JP2009121401A - 内燃機関の排気温度推定装置に関する。 - Google Patents

内燃機関の排気温度推定装置に関する。 Download PDF

Info

Publication number
JP2009121401A
JP2009121401A JP2007298207A JP2007298207A JP2009121401A JP 2009121401 A JP2009121401 A JP 2009121401A JP 2007298207 A JP2007298207 A JP 2007298207A JP 2007298207 A JP2007298207 A JP 2007298207A JP 2009121401 A JP2009121401 A JP 2009121401A
Authority
JP
Japan
Prior art keywords
sensor element
temperature
heater
exhaust
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007298207A
Other languages
English (en)
Inventor
Shozo Yoshida
庄三 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007298207A priority Critical patent/JP2009121401A/ja
Publication of JP2009121401A publication Critical patent/JP2009121401A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】排気温度の推定精度の低下が抑制された内燃機関の排気温度推定装置を提供する。
【解決手段】エンジン2の排気に晒されるセンサ素子65aと、センサ素子65aを加熱するヒータ65bと、を含むA/Fセンサ64と、センサ素子65aの温度を検出するECU4とを備え、ECU4は、所定期間でのセンサ素子65aの温度変化の度合いに基づいてセンサ素子65aの受熱量を算出し、センサ素子65aの受熱量とヒータ65bの発熱量とに基づいて排気及びセンサ素子65a間の伝熱量を算出することにより排気の温度を推定する。
【選択図】図3

Description

本発明は、内燃機関の排気温度推定装置に関する。
従来から、内燃機関の排気温度を推定する技術が知られている(特許文献1及び2参照)。具体的には、A/Fセンサの素子インピーダンスに基づいて素子温度を推定し、この推定された素子温度に基づいて排気温度を推定する。
特開2006−161625号公報 特開2002−70628号公報
図6は、A/Fセンサの素子インピーダンスと、素子温度との関係を示した図である。図6に示すように、素子温度が比較的低温である場合には、素子温度の変動に対して素子インピーダンスの値が大きく変動するので、素子温度を精度よく推定することができる。しかし、素子温度が比較的高温である場合には、素子温度の変動に対して素子インピーダンスの値の変動は小さくなるため、この場合には素子温度を精度よく推定することが困難になる場合がある。素子温度の推定精度が低下すると、排気温度の推定精度に関しても低下する。
したがって本発明の目的は、排気温度の推定精度の低下が抑制された内燃機関の排気温度推定装置を提供することである。
上記目的は、内燃機関の排気に晒されるセンサ素子と、前記センサ素子を加熱するヒータと、を含むガスセンサと、前記センサ素子の温度を検出する温度検出手段と、所定期間での前記センサ素子の温度変化の度合いに基づいて前記センサ素子の受熱量を算出し、前記センサ素子の受熱量と前記ヒータの発熱量とに基づいて前記排気及びセンサ素子間の伝熱量を算出することにより前記排気の温度を推定する排気温度推定手段とを備えた、ことを特徴とする内燃機関の排気温度推定装置によって達成できる。
上記構成により、センサ素子の熱収支に基づいて排気温度を推定することができる。これにより、センサ素子のインピーダンスからセンサ素子の温度を検出して、排気温度を推定する場合と比較し、排気温度の推定精度の低下が抑制される。
上記構成において、前記排気温度推定手段は、機関回転数に応じて前記伝熱量を補正する、構成を採用できる。
機関回転数に応じて排気の流速も変動し、排気の流速によって排気及びセンサ素子間の伝熱量も変動する。従って、機関回転数に応じて前記伝熱量を補正することにより、排気温度の推定精度の低下を抑制できる。
上記構成において、前記排気温度推定手段は、前記センサ素子の温度に基づいて前記ヒータの抵抗値を算出し、前記ヒータの抵抗値に基づいて前記ヒータの発熱量の算出する、構成を採用できる。
ヒータの抵抗値は、温度に依存するためこれによりヒータの発熱量を算出することができる。
上記構成において、前記排気温度推定手段は、前記ヒータの抵抗値を補正するための抵抗値補正処理を実行する、構成を採用できる。
ヒータの抵抗値の算出精度を向上させることができる。従って、排気温度の推定精度の低下を抑制できる。
上記構成において、前記抵抗値補正処理は、機関停止状態において前記ヒータへの通電量を所定の通電量とした場合での前記ヒータへの印加電圧値及び印加電流値に基づいて前記ヒータの実抵抗値を算出し、前記ヒータの実抵抗値と、諸元による前記ヒータの抵抗値とに基づいて、前記ヒータの抵抗値を補正するための補正係数を算出する、構成を採用できる。
上記構成において、前記温度検出手段は、前記センサ素子に一定の電圧を印加して該センサ素子に流れる電流を計測することで該センサ素子の抵抗値を算出し、該センサ素子の抵抗値に基づいて該センサ素子の温度を検出する、構成を採用できる。
本発明によれば、排気温度の推定精度の低下が抑制された内燃機関の排気温度推定装置を提供できる。
以下、図面を参照して本発明に係る実施例について説明する。
図1は、本実施例に係るエンジンシステムの構成を示した模式図であり、自動車に搭載された多気筒ガソリンエンジン(以下「エンジン」と略す)2及びその電子制御ユニット(以下、「ECU」と称す)4の概略構成を示している。図1では1つの気筒の構成を中心として示している。ここでエンジン2の出力は変速機(図示略)を介して最終的に車輪に走行駆動力として伝達される。エンジン2には、燃焼室10内に燃料を直接噴射する筒内噴射弁12と、この噴射された燃料に点火する点火プラグ14とがそれぞれ設けられている。
燃焼室10に接続している吸気ポート16は吸気バルブ(図示略)の駆動により開閉される。吸気ポート16に接続された吸気通路20の途中にはサージタンク22が設けられ、サージタンク22の上流側にはスロットルモータ24によって開度が調節されるスロットルバルブ26が設けられている。
このスロットルバルブ26の開度(スロットル開度TA)により吸気量が調整される。スロットル開度TAはスロットル開度センサ28により検出され、サージタンク22内の吸気圧PMは、サージタンク22に設けられた吸気圧センサ30により検出されて、ECU4に読み込まれている。また、吸気通路20にはエアフロメータ21が配置されて、吸入空気量をECU4に出力する。また、吸気通路20には、吸気の温度を検出する吸気温センサ27が設けられており、吸気温度をECU4に出力する。
燃焼室10に接続している排気ポート32は排気バルブ(図示略)の駆動により開閉される。
また、排気通路36には、A/Fセンサ(ガスセンサ)64が配置されている。A/Fセンサ64として、触媒38に流入する排気ガスの空燃比に応じた電圧信号を出力するリニア空燃比センサが使用されている。A/Fセンサ64は、それぞれ排気ガス中の残留酸素濃度に基づき空燃比が理論空燃比よりもリッチかリーンかを感知するセンサである。A/Fセンサ64は、円柱状に形成されている。
また、エンジン冷却水温度を検出する水温センサ41が設けられ、検出したエンジン冷却水温度は、ECU4に出力される。
ECU4は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などから構成され、エンジン全体の作動を制御する。このECU4は、スロットル開度センサ28及び吸気圧センサ30以外に、アクセルペダル44の踏み込み量(アクセル開度ACCP)を検出するアクセル開度センサ56からの信号が入力されている。更に、ECU4は、クランク軸54の回転からエンジン回転数NEを検出するエンジン回転数センサ58から信号が入力されている。ECU4は、各種センサからの検出内容に基づいて、筒内噴射量、噴射時期、及びスロットル開度TAを適宜制御する。ECU4は、燃料噴射量をA/Fセンサ64の出力に基づいてフィードバック制御する。また、イグニッションスイッチ70のオン、オフ信号に基づいて、ECU4はエンジン2を始動、停止させる。またECU4は、詳しくは後述するが、A/Fセンサ64のセンサ素子の温度を検出する温度検出手段、排気温度推定処理を実行する排気温度推定手段としての機能を有する。
次に、A/Fセンサ64の構成について簡単に説明する。図2は、A/Fセンサ64の説明図である。A/Fセンサ64は、カバー69を備える。カバー69は、排気ガスに晒されるように、排気通路中に組みつけられる。カバー69にはその内部に排気ガスを導くための孔が設けられている。
カバー69内部には、センサ素子65aが配置されている。センサ素子65aは、一端が閉じられた管状の構造を有している。管状構造の外側表面は、拡散抵抗層66aで覆われている。拡散抵抗層66aは、アルミナ等の耐熱性の多孔質物質であり、センサ素子65aの表面における排気の拡散速度を律する働きを有している。拡散抵抗層66aの内側には排気側電極67aが設けられている。排気側電極67aは、拡散抵抗層66aを介して、排気に晒された状態となっている。
排気側電極67aの表面には、固体電解質層66bが設けられている。固体電解質層66bの、排気側電極67aとは反対側の表面には、大気側電極67bが形成されている。排気側電極67a及び大気側電極67bは、Ptのように触媒作用の高い金属で構成された電極である。また、それぞれ後述するバイアス制御回路と電気的に接続されている。固体電解質層66bは、ZrO2などを含む焼結体であり、酸素イオンを伝導させる特性を有する。
センサ素子65aの内側には、大気室68が形成されている。大気室68内には、大気が導かれる構造となっている。従って、大気側電極67bは、大気に晒されている。大気室68内には、ヒータ65bが配置されている。ヒータ65bは、後述するヒータ制御回路と電気的に接続されており、その制御回路に制御されることにより、センサ素子65aを適切な温度に加熱する。なお、センサ素子65aは、700℃程度の活性温度に加熱されることにより、安定した出力特性を示す。
センサ素子65aは、一方の端子は定電圧源(不図示)に接続され、また、他方の端子はECU4に接続されていると共に接地されている。センサ素子65aが活性化する温度(650℃程度)においては、排気通路36内の酸素濃度に応じてセンサ素子65aに流れる電流は変化する。
一方、ヒータ65bは、ECU4によりその作動が制御される。ECU4によってヒータ65bを作動させることにより、センサ素子65aが加熱して早期に活性化温度へと上昇させることができる。また、ヒータ65bは、デューティ制御によりECU4によってその加熱温度が制御される。
次に、ECU4が実行する、排気温度推定処理について説明する。図3は、ECU4が実行する排気温度推定処理の一例を示すフローチャートである。本処理は、所定期間毎に繰り返し実行される。
ECU4は、イグニッションスイッチ70がオンであるか否かを判定する(ステップS101)。否定判定の場合には、再度ステップS101の処理を実行する。肯定判定の場合には、A/Fセンサ64が正常に作動しているか否かを判定する(ステップS102)。否定判定の場合には、再度ステップS101の処理を実行する。
肯定判定の場合には、ECU4は、A/Fセンサ64のセンサ素子65aの素子温度Tを取得する(ステップS103)。具体的には、ECU4は、センサ素子65aに常に一定の電圧を印加しておき、センサ素子65aを流れる電流を計測することで、センサ素子65aの抵抗値Rを求める。抵抗値Rを求めた後、以下の式により素子温度Tを算出する。
Figure 2009121401
ここで、a、b、cは、実験等により予め算出された値であり、センサ素子毎に異なる値をとる。尚、ECU4は、取得した素子温度TをRAMに記憶させる。
次に、ECU4は、A/Fセンサ64のヒータ65bへの制御デューティD(ステップS104)、ヒータ65bへの印加電圧値Vを取得する(ステップS105)。次に、ECU4は、ヒータ65bの抵抗値Rを算出する(ステップS106)。具体的には、以下の式により算出する。
Figure 2009121401
、bは、予め定められた係数である。一般的に金属の電気抵抗は温度に比例するため、上記の式により、ヒータ65bの抵抗を算出することができる。尚、センサ素子65aの温度とヒータ65bの抵抗値との関係を示したマップに基づいて算出してもよい。
次に、ECU4は、ヒータ65bの発熱量Qを算出する(ステップS107)。具体的には、以下の式により算出する。
Figure 2009121401
Δtは、ステップS107からS111までの処理を実行し、再びステップS101からS107にまで処理が実行されるまでの所定期間を示している。即ち、ECU4が、ステップS107を実行してから本排気温度推定処理を終了し再び本排気温度推定処理を実行して、再度ステップS107の処理を実行するまでの所定期間を示している。これにより、所定期間でのヒータ65bの発熱量Qを算出できる。尚、「(V /R)・D」は、単位時間当たりのヒータ65bの発熱量に相当する。
次に、ECU4は、エンジン回転数センサ58からの出力に基づいて、機関回転数が安定しているか否かを判定する(ステップS108)。詳しくは後述するが、機関回転数が不安定な場合には、排気温度の推定精度が低下する恐れがあるからである。否定判定の場合には、再度ステップS101の処理を実行する。肯定判定の場合には、ECU4は、エンジン回転数センサ58の出力から機関回転数NEを取得する(ステップS109)。
次に、ECU4は、機関回転数NEに応じた値である、レイノルズ数Pex、パラメータa、bを算出する(ステップS110)。具体的には、ECU4は、図4に示した、機関回転数NEと、レイノルズ数Pex、パラメータaとの関係を示したマップに基づいて算出する。機関回転数NEとレイノルズ数Pexとの関係は、機関回転数NEが大きくなるほど、レイノルズ数Pexも大きな値をとる。また、機関回転数NEとパラメータaとの関係は、機関回転数NEが大きくなるほど、パラメータaは小さな値をとる。また、パラメータaは、0.5〜0.025までの値をとる。また、パラメータbは、一定値(0.4)をとる。
次にECU4は、排気温度Texを推定する(ステップS111)。具体的には、以下の式により算出する。
Figure 2009121401
oldは、所定期間Δt前の、センサ素子65aの温度である。即ち、前回の本フローチャート実行時でのステップS103の処理で取得したセンサ素子65aの温度である。ToldはRAMに記憶されている。λは、A/Fセンサ64の熱伝導率である。
次に、上記式(4)について詳細に説明する。まず、センサ素子65aの熱収支を算出するために、センサ素子65aの温度変化を左辺にとり、右辺に、排気及びセンサセンサ素子65aの伝熱量と、ヒータ65bの発熱量Qとをとる。すると以下の式で表すことができる。
Figure 2009121401
Cは、センサ素子65aの熱容量、AはA/Fセンサ64の表面積(排気に接する部分の表面積)、hは排気ガス及びセンサ素子65a間の熱伝達係数を示している。左辺はセンサ素子65aの受熱量を示している。「Ah(Tex―T)」は、排気及びセンサセンサ素子65aの伝熱量を示している。
左辺に示したセンサ素子65aの受熱量は、所定期間でのセンサ素子65aの温度変化の度合に基づいて算出されている。ここで、熱伝達係数hは、以下の式で近似される。
Figure 2009121401
Nuは、ヌセルト数、dは、A/Fセンサ64の代表寸法(A/Fセンサ64の直径)である。尚、排気の流速は機関回転数に比例すると仮定する。また、式(6)は以下のように変形できる。
Figure 2009121401
式(5)に式(7)を代入して変形すると、上述した式(4)を導き出すことができる。上述した式(4)に、ステップS110において算出されたレイノルズ数Pexとパラメータa、bとを代入することにより、排気温度Texを推定することができる。
以上のように、ECU4は、所定期間でのセンサ素子65aの温度変化の度合いに基づいてセンサ素子65aの受熱量を算出し、センサ素子65aの受熱量とヒータ65bの発熱量Qとに基づいて排気及びセンサ素子65a間の伝熱量を算出することにより排気の温度を推定する。これにより、センサ素子65aの熱収支に基づいて排気温度を推定することができる。従って、センサ素子65aのインピーダンスからセンサ素子65aの温度を検出して、排気温度を推定した場合と比較し、排気温度の推定精度の低下が抑制される。
また、ECU4は、図4に示したように、機関回転数に応じて前記伝熱量を補正する。機関回転数に応じて排気の流速も変動し、排気の流速によって排気及びセンサ素子65a間の伝熱量も変動する。従って、機関回転数に応じて伝熱量を補正することにより、排気温度の推定精度の低下を抑制できる。
更に、ECU4は、式(1)で示したように、センサ素子65aのインピーダンスによらずにセンサ素子65aの温度を検出できるので、排気温度の推定精度の低下が抑制される。
次に、ECU4が実行する、抵抗値補正処理について説明する。図5は、ECU4が実行する抵抗値補正処理の一例を示したフローチャートである。図5に示すように、ECU4は、イグニッションスイッチ70がOffであるか否かを判定する(ステップS201)。否定判定の場合には、再度ステップS201の処理を実行する。肯定判定の場合には、ECU4は、センサ素子65aの温度Tを取得する(ステップS202)。次に、ECU4は、吸気温センサ27により吸気温度Tairを取得する(ステップS203)。
次に、ECU4は、ソーク状態であるか否かを判定する(ステップS204)。ソーク状態とは、エンジン2の停止から所定期間経過し、排気通路36内の温度が外気温と略等しくなる状態をいう。具体的には、以下の式により判定する。
Figure 2009121401
は、ソーク状態であるか否かの判定の基準値であり、吸気温度Tairと、センサ素子65aの温度Tとの差の絶対値が基準値Tより小さい場合には、ECU4はソーク状態にあると判定する。否定判定の場合には、ECU4は、再度ステップS202の処理を実行する。肯定判定の場合には、ECU4は以下の処理を実行する。
次に、ECU4は、制御デューティ100パーセントでヒータ65bを通電制御する(ステップS205)。次に、ヒータ65bへの印加電圧Vhm、印加電流Ihmを取得する(ステップS206、S207)。次に、印加電圧Vhm、印加電流Ihmに基づいて、ECU4は、ヒータ65bの抵抗値Rhmを算出する(ステップS208)。具体的には、以下の式により算出する。
Figure 2009121401
次にECU4は、ヒータ抵抗値Rhmの補正係数Cを算出する(ステップS209)。具体的には、以下の式により算出する。
Figure 2009121401
ここで、Rh0は、予め諸元によって定められた、ヒータ65bを制御デューティ100パーセントで通電した場合の抵抗値である。
例えば、ステップS107におけるヒータ65bの発熱量Qを算出する処理で、算出されたヒータ抵抗値Rを補正係数Cで割ることにより、抵抗値を補正することができる。これにより、ヒータ65bの経時変化やバラつきによる抵抗値の検出精度の低下を抑制できる。従って、補正されたヒータ抵抗値に基づいてヒータ65bの発熱量Qを算出することにより、排気温度の推定精度の低下を抑制できる。
以上本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
A/Fセンサは、積層型の酸素センサであってもよい。
本実施例に係るエンジンシステムの構成を示した模式図である。 A/Fセンサの説明図である。 ECUが実行する排気温度推定処理の一例を示すフローチャートである。 機関回転数NEと、レイノルズ数Pex、パラメータaとの関係を示したマップである。 ECUが実行する抵抗値補正処理の一例を示したフローチャートである。 A/Fセンサの素子インピーダンスと、素子温度との関係を示した図である。
符号の説明
2 エンジン
4 ECU(温度検出手段、排気温度推定手段)
10 燃焼室
12 筒内噴射弁
14 点火プラグ
16 吸気ポート
20 吸気通路
22 サージタンク
24 スロットルモータ
26 スロットルバルブ
27 吸気温センサ
28 スロットル開度センサ
30 吸気圧センサ
32 排気ポート
36 排気通路
41 水温センサ
44 アクセルペダル
54 クランク軸
56 アクセル開度センサ
58 エンジン回転数センサ
64 A/Fセンサ
65a センサ素子
65b ヒータ

Claims (6)

  1. 内燃機関の排気に晒されるセンサ素子と、前記センサ素子を加熱するヒータと、を含むガスセンサと、
    前記センサ素子の温度を検出する温度検出手段と、
    所定期間での前記センサ素子の温度変化の度合いに基づいて前記センサ素子の受熱量を算出し、前記センサ素子の受熱量と前記ヒータの発熱量とに基づいて前記排気及びセンサ素子間の伝熱量を算出することにより前記排気の温度を推定する排気温度推定手段とを備えた、ことを特徴とする内燃機関の排気温度推定装置。
  2. 前記排気温度推定手段は、機関回転数に応じて前記伝熱量を補正する、ことを特徴とする請求項1に記載の内燃機関の排気温度推定装置。
  3. 前記排気温度推定手段は、前記センサ素子の温度に基づいて前記ヒータの抵抗値を算出し、前記ヒータの抵抗値に基づいて前記ヒータの発熱量の算出する、ことを特徴とする請求項1又は2に記載の内燃機関の排気温度推定装置。
  4. 前記排気温度推定手段は、前記ヒータの抵抗値を補正するための抵抗値補正処理を実行する、ことを特徴とする請求項1乃至3の何れかに記載の内燃機関の排気温度推定装置。
  5. 前記抵抗値補正処理は、機関停止状態において前記ヒータへの通電量を所定の通電量とした場合での前記ヒータへの印加電圧値及び印加電流値に基づいて前記ヒータの実抵抗値を算出し、前記ヒータの実抵抗値と、諸元による前記ヒータの抵抗値とに基づいて、前記ヒータの抵抗値を補正するための補正係数を算出する、ことを特徴とする請求項4に記載の内燃機関の排気温度推定装置。
  6. 前記温度検出手段は、前記センサ素子に一定の電圧を印加して該センサ素子に流れる電流を計測することで該センサ素子の抵抗値を算出し、該センサ素子の抵抗値に基づいて該センサ素子の温度を検出する、ことを特徴とする請求項1乃至5の何れかに記載の内燃機関の排気温度推定装置。
JP2007298207A 2007-11-16 2007-11-16 内燃機関の排気温度推定装置に関する。 Pending JP2009121401A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007298207A JP2009121401A (ja) 2007-11-16 2007-11-16 内燃機関の排気温度推定装置に関する。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007298207A JP2009121401A (ja) 2007-11-16 2007-11-16 内燃機関の排気温度推定装置に関する。

Publications (1)

Publication Number Publication Date
JP2009121401A true JP2009121401A (ja) 2009-06-04

Family

ID=40813807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298207A Pending JP2009121401A (ja) 2007-11-16 2007-11-16 内燃機関の排気温度推定装置に関する。

Country Status (1)

Country Link
JP (1) JP2009121401A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127858A (ja) * 2010-12-16 2012-07-05 Ngk Spark Plug Co Ltd ガス情報推定装置
JP2013213776A (ja) * 2012-04-03 2013-10-17 Ngk Spark Plug Co Ltd ガスセンサの温度推定システム、及び、ガスセンサの温度制御システム
US10408149B2 (en) 2013-02-18 2019-09-10 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127858A (ja) * 2010-12-16 2012-07-05 Ngk Spark Plug Co Ltd ガス情報推定装置
JP2013213776A (ja) * 2012-04-03 2013-10-17 Ngk Spark Plug Co Ltd ガスセンサの温度推定システム、及び、ガスセンサの温度制御システム
US10408149B2 (en) 2013-02-18 2019-09-10 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4424182B2 (ja) 内燃機関の排気温度推定装置
JP5021697B2 (ja) ガス濃度湿度検出装置
JP5851366B2 (ja) センサ制御装置及びセンサ制御システム
US9052279B2 (en) Gas sensor apparatus and method for controlling the same
US8943800B2 (en) Air-fuel ratio control apparatus
US6723965B2 (en) Heater control apparatus of air-fuel ratio sensor and method thereof
JP5485931B2 (ja) センサ制御装置およびセンサ制御方法
JP3800068B2 (ja) ガス濃度センサのヒータ制御装置
JP4023503B2 (ja) ガス濃度検出装置
JP2009121401A (ja) 内燃機関の排気温度推定装置に関する。
WO2013038490A1 (ja) 内燃機関の制御装置
US7036351B2 (en) Compensated open-loop control of oxygen sensor heater
CN110159441B (zh) 内燃机的控制装置
JP6551314B2 (ja) ガスセンサ制御装置
JPH11344466A (ja) ガス濃度センサのヒータ制御装置
JP2009074884A (ja) 排気ガスセンサの素子温度制御装置
JP3692914B2 (ja) ガス濃度センサのヒータ制御装置
JP4305291B2 (ja) 濃度検出装置
JP5609992B2 (ja) 内燃機関の制御装置
JP4821703B2 (ja) ガスセンサ制御装置
JP2016044659A (ja) 内燃機関
JP2007033394A (ja) センサ特性較正装置
JP2019085926A (ja) センサシステム
JP2009007939A (ja) ガスセンサの素子温度推定装置
JP4196794B2 (ja) 内燃機関の空燃比検出装置