JP2009120022A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle Download PDF

Info

Publication number
JP2009120022A
JP2009120022A JP2007295940A JP2007295940A JP2009120022A JP 2009120022 A JP2009120022 A JP 2009120022A JP 2007295940 A JP2007295940 A JP 2007295940A JP 2007295940 A JP2007295940 A JP 2007295940A JP 2009120022 A JP2009120022 A JP 2009120022A
Authority
JP
Japan
Prior art keywords
air
battery
vehicle
air conditioner
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007295940A
Other languages
Japanese (ja)
Inventor
Hirotaka Egami
弘孝 江上
Yoshinori Isshi
好則 一志
Tetsuya Takechi
哲也 武知
Satoshi Furukawa
智 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007295940A priority Critical patent/JP2009120022A/en
Publication of JP2009120022A publication Critical patent/JP2009120022A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/665Light intensity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner for a vehicle doubly securing charging quantity of a battery and pre-air conditioning. <P>SOLUTION: This air conditioner for the vehicle is furnished with an air conditioner ECU 10 capable of practicing pre-air conditioning operation to carry out indoor air conditioning before an occupant gets in the vehicle while the hybrid vehicle stops. The air conditioner ECU 10 practices the pre-air conditioning operation by using electric power of the battery 4 when the charging quantity of the battery 4 is more than prescribed quantity in receiving a command to start the pre-air conditioning operation and practices the pre-air conditioning operation by using the electric power of the battery 4 as well as transmitting the command to actuate an engine 1 of the vehicle to a hybrid ECU 6 when the charging quantity of the battery 4 is less than the prescribed quantity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はハイブリッド車両に搭載される車両用空調装置に関する。   The present invention relates to a vehicle air conditioner mounted on a hybrid vehicle.

従来、この種の車両用空調装置として、外部から交流200Vまたは100Vの電力が車載のバッテリに入力されると、その電力の仕様に応じて空調の事前作動(プレ空調)の可否を判断する装置が知られている(例えば、特許文献1参照)。   Conventionally, as this type of vehicle air conditioner, when AC 200V or 100V power is externally input to an in-vehicle battery, a device that determines whether or not air conditioning pre-operation (pre-air conditioning) is possible according to the power specifications. Is known (see, for example, Patent Document 1).

この従来の車両用空調装置は、バッテリに交流200Vの電力が入力された場合に空調装置に対してその事前作動を許可し、交流100Vの電力が入力された場合にその事前作動を禁止している。このような制御によって、交流100Vが入力される緊急充電時に空調を作動させることによる充電量低下を抑制している。
特開平7−46701号公報
This conventional vehicle air conditioner permits the air conditioner to perform pre-operation when AC 200V power is input to the battery, and prohibits the pre-operation when AC 100V power is input. Yes. Such control suppresses a decrease in the amount of charge caused by operating the air conditioning during emergency charging when AC 100 V is input.
Japanese Unexamined Patent Publication No. 7-46701

しかしながら、上記特許文献1の車両用空調装置では、例えばバッテリに入力された電力が100Vの電力仕様であるときはプレ空調を行うことができず、ユーザーがプレ空調を必要としているときにその要求に応えられないことがある。また、ユーザーは、充電量が所定条件を満たしていないためにプレ空調が行われない状況を理解するのが難しく、この状況を故障であると思ってしまうこともある。   However, in the vehicle air conditioner disclosed in Patent Document 1, pre-air conditioning cannot be performed when the power input to the battery has a power specification of 100 V, for example, and the request is required when the user needs pre-air conditioning. May not be able to respond. In addition, it is difficult for the user to understand the situation in which the pre-air conditioning is not performed because the charge amount does not satisfy the predetermined condition, and the user may think that this situation is a failure.

そこで、本発明は上記問題点に鑑みてなされたものであり、その目的は、バッテリの充電量確保とプレ空調実施との両立が図れる車両用空調装置を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicle air conditioner that can ensure both the amount of charge of a battery and the implementation of pre-air conditioning.

上記目的を達成するために以下に示す技術的手段を採用する。すなわち、第1の発明は、ハイブリッド車両の停止中に乗員乗車前の車室内空調を行うプレ空調運転を実行可能とする空調制御装置(10)を備える車両用空調装置に係る発明であって、
空調制御装置(10)はプレ空調運転を開始する命令を受信した場合に、
バッテリ(4)の充電量が所定量以上のときはバッテリ(4)の電力を使用してプレ空調運転を実行し、
バッテリ(4)の充電量が所定量未満のときは、車両のエンジン(1)を作動させる命令を送信してエンジン(1)作動による電力を得るとともに、バッテリ(4)の電力を使用してプレ空調運転を実行することを特徴としている。
In order to achieve the above object, the following technical means are adopted. That is, the first invention is an invention relating to a vehicle air conditioner including an air conditioning control device (10) capable of performing a pre-air conditioning operation for performing air conditioning in a passenger compartment before a passenger gets on while the hybrid vehicle is stopped.
When the air conditioning control device (10) receives a command to start the pre-air conditioning operation,
When the charge amount of the battery (4) is equal to or greater than a predetermined amount, the pre-air-conditioning operation is executed using the power of the battery (4),
When the charge amount of the battery (4) is less than a predetermined amount, a command for operating the engine (1) of the vehicle is transmitted to obtain power by operating the engine (1), and the power of the battery (4) is used. It is characterized by executing pre-air conditioning operation.

この発明によれば、プレ空調運転時のバッテリの充電量に応じて、バッテリの電力を使用するか、エンジン作動も併用しつつバッテリの電力を使用するかを使い分けることにより、バッテリの充電量の確保と、バッテリに多大な負荷を与えないユーザー所望のプレ空調による快適性の確保との両立が実現できる。   According to this invention, according to the charge amount of the battery at the time of the pre-air-conditioning operation, the charge amount of the battery can be reduced by selectively using the battery power or using the battery power while also operating the engine. It is possible to achieve both ensuring and ensuring comfort by pre-air conditioning desired by the user without applying a great load to the battery.

また、車両用空調装置は、バッテリ(4)の電力を用いて駆動され、車室内へ送風される空気を冷却するための冷凍サイクルに冷媒を循環させる電動圧縮機(25)を備え、空調制御装置(10)はプレ空調運転時に電動圧縮機(25)を、バッテリ(4)の充電量を用いて決定された回転数に制御することが好ましい。   In addition, the vehicle air conditioner includes an electric compressor (25) that is driven by using the electric power of the battery (4) and circulates the refrigerant in the refrigeration cycle for cooling the air blown into the vehicle interior. It is preferable that the device (10) controls the electric compressor (25) to the rotational speed determined by using the charge amount of the battery (4) during the pre-air conditioning operation.

この発明によれば、プレ空調運転を行う際のバッテリの充電状況に応じて圧縮機の回転数を制御して空調の強さ度合いを調節することにより、乗車したときの乗員の快適性向上とバッテリの充電量確保の両立を実現することができる。   According to this invention, by controlling the number of rotations of the compressor according to the state of charge of the battery when performing the pre-air-conditioning operation and adjusting the degree of strength of the air-conditioning, it is possible to improve passenger comfort when riding It is possible to achieve both of securing the charge amount of the battery.

また、車両用空調装置は、バッテリ(4)の電力を用いて駆動され、車室内に空調された空気を送風する送風機(24)を備え、空調制御装置(10)はプレ空調運転時に送風機(24)を、バッテリ(4)の充電量を用いて決定された回転数に制御することが好ましい。   In addition, the vehicle air conditioner is driven using the electric power of the battery (4), and includes a blower (24) that blows air that has been conditioned in the vehicle interior, and the air conditioning control device (10) is a blower ( 24) is preferably controlled to a rotational speed determined by using the charge amount of the battery (4).

この発明によれば、プレ空調運転を行う際のバッテリの充電状況に応じて空調の強さ度合いを調節する制御を実行することにより、乗車したときの乗員の快適性向上とバッテリの充電量確保の両立を実現することができる。   According to the present invention, by performing control to adjust the degree of air conditioning strength in accordance with the state of charge of the battery when performing pre-air conditioning operation, the passenger comfort is improved and the battery charge is secured when riding. Can be realized.

また、他の発明は、ハイブリッド車両の停止中に乗員乗車前の車室内空調を行うプレ空調運転を実行可能な空調制御装置(10)を備える車両用空調装置に係る発明であって、
空調制御装置(10)は、外部電源からの電力がバッテリ(4)に供給されている充電中にプレ空調運転を開始する命令を受信した場合には、
バッテリ(4)の充電電圧値が所定値以上のときはバッテリ(4)の電力を使用してプレ空調運転を実行し、
バッテリ(4)の充電電圧値が所定値未満のときは、車両のエンジン(1)を作動させる命令を送信してエンジン(1)作動による電力を得るとともに、バッテリ(4)の電力を使用して前記プレ空調運転を実行することを特徴としている。
Another invention is an invention related to a vehicle air conditioner including an air conditioning control device (10) capable of performing a pre-air conditioning operation for performing air conditioning in a passenger compartment before a passenger is boarded while the hybrid vehicle is stopped.
When the air-conditioning control device (10) receives a command to start the pre-air-conditioning operation during charging when power from the external power supply is supplied to the battery (4),
When the charging voltage value of the battery (4) is equal to or higher than a predetermined value, the pre-air-conditioning operation is executed using the power of the battery (4),
When the charging voltage value of the battery (4) is less than a predetermined value, a command for operating the engine (1) of the vehicle is transmitted to obtain power by operating the engine (1), and the power of the battery (4) is used. And performing the pre-air-conditioning operation.

この発明によれば、プレ空調運転時にバッテリに充電中の充電電圧値に応じて、バッテリの電力を使用するか、エンジン作動も併用しつつバッテリの電力を使用するかを使い分けることにより、バッテリの充電量の確保と、バッテリに多大な負荷を与えないユーザー所望のプレ空調による快適性の確保との両立が実現できる。   According to this invention, according to the charging voltage value during charging of the battery during the pre-air-conditioning operation, by using the battery power or using the battery power while using the engine together, It is possible to achieve both of securing the amount of charge and ensuring comfort by pre-air conditioning desired by the user without applying a large load to the battery.

また、車両用空調装置は、バッテリ(4)の電力を用いて駆動され、車室内へ送風される空気を冷却するための冷凍サイクルに冷媒を循環させる電動圧縮機(25)を備え、空調制御装置(10)は、プレ空調運転時に電動圧縮機(25)を、バッテリ(4)に充電中の充電電圧値を用いて決定された回転数に制御することが好ましい。   In addition, the vehicle air conditioner includes an electric compressor (25) that is driven by using the electric power of the battery (4) and circulates the refrigerant in the refrigeration cycle for cooling the air blown into the vehicle interior. It is preferable that the apparatus (10) controls the electric compressor (25) to the rotational speed determined by using the charging voltage value during charging of the battery (4) during the pre-air-conditioning operation.

この発明によれば、プレ空調運転を行う際にバッテリに充電されている電圧状況に応じて圧縮機の回転数を制御して空調の強さ度合いを調節することにより、乗車したときの乗員の快適性向上とバッテリの充電量確保の両立を実現することができる。   According to the present invention, when the pre-air-conditioning operation is performed, the rotation speed of the compressor is controlled according to the voltage state charged in the battery to adjust the strength level of the air-conditioner, thereby It is possible to achieve both improvement of comfort and securing of the charge amount of the battery.

また、車両用空調装置は、バッテリ(4)の電力を用いて駆動され、車室内に空調された空気を送風する送風機(24)を備え、空調制御装置(10)は、プレ空調運転時に送風機(24)を、バッテリ(4)に充電中の充電電圧値を用いて決定された回転数に制御することが好ましい。   In addition, the vehicle air conditioner includes a blower (24) that is driven using the electric power of the battery (4) and blows air that has been air-conditioned into the vehicle interior. It is preferable to control (24) to the rotation speed determined using the charging voltage value during charging of the battery (4).

この発明によれば、プレ空調運転を行う際にバッテリに充電されている電圧状況に応じて空調の強さ度合いを調節する制御を実行することにより、乗車したときの乗員の快適性向上とバッテリの充電量確保の両立を実現することができる。   According to the present invention, when the pre-air-conditioning operation is performed, the control for adjusting the strength level of the air-conditioning according to the voltage state charged in the battery is executed, thereby improving the passenger comfort and the battery when getting on. It is possible to achieve both of securing the amount of charge.

なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each said means is an example which shows a corresponding relationship with the specific means of embodiment mentioned later.

以下、図面を参照しながら本発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組み合せることも可能である。   Hereinafter, a plurality of modes for carrying out the present invention will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. In the case where only a part of the configuration is described in each embodiment, the other parts of the configuration are the same as those described previously. In addition to the combination of parts specifically described in each embodiment, the embodiments may be partially combined as long as the combination is not particularly troublesome.

(第1実施形態)
本発明の一実施形態である第1実施形態の車両用空調装置を図1〜図5にしたがって説明する。図1は、本実施形態だけでなく後述の第2実施形態にも適用されるハイブリッド自動車の制御システムを示したブロック図である。図2は本実施形態だけでなく後述の第2実施形態にも適用される車両用空調装置の制御システムを示したブロック図である。
(First embodiment)
The vehicle air conditioner of 1st Embodiment which is one Embodiment of this invention is demonstrated according to FIGS. FIG. 1 is a block diagram showing a hybrid vehicle control system applied not only to the present embodiment but also to a second embodiment described later. FIG. 2 is a block diagram showing a control system for a vehicle air conditioner that is applied not only to the present embodiment but also to a second embodiment described later.

この車両用空調装置は、ハイブリッド自動車に搭載され、蒸気圧縮式冷凍サイクルと、蒸気圧縮式冷凍サイクルを用いて冷房を行う室内ユニットと、室内ユニットの各部および蒸気圧縮式冷凍サイクルの構成部品である電動圧縮機25等を自動制御可能な空調制御装置としてのエアコンECU10と、所望の運転を設定するために乗員によって操作されるコントロールパネル40と、乗員乗車前の車室内の空調運転(プレ空調運転)を行いたいときに乗員を含むユーザーが操作する携帯端末50と、を備えている。エアコンECU10は、携帯端末50から送信されるプレ空調運転の命令信号を受信すると、所定のプログラムによる演算を行ってプレ空調運転を実行することができる。   This vehicle air conditioner is mounted on a hybrid vehicle, and is a vapor compression refrigeration cycle, an indoor unit that cools using the vapor compression refrigeration cycle, each part of the indoor unit, and components of the vapor compression refrigeration cycle An air conditioner ECU 10 as an air conditioning control device capable of automatically controlling the electric compressor 25 and the like, a control panel 40 operated by an occupant to set a desired operation, and an air conditioning operation (pre-air conditioning operation) in the passenger compartment before the occupant gets on the vehicle ), And a portable terminal 50 operated by users including passengers. When the air conditioner ECU 10 receives the pre-air-conditioning operation command signal transmitted from the portable terminal 50, the air-conditioner ECU 10 can perform the pre-air-conditioning operation by performing a calculation according to a predetermined program.

ユーザーは、車両に乗車しようとする前に、車室内の空調環境を快適にしておくために、携帯端末50を操作して、通信局であるセンタを通じて車両の空調装置に対してプレ空調運転の指令を送信する。このプレ空調運転は、原則として、車両のイグニッションスイッチがOFF状態であること、あるいはエアコンECU10に対して乗員が乗車している信号が送信されていないことが許容条件となる。   Before the user tries to get on the vehicle, the user operates the portable terminal 50 to perform a pre-air-conditioning operation on the vehicle air-conditioning device through the center as a communication station in order to make the air-conditioning environment in the passenger compartment comfortable. Send a command. In principle, this pre-air-conditioning operation has an allowable condition that the ignition switch of the vehicle is in an OFF state, or that a signal indicating that an occupant is on board is not transmitted to the air conditioner ECU 10.

蒸気圧縮式冷凍サイクルは、電動圧縮機25と、電動圧縮機25の吐出口より吐出された冷媒が流入する凝縮器と、凝縮液化された冷媒を気液分離し下流に供給するレシーバと、液冷媒を減圧膨張させる膨張弁等の減圧装置と、減圧膨張された冷媒を蒸発気化させる蒸発器とを備えており、これらを環状に接続して構成されている。   The vapor compression refrigeration cycle includes an electric compressor 25, a condenser into which the refrigerant discharged from the discharge port of the electric compressor 25 flows, a receiver that separates the condensed and liquefied refrigerant into gas and liquid, and supplies the liquid downstream. A decompression device such as an expansion valve for decompressing and expanding the refrigerant, and an evaporator for evaporating and evaporating the decompressed and expanded refrigerant are provided, and these are connected in a ring shape.

図1に示すように、ハイブリッド自動車はガソリン等の液体燃料を爆発、燃焼させて動力を発生する走行用のエンジン1と、走行補助用の電動機機能および発電機機能を有する電動発電機2と、エンジン1の燃料供給量、始動時期等を制御するエンジンECU3と、車室内の空調を制御するエアコンECU10と、電動発電機2、エンジンECU3、室内ユニットの各部および蒸気圧縮式冷凍サイクルの構成部品に電力を供給するバッテリ4と、電動発電機2、無段変速機(図示しない)、電磁クラッチ7等の制御を行うとともに、エンジンECU3に制御信号を出力するハイブリッドECU6と、を備えている。   As shown in FIG. 1, a hybrid vehicle explodes and burns liquid fuel such as gasoline to generate power, and a motor generator 2 having a motor function and a generator function for driving assistance, The engine ECU 3 that controls the fuel supply amount of the engine 1, the start timing, etc., the air conditioner ECU 10 that controls the air conditioning in the vehicle interior, the motor generator 2, the engine ECU 3, each part of the indoor unit, and the components of the vapor compression refrigeration cycle A battery 4 that supplies electric power, and a hybrid ECU 6 that controls the motor generator 2, the continuously variable transmission (not shown), the electromagnetic clutch 7, and the like and outputs a control signal to the engine ECU 3 are provided.

ハイブリッドECU6は、電動発電機2、エンジン1のいずれの駆動力を駆動輪に伝えるかの切替えを制御する機能と、バッテリ4の充電、放電を制御する機能とを有している。   The hybrid ECU 6 has a function of controlling switching of which driving force of the motor generator 2 and the engine 1 is transmitted to the drive wheels, and a function of controlling charging and discharging of the battery 4.

ハイブリッドECU6は、具体的に以下のような制御を行う。車両走行中(減速時を除く)は、エンジン1で駆動した動力を駆動輪に伝え、減速時はエンジン1を停止して電動発電機2で発電してバッテリ4に充電する。そして、発進時、加速時等の走行負荷が大きいときは、エンジン1による駆動力に加えて電動発電機2による駆動力を駆動輪に伝達させる。   Specifically, the hybrid ECU 6 performs the following control. While the vehicle is running (except during deceleration), the power driven by the engine 1 is transmitted to the drive wheels, and during deceleration, the engine 1 is stopped and the motor generator 2 generates power and charges the battery 4. When the traveling load such as when starting or accelerating is large, the driving force by the motor generator 2 is transmitted to the driving wheels in addition to the driving force by the engine 1.

さらに、エンジン1作動時にバッテリ4の充電量が充電開始目標値以下になった場合には、エンジン1の動力を電動発電機2に伝達し電動発電機2によって発電された電力をインバータ5を介してバッテリ4に充電する。また、車両停止時にバッテリ4の充電量が充電開始目標値以下である場合には、エンジンECU3に対してエンジン1を始動する命令を送り、エンジン1の動力を電動発電機2に伝達する。   Further, when the charge amount of the battery 4 becomes equal to or less than the charge start target value when the engine 1 is operated, the power of the engine 1 is transmitted to the motor generator 2 and the electric power generated by the motor generator 2 is passed through the inverter 5. To charge the battery 4. Further, when the charge amount of the battery 4 is equal to or less than the charge start target value when the vehicle is stopped, a command to start the engine 1 is sent to the engine ECU 3 to transmit the power of the engine 1 to the motor generator 2.

バッテリ4は、車室内空調、走行等によって消費した電力を充電するための充電装置を備えており、例えばニッケル水素蓄電池等が用いられる。この充電装置は、電力供給源としての電気スタンドや商業用電源に接続されるコンセントを備えており、このコンセントに電源供給源を接続することにより、バッテリ4の充電が行われる。   The battery 4 includes a charging device for charging electric power consumed by vehicle interior air conditioning, traveling, and the like. For example, a nickel hydride storage battery or the like is used. The charging device includes a power stand as a power supply source and an outlet connected to a commercial power source, and the battery 4 is charged by connecting the power supply source to the outlet.

図2にしたがって車両用空調装置の制御システムを説明する。エアコンECU10は、マイクロコンピュータ11と、車室内前面に設けられたコントロールパネル40上の各種スイッチからの信号、携帯端末50から送信されるプレ空調運転命令信号および各種センサ30〜36からのセンサ信号やハイブリッドECU6から出力される通信信号が入力される入力回路13と、各種アクチュエータM1〜M5に出力信号を送る出力回路12と、を備えている。マイクロコンピュータ11は、ROM(読み込み専用記憶装置)、RAM(読み込み書き込み可能記憶装置)等のメモリおよびCPU(中央演算装置)等から構成されており、コントロールパネル40等から送信された運転命令に基づいた演算に使用される各種プログラムを有している。   A control system for a vehicle air conditioner will be described with reference to FIG. The air conditioner ECU 10 includes signals from the microcomputer 11 and various switches on the control panel 40 provided in the front of the vehicle interior, pre-air conditioning operation command signals transmitted from the portable terminal 50, and sensor signals from the various sensors 30 to 36. An input circuit 13 to which a communication signal output from the hybrid ECU 6 is input, and an output circuit 12 that sends output signals to various actuators M1 to M5 are provided. The microcomputer 11 includes a memory such as a ROM (read only storage device) and a RAM (read / write storage device), a CPU (central processing unit), and the like, and is based on an operation command transmitted from the control panel 40 or the like. It has various programs used for the calculation.

コントロールパネル40には、電動圧縮機25の起動および停止を命令するためのエアコンスイッチ、吸込口モードを切り替えるための吸込口切替スイッチ、車室内温度を設定するための温度設定スイッチ、ブロワ24(送風機)による車室内への送風量を切り替えるための風量切替スイッチ、吹出口モードを切り替えるための吹出口切替スイッチ等が設けられている。   The control panel 40 includes an air conditioner switch for commanding start and stop of the electric compressor 25, a suction port switching switch for switching the suction port mode, a temperature setting switch for setting the vehicle interior temperature, and a blower 24 (blower ), An air volume switching switch for switching the air flow into the vehicle interior, an air outlet switching switch for switching the air outlet mode, and the like.

各種センサは、車室内の空気温度を検出する内気温センサ30、車室外の外気温度を検出する外気温センサ31、車室内に照射される日射量を検出する日射センサ32、蒸気圧縮式冷凍サイクルの冷却用熱交換器を構成する蒸発器を通過した直後の空気温度を検出する蒸発器吹出空気温度センサ33、室内ユニット内部の送風空気を加熱するヒータへの冷却水温度を検出する水温センサ34、車両の走行速度を検出する車速センサ35、乗員がシートに着座しているか否かを検出することができる着座センサ36等である。   The various sensors are an inside air temperature sensor 30 that detects the air temperature inside the vehicle interior, an outside air temperature sensor 31 that detects outside air temperature outside the vehicle interior, a solar radiation sensor 32 that detects the amount of solar radiation irradiated into the vehicle interior, and a vapor compression refrigeration cycle. The evaporator blown air temperature sensor 33 detects the air temperature immediately after passing through the evaporator constituting the cooling heat exchanger, and the water temperature sensor 34 detects the cooling water temperature to the heater that heats the blown air inside the indoor unit. A vehicle speed sensor 35 for detecting the traveling speed of the vehicle, a seating sensor 36 for detecting whether or not an occupant is seated on the seat, and the like.

マイクロコンピュータ11は、ROM(読み込み専用記憶装置)、RAM(読み込み書き込み可能記憶装置)等のメモリおよびCPU(中央演算装置)等から構成されており、コントロールパネル40等から送信された運転命令に基づいた演算に使用される各種プログラムを有している。マイクロコンピュータ11から出力された信号は、出力回路12によってD/A変換、増幅等された後に、吹出口切替ドア21、内外気切替ドア22、エアミックスドア23、ブロワ24、電動圧縮機25のそれぞれを駆動する各種アクチュエータM1,M2,M3,M4,M5に駆動信号として出力される。   The microcomputer 11 includes a memory such as a ROM (read only storage device) and a RAM (read / write storage device), a CPU (central processing unit), and the like, and is based on an operation command transmitted from the control panel 40 or the like. It has various programs used for the calculation. The signal output from the microcomputer 11 is D / A converted, amplified, and the like by the output circuit 12, and then the air outlet door 21, the inside / outside air switching door 22, the air mix door 23, the blower 24, and the electric compressor 25. It is output as a drive signal to various actuators M1, M2, M3, M4, and M5 that drive each of them.

次に、エアコンECU10による空調制御処理について図3ないし図5を用いて説明する。図3は、エアコンECU10による空調制御のメインルーチンを示したフローチャートである。   Next, air conditioning control processing by the air conditioner ECU 10 will be described with reference to FIGS. 3 to 5. FIG. 3 is a flowchart showing a main routine of air conditioning control by the air conditioner ECU 10.

まず、エアコンECU10にプレ空調運転を含む空調運転命令が入力されると、図3に示すメインルーチンにしたがって空調制御処理の実行を開始し、ROM,RAMなどのメモリに記憶された制御プログラムがスタートしてRAMに記憶されるデータなどを初期化する(ステップ100)。ここで車室内空調が複数の空調ゾーン毎に行われる場合には、各空調ゾーンの空調運転は空調ゾーン毎に担当する空調ユニット(例えば前席空調ユニット、後席空調ユニット)によって実行される。   First, when an air-conditioning operation command including pre-air-conditioning operation is input to the air-conditioner ECU 10, the execution of the air-conditioning control process is started according to the main routine shown in FIG. 3, and the control program stored in the memory such as ROM or RAM is started. Then, the data stored in the RAM is initialized (step 100). Here, when vehicle interior air conditioning is performed for each of a plurality of air conditioning zones, the air conditioning operation of each air conditioning zone is performed by an air conditioning unit (for example, a front seat air conditioning unit, a rear seat air conditioning unit) in charge for each air conditioning zone.

次に、エアコンECU10は、ステップ200でコントロールパネル40、内気温センサ30、外気温センサ31、日射センサ32、蒸発器吹出空気温度センサ33、水温センサ34、車速センサ35および着座センサ36等からの信号を読み込み、ROMに記憶された数式1を用いて車室内に吹き出す空気の目標吹出温度TAOを算出する(ステップ300)。   Next, in step 200, the air conditioner ECU 10 receives from the control panel 40, the inside air temperature sensor 30, the outside air temperature sensor 31, the solar radiation sensor 32, the evaporator blown air temperature sensor 33, the water temperature sensor 34, the vehicle speed sensor 35, the seating sensor 36, and the like. The signal is read, and the target blowout temperature TAO of the air blown into the vehicle interior is calculated using Formula 1 stored in the ROM (step 300).

(数式1)
TAO=Kset×Tset−KR×TR−KAM×TAM−KS×TS+C
ここで、Tsetは設定された設定温度、TRは内気温センサ30によって検出された内気温度、TAMは外気温センサ31によって検出された外気温度、TSは日射センサ32によって検出された日射量である。また、Ksetは設定温度ゲイン、KRは内気温ゲイン、KAMは外気温度ゲイン、KSは日射ゲインであり、Cは全体に掛かる補正定数である。
(Formula 1)
TAO = Kset × Tset−KR × TR-KAM × TAM-KS × TS + C
Here, Tset is the set temperature, TR is the inside air temperature detected by the inside air temperature sensor 30, TAM is the outside air temperature detected by the outside air temperature sensor 31, and TS is the amount of solar radiation detected by the solar radiation sensor 32. . Kset is a set temperature gain, KR is an inside air temperature gain, KAM is an outside air temperature gain, KS is a solar radiation gain, and C is a correction constant applied to the whole.

続いてエアコンECU10は、ステップ400において、バッテリ4の電力により駆動されるブロワ24を作動するための電圧を決定する。このブロワ電圧の決定処理は、図4に示す特性図を用いて算出される。図4は空調制御メインルーチンにおいてブロワ電圧を決定するために用いる特性図である。この特性図は、バッテリ4の現在の充電量について、ステップ300で算出された目標吹出温度TAO[℃]とブロワ電圧[V]との関係を表したものであり、この特性図によって目標吹出温度TAO[℃]に対する適正なブロワ電圧[V]をバッテリ4の充電量を考慮して決定することができる。   Subsequently, in step 400, the air conditioner ECU 10 determines a voltage for operating the blower 24 driven by the power of the battery 4. This blower voltage determination process is calculated using the characteristic diagram shown in FIG. FIG. 4 is a characteristic diagram used to determine the blower voltage in the air conditioning control main routine. This characteristic diagram shows the relationship between the target blowing temperature TAO [° C.] calculated in step 300 and the blower voltage [V] with respect to the current charge amount of the battery 4, and this characteristic diagram shows the target blowing temperature. An appropriate blower voltage [V] for TAO [° C.] can be determined in consideration of the charge amount of the battery 4.

エアコンECU10は充電量に対応する複数の特性図を記憶しており、その一例として図4には、バッテリ4の現在の充電量が70%以上のときに使用する特性図(V1で示す図)と、充電量が70%未満のときに使用する特性図(V2で示す図)が示されている。   The air conditioner ECU 10 stores a plurality of characteristic diagrams corresponding to the charge amount. As an example, FIG. 4 shows a characteristic diagram (shown by V1) used when the current charge amount of the battery 4 is 70% or more. And the characteristic figure (figure shown by V2) used when charge amount is less than 70% is shown.

図4に示すように、エアコンECU10は、バッテリ4の充電量が70%以上の場合にはTAO[℃]が低温時および高温時において充電量70%未満の場合よりも高電圧のブロワ電圧をアクチュエータM4に印加するように決定する。また、TAO[℃]が高温や低温でない中温時には充電量の大きさによって印加するブロワ電圧に差を設けることなく、図4に示すTAO[℃]に相当するブロワ電圧を印加するように決定する。   As shown in FIG. 4, when the charge amount of the battery 4 is 70% or more, the air conditioner ECU 10 generates a higher blower voltage than when the TAO [° C.] is less than 70% at low temperature and high temperature. It determines so that it may apply to the actuator M4. Further, it is determined that the blower voltage corresponding to TAO [° C.] shown in FIG. 4 is applied without making a difference in the blower voltage to be applied depending on the amount of charge when the TAO [° C.] is not high or low. .

つまり、エアコンECU10は、TAO[℃]が低温時および高温時においては、充電量が所定値(満タンに対して70%)未満の時にバッテリ4の消費電力を抑制するためにブロワ24に低めの電圧を供給する制御を実行し、充電量が所定値(満タンに対して70%)以上の時は前者よりも高い電圧をブロワ24に供給することにより、前者のようなバッテリ4の消費電力を抑制する制御ではなく、適切な送風量を供給してユーザーが所望する空調環境を重視する制御を実行する。   That is, the air conditioner ECU 10 lowers the blower 24 to suppress the power consumption of the battery 4 when the amount of charge is less than a predetermined value (70% of full tank) when TAO [° C.] is low and high. When the amount of charge is equal to or higher than a predetermined value (70% with respect to full tank), a voltage higher than the former is supplied to the blower 24, thereby consuming the battery 4 like the former. Rather than controlling the power, an appropriate amount of air is supplied to execute control that places importance on the air conditioning environment desired by the user.

このようにエアコンECU10は、プレ空調運転時等において、図4に示すような制御特性図を用いた演算により、バッテリ4の充電量を用いてブロワ24の回転数を決定し、当該回転数となるようにブロワ24の作動を制御する。この制御によれば、プレ空調運転等を行う際にバッテリ4の充電状況に応じて空調の強さを制限して、空調の強さ度合いを調節することによって、乗車時の乗員の快適性向上とバッテリ4の充電量確保の両面に優れた制御を実現できる。   As described above, the air conditioner ECU 10 determines the rotation speed of the blower 24 using the charge amount of the battery 4 by the calculation using the control characteristic diagram as shown in FIG. Thus, the operation of the blower 24 is controlled. According to this control, when performing pre-air-conditioning operation or the like, by restricting the air-conditioning strength according to the state of charge of the battery 4 and adjusting the degree of air-conditioning strength, passenger comfort is improved when riding In addition, it is possible to realize excellent control in both aspects of securing the charge amount of the battery 4.

次にエアコンECU10は、ステップ500において、ステップ300で算出された目標吹出温度TAOに対応する吸込口モードを決定する処理を実行する。エアコンECU10は、目標吹出温度TAOが所定の目標吹出温度よりも高いときには内気循環モードを選択し、所定の目標吹出温度以下であるときには外気導入モードを選択する。   Next, in step 500, air conditioner ECU10 performs the process which determines the suction inlet mode corresponding to the target blowing temperature TAO calculated in step 300. FIG. The air conditioner ECU 10 selects the inside air circulation mode when the target blowing temperature TAO is higher than the predetermined target blowing temperature, and selects the outside air introduction mode when the target blowing temperature TAO is lower than the predetermined target blowing temperature.

次にエアコンECU10は、ステップ600において、ROM、RAMなどに記憶されている吹出ロモード決定するための特性図(図示せず)にしたがい、ステップ300で算出された目標吹出温度TAOに対応する吹出口モードを決定する処理を実行する。エアコンECU10は、目標吹出温度TAOが上昇するにつれて、空調ゾーンの吹出ロモードをフェイスモード、バイレベルモード、フットモードの順番に自動的に切り替えるように制御する。なお、フェイスモードとは、フェイス吹出口だけから空調風を吹き出すモードであり、フットモードとは、フット吹出口だけから空調風を吹き出しモードである。また、バレベルモードとは、フェイス吹出口およびフット吹出口から空調風を吹き出すモードである。   Next, in step 600, the air conditioner ECU 10 follows the characteristic chart (not shown) for determining the blowout mode stored in the ROM, RAM, etc., and the blowout port corresponding to the target blowout temperature TAO calculated in step 300. A process for determining the mode is executed. The air conditioner ECU 10 performs control so that the blow mode of the air conditioning zone is automatically switched in the order of the face mode, the bi-level mode, and the foot mode as the target blow temperature TAO increases. The face mode is a mode in which conditioned air is blown out only from the face outlet, and the foot mode is a mode in which conditioned air is blown out only from the foot outlet. Further, the bar level mode is a mode in which conditioned air is blown out from the face air outlet and the foot air outlet.

次にエアコンECU10は、ステップ700において、エアミックスドア23の目標開度を算出する。エアミックスドア23の開度は、ステップ300で算出された目標吹出温度TAO、蒸発器吹出空気温度センサ33によって検出された蒸発器後の空気温度、水温センサ34によって検出された冷却水温を、ROMに記憶された数式2で演算することによって算出される。   Next, in step 700, the air conditioner ECU 10 calculates a target opening degree of the air mix door 23. The opening degree of the air mix door 23 is calculated by using the target blowing temperature TAO calculated in step 300, the air temperature after the evaporator detected by the evaporator blowing air temperature sensor 33, the cooling water temperature detected by the water temperature sensor 34, and the ROM. It is calculated by calculating with the numerical formula 2 memorize | stored in this.

(数式2)
開度=((TAO−TE)/(TW−TE))×100(%)
ここで、TEは蒸発器後の空気温度、TWは冷却水温である。
(Formula 2)
Opening angle = ((TAO−TE) / (TW−TE)) × 100 (%)
Here, TE is the air temperature after the evaporator, and TW is the cooling water temperature.

次にエアコンECU10は、図5に示すフローチャートに基づいて電動圧縮機25の回転数を決定した後(ステップ800)、各ステップ300〜800で算出または決定された各制御状態が得られるようにアクチュエータM1〜M5およびハイブリッドECU6に対して制御信号を出力する(ステップ900)。   Next, the air conditioner ECU 10 determines the number of rotations of the electric compressor 25 based on the flowchart shown in FIG. 5 (step 800), and then obtains each control state calculated or determined in each step 300 to 800. A control signal is output to M1 to M5 and hybrid ECU 6 (step 900).

エアコンECU10は、その後、所定時間が経過すると(ステップ1000)、ステップ200の処理に戻り、上述の制御処理(ステップ200〜1000)を繰り返す。このような処理の繰り返しによって空調ゾーンの空調は、快適性の高いものとなる。   Thereafter, when a predetermined time elapses (step 1000), the air conditioner ECU 10 returns to the process of step 200 and repeats the above-described control process (steps 200 to 1000). By repeating such processing, air conditioning in the air conditioning zone becomes highly comfortable.

次に、図5に示すフローチャートについて説明する。図5は、電動圧縮機25の回転数を決定するルーチンの処理手順を示したフローチャートである。   Next, the flowchart shown in FIG. 5 will be described. FIG. 5 is a flowchart showing a processing procedure of a routine for determining the rotational speed of the electric compressor 25.

まず、エアコンECU10は、乗員が乗車中であるか否かを判断する(ステップ801)。この判断は、イグニッションスイッチがONされているか否か、または、着座センサ36により乗員がシートに着座していることを検出したか否かによって行われる。イグニッションスイッチがONされている、または着座センサ36によって乗員の着座が検出された場合には、エアコンECU10は、乗車中であると判断し、各種センサ30〜35のセンサ信号に基づいて算出した目標蒸発器後温度TEOと、蒸発器吹出空気温度センサ33によって検出された実際の蒸発器後温度TEとの温度偏差Enを以下の数式3を用いて演算する(ステップ802)。   First, the air conditioner ECU 10 determines whether or not an occupant is on board (step 801). This determination is made based on whether or not the ignition switch is turned on, or whether or not the seating sensor 36 detects that an occupant is seated on the seat. When the ignition switch is turned on or when the seating sensor 36 detects the seating of the occupant, the air conditioner ECU 10 determines that the passenger is in the vehicle and calculates the target calculated based on the sensor signals of the various sensors 30 to 35. A temperature deviation En between the post-evaporator temperature TEO and the actual post-evaporator temperature TE detected by the evaporator blown air temperature sensor 33 is calculated using the following Equation 3 (step 802).

(数式3)
En=TEO−TE
次に、エアコンECU10は、以下の数式4を用いて偏差変化率Edotを演算する(ステップ803)。
(Formula 3)
En = TEO-TE
Next, the air conditioner ECU 10 calculates the deviation change rate Edot using the following mathematical formula 4 (step 803).

(数式4)
Edot=En−En-1
ここで、Enは1秒に1回更新されるため、En-1はEnに対して1秒前の値となる。
(Formula 4)
Edot = En-En-1
Here, since En is updated once per second, En-1 is a value one second before En.

さらに、エアコンECU10は、ステップ802で求めたEnとステップ803で求めたEdotとを用いて、ROMに記憶されたメンバーシップ関数とファジー理論とに基づいて1秒前の電動圧縮機25のアクチュエータM5(電動モータ)の目標回転数IVOn-1に対して増減する目標増加回転数Δfを算出する(ステップ804)。   Further, the air conditioner ECU 10 uses the En obtained in step 802 and Edot obtained in step 803 based on the membership function stored in the ROM and the fuzzy theory, and the actuator M5 of the electric compressor 25 one second ago. A target increased rotational speed Δf that increases or decreases with respect to the target rotational speed IVOn-1 of (electric motor) is calculated (step 804).

次に、エアコンECU10は、以下の数式5を用いて電動圧縮機25の電動モータの目標回転数IVOnを算出する(ステップ805)。そして、算出された目標回転数IVOnに基づいてステップ900の処理が実行される。   Next, the air conditioner ECU 10 calculates the target rotational speed IVOn of the electric motor of the electric compressor 25 using the following formula 5 (step 805). Then, the process of step 900 is executed based on the calculated target rotational speed IVOn.

(数式5)
IVOn=IVOn-1+Δf
ここで、IVOn-1は1秒前の回転数で、Δfは1秒前の電動圧縮機25の電動モータの目標回転数IVOn-1に対して増減する回転数である。
(Formula 5)
IVOn = IVOn-1 + Δf
Here, IVOn-1 is the rotational speed one second before, and Δf is the rotational speed that increases or decreases with respect to the target rotational speed IVOn-1 of the electric motor of the electric compressor 25 one second ago.

一方、エアコンECU10は、イグニッションスイッチがONされていない、または着座センサ36によって乗員の着座が検出されていない場合には、乗車前であると判断し、次にプレ空調運転を実行する指令があるか否かを判断する(ステップ810)。エアコンECU10は、プレ空調運転を実行する指令が送られていない場合には、電動圧縮機25を起動させる必要がないため、電動圧縮機25の目標回転数IVOを0rpmに決定する(ステップ811)。そして、決定された0rpmの目標回転数IVOに基づいてステップ900の処理が実行される。   On the other hand, if the ignition switch is not turned on or the seating sensor 36 has not detected the seating of the occupant, the air conditioner ECU 10 determines that it is before boarding and then has a command to execute the pre-air conditioning operation. Whether or not (step 810). The air conditioner ECU 10 determines that the target rotational speed IVO of the electric compressor 25 is 0 rpm because there is no need to start the electric compressor 25 when a command to execute the pre-air conditioning operation is not sent (step 811). . Then, the process of step 900 is executed based on the determined target rotational speed IVO of 0 rpm.

逆にエアコンECU10は、プレ空調運転を実行する指令が送られていると判断した場合には、次にバッテリ4の充電量を検出し、充電量が70%以上であるか否かを判断する(ステップ812)。そして、充電量が70%未満である場合には、エンジン1を起動する指令をハイブリッドECU6に送信し、ハイブリッドECU6は電磁クラッチ7を制御してエンジン1を作動させる(ステップ813)。なお、バッテリ4の充電量を検出し、その充電量が所定値以上であるか否かを判断するのは、ハイブリッドECU6が行うように構成してもよい。   Conversely, if the air conditioner ECU 10 determines that a command to execute the pre-air conditioning operation is sent, the air conditioner ECU 10 next detects the charge amount of the battery 4 and determines whether the charge amount is 70% or more. (Step 812). When the charge amount is less than 70%, a command for starting the engine 1 is transmitted to the hybrid ECU 6, and the hybrid ECU 6 controls the electromagnetic clutch 7 to operate the engine 1 (step 813). The hybrid ECU 6 may be configured to detect the amount of charge of the battery 4 and determine whether or not the amount of charge is equal to or greater than a predetermined value.

充電量が70%以上である場合や、ステップ813によってエンジン1の作動が実行された場合には、次に、エアコンが作動可能状態(カーエアコンが空調運転をできない状態にないこと)であるか否かを判断する(ステップ814)。エアコンECU10は、エアコンが作動可能状態でないと判断した場合には電動圧縮機25を作動させる必要がないため、ステップ811で電動圧縮機25の目標回転数IVOを0rpmに決定する。逆にエアコンが作動可能状態であると判断した場合には、エアコンECU10はプレ空調運転を開始すべく、電動圧縮機25を停止状態から起動させる時であるか否か、つまり前回の目標回転数IVOn-1が0rpmであるか否かを判断する(ステップ815)。   If the charge amount is 70% or more, or if the operation of the engine 1 is executed in step 813, then whether the air conditioner is in an operable state (the car air conditioner is not in an inoperable state). It is determined whether or not (step 814). The air conditioner ECU 10 determines that the target rotational speed IVO of the electric compressor 25 is 0 rpm in step 811 because it is not necessary to operate the electric compressor 25 when it is determined that the air conditioner is not operable. Conversely, if it is determined that the air conditioner is in an operable state, the air conditioner ECU 10 determines whether it is time to start the electric compressor 25 from a stopped state in order to start the pre-air conditioning operation, that is, the previous target rotational speed. It is determined whether IVOn-1 is 0 rpm (step 815).

電動圧縮機25を停止状態から起動させる時である場合、つまり前回の目標回転数IVOn-1が0rpmである場合には、エアコンECU10はステップ816において、目標回転数IVOnを決定する。ステップ816における目標回転数IVOnの決定処理は、図5のステップ816に示す特性図を用いて算出される。この特性図は、バッテリ4の現在の充電量について、ステップ300で算出された目標吹出温度TAO[℃]と目標回転数IVOn[rpm]との関係を表したものであり、この特性図によって目標吹出温度TAO[℃]に対する適正な目標回転数IVOn[rpm]をバッテリ4の充電量を考慮して決定することができる。   When it is time to start up the electric compressor 25 from the stopped state, that is, when the previous target rotational speed IVOn-1 is 0 rpm, the air conditioner ECU 10 determines the target rotational speed IVOn in step 816. The target rotational speed IVOn determination process in step 816 is calculated using the characteristic diagram shown in step 816 in FIG. This characteristic diagram shows the relationship between the target blowing temperature TAO [° C.] calculated in step 300 and the target rotational speed IVOn [rpm] for the current charge amount of the battery 4. An appropriate target rotational speed IVOn [rpm] for the blowing temperature TAO [° C.] can be determined in consideration of the charge amount of the battery 4.

エアコンECU10は充電量に対応する複数の特性図を記憶しており、その一例としてステップ816には、バッテリ4の現在の充電量が70%以上のときに使用する特性図と、充電量が70%未満のときに使用する特性図とが示されている。   The air conditioner ECU 10 stores a plurality of characteristic diagrams corresponding to the charge amount. As an example, in step 816, a characteristic diagram used when the current charge amount of the battery 4 is 70% or more and a charge amount of 70 are stored. The characteristic diagram used when it is less than% is shown.

エアコンECU10は、バッテリ4の充電量が70%以上の場合にはTAO[℃]が所定値(例えば10℃)以下の比較的低温時において充電量70%未満の場合よりも高回転数の目標回転数IVOnに決定し、ステップ900で、当該目標回転数IVOnにアクチュエータM5(電動モータ)を制御する。また、TAO[℃]が所定値(例えば10℃)以上のときには充電量の大きさによって目標回転数IVOnに差を設けることなく、例えば目標回転数IVOnを2000rpmに決定し、ステップ900で、アクチュエータM5(電動モータ)を2000rpmに制御する。   When the charge amount of the battery 4 is 70% or more, the air conditioner ECU 10 sets a target of a higher rotation speed than when the charge amount is less than 70% at a relatively low temperature when TAO [° C.] is a predetermined value (eg, 10 ° C.) or less. At step 900, the actuator M5 (electric motor) is controlled to the target rotational speed IVOn. Further, when TAO [° C.] is equal to or higher than a predetermined value (for example, 10 ° C.), for example, the target rotational speed IVOn is determined to be 2000 rpm without providing a difference in the target rotational speed IVOn depending on the magnitude of the charge amount. M5 (electric motor) is controlled to 2000 rpm.

つまり、エアコンECU10は、TAO[℃]が低温時においては、充電量が所定値(満タンに対して70%)未満の時にバッテリ4の消費電力を抑制するために電動圧縮機25を低めの目標回転数IVOnに制御し、充電量が所定値(満タンに対して70%)以上の時は電動圧縮機25を前者よりも高めの目標回転数IVOnに制御することにより、前者のようなバッテリ4の消費電力を抑制する制御ではなく、適切な冷却能力を発揮させてユーザーが所望する空調環境を重視する制御を実行する。   That is, when the TAO [° C.] is low, the air conditioner ECU 10 lowers the electric compressor 25 in order to suppress the power consumption of the battery 4 when the charge amount is less than a predetermined value (70% with respect to the full tank). By controlling the target rotational speed IVOn and controlling the electric compressor 25 to a target rotational speed IVOn higher than the former when the charge amount is a predetermined value (70% or more with respect to full tank), Instead of the control for suppressing the power consumption of the battery 4, the control for emphasizing the air conditioning environment desired by the user by executing an appropriate cooling capacity is executed.

このようにエアコンECU10は、プレ空調運転時等において、バッテリ4の充電量を用いて電動圧縮機25の回転数を決定し、当該回転数となるように電動圧縮機25の作動を制御する。この制御によれば、プレ空調運転等を行う際にバッテリ4の充電状況に応じて空調の強さを制限することにより空調能力の強さ度合いを調節して、乗員が乗車した時の快適性の確保と各種機器の運転に支障のないバッテリ4の充電量確保との両面に優れた制御を実現できる。   As described above, the air conditioner ECU 10 determines the rotational speed of the electric compressor 25 using the charge amount of the battery 4 during the pre-air conditioning operation or the like, and controls the operation of the electric compressor 25 so as to be the rotational speed. According to this control, when pre-air-conditioning operation or the like is performed, the strength of the air-conditioning capability is adjusted by limiting the strength of the air-conditioning according to the state of charge of the battery 4, and the comfort when the passenger gets on And excellent control in both aspects of securing the charge amount of the battery 4 that does not hinder the operation of various devices.

また、電動圧縮機25を停止状態から起動させる時でない場合、つまり前回の目標回転数IVOn-1が0rpmでない場合には、エアコンECU10は各種センサ30〜35のセンサ信号に基づいて上記ステップ802〜804の処理と同様に目標増加回転数Δfを算出し(ステップ817,818,819)、以下の数式6を用いて電動圧縮機25の電動モータの仮の目標回転数IVOnを算出する(ステップ820)。   Further, when it is not time to start the electric compressor 25 from the stopped state, that is, when the previous target rotational speed IVOn-1 is not 0 rpm, the air conditioner ECU 10 performs the above steps 802 to 802 based on the sensor signals of the various sensors 30 to 35. Similar to the processing of 804, the target increase rotational speed Δf is calculated (steps 817, 818, 819), and the temporary target rotational speed IVOn of the electric motor of the electric compressor 25 is calculated using the following expression 6 (step 820). ).

(数式6)
仮のIVOn=IVOn-1+Δf
さらにエアコンECU10は、ステップ821において、バッテリ4の充電量[%]に応じて最高回転数Y[rpm]を算出する。ステップ821における最高回転数Yの決定処理は、図5のステップ821に示す特性図を用いて算出される。この特性図は、バッテリ4の現在の充電量[%]と最高回転数Y[rpm]との関係を表したものであり、この特性図によってバッテリ4の充電量[%]に対する最高回転数Y[rpm]を決定することができる。
(Formula 6)
Temporary IVOn = IVOn-1 + Δf
Further, in step 821, the air conditioner ECU 10 calculates the maximum rotational speed Y [rpm] according to the charge amount [%] of the battery 4. The determination process of the maximum rotational speed Y in step 821 is calculated using the characteristic diagram shown in step 821 of FIG. This characteristic diagram shows the relationship between the current charge amount [%] of the battery 4 and the maximum rotational speed Y [rpm], and this characteristic diagram shows the maximum rotational speed Y with respect to the charge amount [%] of the battery 4. [Rpm] can be determined.

次にエアコンECU10は、ステップ820で算出した仮の目標回転数IVOnと、ステップ821で算出された最高回転数Yとを比較し、このうち小さい値の方を目標回転数IVOnに決定する(ステップ822)。そしてエアコンECU10は、決定された目標回転数IVOnにアクチュエータM5(電動モータ)を制御する(ステップ900)。   Next, the air conditioner ECU 10 compares the temporary target rotational speed IVOn calculated in step 820 with the maximum rotational speed Y calculated in step 821, and determines the smaller value as the target rotational speed IVOn (step). 822). Then, the air conditioner ECU 10 controls the actuator M5 (electric motor) to the determined target rotational speed IVOn (step 900).

以上のように本実施形態の車両用空調装置は、ハイブリッド車両の停止中に乗員乗車前の車室内空調を行うプレ空調運転を実行可能とするエアコンECU10を備える。エアコンECU10はプレ空調運転を開始する命令を受信した場合に、バッテリ4の充電量が所定量以上のときはバッテリ4の電力を使用してプレ空調運転を実行し、バッテリ4の充電量が所定量未満のときは、エンジン1を作動させる命令をハイブリッドECU6に送信してエンジン1の作動による電力を得るとともに、バッテリ4の電力を使用してプレ空調運転を実行する。   As described above, the vehicle air conditioner according to the present embodiment includes the air conditioner ECU 10 that can execute the pre-air conditioning operation for performing the air conditioning in the vehicle compartment before the occupant gets on while the hybrid vehicle is stopped. When the air-conditioner ECU 10 receives a command to start the pre-air-conditioning operation, if the charge amount of the battery 4 is equal to or greater than a predetermined amount, the air-conditioner ECU 10 executes the pre-air-conditioning operation using the power of the battery 4, and the charge amount of the battery 4 is When it is less than the fixed amount, a command for operating the engine 1 is transmitted to the hybrid ECU 6 to obtain power by operating the engine 1, and the pre-air-conditioning operation is executed using the power of the battery 4.

この構成によれば、プレ空調運転時のバッテリ4の充電量に応じて、バッテリ4の電力を使用するか、エンジン1の作動も併用しつつバッテリ4の電力を使用するかを使い分けることにより、バッテリ4の充電量の確保と、バッテリ4に多大な負荷を与えないユーザーが所望するプレ空調による快適性の確保との両方を実現した制御を提供できる。またこの制御により、従来、ハイブリッド車両においてプレ空調運転を行うことができなかった状況でも確実な運転が行われるので、ユーザーにとってうれしさが増すとともに、プレ空調運転が実行されないことによってユーザーが故障したと誤認識することがなくなる。   According to this configuration, depending on the amount of charge of the battery 4 during the pre-air-conditioning operation, by using the power of the battery 4 or using the power of the battery 4 while using the operation of the engine 1 in combination, The control which implement | achieved both ensuring of the charge amount of the battery 4 and ensuring of the comfort by the pre air conditioning which the user who does not give a big load to the battery 4 can provide can be provided. In addition, this control ensures reliable operation even in situations where hybrid vehicle has not been able to perform pre-air-conditioning operation in the past, which increases joy for the user and causes failure of the user because pre-air-conditioning operation is not performed. Will not be mistaken.

(第2実施形態)
本実施形態では、上記第1実施形態に対して、空調制御メインルーチンにおける、ブロワ電圧決定ルーチンおよび電動圧縮機の回転数決定ルーチンの変形例を図6および図7にしたがって示す。図6は空調制御のメインルーチンのブロワ電圧を決定するために用いる特性図である。図7は、電動圧縮機の回転数を決定するルーチンの処理手順を示したフローチャートである。
(Second Embodiment)
In the present embodiment, a modification of the blower voltage determination routine and the electric compressor rotation speed determination routine in the air conditioning control main routine is shown in accordance with FIGS. 6 and 7 with respect to the first embodiment. FIG. 6 is a characteristic diagram used to determine the blower voltage in the main routine of air conditioning control. FIG. 7 is a flowchart showing a processing procedure of a routine for determining the rotation speed of the electric compressor.

本実施形態における空調制御の処理フローは、第1実施形態で説明した空調制御の処理フローに対して、図3のステップ400およびステップ800の処理のみが異なっており、さらに、本実施形態の図7に示すフローは、図7のステップ830、842および846のみが異なっている。なお、その他の各構成部品、これらの作動、制御処理手順については、第1実施形態の車両用空調装置と同様である。   The processing flow of the air conditioning control in the present embodiment is different from the processing flow of the air conditioning control described in the first embodiment only in the processing of Step 400 and Step 800 in FIG. The flow shown in FIG. 7 differs only in steps 830, 842, and 846 in FIG. In addition, about each other component, these operation | movement, and a control processing procedure, it is the same as that of the vehicle air conditioner of 1st Embodiment.

本実施形態のブロワ電圧の決定処理について図6にしたがって説明する。図6に示す特性図は、充電中のバッテリ4の充電電圧値について、図3のステップ300で算出された目標吹出温度TAO[℃]とブロワ電圧[V]との関係を表したものであり、この特性図によって目標吹出温度TAO[℃]に対する適正なブロワ電圧[V]を充電中のバッテリ4の充電電圧値を考慮して決定することができる。   The blower voltage determination process of this embodiment will be described with reference to FIG. The characteristic diagram shown in FIG. 6 represents the relationship between the target blowing temperature TAO [° C.] and the blower voltage [V] calculated in step 300 of FIG. 3 for the charging voltage value of the battery 4 being charged. In this characteristic diagram, an appropriate blower voltage [V] with respect to the target blowing temperature TAO [° C.] can be determined in consideration of the charging voltage value of the battery 4 being charged.

エアコンECU10は複数の充電電圧値にそれぞれ対応する特性図を記憶しており、その一例として図6には、充電電圧値が交流200Vのときに使用する特性図(V3で示す図)と、充電電圧値が交流100Vのときに使用する特性図(V4で示す図)が示されている。   The air conditioner ECU 10 stores characteristic diagrams respectively corresponding to a plurality of charging voltage values. As an example, FIG. 6 shows a characteristic diagram (shown by V3) used when the charging voltage value is 200 V AC, and charging. A characteristic diagram (shown by V4) used when the voltage value is AC 100V is shown.

図6に示すように、エアコンECU10は、バッテリ4の充電電圧値200Vの場合にはTAO[℃]が低温時および高温時において充電電圧値100Vの場合よりも高電圧のブロワ電圧をアクチュエータM4に印加するように決定する。また、TAO[℃]が高温や低温でない中温時には充電量の大きさによって印加するブロワ電圧に差を設けることなく、図6に示すTAO[℃]に相当するブロワ電圧を印加するように決定する。   As shown in FIG. 6, when the charging voltage value of the battery 4 is 200 V, the air conditioner ECU 10 gives a higher blower voltage to the actuator M4 than when the TAO [° C.] is low and high and the charging voltage value is 100 V. Decide to apply. Further, it is determined that the blower voltage corresponding to TAO [° C.] shown in FIG. 6 is applied without providing a difference in the blower voltage to be applied depending on the amount of charge when the TAO [° C.] is not high or low. .

つまり、エアコンECU10は、TAO[℃]が低温時および高温時においては、充電電圧値が低い100Vの時はバッテリ4の消費電力を抑制するためにブロワ24に低めの電圧を供給する制御を実行し、充電電圧値が高い200Vの時は前者よりも高い電圧をブロワ24に供給することにより、前者のようなバッテリ4の消費電力を抑制する制御ではなく、適切な送風量を供給してユーザーが所望する空調環境を重視する制御を実行する。   That is, the air conditioner ECU 10 performs control to supply a lower voltage to the blower 24 in order to suppress the power consumption of the battery 4 when the charging voltage value is 100 V when TAO [° C.] is low and high. However, when the charging voltage value is 200V, a voltage higher than that of the former is supplied to the blower 24, so that an appropriate air flow rate is supplied to the user instead of controlling the power consumption of the battery 4 as in the former. The control which attaches importance to the desired air-conditioning environment is executed.

このようにエアコンECU10は、プレ空調運転時等において、図6に示すような制御特性図を用いた演算により、バッテリ4に充電中の充電電圧値を用いてブロワ24の回転数を決定し、当該回転数となるようにブロワ24の作動を制御する。この制御によれば、プレ空調運転等を行う際にバッテリ4の充電状況に応じて空調の強さを制限することにより空調能力の度合いを調節して、乗員が乗車した時の快適性の確保と各種機器の運転に支障のないバッテリ4の充電量確保との両面に優れた制御を実現できる。   In this way, the air conditioner ECU 10 determines the rotation speed of the blower 24 using the charging voltage value during charging of the battery 4 by calculation using the control characteristic diagram as shown in FIG. The operation of the blower 24 is controlled so as to achieve the rotation speed. According to this control, when performing pre-air-conditioning operation or the like, the degree of air-conditioning capability is adjusted by limiting the strength of the air-conditioning according to the state of charge of the battery 4 to ensure comfort when the passenger gets on In addition, it is possible to realize excellent control in both aspects of securing the charge amount of the battery 4 that does not hinder the operation of various devices.

次に、エアコンECU10は、図7に示す電動圧縮機25の回転数を決定するフローチャートについて説明する。まず、エアコンECU10は、現在バッテリ4に充電がなされているか否かを判断する(ステップ830)。この判断はバッテリ4が充電中になるまで繰り返される。   Next, the air conditioner ECU 10 will be described with reference to a flowchart for determining the rotational speed of the electric compressor 25 shown in FIG. First, the air conditioner ECU 10 determines whether or not the battery 4 is currently charged (step 830). This determination is repeated until the battery 4 is being charged.

エアコンECU10は、充電中であると判断した場合には、前述のステップ801と同様に乗車中であるか否かを判断する(ステップ831)。エアコンECU10は、乗車中であると判断した場合には前述のステップ802〜805と同様の各処理を実行して目標回転数IVOnを算出し、算出された目標回転数IVOnに基づいてステップ900の処理を実行する。   If the air conditioner ECU 10 determines that charging is in progress, the air conditioner ECU 10 determines whether or not the vehicle is in the same manner as in step 801 described above (step 831). If the air conditioner ECU 10 determines that the vehicle is on the vehicle, the air conditioner ECU 10 executes the same processes as in steps 802 to 805 described above to calculate the target rotational speed IVOn, and based on the calculated target rotational speed IVOn, Execute the process.

一方、エアコンECU10は、乗車中でないと判断した場合には前述のステップ810と同様の処理を実行し(ステップ840)、ステップ840でプレ空調運転を実行する指令が送られていないと判断した場合には、前述のステップ811と同様に、電動圧縮機25の目標回転数IVOを0rpmに決定する(ステップ841)。そして、決定された0rpmの目標回転数IVOに基づいてステップ900の処理を実行する。   On the other hand, if the air conditioner ECU 10 determines that the vehicle is not in the vehicle, the air conditioner ECU 10 executes the same process as in step 810 described above (step 840), and if it is determined in step 840 that the command to execute the pre-air conditioning operation is not sent. In the same manner as step 811 described above, the target rotational speed IVO of the electric compressor 25 is determined to be 0 rpm (step 841). Then, the process of step 900 is executed based on the determined target rotational speed IVO of 0 rpm.

エアコンECU10は、ステップ840でプレ空調運転を実行する指令が送られていると判断した場合には、次に充電中のバッテリ4の充電電圧値が200Vであるか否かを判断する(ステップ842)。そして、充電電圧値が200Vである場合には、前述のステップ813の処理と同様に、エンジン1を起動する指令をハイブリッドECU6に送信し、ハイブリッドECU6は電磁クラッチ7を制御してエンジン1を作動させる(ステップ843)。   If the air conditioner ECU 10 determines in step 840 that a command to execute the pre-air conditioning operation is sent, the air conditioner ECU 10 next determines whether or not the charging voltage value of the battery 4 being charged is 200 V (step 842). ). If the charging voltage value is 200 V, a command for starting the engine 1 is transmitted to the hybrid ECU 6 in the same manner as in the above-described step 813, and the hybrid ECU 6 controls the electromagnetic clutch 7 to operate the engine 1. (Step 843).

エアコンECU10は、充電電圧値が200Vでない(例えば交流100Vである)場合や、ステップ813によってエンジン1の作動が実行された場合には、続いて前述のステップ814と同様のステップ844の判断処理(ステップ844においてYESの場合はステップ811と同様のステップ841の処理を実行する)を実行し、ステップ844においてNOの場合はステップ815と同様のステップ845の判断処理を実行する。さらにエアコンECU10は、ステップ845においてNOの場合はステップ817〜822と同様のステップ847、848、849、850、851、852の各処理を実行し、決定された目標回転数IVOに基づいてステップ900の処理を実行する。   When the charge voltage value is not 200 V (for example, AC 100 V), or when the operation of the engine 1 is executed in step 813, the air conditioner ECU 10 continues to perform the determination processing in step 844 (step 844 similar to step 814 described above). If YES in step 844, the process of step 841 similar to step 811 is executed), and if NO in step 844, the determination process of step 845 similar to step 815 is executed. Further, in the case of NO at step 845, the air conditioner ECU 10 executes steps 847, 848, 849, 850, 851, and 852 similar to steps 817 to 822, and performs step 900 based on the determined target rotational speed IVO. Execute the process.

また、エアコンECU10は、ステップ845においてYESの場合(電動圧縮機25を停止状態から起動させる時である場合、つまり前回の目標回転数IVOn-1が0rpmである場合)には、ステップ846において、目標回転数IVOnを決定する。ステップ846における目標回転数IVOnの決定処理は、図7のステップ846に示す特性図を用いて算出される。この特性図は、バッテリ4に対して充電されている充電電圧値について、ステップ300で算出された目標吹出温度TAO[℃]と目標回転数IVOn[rpm]との関係を表したものであり、この特性図によって目標吹出温度TAO[℃]に対する適正な目標回転数IVOn[rpm]をバッテリ4への充電能力を考慮して決定することができる。   If YES in step 845 (if it is time to start up electric compressor 25 from a stopped state, that is, if the previous target rotational speed IVOn-1 is 0 rpm), in step 846, air conditioner ECU 10 The target rotational speed IVOn is determined. The target rotational speed IVOn determination process in step 846 is calculated using the characteristic diagram shown in step 846 of FIG. This characteristic diagram represents the relationship between the target blowing temperature TAO [° C.] calculated in step 300 and the target rotational speed IVOn [rpm] for the charging voltage value charged to the battery 4, From this characteristic diagram, an appropriate target rotational speed IVOn [rpm] with respect to the target blowing temperature TAO [° C.] can be determined in consideration of the charging ability of the battery 4.

エアコンECU10は充電電圧値、言い換えれば充電能力レベルに対応する複数の特性図を記憶しており、その一例としてステップ846には、バッテリ4への充電電圧が交流200Vのときに使用する特性図と、充電電圧が交流100Vのときに使用する特性図とが示されている。   The air conditioner ECU 10 stores a plurality of characteristic diagrams corresponding to the charging voltage value, in other words, the charging capacity level. As an example, step 846 includes a characteristic diagram used when the charging voltage to the battery 4 is 200 V AC. The characteristic diagram used when the charging voltage is 100 V AC is shown.

エアコンECU10は、充電電圧が200Vの場合にはTAO[℃]が所定値(例えば10℃)以下の比較的低温時において充電電圧が100Vの場合よりも高回転数の目標回転数IVOnに決定し、ステップ900で、当該目標回転数IVOnにアクチュエータM5(電動モータ)を制御する。また、TAO[℃]が所定値(例えば10℃)以上のときには充電電圧値の大きさによって目標回転数IVOnに差を設けることなく、例えば目標回転数IVOnを2000rpmに決定し、ステップ900で、アクチュエータM5(電動モータ)を2000rpmに制御する。   When the charging voltage is 200V, the air conditioner ECU 10 determines that the target rotational speed IVOn is higher than that when the charging voltage is 100V at a relatively low temperature when TAO [° C] is a predetermined value (eg, 10 ° C) or less. In step 900, the actuator M5 (electric motor) is controlled to the target rotational speed IVOn. Further, when TAO [° C.] is equal to or higher than a predetermined value (for example, 10 ° C.), for example, the target rotational speed IVOn is determined to be 2000 rpm without setting a difference in the target rotational speed IVOn depending on the magnitude of the charging voltage value. Actuator M5 (electric motor) is controlled to 2000 rpm.

つまり、エアコンECU10は、TAO[℃]が低温時においては、充電電圧値が所定値未満の時(交流100Vの電圧を充電時)にバッテリ4の消費電力を抑制するために電動圧縮機25を低めの目標回転数IVOnに制御し、充電量が所定値以上の時(交流200Vの電圧を充電時)は電動圧縮機25を前者よりも高めの目標回転数IVOnに制御することにより、前者のようなバッテリ4の消費電力を抑制する制御ではなく、適切な冷却能力を発揮させてユーザーが所望する空調環境を重視する制御を実行する。   That is, when the TAO [° C.] is low, the air conditioner ECU 10 sets the electric compressor 25 to suppress the power consumption of the battery 4 when the charging voltage value is less than a predetermined value (when charging an AC voltage of 100 V). By controlling the electric compressor 25 to a target rotational speed IVOn higher than the former by controlling the electric compressor 25 to a lower target rotational speed IVOn and when the charge amount is equal to or higher than a predetermined value (when charging an AC voltage of 200V). Rather than the control for suppressing the power consumption of the battery 4 as described above, the control for emphasizing the air conditioning environment desired by the user by executing an appropriate cooling capacity is executed.

そして、エアコンECU10は、ステップ846で決定された目標回転数IVOに基づいてステップ900の処理を実行する。エアコンECU10は、その後、所定時間が経過すると(ステップ1000)、ステップ200の処理に戻り、上述の制御処理(ステップ200〜1000)を繰り返す。このような処理の繰り返しによって空調ゾーンの空調は、快適性の高いものとなる。   Then, the air conditioner ECU 10 executes the process of step 900 based on the target rotational speed IVO determined in step 846. Thereafter, when a predetermined time elapses (step 1000), the air conditioner ECU 10 returns to the process of step 200 and repeats the above-described control process (steps 200 to 1000). By repeating such processing, air conditioning in the air conditioning zone becomes highly comfortable.

このようにエアコンECU10は、プレ空調運転時等において、バッテリ4に充電中の充電電圧値を用いて電動圧縮機25の回転数を決定し、当該回転数となるように電動圧縮機25の作動を制御する。この制御によれば、プレ空調運転等を行う際に充電中のバッテリ4の充電能力に応じて空調の強さを制限して、空調の強さ度合いを調節することによって、乗車時の乗員の快適性向上とバッテリ4の充電量確保の両面に優れた制御を実現できる。   In this way, the air conditioner ECU 10 determines the rotation speed of the electric compressor 25 using the charging voltage value during charging of the battery 4 during pre-air-conditioning operation or the like, and operates the electric compressor 25 so as to be the rotation speed. To control. According to this control, when performing the pre-air-conditioning operation or the like, the strength of the air-conditioning is limited according to the charging capacity of the battery 4 being charged, and the degree of the strength of the air-conditioning is adjusted. It is possible to achieve excellent control both in terms of improving comfort and securing the charge amount of the battery 4.

以上のように本実施形態のエアコンECU10は、プレ空調運転を開始する命令を受信した場合に、バッテリ4の充電電圧が所定量以上のとき(例えば交流200V充電の時)はバッテリ4の電力を使用してプレ空調運転を実行し、バッテリ4の充電量が所定量未満のとき(例えば交流100V充電の時)は、エンジン1を作動させる命令をハイブリッドECU6に送信してエンジン1の作動による電力を得るとともに、バッテリ4の電力を使用してプレ空調運転を実行する。   As described above, the air conditioner ECU 10 according to the present embodiment receives the command to start the pre-air conditioning operation, and when the charging voltage of the battery 4 is equal to or higher than a predetermined amount (for example, when charging with AC 200V), When the pre-air-conditioning operation is performed and the charge amount of the battery 4 is less than a predetermined amount (for example, when AC 100 V is charged), a command for operating the engine 1 is transmitted to the hybrid ECU 6 to generate electric power by operating the engine 1 And the pre-air-conditioning operation is executed using the electric power of the battery 4.

この構成によれば、プレ空調運転時のバッテリ4に充電中の充電電圧値に応じて、バッテリ4の電力を使用するか、エンジン1の作動も併用しつつバッテリ4の電力を使用するかを使い分けることにより、バッテリ4の充電量の確保と、バッテリ4に多大な負荷を与えないユーザーが所望するプレ空調による快適性の確保との両方を実現した制御を提供できる。またこの制御により、従来、ハイブリッド車両においてプレ空調運転を行うことができなかった状況でも確実な運転が行われるので、ユーザーにとってうれしさが増すとともに、プレ空調運転が実行されないことによってユーザーが故障したと誤認識することがなくなる。   According to this configuration, whether to use the power of the battery 4 or to use the power of the battery 4 while using the operation of the engine 1 in accordance with the charging voltage value during charging of the battery 4 during the pre-air-conditioning operation. By properly using the control, it is possible to provide control that realizes both securing of the charge amount of the battery 4 and ensuring of comfort by pre-air conditioning desired by a user who does not give a large load to the battery 4. In addition, this control ensures reliable operation even in situations where hybrid vehicle has not been able to perform pre-air-conditioning operation in the past, which increases joy for the user and causes failure of the user because pre-air-conditioning operation is not performed. Will not be mistaken.

本発明のすべての実施形態に使用されるハイブリッド自動車の制御システムを示したブロック図である。It is the block diagram which showed the control system of the hybrid vehicle used for all the embodiment of this invention. すべての実施形態における車両用空調装置の制御システムを示したブロック図である。It is the block diagram which showed the control system of the vehicle air conditioner in all the embodiments. すべての実施形態の車両用空調装置における空調制御のメインルーチンを示したフローチャートである。It is the flowchart which showed the main routine of the air-conditioning control in the vehicle air conditioner of all the embodiments. 本発明の一実施形態である第1実施形態において、空調制御のメインルーチンのブロワ電圧を決定するために用いる特性図である。In 1st Embodiment which is one Embodiment of this invention, it is a characteristic view used in order to determine the blower voltage of the main routine of air-conditioning control. 第1実施形態における電動圧縮機の回転数を決定するルーチンの処理手順を示したフローチャートである。It is the flowchart which showed the process sequence of the routine which determines the rotation speed of the electric compressor in 1st Embodiment. 第2実施形態における空調制御のメインルーチンのブロワ電圧を決定するために用いる特性図である。It is a characteristic view used in order to determine the blower voltage of the main routine of the air-conditioning control in 2nd Embodiment. 第2実施形態における電動圧縮機の回転数を決定するルーチンの処理手順を示したフローチャートである。It is the flowchart which showed the process sequence of the routine which determines the rotation speed of the electric compressor in 2nd Embodiment.

符号の説明Explanation of symbols

1…エンジン
4…バッテリ
10…エアコンECU(空調制御装置)
24…ブロワ(送風機)
25…電動圧縮機
DESCRIPTION OF SYMBOLS 1 ... Engine 4 ... Battery 10 ... Air-conditioner ECU (air-conditioning control apparatus)
24 ... Blower (blower)
25 ... Electric compressor

Claims (6)

ハイブリッド車両の停止中に乗員乗車前の車室内空調を行うプレ空調運転を実行可能とする空調制御装置(10)を備える車両用空調装置であって、
前記空調制御装置(10)は前記プレ空調運転を開始する命令を受信した場合に、
バッテリ(4)の充電量が所定量以上のときは前記バッテリ(4)の電力を使用して前記プレ空調運転を実行し、
前記バッテリ(4)の充電量が前記所定量未満のときは、前記車両のエンジン(1)を作動させる命令を送信して前記エンジン(1)作動による電力を得るとともに、前記バッテリ(4)の電力を使用して前記プレ空調運転を実行することを特徴とする車両用空調装置。
A vehicle air conditioner including an air conditioning control device (10) capable of performing a pre-air conditioning operation for performing air conditioning in a passenger compartment before a passenger gets on while the hybrid vehicle is stopped,
When the air conditioning control device (10) receives a command to start the pre-air conditioning operation,
When the charge amount of the battery (4) is equal to or greater than a predetermined amount, the pre-air conditioning operation is executed using the power of the battery (4),
When the charge amount of the battery (4) is less than the predetermined amount, a command for operating the engine (1) of the vehicle is transmitted to obtain electric power by operating the engine (1), and the battery (4) A vehicle air conditioner that performs the pre-air-conditioning operation using electric power.
前記バッテリ(4)の電力を用いて駆動され、前記車室内へ送風される空気を冷却するための冷凍サイクルに冷媒を循環させる電動圧縮機(25)を備え、
前記空調制御装置(10)は、前記プレ空調運転時に前記電動圧縮機(25)を、前記バッテリ(4)の充電量を用いて決定された回転数に制御することを特徴とする請求項1に記載の車両用空調装置。
An electric compressor (25) that is driven using the electric power of the battery (4) and circulates a refrigerant in a refrigeration cycle for cooling air blown into the vehicle interior;
The said air-conditioning control apparatus (10) controls the said electric compressor (25) at the rotation speed determined using the charge amount of the said battery (4) at the time of the said pre air-conditioning driving | operation. The vehicle air conditioner described in 1.
前記バッテリ(4)の電力を用いて駆動され、前記車室内に空調された空気を送風する送風機(24)を備え、
前記空調制御装置(10)は、前記プレ空調運転時に前記送風機(24)を、前記バッテリ(4)の充電量を用いて決定された回転数に制御することを特徴とする請求項1または2に記載の車両用空調装置。
Driven using the power of the battery (4), and equipped with a blower (24) for blowing air conditioned in the vehicle interior,
The said air-conditioning control apparatus (10) controls the said air blower (24) to the rotation speed determined using the charge amount of the said battery (4) at the time of the said pre air conditioning driving | operation. The vehicle air conditioner described in 1.
ハイブリッド車両の停止中に乗員乗車前の車室内空調を行うプレ空調運転を実行可能な空調制御装置(10)を備える車両用空調装置であって、
前記空調制御装置(10)は、外部電源からの電力がバッテリ(4)に供給されている充電中に前記プレ空調運転を開始する命令を受信した場合には、
前記バッテリ(4)の充電電圧値が所定値以上のときは前記バッテリ(4)の電力を使用して前記プレ空調運転を実行し、
前記バッテリ(4)の充電電圧値が前記所定値未満のときは、前記車両のエンジン(1)を作動させる命令を送信して前記エンジン(1)作動による電力を得るとともに、前記バッテリ(4)の電力を使用して前記プレ空調運転を実行することを特徴とする車両用空調装置。
A vehicle air conditioner comprising an air conditioning control device (10) capable of performing a pre-air conditioning operation for performing air conditioning in a passenger compartment before a passenger is boarded while the hybrid vehicle is stopped,
When the air-conditioning control device (10) receives an instruction to start the pre-air-conditioning operation during charging when power from an external power source is supplied to the battery (4),
When the charging voltage value of the battery (4) is equal to or greater than a predetermined value, the pre-air-conditioning operation is executed using the power of the battery (4),
When the charging voltage value of the battery (4) is less than the predetermined value, a command for operating the engine (1) of the vehicle is transmitted to obtain power by operating the engine (1), and the battery (4) The pre-air-conditioning operation is executed using the electric power of the vehicle.
前記バッテリ(4)の電力を用いて駆動され、前記車室内へ送風される空気を冷却するための冷凍サイクルに冷媒を循環させる電動圧縮機(25)を備え、
前記空調制御装置(10)は、前記プレ空調運転時に前記電動圧縮機(25)を、前記バッテリ(4)に充電中の前記充電電圧値を用いて決定された回転数に制御することを特徴とする請求項1に記載の車両用空調装置。
An electric compressor (25) that is driven using the electric power of the battery (4) and circulates a refrigerant in a refrigeration cycle for cooling air blown into the vehicle interior;
The air conditioning control device (10) controls the electric compressor (25) to a rotational speed determined by using the charging voltage value during charging of the battery (4) during the pre-air conditioning operation. The vehicle air conditioner according to claim 1.
前記バッテリ(4)の電力を用いて駆動され、前記車室内に空調された空気を送風する送風機(24)を備え、
前記空調制御装置(10)は、前記プレ空調運転時に前記送風機(24)を、前記バッテリ(4)に充電中の前記充電電圧値を用いて決定された回転数に制御することを特徴とする請求項4または5に記載の車両用空調装置。
Driven using the power of the battery (4), and equipped with a blower (24) for blowing air conditioned in the vehicle interior,
The air-conditioning control device (10) controls the blower (24) to a rotational speed determined using the charging voltage value during charging of the battery (4) during the pre-air-conditioning operation. The vehicle air conditioner according to claim 4 or 5.
JP2007295940A 2007-11-14 2007-11-14 Air conditioner for vehicle Pending JP2009120022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295940A JP2009120022A (en) 2007-11-14 2007-11-14 Air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007295940A JP2009120022A (en) 2007-11-14 2007-11-14 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
JP2009120022A true JP2009120022A (en) 2009-06-04

Family

ID=40812669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295940A Pending JP2009120022A (en) 2007-11-14 2007-11-14 Air conditioner for vehicle

Country Status (1)

Country Link
JP (1) JP2009120022A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031704A (en) * 2009-07-31 2011-02-17 Denso Corp Air conditioner for vehicle
KR101198099B1 (en) * 2009-09-22 2012-11-09 한라공조주식회사 Air conditioning system for hybrid automotive vehicles
KR101198101B1 (en) 2009-09-22 2012-11-09 한라공조주식회사 Air conditioning system for hybrid automotive vehicles
US9579951B2 (en) 2010-10-08 2017-02-28 Robert Bosch Gmbh Air conditioning device and method for air conditioning an interior and/or at least one component of an electric vehicle
CN108099691A (en) * 2016-11-25 2018-06-01 现代自动车株式会社 For controlling the method and system of motor
KR20230155735A (en) * 2022-05-04 2023-11-13 주식회사 코리아비티에스 Control device and method for maintaining the refrigerator temperature of refrigeration tower vehicle with engine turned off

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193901A (en) * 1993-12-28 1995-07-28 Nissan Motor Co Ltd Air-conditioner for electric vehicle
JPH0865816A (en) * 1994-08-25 1996-03-08 Honda Motor Co Ltd Charging controller for electric vehicle
JPH08230441A (en) * 1995-02-24 1996-09-10 Nissan Motor Co Ltd Presetting air conditioner
JPH0966722A (en) * 1995-08-31 1997-03-11 Denso Corp Air conditioner of electric vehicle
JP2000078701A (en) * 1998-08-27 2000-03-14 Toyota Motor Corp Air conditionier for electric vehicle
JP2002262401A (en) * 2000-12-28 2002-09-13 Denso Corp Air conditioner for hybrid vehicle
JP2006298134A (en) * 2005-04-20 2006-11-02 Toyota Motor Corp Air conditioner for vehicle
JP2007045243A (en) * 2005-08-08 2007-02-22 Toyota Motor Corp Power supply device for vehicle
JP2007076544A (en) * 2005-09-15 2007-03-29 Toyota Motor Corp Air-conditioner for vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193901A (en) * 1993-12-28 1995-07-28 Nissan Motor Co Ltd Air-conditioner for electric vehicle
JPH0865816A (en) * 1994-08-25 1996-03-08 Honda Motor Co Ltd Charging controller for electric vehicle
JPH08230441A (en) * 1995-02-24 1996-09-10 Nissan Motor Co Ltd Presetting air conditioner
JPH0966722A (en) * 1995-08-31 1997-03-11 Denso Corp Air conditioner of electric vehicle
JP2000078701A (en) * 1998-08-27 2000-03-14 Toyota Motor Corp Air conditionier for electric vehicle
JP2002262401A (en) * 2000-12-28 2002-09-13 Denso Corp Air conditioner for hybrid vehicle
JP2006298134A (en) * 2005-04-20 2006-11-02 Toyota Motor Corp Air conditioner for vehicle
JP2007045243A (en) * 2005-08-08 2007-02-22 Toyota Motor Corp Power supply device for vehicle
JP2007076544A (en) * 2005-09-15 2007-03-29 Toyota Motor Corp Air-conditioner for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031704A (en) * 2009-07-31 2011-02-17 Denso Corp Air conditioner for vehicle
KR101198099B1 (en) * 2009-09-22 2012-11-09 한라공조주식회사 Air conditioning system for hybrid automotive vehicles
KR101198101B1 (en) 2009-09-22 2012-11-09 한라공조주식회사 Air conditioning system for hybrid automotive vehicles
US9579951B2 (en) 2010-10-08 2017-02-28 Robert Bosch Gmbh Air conditioning device and method for air conditioning an interior and/or at least one component of an electric vehicle
CN108099691A (en) * 2016-11-25 2018-06-01 现代自动车株式会社 For controlling the method and system of motor
KR20230155735A (en) * 2022-05-04 2023-11-13 주식회사 코리아비티에스 Control device and method for maintaining the refrigerator temperature of refrigeration tower vehicle with engine turned off
KR102677371B1 (en) * 2022-05-04 2024-06-21 주식회사 코리아비티에스 Control device and method for maintaining the refrigerator temperature of refrigeration tower vehicle with engine turned off

Similar Documents

Publication Publication Date Title
JP4165330B2 (en) Air conditioner
JP4281575B2 (en) Compressor control system for vehicle air conditioner
JP3933030B2 (en) Air conditioner for hybrid vehicles
JP4415896B2 (en) Air conditioner for vehicles
JP4548480B2 (en) Air conditioner for hybrid vehicles
JP2002213270A (en) Hybrid vehicle and its air conditioner
JP4998209B2 (en) Air conditioner for vehicles
JP6518600B2 (en) Vehicle air conditioner
JP2009120022A (en) Air conditioner for vehicle
JP2009113674A (en) Vehicle air conditioner
CN112078324A (en) Vehicle heating device, control method for vehicle heating device, and storage medium
JP7367629B2 (en) Vehicle air conditioner
JP5126173B2 (en) Air conditioner for vehicles
JP5516544B2 (en) Air conditioner for vehicles
JP6745180B2 (en) Vehicle air conditioner
JP2000270401A (en) Air conditioner for hybrid car
JP4218658B2 (en) Air conditioner for vehicles
JP5360006B2 (en) Air conditioner for vehicles
JP5640936B2 (en) Air conditioner for vehicles
JP3994874B2 (en) Air conditioner for vehicles
JP2020082912A (en) Air conditioner for vehicle
JP4093242B2 (en) Air conditioner for hybrid vehicles
JP2013060145A (en) Vehicular air conditioner
JP2012086681A (en) Air conditioner for vehicle
JP5482754B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101