい。しかしながら、レンズ鏡筒ユニット205の場合は、小さい入射角の光のみが入射するとは限らないため、入射角の比較的大きな入射光の反射を抑制する構成とすることが好ましい。
図18に示すのは、周期的な凹凸を有する表面(粗面)に微細凹凸部が形成された拡散板(反射防止構造体)の断面図である。拡散板50の表面(粗面)には、錐状(例えば四角錐状)の構造単位70,70が周期的に配列されることによって基礎構造部7が形成され、この基礎構造部7の表面(構造単位70の斜面71,73)に多数の微小凹凸部11が密集して形成されている。先に説明したように、基礎構造部7はバイトを用いて基板の表面を研削加工することによって形成することができ、微小凹凸部11は電子ビームリソグラフィによって形成することができる。
図18に示す拡散板50において、各構造単位70の斜面71,73と基準面51とのなす角度α(傾斜角α)は、図7で説明した角度θに対応する。具体的に、傾斜角αは5°以上であることが好ましい。傾斜角αを5°以上とすることによって、入射光の入射角が小さくなる。さらに、傾斜角αは45°であることが好ましい。傾斜角αを45°にすることによって、基準面51に対して0°〜90°の入射角で入射した入射光は、斜面71,73に対して−45°〜45°の入射角で入射することになり、基準面51に対してどんな入射角で入射してくる入射光に対しても、斜面71,73に対する入射角の絶対値の最大値を45°以下にできる。
また、レンズ鏡筒205は、図19に示す方法によって製造することができる。図19(a)に示すように、まず、レンズ鏡筒205の成形用金型を作製するための基板130を準備する。基板130の表面130rは、製造するべきレンズ鏡筒205の内径に対応した直径(具体的には等しい直径)の円筒面の一部(例えば90°の角度範囲)によって構成されている。図19(b)に示すように、基板130の表面130rを粗化することによって粗面130pを形成し、さらに、微小凹凸部132を形成する。基板130の表面130rを粗化する工程及び微小凹凸部132を形成する工程は、先に述べた通りである。
次に、図19(c)に示すように、微小凹凸部132を有する基板130を上金型134と下金型130との間に収容させ、型締め後、キャビティCVに樹脂を射出する。つまり、基板130はインサート型として用いられる。基板130の複製型をインサート型として用いてもよい。
図19(d)に示すように、樹脂成形によって得られた部品140は、レンズ鏡筒205の一部である。同様の方法で作製した複数の部品を組み合わせることによって、円筒状のレンズ鏡筒205が完成する(図19(e))。このような方法によれば、レンズ鏡筒205の内周面のほぼ全域に微小凹凸部を形成できるので、ゴーストやフレアの低減に極めて有効である。
本発明に係る反射防止構造体は、反射光等の不要光の発生が十分に抑制されたものであるため、撮像装置、照明装置、光走査装置、光ピックアップ装置、ディスプレイ等の種々の光学機器に有用である。
反射防止構造体の一例たる拡散板の斜視図 拡散板の部分断面図 入射角と反射率の相関を表すグラフ 入射角45度で入射する光の反射光強度を表すグラフ θと反射率との相関を表すグラフ θaveと反射率との相関を表すグラフ 表面の図2に示す部分の粗さ形状を表す断面図 基板が感光性を有さない場合における、微小凹凸部を形成する工程の説明図 基板が感光性を有さない場合における、微小凹凸部を形成する他の工程の説明図 微小凹凸部を有する基板から電鋳によって複製型を作製する工程の説明図 1次複製型から2次複製型を作製する工程の説明図 微小凹凸部を有する基板からプレス成形によって複製型を作製する工程の説明図 複製型を用いて樹脂を成形する工程の説明図 反射防止構造体の他の製造方法の工程説明図 反射防止構造体を適用した撮像装置の構成を表す概略図 レンズ鏡筒の正面図 レンズ鏡筒の一部を拡大した断面図 周期的な凹凸を有する表面に微細凹凸部が形成された反射防止構造体の断面図 レンズ鏡筒の製造方法の工程説明図
符号の説明
1,50 拡散板(反射防止構造体)
10,27p,66p 表面(粗面)
11,29,68,81,98 微小凹凸部
12,51 基準面
13 接平面
22 吸収材
23 面電子源
24 面電子ビーム
27 基板(又は反射防止構造体)
28 レジスト層
30 下地層
66,80,94 複製型(反射防止構造体)
105A 樹脂成形品(反射防止構造体)

Claims (9)

  1. 所定の波長以上の光の反射を抑制する反射防止構造体の製造方法であって、
    前記所定の波長よりも大きい表面粗さの粗面を有する基板を準備する工程と、
    面電子源を用いた電子ビームリソグラフィによって、前記所定の波長以下の平均ピッチを有する複数の微小凹凸部を前記基板の前記粗面に形成する工程と、
    を含む、反射防止構造体の製造方法。
  2. 前記基板を準備する工程が、前記基板の前記粗面の接平面の法線ベクトルと前記基板の基準面の法線ベクトルとのなす角度の平均値が5度以上となるように前記基板の前記表面を粗化する工程を含む、請求項1に記載の反射防止構造体の製造方法。
  3. 前記電子ビームリソグラフィによって前記微小凹凸部を形成する工程が、所定のパターンを有し且つ電子ビームを吸収する吸収材を介して、前記基板に面電子ビームを照射する工程を含む、請求項1又は請求項2に記載の反射防止構造体の製造方法。
  4. 電子ビームを吸収する材料を用い、前記材料に点状電子ビーム描画によって前記所定のパターンを形成して、前記吸収材を作製する工程をさらに含む、請求項3に記載の反射防止構造体の製造方法。
  5. 前記電子ビームリソグラフィによって前記微小凹凸部を形成する工程が、前記基板の前記粗面上に電子ビームに対して感光性を有するレジスト層を形成する工程と、所定のパターンを有し且つ電子ビームを吸収する吸収材を介して前記基板に前記面電子ビームを照射する工程と、前記レジスト層を現像する工程と、現像された前記レジスト層をマスクとして前記基板をエッチングする工程とを含む、請求項1ないし請求項4のいずれか1項に記載の反射防止構造体の製造方法。
  6. 前記電子ビームリソグラフィによって前記微小凹凸部を形成する工程が、前記基板の前記粗面上に電子ビームに対して感光性を有さない材料を主成分として含む下地層を形成する工程と、前記下地層上に電子ビームに対して感光性を有するレジスト層を形成する工程と、所定のパターンを有し且つ電子ビームを吸収する吸収材を介して前記基板に面電子ビームを照射する工程と、前記レジスト層を現像する工程と、現像された前記レジスト層をマスクとして前記下地層を選択エッチングすることによって前記レジスト層及び前記下地層を含む複合構造を形成する工程と、前記複合構造をマスクとして前記基板をエッチングする工程とを含む、請求項1ないし請求項4のいずれか1項に記載の反射防止構造体の製造方法。
  7. 前記微小凹凸部を有する前記基板の複製型を電鋳又はプレス成形によって作製する工程と、前記複製型を用いて前記反射防止構造体を成形する工程とをさらに含む、請求項1ないし請求項6のいずれか1項に記載の反射防止構造体の製造方法。
  8. 所定の波長以上の光の反射を抑制する反射防止構造体の製造方法であって、
    面電子源を用いた電子ビームリソグラフィによって、前記所定の波長以下の平均ピッチを有する複数の微小凹凸部を有するシート部材又は原型を作製する工程と、
    所定の波長よりも大きい表面粗さの粗面を有する基板を準備する工程と、
    前記シート部材又は前記原型を用いて成形されたシート部材を前記基板の前記粗面に貼り合わせる工程と、
    を含む、反射防止構造体の製造方法。
  9. 請求項1ないし請求項8のいずれか1項に記載の方法によって製造された反射防止構造体を含む光学機器。
JP2007302317A 2007-11-21 2007-11-21 反射防止構造体の製造方法 Pending JP2009128541A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302317A JP2009128541A (ja) 2007-11-21 2007-11-21 反射防止構造体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302317A JP2009128541A (ja) 2007-11-21 2007-11-21 反射防止構造体の製造方法

Publications (1)

Publication Number Publication Date
JP2009128541A true JP2009128541A (ja) 2009-06-11

Family

ID=40819542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302317A Pending JP2009128541A (ja) 2007-11-21 2007-11-21 反射防止構造体の製造方法

Country Status (1)

Country Link
JP (1) JP2009128541A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204706A (ja) * 2008-02-26 2009-09-10 Asahi Rubber Inc 光透過性光学部品およびその製造方法
JP2016531426A (ja) * 2013-07-24 2016-10-06 リラス ゲーエムベーハーLilas Gmbh 太陽電池セル、特にシリコン薄膜太陽電池セルを製造するための方法
KR20170118898A (ko) 2015-03-31 2017-10-25 데쿠세리아루즈 가부시키가이샤 원반의 제조 방법, 광학체, 광학 부재, 및 표시 장치
KR20170125945A (ko) 2015-03-31 2017-11-15 데쿠세리아루즈 가부시키가이샤 원반의 제조 방법, 원반 및 광학체
CN109991693A (zh) * 2017-12-29 2019-07-09 深圳市聚飞光学材料有限公司 增亮膜制造方法、背光模组、平板显示器和电子装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204706A (ja) * 2008-02-26 2009-09-10 Asahi Rubber Inc 光透過性光学部品およびその製造方法
JP2016531426A (ja) * 2013-07-24 2016-10-06 リラス ゲーエムベーハーLilas Gmbh 太陽電池セル、特にシリコン薄膜太陽電池セルを製造するための方法
KR20170118898A (ko) 2015-03-31 2017-10-25 데쿠세리아루즈 가부시키가이샤 원반의 제조 방법, 광학체, 광학 부재, 및 표시 장치
KR20170125945A (ko) 2015-03-31 2017-11-15 데쿠세리아루즈 가부시키가이샤 원반의 제조 방법, 원반 및 광학체
US10350791B2 (en) 2015-03-31 2019-07-16 Dexerials Corporation Master manufacturing method, master, and optical body
US10919184B2 (en) 2015-03-31 2021-02-16 Dexerials Corporation Master manufacturing method, optical body, optical member, and display device
US10974419B2 (en) 2015-03-31 2021-04-13 Dexerials Corporation Master manufacturing method, master, and optical body
US11524426B2 (en) 2015-03-31 2022-12-13 Dexerials Corporation Master manufacturing method, master, and optical body
CN109991693A (zh) * 2017-12-29 2019-07-09 深圳市聚飞光学材料有限公司 增亮膜制造方法、背光模组、平板显示器和电子装置

Similar Documents

Publication Publication Date Title
JP2009128538A (ja) 反射防止構造体の製造方法
JP2009128543A (ja) 反射防止構造体の製造方法
JP4608501B2 (ja) 光吸収部材及びそれからなるレンズ鏡筒
KR20220038493A (ko) 근안 디스플레이 회절 격자 도파로의 제조 방법
JPWO2005109042A1 (ja) 光学素子及びその製造方法
JP2005157119A (ja) 反射防止光学素子及びこれを用いた光学系
JP2009128539A (ja) 反射防止構造体の製造方法
TW201741726A (zh) 擴散板及投影式投影裝置
JP2009128541A (ja) 反射防止構造体の製造方法
JP2006317807A (ja) 反射防止構造体を備える部材およびその部材の製造方法
JP2009128540A (ja) 反射防止構造体の製造方法
JP4714627B2 (ja) 表面に微細な凹凸構造を有する構造体の製造方法
JP2015038579A (ja) 光学素子、光学系、撮像装置、光学機器、ならびに原盤およびその製造方法
JP2005132660A (ja) 無反射構造を有する光学素子の製造方法、及び当該方法により製造された無反射構造を有する光学素子
JP2006251318A (ja) 反射防止構造体を有する部材の製造方法
JP2006235195A (ja) 反射防止構造体を有する部材の製造方法
JP2006171229A (ja) 無反射構造及び無反射構造を有する光学素子、ならびにその製造方法及びその製造方法に用いるマスク
JP2006243633A (ja) 反射防止構造体を有する部材の製造方法
JP4457589B2 (ja) 透過型光学素子を有する光学装置
JP4820871B2 (ja) 反射防止構造体及びその製造方法
JP4463775B2 (ja) X線リソグラフィー用マスク、その製造方法、それを用いた光反射防止構造体の製造方法、光反射防止構造を有する光学素子を製造するための成形型の製造方法、並びに光反射防止構造を有するガラス被成形物若しくは樹脂被成形物の製造方法
WO2020031945A1 (ja) 反射防止構造体付き光学素子、その製造方法、製造用金型の製造方法及び撮像装置
JP2007206490A (ja) 複合型光学素子および光学系
JP2009128542A (ja) 反射防止構造体の製造方法
JP2015028552A (ja) 光学素子およびその製造方法