JP2009124576A - 画像処理装置及びその制御方法 - Google Patents

画像処理装置及びその制御方法 Download PDF

Info

Publication number
JP2009124576A
JP2009124576A JP2007298274A JP2007298274A JP2009124576A JP 2009124576 A JP2009124576 A JP 2009124576A JP 2007298274 A JP2007298274 A JP 2007298274A JP 2007298274 A JP2007298274 A JP 2007298274A JP 2009124576 A JP2009124576 A JP 2009124576A
Authority
JP
Japan
Prior art keywords
image
processing apparatus
reduced
reduced image
red
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007298274A
Other languages
English (en)
Inventor
Masatoshi Matsudaira
平 正 年 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007298274A priority Critical patent/JP2009124576A/ja
Priority to US12/271,656 priority patent/US8125680B2/en
Publication of JP2009124576A publication Critical patent/JP2009124576A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/94Dynamic range modification of images or parts thereof based on local image properties, e.g. for local contrast enhancement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/62Retouching, i.e. modification of isolated colours only or in isolated picture areas only
    • H04N1/624Red-eye correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30216Redeye defect

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

【課題】ユーザ待ち時間の増大を回避しつつ、赤目の位置を検出するための画像認識処理の際におけるメモリ使用量の削減を図った画像処理装置及びその制御方法を提供する。
【解決手段】画像処理装置は、元画像を縮小することにより、第1の縮小画像を生成する、第1縮小手段と、前記第1の縮小画像を拡大することにより、前記第1の縮小画像より大きいサイズで且つ元画像より小さいサイズの第2の縮小画像を生成する、第2縮小手段と、前記第2の縮小画像に基づいて、赤目の位置検出を行い、検出された赤目の位置に基づいて赤目補正を行う、赤目補正手段とを備えて構成されている。
【選択図】図1

Description

本発明は、画像処理装置及びその制御方法に関し、特に、画像認識処理の際のメモリ使用量の削減を図った画像処理装置及びその制御方法に関する。
プリンタなどの画像処理装置の中には、事前に画像をサンプリングして縮小画像を生成し、このサンプリングした縮小画像に基づいて画像認識処理を行った上で、実際の画像処理を行うことのできる装置がある。例えば、サンプリングした縮小画像に基づいて赤目補正処理を行ったり、自動画像補正処理を行ったりする画像認識処理を行った上で、その画像の印刷を行うプリンタがある。
赤目補正処理とは、撮像した際に生じた人間の赤目を検出し、この赤目を赤目ではない状態に補正する処理である。自動画像補正処理とは、APF(Auto Photo Fine)とも呼ばれている処理であり、画像全体の明度、彩度、輝度などについての統計情報を取得し、この統計情報に基づいて、これら明度、彩度、輝度のバランスを最適化する処理である。この自動画像補正処理を行う際には、顔認識処理も行われ、画像内における人間の顔を認識して検出し、この顔の肌色が綺麗に見えるように、色補正をする。
これらの画像認識処理をするためには、元画像データに基づくフル画像を使用する必要はなく、縮小した画像を使用すれば十分である(例えば、特開2002−271794号公報参照)。
しかしながら、この画像認識処理をするために必要な縮小画像のサイズは、その処理内容によって異なる。例えば、上述した自動画像補正処理や顔認識処理においては、QVGAサイズ(320×240ピクセル)で足りるが、赤目補正処理を精度良く行うためにはVGA(640×480ピクセル)以上の画像サイズが必要となる。
これらの処理を同時に行おうとする場合には、単純には、両者を包含する画像サイズであるVGA以上のサイズの縮小画像に基づいて、処理を行えばよい。しかし、VGAサイズの画像のRGB画像データを保持するだけで900KB程度のメモリ容量が必要となり、メモリ容量が小さい画像処理装置にとっては、負担が大きい。特に、これらの画像認識処理を予め組み込んでおく組み込み型のプリンタなどにおいては、搭載されているメモリサイズが小さく、必ずしも十分なメモリ容量を、この画像認識処理のために確保できない場合も多い。
さらに、画像処理装置によっては、GUI(Graphical User Interface)画面に、縮小画像を高速表示するために、CPUの空き時間を利用して、事前に、元画像データから縮小画像を生成するようにしている。そして、この生成した縮小画像をキャッシュしておき、GUI画面に表示する必要が生じた場合には、このキャッシュされた縮小画像を読み出して表示する。
このような画像処理装置において、キャッシュされている縮小画像を用いて、画像認識処理を行おうとすると、キャッシュする縮小画像もVGAで生成しなければならない。しかし、例えば20枚の縮小画像をキャッシュしようとすると、縮小画像をキャッシュするために大きなメモリ容量を確保しなければならず、その分、コストアップになってしまうという問題がある。
一方、キャッシュされている縮小画像を利用することなく、画像認識処理の都度、元画像データに基づいて、VGAサイズの画像を生成するのでは、画像生成に余分な時間がかかってしまう。特に、この画像認識処理は、プリンタで印刷を開始する直前に行うことが多いため、縮小画像を生成するための時間が、そのままユーザの印刷待ち時間になってしまう。このため、ユーザの印刷待ち時間の増大を招き、ユーザにとって、使い勝手が悪くなるという問題が生じる。
特開2002−271794号公報
そこで本発明は、前記課題に鑑みてなされたものであり、ユーザ待ち時間の増大を回避しつつ、赤目の位置を検出するための画像認識処理の際におけるメモリ使用量の削減を図った画像処理装置及びその制御方法を提供することを目的とする。
上記課題を解決するため、本発明に係る画像処理装置は、
元画像を縮小することにより、第1の縮小画像を生成する、第1縮小手段と、
前記第1の縮小画像を拡大することにより、前記第1の縮小画像より大きいサイズで且つ元画像より小さいサイズの第2の縮小画像を生成する、第2縮小手段と、
前記第2の縮小画像に基づいて、赤目の位置検出を行い、検出された赤目の位置に基づいて赤目補正を行う、赤目補正手段と、
を備えることを特徴とする。
この場合、前記第1縮小手段が第1の縮小画像を生成する際に用いる補間アルゴリズムと、前記第2縮小手段が第2の縮小画像を生成する際に用いる補間アルゴリズムは、同じであるようにしてもよい。
また、前記補間アルゴリズムは、元画像を縮小する際に圧縮された画像情報が第1の縮小画像に畳み込まれ、この畳み込まれた画像情報が、第1の縮小画像を拡大して第2の縮小画像を生成する際に再度取り出せるアルゴリズムであるようにしてもよい。
また、前記第1縮小手段は、Bi−Linear法を用いて、第1の縮小画像を生成し、
前記第2縮小手段も、Bi−Linear法を用いて、第2の縮小画像を生成するようにしてもよい。
また、前記第1縮小手段は、Bi−Cubic法を用いて、第1の縮小画像を生成し、
前記第2縮小手段も、Bi−Cubic法を用いて、第2の縮小画像を生成するようにしてもよい。
また、前記第1縮小手段が第1の縮小画像を生成する際に用いる補間アルゴリズムと、前記第2縮小手段が第2の縮小画像を生成する際に用いる補間アルゴリズムは、異なるようにしてもよい。
また、画像処理装置は、前記赤目補正手段で赤目補正された画像の印刷を行う、印刷実行手段を、さらに備えるようにしてもよい。
本発明に係る画像処理装置の制御方法は、
元画像を縮小することにより、第1の縮小画像を生成する工程と、
前記第1の縮小画像を拡大することにより、前記第1の縮小画像より大きいサイズで且つ元画像より小さいサイズの第2の縮小画像を生成する工程と、
前記第2の縮小画像に基づいて、赤目の位置検出を行い、検出された赤目の位置に基づいて赤目補正を行う工程と、
を備えることを特徴とする。
発明を実施するための形態
以下、図面を参照して、本発明の実施形態を説明する。なお、以下に説明する実施形態は、本発明の技術的範囲を限定するものではない。
図1は、本実施形態に係る画像処理装置10の内部構成の一例を説明するブロック図である。この図1から分かるように、本実施形態における画像処理装置10は、プリンタにより構成されており、より具体的には、カラーのインクジェットプリンタにより構成されている。但し、画像処理装置10は、プリンタに限定されるものではなく、例えばフォトビューアなどの画像表示装置により、構成することもできる。
図1に示すように、画像処理装置10は、CPU(Central Processing Unit)20と、ROM(Read Only Memory)22と、カードインターフェース24と、通信インターフェース26と、画面インターフェース28と、装置制御部30とを備えて構成されており、これらは内部バス32を介して、相互に接続されている。
CPU20には、専用の揮発性記憶装置であるRAM(Random Access Memory)34が接続されている。例えば、このCPU20は、ROM22に格納されている各種のプログラムを読み込んで実行することにより、この画像処理装置10の各種の制御を行う。プログラムを実行する際には、CPU20は、必要に応じて、RAM34に一時的なデータを格納する。
ROM22は、不揮発性記憶装置の一例であり、画像処理装置10における各種のプログラムやデータが、不揮発的に格納されている。カードインターフェース24は、画像処理装置10に、PCカードなどのカード型外部デバイス100を挿入して利用するためのインターフェースである。例えば、PCカードの場合、フラッシュメモリカード、ハードディスク、SCSIカード、モデムカードなどの様々な種類がある。
通信インターフェース26は、画像処理装置10に、カメラなどの撮像装置や、ノート型やディスクトップ型のパーソナルコンピュータなど、各種の外部デバイス102を接続するためのインターフェースである。画像処理装置10と外部デバイス102との間の接続規格は、USBやRS232Cなどの有線規格を用いてもよいし、IrDAやBluethoothなどの無線規格を用いてもよい。
画面インターフェース28は、画像処理装置10に設けられている表示画面36のインターフェースである。表示画面36は、例えばLCD(Liquid Crystal Display)により構成されている。本実施形態では、この表示画面36には、例えば、印刷する画像をユーザが任意に選択するための縮小画像が表示される。また、この表示画面36は、タッチパネルで構成されており、ユーザが画像処理装置10に指示を入力するためのユーザインターフェースも兼ねている。
装置制御部30は、RAM40と、印刷ヘッド42と、キャリッジ44と、紙送り機構46と、スキャナ48とに接続されており、これら印刷ヘッド42と、キャリッジ44と、紙送り機構46と、スキャナ48についての機械的な制御を行う。RAM40は、装置制御部30専用の揮発性記憶装置であり、装置制御部30が、これら機械的制御を行う上で必要なデータが一時的に格納される。この装置制御部30は、例えば、ASIC(Application Specific IC)により構成されている。
本実施形態においては、特に、装置制御部30は、印刷ヘッド42とキャリッジ44と紙送り機構46とを用いた印刷の全体的な制御を行う。すなわち、キャリッジ44に搭載された印刷ヘッド42から印刷インクを吐出させつつ、キャリッジ44を走査方向(紙送り方向と交差する方向)に交互に移動させながら紙などの印刷媒体に印刷を行う。紙送り機構46は、紙などの印刷媒体を、キャリッジ44による印刷に合わせて、紙送り方向に順次送り出すことにより、印刷媒体に対する印刷を行わせる。
また、装置制御部30は、スキャナ48を用いた画像読み込み時の制御も行う。例えば、ユーザがスキャナ48の画像読み取り面にセットした原稿を、ラインイメージセンサを用いて読み込み、RAM44に画像データとして一時的に格納するための一連の処理の制御を行う。
次に、図2及び図3に基づいて、本実施形態に係る画像処理装置10が実行する印刷実行処理について説明する。これら図2及び図3は、画像処理装置10が実行する印刷実行処理の一例を説明するためのフローチャートを示す図である。この印刷実行処理は、例えば、ROM22に格納されている印刷実行処理プログラムをCPU20が読み込んで実行することにより、実現される処理である。また、この印刷実行処理は、ユーザが画像処理装置10に、印刷を行う画像やレイアウトなどを指定して、印刷を指示した場合に、起動される処理である。
まず、図2に示すように、画像処理装置10は、印刷ライン位置の初期化を行って、変数Nに1をセットする(ステップS10)。つまり、印刷ライン位置を、その印刷媒体のページの先頭に設定する。
次に、画像処理装置10は、印刷ライン位置Nにある画像の画像ファイルを検索して取得する(ステップS12)。例えば、ユーザが印刷を指定した画像が、カード型外部デバイス100に格納されている場合には、画像処理装置10は、カード型外部デバイス100を検索して、ユーザの指定した画像の画像データを取得する。また、既にRAM34に画像データを読み込んでいる場合には、RAM34から印刷ライン位置Nにおける画像ファイルを取得する。なお、印刷ライン位置Nを印刷するのに複数の画像ファイルが必要であれば、必要なすべての画像ファイルを取得する。
次に、画像処理装置10は、ステップS12で取得した画像ファイルの印刷ライン位置Nにおける画像の解凍処理を行う(ステップS14)。この解凍処理についての詳細は、後述する。
次に、画像処理装置10は、ユーザが赤目補正をするように指定しているかどうかを判断する(ステップS16)。ユーザが赤目補正をするように指定している場合(ステップS16:YES)には、ステップS14で解凍することにより得られた画像について、赤目補正処理を行う(ステップS18)。赤目補正処理を行った後の画像データは、再び、データバッファに格納される。一方、赤目補正をするように指定されていない場合(ステップS16:NO)には、このステップS18の処理をスキップする。
次に、画像処理装置10は、ユーザが自動画像補正をするように指定しているかどうかを判断する(ステップS20)。ユーザが自動画像補正をするように指定している場合(ステップS20:YES)には、ステップS14で解凍することにより得られた画像について、自動画像補正を行う(ステップS22)。すなわち、画像全体の明度、彩度、輝度などについての統計情報を取得し、この統計情報に基づいて、これら明度、彩度、輝度のバランスを最適化する処理を行う。自動画像補正処理を行った後の画像データは、再び、データバッファに格納される。一方、自動画像補正をするように指定されていない場合(ステップS20:NO)には、このステップS22の処理をスキップする。
次に、図3に示すように、画像処理装置10は、ユーザに指定されたサイズに画像サイズを変換する(ステップS30)。続いて、画像処理装置10は、得られた画像を指定されたレイアウトに配置する(ステップS32)。例えば、指定されたレイアウトにおいては、印刷ライン位置Nの走査方向に複数の画像が配置されている場合には、画像処理装置10は、これら複数の画像を指定されたレイアウトで配置する。
次に、画像処理装置10は、ステップS32で得られた画像についてハーフトーン処理を行った上で(ステップS34)、印刷ライン位置Nの印刷を実行する(ステップS36)。すなわち、キャリッジ44を走査方向に移動して、印刷ライン位置Nの印刷を行う。
次に、画像処理装置10は、変数Nに1を加算し(ステップS38)、変数Nが印刷媒体のページ長より長くなったかどうかを判断する(ステップS40)。すなわち、印刷媒体のページの最後まで印刷を行ったかどうかを判断する。変数Nが印刷媒体のページ長以下である場合(ステップS40:NO)には、上述したステップS12からを繰り返す。
一方、変数Nが印刷媒体のページ長を越えていた場合(ステップS40:YES)、すなわち印刷媒体の最後まで印刷を終えた場合には、画像処理装置10は、この印刷実行処理を終了する。
次に、図4乃至図6に基づいて、本実施形態に係る画像処理装置10が実行する画像ファイル解凍処理について説明する。これら図4乃至図6は、画像処理装置10が実行する画像ファイル解凍処理の一例を説明するためのフローチャートを示す図である。この画像ファイル解凍処理は、例えば、ROM22に格納されている画像ファイル解凍処理プログラムをCPU20が読み込んで実行することにより、実現される処理である。また、この画像ファイル解凍処理は、上述した図2のステップS14で実行される処理である。
まず、図4に示すように、画像処理装置10は、印刷ライン位置Nが画像の先頭であるかどうかを判断する(ステップS50)。すなわち、印刷ライン位置Nに、画像の先頭となる部分が含まれているかどうかを判断する。印刷ライン位置Nが画像の先頭である場合(ステップS50:YES)には、ユーザによる印刷の指定が、自動画像補正又は赤目補正の少なくとも一方を行うように指定しているかどうかを判断する(ステップS52)。
自動画像補正又は赤目補正のうちの少なくとも一方を行う指定になっている場合(ステップS52:YES)には、処理対象になっている画像の縮小画像が、キャッシュメモリに存在するかどうかを判断する(ステップS54)。例えば、本実施形態においては、RAM34にキャッシュメモリが形成されており、画像処理装置10は、このRAM34のキャッシュメモリの領域に、処理対象となっている画像の縮小画像が存在するかどうかを判断する。なお、印刷ライン位置Nに複数の画像が含まれている場合には、その複数の画像のすべての縮小画像が、キャッシュメモリに存在するかどうかを判断する。
本実施形態においては、画像処理装置10は、CPU20の空き時間を利用して、カード型外部デバイス100に格納されている画像ファイルに基づいて、縮小画像を生成するよう設計されている。例えば、カード型外部デバイス100には、JPG等の形式で、元画像のデータである画像ファイルが格納されている。この画像ファイルに基づいて、例えば、QVGA(320×240ピクセル)のサイズの縮小画像を、順次生成して、キャッシュメモリに格納しておく。そして、表示画面36に縮小画像を表示する処理が発生した場合には、キャッシュメモリに格納されているQVGAサイズの縮小画像のデータを読み出して、そのまま表示に使えるようにしている。
このようにすることにより、表示画面36に縮小画像を表示する際に生じるユーザの待ち時間の短縮を図っている。特に、表示画面36に複数の縮小画像を並べて表示する場合、必要になった時点で、すべての縮小画像を元画像から生成すると、相応の処理時間がかかってしまう。このため、CPU20の空き時間を利用して、縮小画像を予め生成しておくことにより、縮小画像の一覧を表示し終えるのに要する時間を格段に短くすることができるのである。
また、本実施形態では、CPU20が元画像から縮小画像を生成する際には、例えば、Bi−Linear法や、Bi−Cubic法による補間アルゴリズムを用いる。Bi−Linear法や、Bi−Cubic法は、縮小した画像を再度、同じ補間アルゴリズムを用いて拡大すると、縮小時に畳み込まれた画像情報が、再度取り出せる圧縮手法の一例である。無論、縮小時に失われた情報までもが、再現できる訳ではない。
ステップS54において、処理対象になっている画像の縮小画像が、キャッシュメモリに存在しないと判断した場合(ステップS54:NO)には、画像処理装置10は、処理対象の画像ファイルの解凍を行う(ステップS56)。例えば、ステップS12で取得した画像ファイルがJPG形式であった場合には、JPG形式の画像ファイルの解凍を行う。
次に、画像処理装置10は、ステップS56で得られた画像の縮小を行う(ステップS58)。すなわち、本実施形態では、ステップS56で得られた元画像を、QVGAサイズに縮小する。元画像を縮小する際には、例えば、上述したBi−Linear法や、Bi−Cubic法などの補間アルゴリズムを用いる。なお、1/2、1/4、1/8などの所定の圧縮率である場合には、ステップS56でJPG形式の画像を解凍する際に、圧縮された状態で解凍することも可能である。この場合、ステップS58は省略可能である。
次に、画像処理装置10は、生成したQVGAサイズの縮小画像を、キャッシュメモリに格納する(ステップS60)。すなわち、ステップS58で生成された縮小画像を、RAM34のキャッシュメモリの領域に格納する。
次に、画像処理装置10は、処理対象となっているすべての画像の画像ファイルの解凍が終了したかどうかを判断する(ステップS62)。処理対象となっている画像の画像ファイルが複数の場合には、画像処理装置10は、処理対象となっているすべての画像の縮小画像が、キャッシュメモリに格納されているかどうかを判断する。
処理対象となっているすべての画像の画像ファイルの解凍が終了していないと判断した場合(ステップS62:NO)には、上述したステップS56に戻り、次の画像ファイルの解凍を続ける。
一方、処理対象となっているすべての画像の画像ファイルの解凍が終了したと判断した場合(ステップS62:YES)、及び、処理対象のすべての画像の縮小画像がキャッシュメモリに格納されていると判断した場合(ステップS54:YES)には、画像処理装置10は、ユーザが自動画像補正を指定しているかどうかを判断する(ステップS64)。
ユーザが自動画像補正を指定している場合(ステップS64:YES)には、画像処理装置10は、キャッシュメモリに格納されているQVGAサイズの縮小画像に基づいて、顔認識処理を行う(ステップS66)。すなわち、人間の顔はある程度の大きさを備えているため、VGAサイズより小さいQVGAサイズの縮小画像を用いても精度良く認識することが可能であり、処理時間も短くすることができる。このため、本実施形態では、顔認識処理は、キャッシュメモリに格納されているQVGAサイズの縮小画像を用いて行うこととしている。
次に、画像処理装置10は、認識された顔の画像の肌色が綺麗に見え、且つ、背景等も綺麗に見えるように色補正するためのパラメータを決定する(ステップS68)。すなわち、画像全体を統計的に計算することにより、明度、彩度、輝度のバランスを最適化するパラメータを決定する。この決定されたパラメータに基づいて、上述したステップS22では、自動画像補正処理を行う。
次に、このステップS68の処理の後、又は、上述したステップS64でユーザが自動画像補正を指定していないと判断した場合(ステップS64:NO)には、画像処理装置10は、図5に示すように、ユーザが赤目補正を指定したかどうかを判断する(ステップS80)。
ユーザが赤目補正を指定したと判断した場合(ステップS80:YES)には、画像処理装置10は、キャッシュメモリに格納されている縮小画像(以下においては、適宜、第1の縮小画像という)を拡大して、第2の縮小画像を生成する(ステップS82)。具体的には、画像処理装置10は、キャッシュメモリにあるQVGAサイズ(320×240ピクセル)の縮小画像を拡大して、VGAサイズ(640×480ピクセル)の縮小画像を生成する。
キャッシュメモリに格納されている第1の縮小画像を拡大して第2の縮小画像を生成する際に用いる補間アルゴリズムは、この第1の縮小画像を生成した際に用いた補間アルゴリズムと同じ手法を用いる。例えば、Bi−Linear法を用いてキャッシュメモリに格納する第1の縮小画像を生成していた場合には、Bi−Linear法を用いて画像の拡大を行う。一方、Bi−Cubic法を用いてキャッシュメモリに格納する第1の縮小画像を生成していた場合には、Bi−Cubic法を用いて画像の拡大を行う。これらBi−Linear法又はBi−Cubic法を用いてキャッシュメモリに格納する第1の縮小画像を生成していた場合には、それぞれ、Bi−Linear法又はBi−Cubic法を用いて画像の拡大を行うことにより、画像を縮小する際に第1の縮小画像に畳み込まれていた画像情報については、再現することができる。なお、この第2の縮小画像は、VGAサイズの画像であるので、JPG形式の画像ファイルの元画像よりは、サイズの小さい画像である。
次に、画像処理装置10は、ステップS82で生成された第2の縮小画像を用いて、赤目位置の検出を行う(ステップS84)。すなわち、QVGAサイズの縮小画像を用いて赤目の位置を検出するのではなく、これよりも大きなVGAサイズの縮小画像を用いて赤目の位置を検出する。このように大きなサイズの縮小画像を用いて赤目の位置を検出することにより、赤目の位置検出の精度を向上させることができる。このステップS84で赤目が検出された場合には、検出された赤目の位置に基づいて、上述したステップS18で赤目補正処理を行う。
このステップS84の処理の後、又は、上述したステップS80で赤目補正が指定されていないと判断した場合(ステップS80:NO)、又は、上述したステップS52で自動画像補正及び赤目補正のいずれも指定されていないと判断した場合(ステップS52:NO)には、画像処理装置10は、処理対象の画像が回転(ローテート)を必要とする画像であるかどうかを判断する(ステップS86)。すなわち、画像によっては、例えば、時計回り方向又は反時計回り方向に90度回転して、印刷する必要があるので、そのような指定がなされているかどうかを判断する。
処理対象の画像が回転を必要とする画像である場合(ステップS86:YES)には、画像処理装置10は、ローテート情報マップを作成する(ステップS88)。次に、画像処理装置10は、画像内で解凍処理が済んだ位置を特定するためのファイルポインタをリセットする(ステップS90)。
このステップS90の後、又は、上述したステップS86で画像の回転がないと判断した場合(ステップS86:NO)、又は、上述したステップS50で印刷ライン位置Nに画像の先頭が含まれていないと判断した場合(ステップS50:NO)には、画像処理装置10は、データバッファに、印刷ライン位置Nの画像データがあるかどうかを判断する(ステップS92)。すなわち、解凍を終えて印刷処理可能な印刷ライン位置Nの画像データが、データバッファにあるかどうかを判断する。なお、本実施形態においては、データバッファは、例えばRAM34に形成されている。また、印刷ライン位置Nに複数の画像がある場合には、これらすべての画像の画像データが、データバッファにあるかどうかを判断する。
データバッファに印刷ライン位置Nの画像データがないと判断した場合(ステップS92:NO)には、画像処理装置10は、ハフマンテーブル、量子化テーブルを用いて、印刷ライン位置Nの画像データについて、ハフマン解凍を行い(ステップS94)、逆量子化を行う(ステップS96)。そして、画像処理装置10は、さらに、逆DCT(Discrete Cosine Transform)変換を行い(ステップS98)、YCCの色空間で定義されている画像データを、RGBの色空間の定義に変換する(ステップS100)。そして、画像処理装置10は、得られた画像データを、RAM34に形成されているデータバッファに格納する(ステップS102)。
次に、画像処理装置10は、図6に示すように、処理対象の画像が回転(ローテート)を必要とする画像であるかどうかを判断する(ステップS110)。処理対象の画像が回転を必要とする画像である場合(ステップS110:YES)には、画像処理装置10は、ローテート情報マップを更新する(ステップS112)。一方、処理対象の画像が回転を必要とする画像でない場合(ステップS110:NO)には、このステップS112の処理はスキップする。
次に、画像処理装置10は、画像内で解凍処理が済んだ位置を特定するためのファイルポインタを更新し、セーブしておく(ステップS114)。
このステップS114の後、又は、上述したステップS92でデータバッファに印刷ライン位置Nの画像データが存在すると判断した場合(ステップS92:YES)には、画像処理装置10は、データバッファから印刷ライン位置Nの画像データを取得する(ステップS116)。
次に、画像処理装置10は、印刷ライン位置Nが、処理対象の画像の最後の位置であるかどうかを判断する(ステップS118)。すなわち、印刷ライン位置Nに処理対象の画像の最後の位置が含まれているかどうかを判断する。印刷ライン位置Nが処理対象の画像の最後の位置である場合(ステップS118:YES)には、この解凍処理をしていた画像ファイルをクローズし、解凍処理を行うために取得していたハフマンテーブル及び量子化テーブルを解放する(ステップS120)。一方、印刷ライン位置Nが処理対象の画像の最後の位置ではない場合(ステップS118:NO)には、画像処理装置10は、このステップS120をスキップする。
これにより、本実施形態に係る画像ファイル解凍処理が終了する。すなわち、印刷実行処理のステップS14が終了する。
以上のように、本実施形態に係る画像処理装置10によれば、QVGAサイズの第1の縮小画像を拡大したVGAサイズの第2の縮小画像を用いて、赤目の位置を検出するようにしたので、赤目検出の精度を高くすることができる。すなわち、小さいQVGAサイズの第1の縮小画像で赤目検出をすると見落とされるような赤目であっても、これを拡大したVGAサイズの第2の縮小画像で赤目検出をすることにより、正しく検出できるようになる。
また、QVGAサイズの第1の縮小画像は、CPU20の空き時間を利用して、キャッシュメモリに既に格納されている可能性があり、キャッシュメモリにQVGAサイズの第1の縮小画像が格納されている場合には、新たにQVGAサイズの第1の縮小画像を生成する必要はなく、赤目検出に要する処理時間の増大を回避することができる。
また、自動画像補正処理においては、顔認識処理を含めて、QVGAサイズの第1の縮小画像に基づいてこれを行うようにしたので、自動画像補正の増大も回避することができる。すなわち、大きな画像で自動画像補正処理を行うと、その分、処理時間が増大するが、QVGAサイズの第1の縮小画像で自動画像補正処理を行うこととしているため、そのような処理時間の増大を回避することができる。
また、キャッシュメモリにQVGAサイズの第1の縮小画像が格納されていない場合には、元画像に基づいて、QVGAサイズの第1の縮小画像を生成することになるが、このQVGAサイズの第1の縮小画像は、自動画像補正処理をする際にも必要となる縮小画像であるため、赤目検出で必要なVGAサイズの第2の縮小画像を生成するためだけに、QVGAサイズの第2の縮小画像生成するという事態が生じるのを極力避けることができる。
さらに、自動画像補正処理における顔認識処理は、小さなQVGAサイズの第1の縮小画像に基づいて行うこととしたので、顔認識処理及び自動画像補正処理に要する時間の増大を、回避することができる。すなわち、顔認識処理を、赤目位置検出処理と同じVGAサイズで行うことによる処理時間の増大を回避することができる。例えば、顔認識処理をVGAサイズの第2の縮小画像で行う場合、QVGAサイズの第1の縮小画像で行う場合と比べて、およそ4倍の処理時間がかかることになる。本実施形態によれば、このような処理時間の増大を回避することができる。
なお、本発明は上記実施形態に限定されず種々に変形可能である。例えば、上述した実施形態では、第1の縮小画像のサイズが320×240ピクセルのQVGAであり、この第1の縮小画像より大きいサイズの第2の縮小画像が640×480ピクセルのVGAである場合を例に説明したが、第1及び第2の縮小画像のサイズは、これらに限定されるものではない。
また、上述した実施形態では、画像を拡大縮小する補間アルゴリズムとして、Bi−Linear法、Bi−Cubic法を用いた例を説明したが、他の補間アルゴリズムを用いて画像を拡大縮小することもできる。例えば、単純間引きによる手法で、元画像から第1の縮小画像を生成し、この第1の縮小画像のデータを単純に水増しして第2の縮小画像を生成するようにしてもよい。ここで、単純間引きとは、例えば、元画像を構成するピクセルをふるいにかけて、10ピクセル毎に抽出するような縮小手法である。また、単純水増しとは、例えば、第1の縮小画像を構成する各ピクセルの間に、隣接するピクセルと同じ値を割り付けて、ピクセル数を増大させるような拡大手法である。
また、画像を縮小して第1の縮小画像を生成する際の補間アルゴリズムと、第1の縮小画像を拡大して第2の縮小画像を生成する際の補間アルゴリズムは、必ずしも同じである必要はない。例えば、単純間引きによる縮小で第1の縮小画像を生成し、Bi−Linear法により第1の縮小画像から第2の縮小画像を生成するようにしてもよい。或いは、Bi−Linear法よる縮小で第1の縮小画像を生成し、データを単純に水増しする手法により第1の縮小画像から第2の縮小画像を生成するようにしてもよい。
さらに、上述した実施形態では、第1の縮小画像及び第2の縮小画像のサイズをそれぞれQVGA、VGAのサイズで固定したが、これは、各種の設定に応じて可変にしてもよい。例えば、印刷モードが標準の時は、上述した実施形態のように第2の縮小画像のサイズをVGAにするが、印刷モードが高品位の時は、第2の縮小画像サイズをXVGA(1024×768ピクセル)にしてもよい。また、CPU20がキャッシュメモリとして使用できるメモリの空き容量に基づいて、第1の縮小画像及び第2の縮小画像のサイズを変更するようにしてもよい。
さらに、上述した図4乃至図6の画像ファイル解凍処理は、高速モードにおける印刷の場合に実行し、高精細モードにおける印刷の場合には、赤目検出の精度を上げるために、元画像から、別途、第2の縮小画像を生成するようにしてもよい。この切り替えは、ユーザの指示に基づいて行うようにしてもよいし、或いは、印刷モードが標準の時は上述した実施形態の手法で第2の縮小画像を生成し、印刷モードが高品位の時は、元画像から別途、第2の縮小画像を生成するようにしてもよい。
さらに、上述の実施形態で説明した印刷実行処理及び画像ファイル解凍処理については、これら各処理を実行するためのプログラムをフレキシブルディスク、CD−ROM(Compact Disc-Read Only Memory)、ROM、メモリカード等の記録媒体に記録して、記録媒体の形で頒布することが可能である。この場合、この記録媒体に記録されたプログラムを画像処理装置10に読み込ませ、実行させることにより、上述した実施形態を実現することができる。
また、画像処理装置10は、オペレーティングシステムや別のアプリケーションプログラム等の他のプログラムを備える場合がある。この場合、画像処理装置10の備える他のプログラムを活用するために、その画像処理装置10が備えるプログラムの中から、上述した実施形態と同等の処理を実現するプログラムを呼び出すような命令を含むプログラムを、記録媒体に記録するようにしてもよい。
さらに、このようなプログラムは、記録媒体の形ではなく、ネットワークを通じて搬送波として頒布することも可能である。ネットワーク上を搬送波の形で伝送されたプログラムは、画像処理装置10に取り込まれて、このプログラムを実行することにより上述した実施形態を実現することができる。
また、記録媒体にプログラムを記録する際や、ネットワーク上を搬送波として伝送される際に、プログラムの暗号化や圧縮化がなされている場合がある。この場合には、これら記録媒体や搬送波からプログラムを読み込んだ画像処理装置10は、そのプログラムの復号や伸張を行った上で、実行する必要がある。
また、上述した実施形態では、印刷実行処理及び画像ファイル解凍処理をソフトウェアにより実現する場合を例に説明したが、これらの各処理をASIC(Application Specific IC)などのハードウェアにより実現するようにしてもよい。さらには、これらの各処理を、ソフトウェアとハードウェアとが協働して実現するようにしてもよい。
本実施形態に係る画像処理装置の内部構成の一例を説明するブロック図。 本実施形態に係る画像処理装置で実行される印刷実行処理の一例を説明するフローチャートを示す図(その1)。 本実施形態に係る画像処理装置で実行される印刷実行処理の一例を説明するフローチャートを示す図(その2)。 本実施形態に係る画像処理装置で実行される画像ファイル解凍処理の一例を説明するフローチャートを示す図(その1)。 本実施形態に係る画像処理装置で実行される画像ファイル解凍処理の一例を説明するフローチャートを示す図(その2)。 本実施形態に係る画像処理装置で実行される画像ファイル解凍処理の一例を説明するフローチャートを示す図(その3)。
符号の説明
10 画像処理装置
20 CPU
22 ROM
24 カードインターフェース
26 通信インターフェース
28 画面インターフェース
30 装置制御部
32 内部バス
34 RAM
40 RAM
42 印刷ヘッド
44 キャリッジ
46 紙送り機構
48 スキャナ
100 カード型外部デバイス
102 外部デバイス

Claims (8)

  1. 元画像を縮小することにより、第1の縮小画像を生成する、第1縮小手段と、
    前記第1の縮小画像を拡大することにより、前記第1の縮小画像より大きいサイズで且つ元画像より小さいサイズの第2の縮小画像を生成する、第2縮小手段と、
    前記第2の縮小画像に基づいて、赤目の位置検出を行い、検出された赤目の位置に基づいて赤目補正を行う、赤目補正手段と、
    を備えることを特徴とする画像処理装置。
  2. 前記第1縮小手段が第1の縮小画像を生成する際に用いる補間アルゴリズムと、前記第2縮小手段が第2の縮小画像を生成する際に用いる補間アルゴリズムは、同じである、ことを特徴とする請求項1に記載の画像処理装置。
  3. 前記補間アルゴリズムは、元画像を縮小する際に圧縮された画像情報が第1の縮小画像に畳み込まれ、この畳み込まれた画像情報が、第1の縮小画像を拡大して第2の縮小画像を生成する際に再度取り出せるアルゴリズムである、ことを特徴とする請求項1又は請求項2に記載の画像処理装置。
  4. 前記第1縮小手段は、Bi−Linear法を用いて、第1の縮小画像を生成し、
    前記第2縮小手段も、Bi−Linear法を用いて、第2の縮小画像を生成する、
    ことを特徴とする請求項1に記載の画像処理装置。
  5. 前記第1縮小手段は、Bi−Cubic法を用いて、第1の縮小画像を生成し、
    前記第2縮小手段も、Bi−Cubic法を用いて、第2の縮小画像を生成する、
    ことを特徴とする請求項1に記載の画像処理装置。
  6. 前記第1縮小手段が第1の縮小画像を生成する際に用いる補間アルゴリズムと、前記第2縮小手段が第2の縮小画像を生成する際に用いる補間アルゴリズムは、異なる、ことを特徴とする請求項1に記載の画像処理装置。
  7. 前記赤目補正手段で赤目補正された画像の印刷を行う、印刷実行手段を、さらに備えることを特徴とする請求項1乃至請求項6のいずれかに記載の画像処理装置。
  8. 元画像を縮小することにより、第1の縮小画像を生成する工程と、
    前記第1の縮小画像を拡大することにより、前記第1の縮小画像より大きいサイズで且つ元画像より小さいサイズの第2の縮小画像を生成する工程と、
    前記第2の縮小画像に基づいて、赤目の位置検出を行い、検出された赤目の位置に基づいて赤目補正を行う工程と、
    を備えることを特徴とする画像処理装置の制御方法。
JP2007298274A 2007-11-16 2007-11-16 画像処理装置及びその制御方法 Withdrawn JP2009124576A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007298274A JP2009124576A (ja) 2007-11-16 2007-11-16 画像処理装置及びその制御方法
US12/271,656 US8125680B2 (en) 2007-11-16 2008-11-14 Image processing apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007298274A JP2009124576A (ja) 2007-11-16 2007-11-16 画像処理装置及びその制御方法

Publications (1)

Publication Number Publication Date
JP2009124576A true JP2009124576A (ja) 2009-06-04

Family

ID=40641600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298274A Withdrawn JP2009124576A (ja) 2007-11-16 2007-11-16 画像処理装置及びその制御方法

Country Status (2)

Country Link
US (1) US8125680B2 (ja)
JP (1) JP2009124576A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135937B2 (ja) * 2013-08-28 2017-05-31 パナソニックIpマネジメント株式会社 画像処理方法および画像処理装置
US11956414B2 (en) * 2015-03-17 2024-04-09 Raytrx, Llc Wearable image manipulation and control system with correction for vision defects and augmentation of vision and sensing
WO2021168449A1 (en) 2020-02-21 2021-08-26 Raytrx, Llc All-digital multi-option 3d surgery visualization system and control

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246644A (ja) * 2003-02-14 2004-09-02 Pentax Corp 画像処理装置、画像処理方法および画像処理プログラム
JP2005167697A (ja) * 2003-12-03 2005-06-23 Canon Inc 赤目補正機能を有する電子カメラ
JP2005223858A (ja) * 2004-02-09 2005-08-18 Nikon Corp 赤目画像補正装置、電子カメラおよび赤目画像補正プログラム
JP2006048223A (ja) * 2004-08-02 2006-02-16 Canon Inc 画像処理装置及び画像処理方法及びコンピュータプログラム
JP2006060540A (ja) * 2004-08-20 2006-03-02 Fuji Photo Film Co Ltd 画像復号縮小装置および方法
JP2007004455A (ja) * 2005-06-23 2007-01-11 Canon Inc 画像処理装置及び画像処理方法、及びプログラムを記録した記憶媒体
JP2007088686A (ja) * 2005-09-21 2007-04-05 Fuji Xerox Co Ltd 画像処理装置、画像処理方法及びそのプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499110B1 (en) * 1998-12-23 2002-12-24 Entrust Technologies Limited Method and apparatus for facilitating information security policy control on a per security engine user basis
JP3979020B2 (ja) 2001-03-13 2007-09-19 セイコーエプソン株式会社 圧縮画像のサンプリングを実行する画像処理装置
US7185359B2 (en) * 2001-12-21 2007-02-27 Microsoft Corporation Authentication and authorization across autonomous network systems
JP4799009B2 (ja) * 2005-02-17 2011-10-19 キヤノン株式会社 画像処理装置及び方法
CN100366050C (zh) * 2005-03-11 2008-01-30 华亚微电子(上海)有限公司 一种图像缩放方法及图像缩放器***
EP1710725B1 (en) * 2005-04-06 2018-10-31 Assa Abloy AB Secure digital credential sharing arrangement
JP5087936B2 (ja) 2006-02-16 2012-12-05 株式会社ニコン カメラ
US7764846B2 (en) * 2006-12-12 2010-07-27 Xerox Corporation Adaptive red eye correction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246644A (ja) * 2003-02-14 2004-09-02 Pentax Corp 画像処理装置、画像処理方法および画像処理プログラム
JP2005167697A (ja) * 2003-12-03 2005-06-23 Canon Inc 赤目補正機能を有する電子カメラ
JP2005223858A (ja) * 2004-02-09 2005-08-18 Nikon Corp 赤目画像補正装置、電子カメラおよび赤目画像補正プログラム
JP2006048223A (ja) * 2004-08-02 2006-02-16 Canon Inc 画像処理装置及び画像処理方法及びコンピュータプログラム
JP2006060540A (ja) * 2004-08-20 2006-03-02 Fuji Photo Film Co Ltd 画像復号縮小装置および方法
JP2007004455A (ja) * 2005-06-23 2007-01-11 Canon Inc 画像処理装置及び画像処理方法、及びプログラムを記録した記憶媒体
JP2007088686A (ja) * 2005-09-21 2007-04-05 Fuji Xerox Co Ltd 画像処理装置、画像処理方法及びそのプログラム

Also Published As

Publication number Publication date
US8125680B2 (en) 2012-02-28
US20090128834A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
US20090067001A1 (en) Printer, image processing device, image processing method, and recording medium
US20100158410A1 (en) Image processing apparatus, image processing method and computer-readable storage medium
JP4532917B2 (ja) 印刷システム、撮像装置、および、撮像装置の制御方法
JP5383416B2 (ja) 画像処理装置及びその制御方法とプログラム
US9176935B2 (en) Image forming apparatus capable of displaying print preview on screen
JP2007200170A (ja) 画像処理装置および画像処理プログラム
JP4112187B2 (ja) 画像処理方法および装置並びにプログラム
JP2006325186A (ja) 画像処理装置
JP2009124576A (ja) 画像処理装置及びその制御方法
JP2006304243A (ja) 画像処理装置、印刷装置、および、画像処理方法
JP4136825B2 (ja) 画像処理装置および画像処理方法およびコンピュータが読み取り可能なプログラムを格納した記憶媒体およびプログラム
JP2009130590A (ja) プリンタ及びその制御方法
US11301975B2 (en) Apparatus, control method, and storage medium
JP5441676B2 (ja) 画像処理装置及びその処理方法
JP2009128990A (ja) 画像処理装置及びその制御方法
US8125682B2 (en) Image processing apparatus and method of controlling the same
US11314995B2 (en) Image processing apparatus, image processing method, and storage medium
JP2008213406A (ja) 印刷処理装置、印刷処理方法及びそのプログラム
JP2006115348A (ja) 画像情報装置および画像印刷方法
JP2004253909A (ja) 画像処理方法
JP5200890B2 (ja) 画像処理装置及びその制御方法
JP6008770B2 (ja) 画像形成装置
JP4821576B2 (ja) 情報処理装置及び情報処理方法
JP2009060486A (ja) 画像処理装置およびこれを備えるプリンタ、画像処理方法
JP2009303232A (ja) 画像処理装置、印刷装置、および、画像処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120210

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120302