JP2009115396A - Loop-type heat pipe - Google Patents

Loop-type heat pipe Download PDF

Info

Publication number
JP2009115396A
JP2009115396A JP2007289660A JP2007289660A JP2009115396A JP 2009115396 A JP2009115396 A JP 2009115396A JP 2007289660 A JP2007289660 A JP 2007289660A JP 2007289660 A JP2007289660 A JP 2007289660A JP 2009115396 A JP2009115396 A JP 2009115396A
Authority
JP
Japan
Prior art keywords
working fluid
heat
evaporator
phase
evaporators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007289660A
Other languages
Japanese (ja)
Inventor
Hiromoto Uchida
浩基 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007289660A priority Critical patent/JP2009115396A/en
Publication of JP2009115396A publication Critical patent/JP2009115396A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a loop-type heat pipe, having high cooling performance and restraining the occurrence of dry-out. <P>SOLUTION: This loop-type heat pipe includes: an evaporating part 100, which receives heat from a heating unit to evaporate a working fluid of a liquid phase; a condensing part, which condenses the working fluid of a vapor phase by radiation of heat; and a pipe for circulating the working fluid between the evaporating part 100 and the condensing part, wherein the evaporating part 100 includes: a branch part 110 for causing the working fluid of a liquid phase flowing in from the condensing part to branch off; three evaporators 120 arranged side by side, which receive the working fluid of a liquid phase branching at the branching part 110 to cause a phase change to a vapor phase, and delivering the same, and have a double pipe structure in which a porous cylindrical wick 123 is inserted in a copper pipe 121; a focusing part 130, which focuses the working fluid of a vapor phase flowing out rom three evaporators 120 into one; an evaporator housing body 140 housing three evaporators 120; and a heat insulating material 150 covering the top face of the evaporator housing body 140. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、コンピュータなどの電子機器内の発熱素子を冷却するために用いられるループ型ヒートパイプに関する。   The present invention relates to a loop heat pipe used for cooling a heating element in an electronic apparatus such as a computer.

ヒートパイプは、内部に封入した作動流体の相変化を利用して熱を輸送する伝熱装置であり、コンビュータなどの電子機器内の発熱素子を冷却するために広く用いられている。   A heat pipe is a heat transfer device that transports heat by utilizing a phase change of a working fluid sealed inside, and is widely used to cool a heating element in an electronic device such as a computer.

このヒートパイプの一種として、外部からの熱を受熱し液相の作動流体を蒸発させて蒸気相の作動流体に相変化させる蒸発部と、放熱により、蒸気相の作動流体を凝縮させて液相の作動流体に相変化させる凝縮部と、前記蒸発部と前記凝縮部との間で作動流体を循環させる管とを備えたループ型ヒートパイプが知られている。このループ型ヒートパイプは、主として人工衛星や宇宙ステーションなどの熱輸送装置として開発が進められている。   As one type of this heat pipe, an evaporation unit that receives heat from the outside and evaporates the liquid-phase working fluid to change into a vapor-phase working fluid, and heat radiation condenses the vapor-phase working fluid to form a liquid-phase. There is known a loop heat pipe including a condensing unit that causes a phase change to the working fluid and a tube that circulates the working fluid between the evaporation unit and the condensing unit. The loop heat pipe is being developed mainly as a heat transport device such as an artificial satellite or a space station.

図9は、従来のループ型ヒートパイプの一例を示す概略構成図である。   FIG. 9 is a schematic configuration diagram illustrating an example of a conventional loop heat pipe.

図9には、外部からの熱を受熱し液相の作動流体を蒸発させて蒸気相の作動流体に相変化させる蒸発部10と、放熱により、蒸気相の作動流体を凝縮させて液相の作動流体に相変化させる凝縮部20と、蒸発部10と凝縮部20との間で作動流体を循環させる管30とを備えたループ型ヒートパイプ1が示されている(特許文献1参照。)。   FIG. 9 shows an evaporation unit 10 that receives heat from the outside and evaporates the liquid-phase working fluid to change into a vapor-phase working fluid, and condenses the vapor-phase working fluid by heat radiation, thereby condensing the liquid-phase working fluid. A loop heat pipe 1 including a condensing unit 20 that changes the phase to a working fluid and a pipe 30 that circulates the working fluid between the evaporation unit 10 and the condensing unit 20 is shown (see Patent Document 1). .

このループ型ヒートパイプ1の蒸発部10には円筒形の蒸発器11が備えられており、その蒸発器11の内壁には軸方向に延びた溝形状の複数の蒸気通路13が形成されている。そして、この蒸気通路13の先端部に接するように多孔質の円筒形のウィック12が挿入されている。   The evaporator 10 of the loop heat pipe 1 is provided with a cylindrical evaporator 11, and a plurality of groove-shaped steam passages 13 extending in the axial direction are formed on the inner wall of the evaporator 11. . And the porous cylindrical wick 12 is inserted so that the front-end | tip part of this vapor | steam channel | path 13 may be contact | connected.

管30からウィック12内に送り込まれた液相の作動流体はウィック12の内壁の微細な孔からウィック12外へと浸透して蒸気通路13に到り、蒸発器11の内壁に触れて加熱され蒸気相の作動流体に気化する。   The liquid-phase working fluid fed from the pipe 30 into the wick 12 penetrates from the fine holes on the inner wall of the wick 12 to the outside of the wick 12, reaches the vapor passage 13, touches the inner wall of the evaporator 11, and is heated. Vaporizes into vapor phase working fluid.

上記の特許文献1に限らず、一般に、ループ型ヒートパイプの蒸発器11の断面は円筒形状となっているが、それは、蒸発器の製造のし易さや、蒸発部10に戻ってきた液相の作動流体のウィック12外への浸透のしやすさ、およびウィック12外へ染み出した作動流体の気化が円周方向に均一に行われやすいなどの理由によるものと考えられる。   In general, the cross section of the evaporator 11 of the loop heat pipe is not limited to the above-mentioned Patent Document 1, but the cross section of the evaporator 11 is cylindrical. This is because of the ease of manufacture of the evaporator and the liquid phase returned to the evaporation unit 10. This is probably because the working fluid easily penetrates outside the wick 12 and the working fluid that has oozed out of the wick 12 is easily vaporized uniformly in the circumferential direction.

このような形状の蒸発器を備えたループ型ヒートパイプは、主に宇宙空間での使用に適するように考えられたものであるため、例えば、このタイプのループ型ヒートパイプをコンピュータのCPU(Central Processing Unit)などの発熱素子を冷却するために適用しようとしても、高い冷却性能を発揮することができないという問題がある。   Since the loop type heat pipe provided with the evaporator having such a shape is mainly considered to be suitable for use in outer space, for example, this type of loop type heat pipe is replaced by a CPU (Central) of a computer. Even if it is applied to cool a heating element such as Processing Unit), there is a problem that high cooling performance cannot be exhibited.

図10は、従来のループ型ヒートパイプを電子部品の発熱素子の冷却装置として適用した例を示す図である。   FIG. 10 is a diagram showing an example in which a conventional loop heat pipe is applied as a cooling device for a heating element of an electronic component.

図10には、コンピュータのCPUなどの発熱部品40の冷却装置として、従来のループ型ヒートパイプを適用した例が示されている。   FIG. 10 shows an example in which a conventional loop heat pipe is applied as a cooling device for a heat generating component 40 such as a CPU of a computer.

CPUやLSI(Large Scale Integration)などの電子部品は、一般に平板状のデバイスである。このような平板状のデバイスを、図10に示す従来のループ型ヒートパイプ1で冷却しようとすると、次のような不具合が生じる。すなわち、発熱部品40の熱を、ループ型ヒートパイプ1の熱伝導材料14に一旦伝えた後、この熱伝導材料14に熱的に接合された円筒状の蒸発器11に熱を伝える必要がある。しかし、図10に示すような構造の蒸発部10では、発熱部品40に近い蒸発器11の下部の温度は高くなるが、発熱部品40から離れた蒸発器11の上部の温度は低い。このような温度分布を持つ蒸発器11では、蒸発器11の上部には熱が十分に供給されないため内部の作動流体は十分に気化されにくい。   Electronic components such as CPUs and LSIs (Large Scale Integration) are generally flat devices. When such a flat device is cooled by the conventional loop heat pipe 1 shown in FIG. 10, the following problems occur. That is, after the heat of the heat generating component 40 is once transmitted to the heat conductive material 14 of the loop heat pipe 1, it is necessary to transfer the heat to the cylindrical evaporator 11 thermally bonded to the heat conductive material 14. . However, in the evaporator 10 having the structure shown in FIG. 10, the temperature of the lower part of the evaporator 11 close to the heat generating component 40 is high, but the temperature of the upper part of the evaporator 11 away from the heat generating component 40 is low. In the evaporator 11 having such a temperature distribution, heat is not sufficiently supplied to the upper part of the evaporator 11, so that the internal working fluid is not easily vaporized.

特に、ループ型ヒートパイプの場合には、円筒状の蒸発器11の内部にウィック12、蒸気通路13などの空間を確保する必要があるため、蒸発器11の直径は一般的なヒートパイプや冷却水配管などに比べて大きくなり、高さが高くなるため、上下方向の温度差が大きくなりやすい。その結果、蒸発器11の上部の作動流体の気化が十分に行われないので、凝縮部に供給される蒸気相の作動流体が少なくなり、従って、凝縮部で液化する作動流体も少なくなる。そのため、凝縮部から受熱部に供給される液相の作動流体の量が少なくなり、最後には作動流体の循環が停止してドライアウト、すなわち受熱部に液相の作動流体が無くなる現象が発生し、電子部品は過熱状態となり誤動作を生ずるに至るという問題がある。
米国特許第4765396号明細書
In particular, in the case of a loop heat pipe, it is necessary to secure a space such as the wick 12 and the steam passage 13 in the cylindrical evaporator 11, and therefore the diameter of the evaporator 11 is a general heat pipe or cooling. Since it is larger and higher than water piping, the temperature difference in the vertical direction tends to increase. As a result, since the working fluid in the upper part of the evaporator 11 is not sufficiently vaporized, the vapor-phase working fluid supplied to the condensing unit is reduced, and therefore the working fluid liquefied in the condensing unit is also reduced. Therefore, the amount of liquid-phase working fluid supplied from the condensing part to the heat-receiving part is reduced, and finally the circulation of the working fluid stops and dry out, that is, the phenomenon that the liquid-phase working fluid disappears in the heat-receiving part occurs. However, there is a problem that the electronic component is overheated and causes malfunction.
US Pat. No. 4,765,396

本発明は、上記事情に鑑み、冷却性能が高く、ドライアウトの発生が抑制されたループ型ヒートパイプを提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a loop type heat pipe that has high cooling performance and suppresses the occurrence of dryout.

上記目的を達成する本発明のループ型ヒートパイプは、発熱体から受熱し液相の作動流体を蒸発させて蒸気相の作動流体に相変化させる蒸発部と、放熱により、蒸気相の作動流体を凝縮させて液相の作動流体に相変化させる凝縮部と、上記蒸発部と上記凝縮部との間で作動流体を循環させる管とを備えたループ型ヒートパイプであって、上記蒸発部が、上記凝縮部から流入してきた液相の作動流体を複数に分岐させる分岐部と、上記分岐部で分岐された液相の作動流体それぞれを受け入れ蒸気相に相変化させて送り出す、金属管内に多孔質の筒型のウィックが挿入された二重管構造の、横に並べられた複数の蒸発器と、上記複数の蒸発器から流出してきた蒸気相の作動流体を一つに集束させて上記凝縮部に送り出す集束部と、上記複数の蒸発器を収容し発熱体の熱を下面から受熱し受熱した熱を内部に拡散して上記複数の蒸発器に伝熱する蒸発器収容体と、上記蒸発器収容体の上面を覆って該蒸発器収容体からの外部への放熱を抑制する断熱材とを備えたことを特徴とする。   The loop heat pipe of the present invention that achieves the above object includes an evaporating section that receives heat from a heating element and evaporates the liquid-phase working fluid to change into a vapor-phase working fluid, and dissipates the vapor-phase working fluid by heat radiation. A loop-type heat pipe comprising a condensing part that condenses and changes the phase to a liquid working fluid, and a pipe that circulates the working fluid between the evaporating part and the condensing part, wherein the evaporating part is A porous part in the metal tube that branches the liquid-phase working fluid that has flowed in from the condensing part into a plurality of branches and the liquid-phase working fluid that is branched in the branch part, changes the phase into a vapor phase, and sends it out. A plurality of evaporators arranged side by side in a double tube structure in which a cylindrical wick is inserted, and the vapor-phase working fluid flowing out from the plurality of evaporators is converged into one to form the condensing unit And a plurality of evaporation parts An evaporator housing body that receives heat from the lower surface and diffuses the received heat to the plurality of evaporators, and covers the upper surface of the evaporator housing body. And a heat insulating material that suppresses heat radiation from the body to the outside.

本発明のループ型ヒートパイプによれば、蒸発部を、複数の蒸発器を横に並べた構造としたために、蒸発器の高さを低くすることが可能となり、その結果、上下の温度差が少なくなり、かつ、蒸発器収容体の上面に備えられた断熱材によって外部への放熱が抑制されるので、蒸発器内の温度差が少なくなり、その結果、蒸発部における蒸気の発生効率がよくなり、ドライアウトの発生が抑制される。   According to the loop heat pipe of the present invention, since the evaporator section has a structure in which a plurality of evaporators are arranged side by side, it is possible to reduce the height of the evaporator, and as a result, the temperature difference between the upper and lower sides is reduced. Since the heat dissipation to the outside is suppressed by the heat insulating material provided on the upper surface of the evaporator housing, the temperature difference in the evaporator is reduced, and as a result, the efficiency of steam generation in the evaporator is improved. Thus, the occurrence of dryout is suppressed.

ここで、上記蒸発器収容体が、内部空間を有し、該内部空間に発熱体からの受熱により蒸気相に相変化し上記蒸発器への伝熱により液相に相変化する第2の作動流体が封入された箱体であってもよい。   Here, the evaporator housing body has an internal space, and in the internal space, a phase change is made to the vapor phase by receiving heat from the heating element, and a phase change is made to the liquid phase by heat transfer to the evaporator. A box body in which a fluid is enclosed may be used.

本実施形態のループ型ヒートパイプを上記のように構成した場合は、第2の作動流体の蒸発・凝縮により発熱体から蒸発器への熱輸送が行われるので蒸発器内の温度差が少なくなり、その結果、蒸発部における蒸気の生成効率がさらによくなるのでドライアウトの発生を効果的に抑制することができる。   When the loop heat pipe of the present embodiment is configured as described above, heat transfer from the heating element to the evaporator is performed by evaporation / condensation of the second working fluid, so that the temperature difference in the evaporator is reduced. As a result, the generation efficiency of the vapor in the evaporation section is further improved, so that the occurrence of dryout can be effectively suppressed.

また、上記蒸発器収容体が、上記複数の蒸発器それぞれの外壁面と接する複数の空洞を有し該複数の蒸発器それぞれが該複数の空洞それぞれに収容された金属ブロックであってもよい。   Further, the evaporator container may be a metal block having a plurality of cavities in contact with the outer wall surfaces of the plurality of evaporators, and each of the plurality of evaporators accommodated in each of the plurality of cavities.

本実施形態のループ型ヒートパイプを上記のように構成した場合は、金属ブロックによる発熱体から蒸発器への熱伝導が行われるので蒸発器内の温度差が少なくなり、その結果、蒸発部における蒸気の生成効率がさらによくなるのでドライアウトの発生を効果的に抑制することができる。   When the loop heat pipe of the present embodiment is configured as described above, the heat difference from the heating element to the evaporator is performed by the metal block, so that the temperature difference in the evaporator is reduced. Since the generation efficiency of steam is further improved, the occurrence of dryout can be effectively suppressed.

本発明のループ型ヒートパイプによれば、蒸発部における蒸気の生成効率がよいため凝縮部に多量の熱を輸送することが可能で、ドライアウトの発生が抑制された、例えば、コンピュータのCPUなどの冷却に適したループ型ヒートパイプを実現することができる。   According to the loop heat pipe of the present invention, since the generation efficiency of the vapor in the evaporation section is good, it is possible to transport a large amount of heat to the condensation section, and the occurrence of dryout is suppressed, for example, a CPU of a computer, etc. It is possible to realize a loop type heat pipe suitable for cooling.

以下図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施形態のループ型ヒートパイプが組み込まれたコンピュータの透視図である。   FIG. 1 is a perspective view of a computer in which a loop heat pipe according to a first embodiment of the present invention is incorporated.

図1には、主要な発熱部であるCPU51と、補助記憶装置であるHDD(Hard Disk Drive)52と、電源部53とを有するコンピュータ50、およびこのコンピュータ50に組み込まれた、CPU51を冷却するループ型ヒートパイプが示されている。   In FIG. 1, a CPU 51 that is a main heat generating unit, an HDD (Hard Disk Drive) 52 that is an auxiliary storage device, and a power source unit 53, and a CPU 51 that is incorporated in the computer 50 are cooled. A loop heat pipe is shown.

このループ型ヒートパイプは、発熱体であるCPU51から受熱し液相の作動流体を蒸発させて蒸気相の作動流体に相変化させる蒸発部(受熱部)100と、放熱により、蒸気相の作動流体を凝縮させて液相の作動流体に相変化させる凝縮部(放熱部)200と、蒸発部100と凝縮部200との間で作動流体を循環させる銅管300とを備えている。   This loop heat pipe has an evaporation section (heat receiving section) 100 that receives heat from the CPU 51 that is a heating element and evaporates the liquid-phase working fluid to change into a vapor-phase working fluid, and a vapor-phase working fluid by heat radiation. And a copper pipe 300 for circulating the working fluid between the evaporation unit 100 and the condensation unit 200.

図2は、第1の実施形態のループ型ヒートパイプの蒸発部(受熱部)の構造を示す斜視図である。   FIG. 2 is a perspective view showing the structure of the evaporation section (heat receiving section) of the loop heat pipe of the first embodiment.

この蒸発部(受熱部)100は、図1に示すコンピュータに組み込まれ、インテークマニホールド(分岐部)110と、3つの蒸発器120と、エキゾーストマニホールド(集束部)130と、蒸発器収容体140と、断熱材150とを備えている。   The evaporation unit (heat receiving unit) 100 is incorporated in the computer shown in FIG. 1, and includes an intake manifold (branch unit) 110, three evaporators 120, an exhaust manifold (condensing unit) 130, and an evaporator container 140. And a heat insulating material 150.

インテークマニホールド(分岐部)110は、凝縮部200(図1参照)から送られてきて液入口110aから流入した液相の作動流体を3つに分岐させるものである。   The intake manifold (branching part) 110 branches the liquid-phase working fluid sent from the condensing part 200 (see FIG. 1) and flowing in from the liquid inlet 110a into three.

3つの蒸発器120は、インテークマニホールド110で分岐された液相の作動流体それぞれを受け入れ蒸気相に相変化させて送り出す、銅パイプ121内に多孔質の筒型のウィック123が挿入された二重管構造の、横に並べられた管状の部材である。   The three evaporators 120 have a double-layered structure in which a porous cylindrical wick 123 is inserted into a copper pipe 121 that receives each of the liquid-phase working fluid branched by the intake manifold 110 and changes the vapor-phase working fluid. These are tubular members arranged side by side in a tubular structure.

エキゾーストマニホールド(集束部)130は、上記3つの蒸発器120から流出してきた蒸気相の作動流体を一つに集束させて蒸気出口130aから凝縮部200(図1参照)へと送り出すものである。   The exhaust manifold (condensing unit) 130 converges the vapor-phase working fluid that has flowed out of the three evaporators 120 and sends it out from the vapor outlet 130a to the condensing unit 200 (see FIG. 1).

蒸発器収容体140は、上記3つの蒸発器120を収容しCPU51の熱を下面から受熱し受熱した熱を内部に拡散させて3つの蒸発器120に伝熱するものである。   The evaporator accommodating body 140 accommodates the three evaporators 120, receives the heat of the CPU 51 from the lower surface, diffuses the received heat to the inside, and transfers the heat to the three evaporators 120.

断熱材150は、蒸発器収容体140の上面を覆って該蒸発器収容体140からの外部への放熱を抑制し受熱部内の温度を均一に保つためのものである。   The heat insulating material 150 covers the upper surface of the evaporator housing 140 and suppresses heat radiation from the evaporator housing 140 to the outside to keep the temperature in the heat receiving portion uniform.

なお、本実施形態における銅管300は、本発明にいう管の一例に相当するものであり、また、本実施形態における銅パイプ121は、本発明にいう金属管の一例に相当するものであるが、これらの管および金属管の材料は銅に限られるものではなく、熱伝導性が高いものであればどのような材料を用いてもよい。   The copper pipe 300 in the present embodiment corresponds to an example of the pipe referred to in the present invention, and the copper pipe 121 in the present embodiment corresponds to an example of a metal pipe referred to in the present invention. However, the material of these tubes and metal tubes is not limited to copper, and any material may be used as long as it has high thermal conductivity.

CPU51の蒸発部100(受熱部)側の面は、縦30mm×横30mmの正方形であり、蒸発部100の外形サイズ(インテークマニホールド110およびエキゾーストマニホールド130は含まず)は縦50mm×横50mm×高さ20mmである。蒸発器収容体140は、厚さ2mmの銅板製の、内部が空洞の箱体である。   The surface of the CPU 51 on the evaporation unit 100 (heat receiving unit) side is a square of 30 mm length × 30 mm width, and the outer size of the evaporation unit 100 (not including the intake manifold 110 and the exhaust manifold 130) is 50 mm long × 50 mm wide × high. The length is 20 mm. The evaporator housing 140 is a box made of a copper plate having a thickness of 2 mm and having a hollow inside.

この蒸発器収容体140の内部には、平面方向に貫通する3本の蒸発器120が等間隔で並列に設置されている。3本の蒸発器120は、それぞれ、外径14mm、厚さ2mmの銅パイプ121とその銅パイプ121内に挿入された多孔質のウィック123とからなる二重管構造となっている。   Inside the evaporator housing 140, three evaporators 120 penetrating in the plane direction are installed in parallel at equal intervals. Each of the three evaporators 120 has a double pipe structure including a copper pipe 121 having an outer diameter of 14 mm and a thickness of 2 mm and a porous wick 123 inserted into the copper pipe 121.

蒸発器収容体140と銅パイプ121の外壁とによって蒸発器収容体140内の空洞は密閉されており、この空洞に第2の作動流体である水が封入されている。第2の作動流体は水の飽和水蒸気圧に保たれている。   The cavity in the evaporator housing 140 is sealed by the evaporator housing 140 and the outer wall of the copper pipe 121, and water as the second working fluid is sealed in this cavity. The second working fluid is maintained at a saturated water vapor pressure of water.

また、3本の銅パイプ121の内壁には、軸方向に深さ1mmの溝形状の蒸気通路122が2mmピッチで等間隔に形成されている。銅パイプ121内壁に形成された蒸気通路122の先端部に接するように外径10mm、内径4mmの筒型のウィック123が挿入されている。この銅パイプ121の内壁に形成された蒸気通路122は、蒸気相の作動流体が流通する通路として機能する。   Further, on the inner walls of the three copper pipes 121, groove-shaped steam passages 122 having a depth of 1 mm in the axial direction are formed at equal intervals with a pitch of 2 mm. A cylindrical wick 123 having an outer diameter of 10 mm and an inner diameter of 4 mm is inserted so as to be in contact with the tip of the steam passage 122 formed on the inner wall of the copper pipe 121. The steam passage 122 formed on the inner wall of the copper pipe 121 functions as a passage through which a vapor-phase working fluid flows.

ウィック123は、銅粉末を焼結して形成した多孔質の円筒であり、ウィック123の内側と外側とは10μm〜50μm径の微細孔によって連通しており、ウィック123内の第1の作動流体が毛細管現象によりウィック123の外に染み出すようになっている。   The wick 123 is a porous cylinder formed by sintering copper powder, and the inside and outside of the wick 123 communicate with each other through fine holes having a diameter of 10 μm to 50 μm, and the first working fluid in the wick 123. Oozes out of the wick 123 by capillary action.

3本の銅パイプ121の両端部には、凝縮部200(図1参照)から流入してきた第1の作動流体を3本のウィック123に分岐させるインテークマニホールド(分岐部)110と、3本のウィック123の蒸気通路122から流出してきた蒸気相の第1の作動流体を一つに収束させて凝縮部200に送り出すエキゾーストマニホールド(集束部)130とが接合されており、第1の作動流体が漏れ出さないようになっている。   At both ends of the three copper pipes 121, there are intake manifolds (branching portions) 110 for branching the first working fluid flowing in from the condensing portion 200 (see FIG. 1) into three wicks 123, and three An exhaust manifold (converging part) 130 for converging the vapor-phase first working fluid flowing out from the steam passage 122 of the wick 123 into one and sending it to the condensing part 200 is joined, and the first working fluid is It is designed not to leak.

蒸発部100(受熱部)のエキゾーストマニホールド130と凝縮部200とは、銅管300により連結されており、さらに、凝縮部200と蒸発部100のインテークマニホールド110とは、銅管300により連結されており、第1の作動流体が循環するようになっている。   The exhaust manifold 130 and the condensing unit 200 of the evaporation unit 100 (heat receiving unit) are connected by a copper tube 300, and the condensing unit 200 and the intake manifold 110 of the evaporation unit 100 are connected by a copper tube 300. The first working fluid is circulated.

第1の実施形態では、第1の作動流体と第2の作動流体とは互いに異なる個所に封入されている。第1および第2の作動流体には、ともに水が用いられているが、水以外の流体であってもよく、また、互いに異なる材料の作動流体を用いても差し支えない。第1の作動流体および第2の作動流体を封入する際には、水の飽和蒸気圧となるよう水圧が調節される。   In the first embodiment, the first working fluid and the second working fluid are sealed in different locations. Although water is used for both the first and second working fluids, fluids other than water may be used, and working fluids of different materials may be used. When enclosing the first working fluid and the second working fluid, the water pressure is adjusted to be the saturated vapor pressure of water.

図3は、図2に示す蒸発部を蒸発器の軸方向に切断した断面図であり、図4は、図2に示す蒸発部を蒸発器の軸方向を縦断する方向に切断した断面図である。   3 is a cross-sectional view of the evaporator shown in FIG. 2 cut in the axial direction of the evaporator, and FIG. 4 is a cross-sectional view of the evaporator shown in FIG. 2 cut in a direction perpendicular to the axial direction of the evaporator. is there.

図3および図4に示すように、蒸発部100は、金属製の蒸発器収容体140で覆われ、蒸発器収容体140の下面140aにはサーマルグリースが塗布されており、そのサーマルグリースを介して発熱体であるCPU51が蒸発器収容体140の下面140aに熱的に接触するようになっている。   As shown in FIGS. 3 and 4, the evaporation unit 100 is covered with a metal evaporator housing 140, and thermal grease is applied to the lower surface 140 a of the evaporator housing 140, via the thermal grease. Thus, the CPU 51, which is a heating element, is in thermal contact with the lower surface 140a of the evaporator housing 140.

第1の実施形態では、上記蒸発器収容体140は内部空間141を有しり、この内部空間141に、発熱体からの受熱により蒸気相に相変化し、蒸発器120への伝熱により液相に相変化する第2の作動流体180が封入された箱体として構成されている。   In the first embodiment, the evaporator housing 140 has an internal space 141, and the internal space 141 changes into a vapor phase by receiving heat from the heating element, and the liquid phase by heat transfer to the evaporator 120. It is configured as a box in which a second working fluid 180 that changes phase is enclosed.

次に、この蒸発部100の作用について説明する。   Next, the operation of the evaporation unit 100 will be described.

蒸発器収容体140の下面140aがCPU51によって加熱されることにより、蒸発器収容体140の内部空間141に封入された第2の作動流体180が加熱されて沸騰し、気化する。   When the lower surface 140a of the evaporator housing 140 is heated by the CPU 51, the second working fluid 180 sealed in the internal space 141 of the evaporator housing 140 is heated and boiled and vaporized.

気化した蒸気相の第2の作動流体180は温度の低い銅パイプ121表面に触れて凝集し液化することにより、CPU51からの熱は銅パイプ121に伝えられる。   The vaporized second working fluid 180 in the vapor phase touches the surface of the low-temperature copper pipe 121 to aggregate and liquefy, whereby heat from the CPU 51 is transferred to the copper pipe 121.

銅パイプ121に伝えられた熱は、銅パイプ121内側のウィック123内の第1の作動流体160に伝えられ、第1の作動流体160が沸騰し気化する。   The heat transferred to the copper pipe 121 is transferred to the first working fluid 160 in the wick 123 inside the copper pipe 121, and the first working fluid 160 boils and vaporizes.

気化した蒸気相の第1の作動流体160はウィック123内を通り抜けエキゾーストマニホールド130を経て蒸気出口130aから送り出され、銅管300(図1参照)を通って凝縮部200(図1参照)に供給される。   The vaporized first working fluid 160 in the vapor phase passes through the wick 123, is sent from the vapor outlet 130a through the exhaust manifold 130, and is supplied to the condensing unit 200 (see FIG. 1) through the copper pipe 300 (see FIG. 1). Is done.

凝集部200は、放熱面積を増加させるために、銅管300に複数の放熱フィン21(図1参照)が半田付けされた構造となっており、その放熱フィン21に向けた送風ファン22からの送風により、銅管300内の蒸気相の第1の作動流体160の熱は空気中に放散される。こうして凝集部200を通過する間に蒸気相の第1の作動流体160は熱を放出して凝集し液化する。   The agglomeration part 200 has a structure in which a plurality of heat radiation fins 21 (see FIG. 1) are soldered to the copper tube 300 in order to increase the heat radiation area, and from the blower fan 22 toward the heat radiation fins 21. By the air blowing, the heat of the vapor-phase first working fluid 160 in the copper pipe 300 is dissipated into the air. Thus, the vapor-phase first working fluid 160 aggregates and liquefies by releasing heat while passing through the agglomeration part 200.

こうして液相となった第1の作動流体160は、再び銅管300を通って液入口110aからインテークマニホールド110に流入し、インテークマニホールド110により3つの銅パイプ121に流入し、蒸発部100においてCPU51の熱を受け取り、蒸気相の第1の作動流体160となって凝集部200に送られる。   The first working fluid 160 in the liquid phase passes through the copper pipe 300 again and flows into the intake manifold 110 from the liquid inlet 110a, and flows into the three copper pipes 121 through the intake manifold 110. In the evaporation unit 100, the CPU 51 And is sent to the agglomeration unit 200 as the first working fluid 160 in the vapor phase.

次に、本発明の第2の実施形態のループ型ヒートパイプについて説明する。   Next, a loop heat pipe according to a second embodiment of the present invention will be described.

図5は、第2の実施形態のループ型ヒートパイプの蒸発部(受熱部)の構造を示す斜視図である。   FIG. 5 is a perspective view showing the structure of the evaporation section (heat receiving section) of the loop heat pipe of the second embodiment.

この蒸発部(受熱部)500は、図1に示すコンピュータに組み込まれ、発熱体であるCPU51の冷却装置として用いられるループ型ヒートパイプの主要部であり、凝縮部200(図1参照)から送られてきて液入口510aから流入した液相の作動流体を3つに分岐させるインテークマニホールド(分岐部)510と、インテークマニホールド510で分岐された液相の作動流体それぞれを受け入れ蒸気相に相変化させて送り出す、銅パイプ521内に多孔質の筒型のウィック523が挿入された二重管構造の、横に並べられた3つの蒸発器520と、これら3つの蒸発器520から流出してきた蒸気相の作動流体を一つに集束させて蒸気出口530aから凝縮部200(図1参照)へと送り出すエキゾーストマニホールド(集束部)530と、3つの蒸発器520を収容しCPU51の熱を下面から受熱し受熱した熱を内部に拡散させて3つの蒸発器520に伝熱する蒸発器収容体540と、蒸発器収容体540の上面を覆って該蒸発器収容体540からの外部への放熱を抑制し受熱部内の温度を均一に保つための断熱材550とを備えている。   The evaporation unit (heat receiving unit) 500 is a main part of a loop heat pipe incorporated in the computer shown in FIG. 1 and used as a cooling device for the CPU 51 as a heating element, and is sent from the condensing unit 200 (see FIG. 1). Intake manifold (branch portion) 510 for branching the liquid-phase working fluid that has flowed in from the liquid inlet 510a into three and the liquid-phase working fluid branched by the intake manifold 510 are each received and changed into a vapor phase. The three evaporators 520 arranged side by side in a double tube structure in which a porous cylindrical wick 523 is inserted into a copper pipe 521, and the vapor phase flowing out from these three evaporators 520 The exhaust manifold (focusing portion) 5 for condensing the working fluid into one and sending it from the vapor outlet 530a to the condensing portion 200 (see FIG. 1) 0, three evaporators 520, the heat of the CPU 51 received from the lower surface, the received heat is diffused inside, and the heat is transferred to the three evaporators 520, and the evaporator container 540 And a heat insulating material 550 for covering the upper surface and suppressing heat radiation from the evaporator housing 540 to the outside and keeping the temperature in the heat receiving portion uniform.

なお、本実施形態における銅パイプ121は、第1の実施形態におけるものと同じものである。   The copper pipe 121 in the present embodiment is the same as that in the first embodiment.

CPU51の蒸発部500(受熱部)側の面は、縦30mm×横30mmの正方形であり、蒸発部500の外形サイズ(インテークマニホールド110およびエキゾーストマニホールド130は含まず)は縦50mm×横50mm×高さ16mmである。   The surface of the CPU 51 on the evaporation unit 500 (heat receiving unit) side is a square of 30 mm length × 30 mm width, and the outer size of the evaporation unit 500 (not including the intake manifold 110 and the exhaust manifold 130) is 50 mm length × 50 mm width × height. The length is 16 mm.

第2の実施形態の蒸発部500は、第1の実施形態における蒸発器収容体140とは異なり、蒸発器収容体540は銅製のブロック580であり、内部に、3つの蒸発器520それぞれの外壁面と接する3つの空洞581を有し、該3つの空洞581それぞれに上記3つの蒸発器520それぞれが収容されている。   The evaporator unit 500 of the second embodiment is different from the evaporator container 140 in the first embodiment, and the evaporator container 540 is a copper block 580, inside each of the three evaporators 520. There are three cavities 581 in contact with the wall surface, and each of the three evaporators 520 is accommodated in each of the three cavities 581.

3つの蒸発器520は、第1の実施形態におけると同様、銅パイプ521とその銅パイプ521内に挿入された多孔質のウィック523とからなる二重管構造となっている。また、3本の銅パイプ521の内壁には、第1の実施形態におけると同様の蒸気通路522が形成されており、同様のウィック523が挿入されている。   As in the first embodiment, the three evaporators 520 have a double tube structure including a copper pipe 521 and a porous wick 523 inserted into the copper pipe 521. Moreover, the same steam passage 522 as in the first embodiment is formed in the inner wall of the three copper pipes 521, and the same wick 523 is inserted.

ウィック523は、銅粉末を焼結して形成した多孔質の円筒であり、ウィック523の内側と外側とは10μm〜50μm径の微細孔によって連通しており、ウィック523内の作動流体が毛細管現象でウィック123の外に染み出すようになっている。   The wick 523 is a porous cylinder formed by sintering copper powder, and the inside and outside of the wick 523 communicate with each other through a fine hole having a diameter of 10 μm to 50 μm, and the working fluid in the wick 523 is capillary action. So that it oozes out of wick 123.

蒸発部500(受熱部)のインテークマニホールド510およびエキゾーストマニホールド530も、第1の実施形態と同様の構造を有している。   The intake manifold 510 and the exhaust manifold 530 of the evaporation unit 500 (heat receiving unit) also have the same structure as that of the first embodiment.

図6は、図5に示す蒸発器の軸方向に切断した断面図であり、図7は、図5に示す蒸発器の軸方向に交わる方向に切断した断面図である。   6 is a cross-sectional view cut in the axial direction of the evaporator shown in FIG. 5, and FIG. 7 is a cross-sectional view cut in a direction crossing the axial direction of the evaporator shown in FIG.

図6および図7に示すように、蒸発部500は、金属製の蒸発器収容体540で覆われており、蒸発器収容体540の下面540aにはサーマルグリースが塗布されており、そのサーマルグリースを介して発熱体であるCPU51が蒸発器収容体540の下面540aに熱的に接触している。   As shown in FIGS. 6 and 7, the evaporation unit 500 is covered with a metal evaporator housing 540, and thermal grease is applied to the lower surface 540 a of the evaporator housing 540. The CPU 51, which is a heating element, is in thermal contact with the lower surface 540a of the evaporator housing 540.

このように構成された蒸発部500の作用について説明する。蒸発器収容体540の下面540aがCPU51で加熱されることにより、CPU51からの熱は、蒸発器収容体540の銅ブロック580に伝えられ、さらに金属ブロック580を介して銅パイプ521に伝えられ、銅パイプ521内に挿入されたウィック523と銅パイプ521内壁の蒸気通路522にある第1の作動流体160が沸騰し、気化する。   The operation of the evaporation unit 500 configured as described above will be described. When the lower surface 540a of the evaporator housing 540 is heated by the CPU 51, heat from the CPU 51 is transmitted to the copper block 580 of the evaporator housing 540, and further to the copper pipe 521 through the metal block 580, The wick 523 inserted into the copper pipe 521 and the first working fluid 160 in the vapor passage 522 on the inner wall of the copper pipe 521 boil and vaporize.

気化した蒸気相の第1の作動流体160はウィック523内を通りエキゾーストマニホールド530を経て蒸気出口530aから送り出され、銅管300(図1参照)を通って凝縮部200(図1参照)に供給される。この凝縮部200は第1の実施形態において説明したものと同様である。蒸気相の第1の作動流体160はこの凝集部200を通過する間に熱を放出して凝集し液化する。   The vaporized first working fluid 160 in the vapor phase passes through the wick 523, is sent from the vapor outlet 530a through the exhaust manifold 530, and is supplied to the condensing unit 200 (see FIG. 1) through the copper pipe 300 (see FIG. 1). Is done. The condensing unit 200 is the same as that described in the first embodiment. The first working fluid 160 in the vapor phase releases heat while passing through the agglomeration part 200 and agglomerates and liquefies.

こうして液相となった第1の作動流体160は、再び銅管300を通って液入口510aからインテークマニホールド510に流入し、インテークマニホールド510により3つの銅パイプ521に流入し、蒸発部500においてCPU51の熱を受け取り、蒸気相の第1の作動流体160となって凝集部200に送られる。   The first working fluid 160 in the liquid phase passes through the copper pipe 300 again and flows into the intake manifold 510 from the liquid inlet 510a, and flows into the three copper pipes 521 through the intake manifold 510. And is sent to the agglomeration unit 200 as the first working fluid 160 in the vapor phase.

次に、第1および第2の実施形態のループ型ヒートパイプの冷却性能を検証するため、図2〜図4に示す構造の蒸発部(受熱部)100を有するループ型ヒートパイプを図1に示すようにコンピュータに組み込み、その冷却性能と従来のループ型ヒートパイプの冷却性能との比較テストを行った。   Next, in order to verify the cooling performance of the loop heat pipes of the first and second embodiments, FIG. 1 shows a loop heat pipe having an evaporation section (heat receiving section) 100 having the structure shown in FIGS. As shown, it was built into a computer and a comparative test was conducted between its cooling performance and that of a conventional loop heat pipe.

図8は、第1および第2の実施形態のループ型ヒートパイプと従来のループ型ヒートパイプの冷却性能の比較テスト結果を示すグラフである。   FIG. 8 is a graph showing a comparison test result of the cooling performance of the loop heat pipes of the first and second embodiments and the conventional loop heat pipe.

図8に比較例として示すように、従来の受熱部10(図9,10参照)を用いた場合には、CPUの発熱量が100Wを超えた時点(×印)でドライアウト現象、すなわち、受熱部10の上部で作動流体の気化が十分に行われないために凝縮部20に供給される蒸気相の作動流体が少なくなり、そのため受熱部10に供給される作動流体の量が減少し、最後には作動流体の循環が停止して受熱部10に作動流体が無くなる現象が発生し、急激にCPUの温度が上昇する現象がみられた。   As shown in FIG. 8 as a comparative example, when the conventional heat receiving unit 10 (see FIGS. 9 and 10) is used, the dryout phenomenon occurs when the heat generation amount of the CPU exceeds 100 W (x mark), that is, Since the working fluid is not sufficiently vaporized at the upper part of the heat receiving unit 10, the vapor phase working fluid supplied to the condensing unit 20 is reduced, and therefore the amount of working fluid supplied to the heat receiving unit 10 is reduced. Finally, there was a phenomenon in which the circulation of the working fluid stopped and the working fluid disappeared in the heat receiving unit 10 and the temperature of the CPU suddenly increased.

一方、本発明の第1の実施形態の場合には、CPUの発熱量が150Wを超えた場合でもCPU温度は60℃程度と安定しており、高い冷却性能が得られた。   On the other hand, in the case of the first embodiment of the present invention, even when the heat generation amount of the CPU exceeds 150 W, the CPU temperature is stable at about 60 ° C., and high cooling performance is obtained.

このように、第1の実施形態のループ型ヒートパイプにより高い冷却性能が得られたのは次の理由によるものと考えられる。すなわち、
(1)蒸発部100が、3本の蒸発器120を横に並べた構造となっているため、蒸発器の上下方向のサイズが、図10に示す従来のループ型ヒートパイプにおける1本の蒸発器11と比較して小さくなっているので、蒸発器内の温度差が少なくなり、第1の作動流体の気化が効率よく行われること、
(2)蒸発部100が、蒸発器収容体140の上面を覆う断熱材150を備えているため、蒸発器収容体140からの外部への放熱が抑制されるので、蒸発器内の温度差が少なくなり、第1の作動流体の気化が効率よく行われること、および
(3)蒸発器収容体140が、内部空間141を有し、該内部空間141に第2の作動流体180が封入され、第2の作動流体の蒸発・凝縮による熱輸送が行われるので蒸発器内の温度差が少なくなり、第1の作動流体の気化が効率よく行われること
などによるものと考えられる。
Thus, it is considered that the high cooling performance was obtained by the loop heat pipe of the first embodiment for the following reason. That is,
(1) Since the evaporator 100 has a structure in which three evaporators 120 are arranged side by side, the vertical size of the evaporator is one evaporation in the conventional loop heat pipe shown in FIG. The temperature difference in the evaporator is reduced, and the first working fluid is efficiently vaporized.
(2) Since the evaporating unit 100 includes the heat insulating material 150 that covers the upper surface of the evaporator housing 140, heat radiation from the evaporator housing 140 to the outside is suppressed, so that the temperature difference in the evaporator is reduced. The vaporization of the first working fluid is efficiently performed, and (3) the evaporator housing 140 has an internal space 141, and the second working fluid 180 is enclosed in the internal space 141, It is considered that the heat transport by evaporation / condensation of the second working fluid is performed, so that the temperature difference in the evaporator is reduced, and the first working fluid is efficiently vaporized.

また、本発明の第2の実施形態の場合には、CPUの発熱量が150Wを超えた場合でもCPU温度は70℃程度と安定しており、第1の実施形態とほぼ同様の高い冷却性能が得られた。   In the case of the second embodiment of the present invention, even when the heat generation amount of the CPU exceeds 150 W, the CPU temperature is stable at about 70 ° C., and the same high cooling performance as that of the first embodiment. was gotten.

このように、第2の実施形態のループ型ヒートパイプにより高い冷却性能が得られたのは次の原因によるものと考えられる。すなわち、
(1)第1の実施形態の、上記(1)と同様の理由、
(2)第1の実施形態の、上記(2)と同様の理由、および
(3)蒸発器収容体540が熱伝導率の高い金属ブロック580内の3つの空洞581にそれぞれ銅パイプ121が収容された構造となっているため、蒸発器内の温度差が少なくなり、第1の作動流体の気化が効率よく行われること、
などによるものと考えられる。
Thus, it is considered that the high cooling performance was obtained by the loop heat pipe of the second embodiment due to the following causes. That is,
(1) The same reason as the above (1) of the first embodiment,
(2) In the first embodiment, the copper pipe 121 is housed in each of the three cavities 581 in the metal block 580 having the same thermal conductivity as the reason (2) and (3) the evaporator housing 540 of the first embodiment. Since the structure is made, the temperature difference in the evaporator is reduced, and the first working fluid is efficiently vaporized.
This is thought to be due to such factors.

本発明の第1の実施形態のループ型ヒートパイプが組み込まれたコンピュータの透視図である。1 is a perspective view of a computer in which a loop heat pipe according to a first embodiment of the present invention is incorporated. 第1の実施形態のループ型ヒートパイプの蒸発部(受熱部)の構造を示す斜視図である。It is a perspective view which shows the structure of the evaporation part (heat receiving part) of the loop type heat pipe of 1st Embodiment. 図2に示す蒸発部を蒸発器の軸方向に切断した断面図である。It is sectional drawing which cut | disconnected the evaporation part shown in FIG. 2 to the axial direction of an evaporator. 図2に示す蒸発部を蒸発器の軸方向に交わる方向に切断した断面図である。It is sectional drawing which cut | disconnected the evaporation part shown in FIG. 2 in the direction which cross | intersects the axial direction of an evaporator. 第2の実施形態のループ型ヒートパイプの蒸発部(受熱部)の構造を示す斜視図である。It is a perspective view which shows the structure of the evaporation part (heat receiving part) of the loop type heat pipe of 2nd Embodiment. 図5に示す蒸発器の軸方向に切断した断面図である。It is sectional drawing cut | disconnected in the axial direction of the evaporator shown in FIG. 図5に示す蒸発器の軸方向に交わる方向に切断した断面図である。It is sectional drawing cut | disconnected in the direction which cross | intersects the axial direction of the evaporator shown in FIG. 第1および第2の実施形態のループ型ヒートパイプと従来のループ型ヒートパイプの冷却性能の比較テスト結果を示すグラフである。It is a graph which shows the comparison test result of the cooling performance of the loop type heat pipe of 1st and 2nd embodiment, and the conventional loop type heat pipe. 従来のループ型ヒートパイプの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the conventional loop type heat pipe. 従来のループ型ヒートパイプを電子部品の発熱素子の冷却装置として適用した例を示す図である。It is a figure which shows the example which applied the conventional loop type heat pipe as a cooling device of the heat generating element of an electronic component.

符号の説明Explanation of symbols

1 ループ型ヒートパイプ
10 蒸発部
11 蒸発器
12 ウィック
13 蒸気通路
21 放熱フィン
22 送風ファン
40 発熱部品
51 CPU
52 HDD
53 電源部
100,150 蒸発部(受熱部)
110,510 インテークマニホールド(分岐部)
110a,510a 液入口
120,520 蒸発器
121,521 銅パイプ
122,522 蒸気通路
123,523 ウィック
130,530 エキゾーストマニホールド(集束部)
130a,530a 蒸気出口
140,540 蒸発器収容体
141,541 内部空間
141a,541a 下面
150,550 断熱材
160 第1の作動流体
180 第2の作動流体
200 凝縮部(放熱部)
300 銅管
580 ブロック
581 空洞
DESCRIPTION OF SYMBOLS 1 Loop type heat pipe 10 Evaporating part 11 Evaporator 12 Wick 13 Steam passage 21 Radiation fin 22 Blower fan 40 Heating component 51 CPU
52 HDD
53 Power supply unit 100, 150 Evaporating unit (heat receiving unit)
110,510 Intake manifold (branch)
110a, 510a Liquid inlet 120, 520 Evaporator 121, 521 Copper pipe 122, 522 Steam passage 123, 523 Wick 130, 530 Exhaust manifold (condensing part)
130a, 530a Steam outlet 140, 540 Evaporator container 141, 541 Internal space 141a, 541a Lower surface 150, 550 Heat insulating material 160 First working fluid 180 Second working fluid 200 Condensing part (heat radiating part)
300 Copper tube 580 Block 581 Cavity

Claims (3)

発熱体から受熱し液相の作動流体を蒸発させて蒸気相の作動流体に相変化させる蒸発部と、
放熱により、蒸気相の作動流体を凝縮させて液相の作動流体に相変化させる凝縮部と、
前記蒸発部と前記凝縮部との間で作動流体を循環させる管とを備えたループ型ヒートパイプであって、
前記蒸発部が、
前記凝縮部から流入してきた液相の作動流体を複数に分岐させる分岐部と、
前記分岐部で分岐された液相の作動流体それぞれを受け入れ蒸気相に相変化させて送り出す、金属管内に多孔質の筒型のウィックが挿入された二重管構造の、横に並べられた複数の蒸発器と、
前記複数の蒸発器から流出してきた蒸気相の作動流体を一つに集束させて前記凝縮部に送り出す集束部と、
前記複数の蒸発器を収容し発熱体の熱を下面から受熱し受熱した熱を内部に拡散して前記複数の蒸発器に伝熱する蒸発器収容体と、
前記蒸発器収容体の上面を覆って該蒸発器収容体からの外部への放熱を抑制する断熱材とを備えたことを特徴とするループ型ヒートパイプ。
An evaporation section that receives heat from the heating element and evaporates the liquid-phase working fluid to change into a vapor-phase working fluid;
A condensing part that condenses the vapor-phase working fluid by heat dissipation and changes the phase into a liquid-phase working fluid;
A loop heat pipe comprising a pipe for circulating a working fluid between the evaporation section and the condensation section,
The evaporating part is
A branching section for branching the liquid-phase working fluid flowing in from the condensing section into a plurality of parts;
A plurality of tubes arranged side by side in a double tube structure in which a porous cylindrical wick is inserted in a metal tube, which receives each of the liquid-phase working fluids branched at the branching portion and sends it out into a vapor phase. With an evaporator,
A converging unit that condenses the vapor-phase working fluid flowing out of the plurality of evaporators into one and sends it to the condensing unit;
An evaporator housing that houses the plurality of evaporators, receives heat from a heating element from the lower surface, diffuses the received heat, and transfers the heat to the plurality of evaporators;
A loop heat pipe, comprising: a heat insulating material that covers an upper surface of the evaporator housing and suppresses heat radiation from the evaporator housing to the outside.
前記蒸発器収容体が、内部空間を有し、該内部空間に発熱体からの受熱により蒸気相に相変化し前記蒸発器への伝熱により液相に相変化する第2の作動流体が封入された箱体であることを特徴とする請求項1記載のループ型ヒートパイプ。   The evaporator housing body has an internal space, and a second working fluid that changes into a vapor phase by receiving heat from the heating element and changes into a liquid phase by heat transfer to the evaporator is enclosed in the internal space. The loop heat pipe according to claim 1, wherein the loop heat pipe is a box. 前記蒸発器収容体が、前記複数の蒸発器それぞれの外壁面と接する複数の空洞を有し該複数の蒸発器それぞれが該複数の空洞それぞれに収容された金属ブロックであることを特徴とする請求項1記載のループ型ヒートパイプ。   The evaporator housing body has a plurality of cavities in contact with outer wall surfaces of the plurality of evaporators, and each of the plurality of evaporators is a metal block accommodated in each of the plurality of cavities. Item 2. A loop heat pipe according to item 1.
JP2007289660A 2007-11-07 2007-11-07 Loop-type heat pipe Pending JP2009115396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007289660A JP2009115396A (en) 2007-11-07 2007-11-07 Loop-type heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007289660A JP2009115396A (en) 2007-11-07 2007-11-07 Loop-type heat pipe

Publications (1)

Publication Number Publication Date
JP2009115396A true JP2009115396A (en) 2009-05-28

Family

ID=40782728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289660A Pending JP2009115396A (en) 2007-11-07 2007-11-07 Loop-type heat pipe

Country Status (1)

Country Link
JP (1) JP2009115396A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839630B2 (en) * 2008-09-24 2010-11-23 Furui Precise Component (Kunshan) Co., Ltd. Heat dissipation device and computer using same
KR101054092B1 (en) 2009-09-25 2011-08-03 잘만테크 주식회사 Evaporator for Loop Heat Pipe System
JP2012149819A (en) * 2011-01-19 2012-08-09 Fujitsu Ltd Loop heat pipe, and electronic device
JP2012193912A (en) * 2011-03-17 2012-10-11 Fujitsu Ltd Loop heat pipe
JP2013040718A (en) * 2011-08-17 2013-02-28 Fujitsu Ltd Loop heat pipe, and electronic apparatus including loop heat pipe
JP2013073722A (en) * 2011-09-27 2013-04-22 Furukawa Electric Co Ltd:The Battery temperature adjusting unit and battery temperature adjusting apparatus
US20130160974A1 (en) * 2010-10-14 2013-06-27 Fujitsu Limited Loop heat pipe and electronic apparatus
JP2013257129A (en) * 2012-05-14 2013-12-26 Fujitsu Ltd Cooling device
US8705236B2 (en) 2011-09-29 2014-04-22 Fujitsu Limited Loop heat pipe and electronic apparatus
JPWO2012059975A1 (en) * 2010-11-01 2014-05-12 富士通株式会社 Loop heat pipe and electronic device using the same
US8893513B2 (en) 2012-05-07 2014-11-25 Phononic Device, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US8991194B2 (en) 2012-05-07 2015-03-31 Phononic Devices, Inc. Parallel thermoelectric heat exchange systems
JP2015087105A (en) * 2013-10-29 2015-05-07 楊 泰和 Temperature control system including sticking type temperature equalizer and heat transfer fluid, and application device thereof
JP2016156534A (en) * 2015-02-24 2016-09-01 株式会社フジクラ Evaporator for loop heat pipe
US9455212B2 (en) 2009-11-19 2016-09-27 Fujitsu Limited Loop heat pipe system and information processing apparatus
US9593871B2 (en) 2014-07-21 2017-03-14 Phononic Devices, Inc. Systems and methods for operating a thermoelectric module to increase efficiency
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
CN114025142A (en) * 2021-10-28 2022-02-08 四川启睿克科技有限公司 Liquid cooling heat dissipation cold head, liquid cooling heat dissipation system and laser television

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867357U (en) * 1971-11-26 1973-08-27
JPH0655556B2 (en) * 1989-11-07 1994-07-27 株式会社キングジム Binding
JPH06291481A (en) * 1993-04-02 1994-10-18 Furukawa Electric Co Ltd:The High-density heat radiation type circuit board
JPH081906Y2 (en) * 1990-06-26 1996-01-24 株式会社キングジム File binding tool
JPH10160368A (en) * 1996-11-22 1998-06-19 Nec Corp Heat pipe type cooler
JP2000146471A (en) * 1998-11-16 2000-05-26 Mitsubishi Electric Corp Loop type heat pipe
JP2006010141A (en) * 2004-06-24 2006-01-12 Atomu Kenchiku Kankyo Kogaku Kenkyusho:Kk Double tube type heat pipe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867357U (en) * 1971-11-26 1973-08-27
JPH0655556B2 (en) * 1989-11-07 1994-07-27 株式会社キングジム Binding
JPH081906Y2 (en) * 1990-06-26 1996-01-24 株式会社キングジム File binding tool
JPH06291481A (en) * 1993-04-02 1994-10-18 Furukawa Electric Co Ltd:The High-density heat radiation type circuit board
JPH10160368A (en) * 1996-11-22 1998-06-19 Nec Corp Heat pipe type cooler
JP2000146471A (en) * 1998-11-16 2000-05-26 Mitsubishi Electric Corp Loop type heat pipe
JP2006010141A (en) * 2004-06-24 2006-01-12 Atomu Kenchiku Kankyo Kogaku Kenkyusho:Kk Double tube type heat pipe

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839630B2 (en) * 2008-09-24 2010-11-23 Furui Precise Component (Kunshan) Co., Ltd. Heat dissipation device and computer using same
KR101054092B1 (en) 2009-09-25 2011-08-03 잘만테크 주식회사 Evaporator for Loop Heat Pipe System
US9455212B2 (en) 2009-11-19 2016-09-27 Fujitsu Limited Loop heat pipe system and information processing apparatus
US20130160974A1 (en) * 2010-10-14 2013-06-27 Fujitsu Limited Loop heat pipe and electronic apparatus
JP5637216B2 (en) * 2010-10-14 2014-12-10 富士通株式会社 Loop heat pipe and electronic equipment
JPWO2012059975A1 (en) * 2010-11-01 2014-05-12 富士通株式会社 Loop heat pipe and electronic device using the same
US9696096B2 (en) 2010-11-01 2017-07-04 Fujitsu Limited Loop heat pipe and electronic equipment using the same
JP5556897B2 (en) * 2010-11-01 2014-07-23 富士通株式会社 Loop heat pipe and electronic device using the same
JP2012149819A (en) * 2011-01-19 2012-08-09 Fujitsu Ltd Loop heat pipe, and electronic device
JP2012193912A (en) * 2011-03-17 2012-10-11 Fujitsu Ltd Loop heat pipe
JP2013040718A (en) * 2011-08-17 2013-02-28 Fujitsu Ltd Loop heat pipe, and electronic apparatus including loop heat pipe
JP2013073722A (en) * 2011-09-27 2013-04-22 Furukawa Electric Co Ltd:The Battery temperature adjusting unit and battery temperature adjusting apparatus
US8705236B2 (en) 2011-09-29 2014-04-22 Fujitsu Limited Loop heat pipe and electronic apparatus
TWI451060B (en) * 2011-09-29 2014-09-01 Fujitsu Ltd Loop heat pipe and electronic apparatus
US8991194B2 (en) 2012-05-07 2015-03-31 Phononic Devices, Inc. Parallel thermoelectric heat exchange systems
US8893513B2 (en) 2012-05-07 2014-11-25 Phononic Device, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US9103572B2 (en) 2012-05-07 2015-08-11 Phononic Devices, Inc. Physically separated hot side and cold side heat sinks in a thermoelectric refrigeration system
US9234682B2 (en) 2012-05-07 2016-01-12 Phononic Devices, Inc. Two-phase heat exchanger mounting
US9310111B2 (en) 2012-05-07 2016-04-12 Phononic Devices, Inc. Systems and methods to mitigate heat leak back in a thermoelectric refrigeration system
US9341394B2 (en) 2012-05-07 2016-05-17 Phononic Devices, Inc. Thermoelectric heat exchange system comprising cascaded cold side heat sinks
US10012417B2 (en) 2012-05-07 2018-07-03 Phononic, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
JP2013257129A (en) * 2012-05-14 2013-12-26 Fujitsu Ltd Cooling device
JP2015087105A (en) * 2013-10-29 2015-05-07 楊 泰和 Temperature control system including sticking type temperature equalizer and heat transfer fluid, and application device thereof
JP2021179304A (en) * 2013-10-29 2021-11-18 泰和 楊 Temperature control system having adjacently-installed temperature equalizer and heat transfer fluid
JP7181346B2 (en) 2013-10-29 2022-11-30 泰和 楊 Temperature control system with stick-on temperature equalizer and heat transfer fluid
US9593871B2 (en) 2014-07-21 2017-03-14 Phononic Devices, Inc. Systems and methods for operating a thermoelectric module to increase efficiency
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
JP2016156534A (en) * 2015-02-24 2016-09-01 株式会社フジクラ Evaporator for loop heat pipe
CN114025142A (en) * 2021-10-28 2022-02-08 四川启睿克科技有限公司 Liquid cooling heat dissipation cold head, liquid cooling heat dissipation system and laser television
CN114025142B (en) * 2021-10-28 2023-06-13 四川启睿克科技有限公司 Liquid cooling heat dissipation cold head, liquid cooling heat dissipation system and laser television

Similar Documents

Publication Publication Date Title
JP2009115396A (en) Loop-type heat pipe
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
JP5618419B2 (en) Boiling cooling system
JP5061911B2 (en) Loop heat pipe and electronic equipment
JP5218660B2 (en) Loop heat pipe and method for starting the same
TW201447199A (en) Evaporator, cooling device, and electronic apparatus
JP5556897B2 (en) Loop heat pipe and electronic device using the same
WO2014157147A1 (en) Cooling apparatus
JP2012132661A (en) Cooling device and electronic device
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
JP2014143417A (en) Integrated thin film evaporation thermal spreader and planar heat pipe heat sink
JP2022518864A (en) Phase transition radiator
JP4639850B2 (en) Cooling method and apparatus
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
TWM597382U (en) Phase change heat dissipation device
JP2007263427A (en) Loop type heat pipe
JP2001066080A (en) Loop type heat pipe
JP2007247930A (en) Evaporator and loop-type heat pipe using the same
JP5321716B2 (en) Loop heat pipe and electronic equipment
WO2016051569A1 (en) Evaporator, cooling device, and electronic device
JP2004349551A (en) Boiling cooling system
JP2009024996A (en) Method of manufacturing heat pipe
JP7444704B2 (en) Heat transfer member and cooling device having heat transfer member
JP2008244320A (en) Cooling apparatus
WO2013102974A1 (en) Cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120924

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121109