JP2009115056A - Pump for flow system laser ablation and laser ablation system - Google Patents

Pump for flow system laser ablation and laser ablation system Download PDF

Info

Publication number
JP2009115056A
JP2009115056A JP2007291944A JP2007291944A JP2009115056A JP 2009115056 A JP2009115056 A JP 2009115056A JP 2007291944 A JP2007291944 A JP 2007291944A JP 2007291944 A JP2007291944 A JP 2007291944A JP 2009115056 A JP2009115056 A JP 2009115056A
Authority
JP
Japan
Prior art keywords
pump
flow
laser ablation
laser
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007291944A
Other languages
Japanese (ja)
Inventor
Yoshiharu Iriuchijima
義治 入内嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2007291944A priority Critical patent/JP2009115056A/en
Publication of JP2009115056A publication Critical patent/JP2009115056A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pump for flow system laser ablation capable of stably supplying fixed amount of a solid matter without settling it in a laser ablation system. <P>SOLUTION: The pump for flow system laser ablation is used to supply fluid dispersion to the laser ablation system including a light source emitting laser beams, continuously or intermittently supplying the fluid dispersion wherein the solid matter is dispersed to a flow passage, irradiating the laser beams to the flow passage and making the solid matter in the fluid dispersion minute. The pump is provided with a sedimentation prevention means for applying mechanical flowage or vibration to the fluid dispersion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液中に難溶性固形物(例えば水中に難水溶性化合物)を分散させた分散液を連続的に流動させた物に対して、レーザー光を照射することによって、分散液中の固形物を微細化するレーザーアブレーションシステムとこれに用いられるフロー系レーザーアブレーション用ポンプに関する。   The present invention irradiates laser light to a product obtained by continuously flowing a dispersion in which a hardly soluble solid (for example, a poorly water-soluble compound in water) is dispersed in the solution. The present invention relates to a laser ablation system for reducing solids and a flow laser ablation pump used therefor.

抗ガン剤などの一部の医薬用有機化合物は、難水溶性のため細胞に吸収され難い。このような難水溶性医薬品の細胞取り込み効率を向上させるために、ごく最近になって、患部の細胞膜を通過し易い大きさにまで薬物を極微粒子化する技術の開発が行われてきている。すなわち、癌細胞の細胞膜は、正常な細胞では通過できないおよそ50nm以上、200nm以下の大きさの薬物でも通過できることがわかってきており、かかる知見を利用して、この粒子範囲とされた薬物を癌細胞に選択的に供給する技術が、癌の治療方法として、有望視されつつある。
また、将来、薬物の粒子径を自在に調整することができれば、癌だけでなく他の病変についても、各種薬物を、選択的に治療を要する部位に作用させることができることが可能となる。
このような背景の下、近年、薬物の粒子範囲を調製するために、各種の極微粒子製造装置が提案されている。この極微粒子製造装置としては、例えば、ウェットボールミルと称せられる粉砕装置がある。この粉砕装置は、多数の金属製、又はセラミック製、或いはプラスチック製のボールを、鍔状リングを有するローターとともに円筒容器に収納し、薬物をボールとローターの回転摩擦で粉砕する装置である。
Some medicinal organic compounds such as anticancer drugs are hardly absorbed by cells due to poor water solubility. In order to improve the cell uptake efficiency of such poorly water-soluble pharmaceuticals, very recently, a technique for making a drug into ultrafine particles so as to easily pass through the cell membrane of the affected area has been developed. That is, it has been found that the cell membrane of cancer cells can pass even drugs having a size of about 50 nm or more and 200 nm or less that cannot be passed by normal cells. A technique for selectively supplying cells is promising as a cancer treatment method.
In the future, if the particle size of the drug can be freely adjusted, various drugs can be selectively applied to sites requiring treatment not only for cancer but also for other lesions.
Under these circumstances, various ultrafine particle production apparatuses have been proposed in recent years in order to adjust the particle range of drugs. As this ultrafine particle manufacturing apparatus, for example, there is a pulverizing apparatus called a wet ball mill. This pulverizer is a device in which a large number of metal, ceramic, or plastic balls are housed in a cylindrical container together with a rotor having a bowl-shaped ring, and the drug is pulverized by rotational friction between the balls and the rotor.

また、有機化合物の極微粒子製造方法としては、ナノ秒あるいはフェムト秒短パルスレーザービームを用いる方法が開示されている(例えば、特許文献1参照)。これは、透明容器中の水中懸濁された薬物に対して、外部からパルスレーザーを照射し、薬物を水中粉砕する方法である。   Further, as a method for producing ultrafine particles of an organic compound, a method using a nanosecond or femtosecond short pulse laser beam is disclosed (for example, see Patent Document 1). This is a method in which a drug suspended in water in a transparent container is irradiated with a pulse laser from the outside to pulverize the drug in water.

レーザーは良く知られているように、エネルギー密度が非常に高い。レーザーアブレーションは、対象とする材料(固形物)に対して高強度のレーザー光を照射することにより、光励起によって対象とする材料のイオン化や化学結合の切断、もしくは対象とする材料に高い熱エネルギーが蓄積されることにより、被照射領域の温度が急激に上昇することを利用した技術である。この急激な温度上昇により、材料は急激に液化・気化し、より温度の高い内部の爆発的な体積膨張にともなって、材料がクラスターイオンとなって、その表面に対して垂直方向に噴出する。このクラスターイオンなどによる薄膜の形成方法が、半導体製造分野などに用いられている。レーザーアブレーションは、多くの場合、気体中(真空、窒素もしくは大気中)で行われている。   As is well known, lasers have a very high energy density. Laser ablation involves irradiating a target material (solid material) with a high-intensity laser beam, so that the target material is ionized, a chemical bond is broken by photoexcitation, or the target material has high thermal energy. This is a technique that utilizes the fact that the temperature of the irradiated region rapidly increases due to accumulation. Due to this rapid temperature rise, the material is rapidly liquefied and vaporized, and with the explosive volume expansion inside the higher temperature, the material becomes cluster ions and is ejected in a direction perpendicular to the surface. This method of forming a thin film using cluster ions or the like is used in the field of semiconductor manufacturing. Laser ablation is often performed in gas (vacuum, nitrogen or air).

また、液中にて高強度のレーザーを固形物に照射して、固形物を微細化する、液中レーザーアブレーション微細化処理は、液中に難溶性固形物を分散させた分散液に対して、高強度のレーザー光を照射することにより、被照射物質である分散液中の固形物を微細化する技術として用いられている。
このように液中にてレーザーアブレーション微細化処理を行う技術的意義としては、(1)微細化された固形物が液中に保持されるため、空気中に飛散することを防止できる、(2)真空装置などの大掛かりな装置が不要、(3)液中にて実施するため、外部からの不純物の混入を防止できる、(4)固形物の周囲が液体で覆われているため、予期せぬ温度上昇が生じ難い、などが挙げられる。
特開2005−238342号公報
In addition, the laser ablation micronization process that irradiates a solid with a high-intensity laser in the liquid to make the solid finer is applied to a dispersion in which a hardly soluble solid is dispersed in the liquid. It is used as a technique for refining a solid matter in a dispersion as a material to be irradiated by irradiating with high intensity laser light.
The technical significance of performing the laser ablation miniaturization process in the liquid as described above is as follows: (1) Since the miniaturized solid matter is held in the liquid, it can be prevented from being scattered in the air. ) No need for large-scale equipment such as vacuum equipment, (3) Since it is carried out in the liquid, it can prevent contamination of impurities from the outside, (4) Since solids are covered with liquid, expect it For example, it is difficult to cause an increase in temperature.
JP 2005-238342 A

この液中レーザーアブレーション微細化処理を安定的に行うためには、分散液中の固形物を均一に分散させ、且つ、定量的にレーザー光照射位置に送液する必要がある。
この液中レーザーアブレーション微細化処理において適用する固形物の粒子径は、レーザー照射前の一次粒子径が100〜200μm程度、レーザー照射後の二次粒子径が50〜150nm程度と想定される。
粒子の沈降に関する一般的な条件として、例えば、沈降速度:V(cm/sec)は、有機化合物の密度ρ:1.1(g/cm)、水の密度ρw:1.0(g/cm)、重力加速度g:980(cm/sec)、水の粘度η:0.01poiseと仮定すると、下記ストークスの式(1):
V=2(ρ−ρw)gr/9η ・・・(1)
により、粒子径が100nmの粒子の場合、V=5.45−8cm/sec、粒子径が150μmの粒子の場合、V=0.123cm/secであり、一次粒子は沈降が早く、二次粒子はほとんど沈降しない。
分散液中の固形物粒子に沈降を生じると、分散液濃度が不均一になる、付着を起こす、再凝集を起こす、などの微細化処理を行う上で重大な問題を招く可能性が高い。
In order to stably perform the laser ablation refinement process in the liquid, it is necessary to uniformly disperse the solid matter in the dispersion liquid and quantitatively send the liquid to the laser light irradiation position.
As for the particle size of the solid material applied in this in-liquid laser ablation refinement process, the primary particle size before laser irradiation is assumed to be about 100 to 200 μm, and the secondary particle size after laser irradiation is assumed to be about 50 to 150 nm.
As general conditions for the sedimentation of particles, for example, the sedimentation rate: V (cm / sec) is the density of organic compound ρ: 1.1 (g / cm 3 ), the density of water ρw: 1.0 (g / Assuming cm 3 ), gravitational acceleration g: 980 (cm / sec 2 ), and water viscosity η: 0.01 poise, the following Stokes equation (1):
V = 2 (ρ−ρw) gr 2 / 9η (1)
Thus, in the case of particles having a particle diameter of 100 nm, V = 5.45 −8 cm / sec, and in the case of particles having a particle diameter of 150 μm, V = 0.123 cm / sec. The particles hardly settle.
If sedimentation occurs in the solid particles in the dispersion, there is a high possibility that a serious problem will occur when performing a miniaturization process such as non-uniform dispersion, adhesion, or re-aggregation.

一般に、液中レーザーアブレーション微細化処理を実行するためのレーザーアブレーションシステムとしては、レーザー光源と、分散液を流す流路と、該流路に分散液を供給するポンプとを少なくとも有し、このポンプによって流路に所定の流速で分散液を流すと共に、該流路にレーザー光を照射できるように構成されたシステムが挙げられる。この種のシステムで適用する流量は、通常〜10mL/min程度である。ポンプから分散液を吐出する方法は、間歇の場合と連続の場合とがある。また、吐出流量は高精度に調整が必要である。   Generally, a laser ablation system for performing submerged laser ablation miniaturization processing includes at least a laser light source, a flow path for flowing a dispersion liquid, and a pump for supplying the dispersion liquid to the flow path. And a system configured to allow the dispersion liquid to flow through the flow path at a predetermined flow rate and to irradiate the flow path with laser light. The flow rate applied in this type of system is usually about 10 mL / min. The method of discharging the dispersion liquid from the pump may be intermittent or continuous. Also, the discharge flow rate needs to be adjusted with high accuracy.

前記流量範囲より、適用されるポンプとしては、液体クロマトグラフ用に多用される往復動プランジャーポンプやシリンジポンプが想定されるが、プランジャーポンプはチェッキ弁を装備していることから粒子の付着や噛み込みによる作動不良が発生する。また、汎用のシリンジポンプは、分散液吸込み後の静止時間及び押切り時間が長いと沈降を生じてしまう。
また、連続式の定量ポンプ(ダイヤフラム、ロータリー、ギヤ、一軸ネジ等)は、有効な沈降防止機構の組込みが困難であり、非接触部、よどみ部に付着を生じやすい。また、適用流量範囲のものが少ない。
さらに、液中レーザーアブレーション微細化処理を医薬品へ適用する場合、前記システムに使用するポンプとしては、洗浄性やディスポーザブルの考慮が必要となるため、複雑な構造の沈降防止機構は採用し難い。
From the above flow rate range, reciprocating plunger pumps and syringe pumps frequently used for liquid chromatographs are assumed as pumps to be applied. However, since the plunger pump is equipped with a check valve, it is adhering to particles. Or malfunction due to biting. Moreover, a general-purpose syringe pump will cause sedimentation when the stationary time and the cut-off time after suction of the dispersion liquid are long.
In addition, continuous metering pumps (diaphragm, rotary, gear, uniaxial screw, etc.) are difficult to incorporate an effective settling prevention mechanism, and are likely to adhere to non-contact parts and stagnation parts. Also, there are few in the applicable flow rate range.
Furthermore, when applying in-liquid laser ablation miniaturization processing to pharmaceuticals, it is difficult to adopt a sedimentation prevention mechanism having a complicated structure because the pump used in the system requires consideration of cleanability and disposable.

本発明は、前記事情に鑑みてなされ、レーザーアブレーションシステムに固形物を沈降させずに一定量を安定して供給し得るフロー系レーザーアブレーション用ポンプの提供を目的とする。   This invention is made | formed in view of the said situation, and it aims at provision of the pump for flow type | system | group laser ablation which can supply a fixed quantity stably, without making solid matter settle to a laser ablation system.

前記目的を達成するため、本発明は、レーザー光を発する光源を含み、固形物を分散させた分散液を流路に連続的又は間歇的に供給し、該流路にレーザー光を照射し、分散液中の固形物を微細化させるレーザーアブレーションシステムに分散液を供給するために用いられるフロー系レーザーアブレーション用ポンプであって、
前記ポンプは、前記分散液へ機械的流動又は振動を与える沈降防止手段を有することを特徴とするフロー系レーザーアブレーション用ポンプを提供する。
In order to achieve the above object, the present invention includes a light source that emits laser light, continuously or intermittently supplies a dispersion liquid in which solids are dispersed, and irradiates the flow path with laser light. A flow-based laser ablation pump used to supply a dispersion to a laser ablation system for refining solids in the dispersion,
The pump provides a flow system laser ablation pump characterized by having a sedimentation preventing means for imparting mechanical flow or vibration to the dispersion.

本発明のフロー系レーザーアブレーション用ポンプにおいて、前記ポンプが、シリンジと、該シリンジ内に摺動可能に挿入されたプランジャーと、該プランジャーを進退可能に駆動させるプランジャー駆動機とを有するシリンジポンプであることが好ましい。   In the flow laser ablation pump of the present invention, the pump includes a syringe, a plunger slidably inserted into the syringe, and a plunger driver for driving the plunger so as to advance and retreat. A pump is preferred.

本発明のフロー系レーザーアブレーション用ポンプにおいて、前記沈降防止手段は、マグネットスターラ、撹拌翼、超音波発振機からなる群から選択される1種又は2種以上であることが好ましい。   In the flow laser ablation pump of the present invention, the settling prevention means is preferably one or more selected from the group consisting of a magnetic stirrer, a stirring blade, and an ultrasonic oscillator.

また本発明は、レーザー光を発する光源を含み、固形物を分散させた分散液を流路に連続的又は間歇的に供給し、該流路にレーザー光を照射し、分散液中の固形物を微細化させるレーザーアブレーションシステムに分散液を供給するために用いられるフロー系レーザーアブレーション用ポンプであって、
シリンジと、該シリンジ内に摺動可能に挿入されたプランジャーと、該プランジャーを進退可能に駆動させるプランジャー駆動機とを有し、又は分散液へ機械的流動又は振動を与える沈降防止手段をさらに有するシリンジポンプと、
サブシリンジとフリープランジャとを有するフリーピストンと、
前記シリンジポンプの吐出口を第1通路に接続し、前記フリーピストンの吐出口を第2通路に接続し、第3通路がポンプ吐出口となるように接続された3方弁とを有することを特徴とするフロー系レーザーアブレーション用ポンプを提供する。
The present invention also includes a light source that emits laser light, continuously or intermittently supplying a dispersion liquid in which solids are dispersed to the flow path, irradiating the flow path with laser light, and solids in the dispersion liquid A flow-based laser ablation pump used for supplying a dispersion to a laser ablation system for miniaturizing
An anti-settling means having a syringe, a plunger slidably inserted into the syringe, and a plunger driver for driving the plunger so as to advance and retreat, or imparting mechanical flow or vibration to the dispersion A syringe pump further comprising:
A free piston having a sub-syringe and a free plunger;
A discharge port of the syringe pump is connected to the first passage, a discharge port of the free piston is connected to the second passage, and a three-way valve is connected so that the third passage becomes the pump discharge port. A flow type laser ablation pump is provided.

また本発明は、レーザー光を発する光源を含み、固形物を分散させた分散液を流路に連続的又は間歇的に供給し、該流路にレーザー光を照射し、分散液中の固形物を微細化させるレーザーアブレーションシステムにおいて、
前記流路に前記分散液を供給するポンプが、本発明に係る前記フロー系レーザーアブレーション用ポンプであることを特徴とするレーザーアブレーションシステムを提供する。
The present invention also includes a light source that emits laser light, continuously or intermittently supplying a dispersion liquid in which solids are dispersed to the flow path, irradiating the flow path with laser light, and solids in the dispersion liquid In the laser ablation system to make the
A pump for supplying the dispersion liquid to the flow path is the flow laser ablation pump according to the present invention.

本発明のフロー系レーザーアブレーション用ポンプは、分散液へ機械的流動又は振動を与える沈降防止手段、又はポンプとフリーピストン間で分散液を往復動させて分散液中の固形物の沈降を抑制することにより、分散液中の固形物を沈降させずに、常時一定の固形物濃度の分散液を安定してレーザーアブレーションシステムの流路に供給することができる。
本発明のフロー系レーザーアブレーション用ポンプにおいて、該ポンプをシリンジポンプとし、且つ沈降防止手段をマグネットスターラ、撹拌翼、超音波発振機から選択して構成することで、沈降防止手段を含む該ポンプの構造が簡略なものとなり、ポンプの分解洗浄が容易となるので、医薬品の製造などの用途において好ましい。
本発明のレーザーアブレーションシステムは、前述したように分散液中の固形物を沈降させずに、常時一定の固形物濃度の分散液を安定して供給可能なフロー系レーザーアブレーション用ポンプを用いたものなので、固形物の分散状態が安定した分散液を正確な流量で流路に供給し、この流路にレーザー光を照射して液中レーザーアブレーション微細化処理を行うことができるので、分散液中の固形物の沈降(再凝集)による微細化処理効率の低下を抑制でき、効率よく固形物の微細化処理を行うことができる。
The flow laser ablation pump of the present invention suppresses sedimentation of solid matter in the dispersion by reciprocating the dispersion between the pump and the free piston, or by means of sedimentation prevention that gives mechanical flow or vibration to the dispersion. This makes it possible to stably supply a dispersion having a constant solid concentration to the flow path of the laser ablation system without causing solids in the dispersion to settle.
In the pump for laser ablation of the flow system according to the present invention, the pump is a syringe pump, and the sedimentation prevention means is selected from a magnetic stirrer, a stirring blade, and an ultrasonic oscillator. Since the structure becomes simple and the pump can be easily disassembled and cleaned, it is preferable for use in the production of pharmaceuticals.
The laser ablation system of the present invention uses a flow-based laser ablation pump that can stably supply a dispersion liquid having a constant solid concentration at all times without causing the solid substances in the dispersion liquid to settle as described above. Therefore, it is possible to supply a dispersion liquid with a stable solid dispersion state to the flow path at an accurate flow rate, and to irradiate this flow path with laser light to perform submerged laser ablation fine processing. It is possible to suppress the reduction in the refinement processing efficiency due to the sedimentation (reaggregation) of the solid matter, and the refinement treatment of the solid matter can be performed efficiently.

以下、図面を参照して本発明の実施形態を説明する。
図1は、本発明に係るフロー系レーザーアブレーション用ポンプの第1実施形態を示す概略断面図である。本実施形態のフロー系レーザーアブレーション用ポンプ20は、先端に吐出口を有するシリンジ1と、該シリンジ1内に摺動可能に挿入されたプランジャー2と、プランジャー2の先端に装着された往復動シール3と、プランジャー2を進退可能に駆動させるプランジャー駆動機7とを有するシリンジポンプであり、さらに沈降防止手段として、プランジャー2の内部に設けられたマグネットスターラ5及びそれを回転駆動させるマグネットスターラ駆動機6と、プランジャー2の先端面外側に磁力によってマグネットスターラ5と連動し回転するように配置された撹拌子4とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing a first embodiment of a flow laser ablation pump according to the present invention. The flow system laser ablation pump 20 of the present embodiment includes a syringe 1 having a discharge port at the tip, a plunger 2 slidably inserted into the syringe 1, and a reciprocation attached to the tip of the plunger 2. It is a syringe pump having a moving seal 3 and a plunger driver 7 for driving the plunger 2 so as to be able to advance and retreat, and further, as a settling prevention means, a magnet stirrer 5 provided inside the plunger 2 and its rotational drive The magnetic stirrer driving machine 6 to be moved, and the stirrer 4 arranged so as to rotate in conjunction with the magnetic stirrer 5 by a magnetic force outside the front end surface of the plunger 2.

本実施形態のフロー系レーザーアブレーション用ポンプ20は、吐出口からシリンジ1内に分散液を吸い込んだ後、プランジャー駆動機7を吐出側に駆動させ、シリンジ1内の分散液を吐出口から一定流量で押し出すようになっている。また、シリンジ1内に分散液が入った状態で、マグネットスターラ5を回転駆動させることによって、このマグネットスターラ5の磁力に連動する撹拌子4がプランジャー2の先端面外側で回転し、シリンジ1内の分散液を撹拌することで、分散液中の固形物粒子の沈降を防ぐようになっている。   The pump 20 for flow system laser ablation of the present embodiment sucks the dispersion liquid into the syringe 1 from the discharge port, and then drives the plunger driver 7 to the discharge side to keep the dispersion liquid in the syringe 1 constant from the discharge port. Extrude at flow rate. In addition, by rotating the magnet stirrer 5 with the dispersion liquid in the syringe 1, the stirrer 4 interlocked with the magnetic force of the magnet stirrer 5 rotates outside the front end surface of the plunger 2. By stirring the inner dispersion liquid, sedimentation of solid particles in the dispersion liquid is prevented.

本実施形態のフロー系レーザーアブレーション用ポンプ20は、シリンジポンプを例示しているが、本発明においてポンプの基本的な構造は、このシリンジポンプに限定されるものではなく、往復動プランジャーポンプ、ダイヤフラムポンプ、ロータリーポンプなどの他のポンプ装置であってもよい。ただし、シリンジポンプであれば、非接触部、よどみ部が極めて少なくなるので、ポンプ内面への分散液中の固形物粉末の付着・再凝集を少なくできる利点がある。   The flow laser ablation pump 20 of the present embodiment exemplifies a syringe pump. However, in the present invention, the basic structure of the pump is not limited to this syringe pump, and a reciprocating plunger pump, Other pump devices such as a diaphragm pump and a rotary pump may be used. However, in the case of a syringe pump, the non-contact part and the stagnation part are extremely reduced, so that there is an advantage that adhesion / reaggregation of the solid powder in the dispersion on the inner surface of the pump can be reduced.

このフロー系レーザーアブレーション用ポンプ20の主要部であるシリンダ1やプランジャー2の材質は、有機物や溶媒との反応を起こさないフッ素樹脂やガラスや耐食性金属とすることが好ましい。また、分散液と接するマグネットスターラ4についても、棒状磁石をフッ素樹脂やガラスでコーティングして作製したものが好ましい。   The material of the cylinder 1 and the plunger 2 which are the main parts of the flow laser ablation pump 20 is preferably a fluororesin, glass or corrosion-resistant metal that does not react with organic substances or solvents. The magnet stirrer 4 in contact with the dispersion is also preferably prepared by coating a rod-shaped magnet with a fluororesin or glass.

マグネットスターラ駆動機6は、プランジャー2の内部に配置され、駆動用の電力は、プランジャー2の後方から電線等を挿通して接続して供給するか、又は無接触給電システムによりポンプ外からマグネットスターラ駆動機6に電力を供給することもできる。   The magnet stirrer driving device 6 is arranged inside the plunger 2, and driving power is supplied from the rear side of the plunger 2 through an electric wire or the like, or supplied from outside the pump by a non-contact power feeding system. Electric power can also be supplied to the magnet stirrer driving device 6.

このフロー系レーザーアブレーション用ポンプ20の容量調整は、シリンジサイズ、シリンジの本数及びプランジャー2の駆動速度により容易に且つ高精度に調整することができる。また、撹拌子4によるシリンジ1内の分散液の撹拌強度は、使用する撹拌子4のサイズやマグネットスターラ駆動機6への供給電力によって調節することが可能であり、マグネットスターラ5の回転速度及び撹拌子4の大きさは、分散液中の固形物の密度、大きさ及び種類により最適な物を選択することが望ましい。   The capacity adjustment of the flow laser ablation pump 20 can be easily and accurately adjusted by the syringe size, the number of syringes, and the driving speed of the plunger 2. The stirring strength of the dispersion in the syringe 1 by the stirrer 4 can be adjusted by the size of the stirrer 4 to be used and the power supplied to the magnetic stirrer drive 6. As for the size of the stirrer 4, it is desirable to select an optimal one depending on the density, size and type of the solid matter in the dispersion.

本実施形態のフロー系レーザーアブレーション用ポンプ20は、シリンジポンプにマグネットスターラ5を組み込んで、撹拌子4で分散液を撹拌する構造なので、撹拌子4で分散液を撹拌しつつ、分散液を吐出させることで、分散液中の固形物の沈降を抑制することができ、分散液中の固形物を沈降させずに、常時一定の固形物濃度の分散液を安定してレーザーアブレーションシステムの流路に供給することができる。
また、本実施形態のフロー系レーザーアブレーション用ポンプ20は、シリンジポンプにマグネットスターラ5を組み込んで、撹拌子4で分散液を撹拌する構造なので、部品点数が少なく、ポンプの分解洗浄が容易となり、医薬品の製造などの用途において好ましい。また、プランジャー2内のマグネットスターラ5及びマグネットスターラ駆動機6を着脱可能とすれば、シリンジ1及びプランジャー2のディスポーザブル対応も容易となる。
Since the flow laser ablation pump 20 of the present embodiment has a structure in which the magnetic stirrer 5 is incorporated in the syringe pump and the dispersion liquid is agitated by the agitator 4, the dispersion liquid is discharged while the agitator 4 agitates the dispersion liquid. By suppressing the sedimentation of the solids in the dispersion, it is possible to stably stabilize the dispersion with a constant solids concentration without causing the solids in the dispersion to settle. Can be supplied to.
Further, the flow system laser ablation pump 20 of the present embodiment has a structure in which the magnetic stirrer 5 is incorporated in the syringe pump and the dispersion liquid is stirred by the stirring bar 4, so that the number of parts is small, and the pump can be easily disassembled and cleaned. It is preferable for uses such as pharmaceutical production. Moreover, if the magnet stirrer 5 and the magnet stirrer driving device 6 in the plunger 2 are detachable, the syringe 1 and the plunger 2 can be easily handled in a disposable manner.

図2は、本発明に係るフロー系レーザーアブレーション用ポンプの第2実施形態を示す概略断面図である。本実施形態のフロー系レーザーアブレーション用ポンプ20は、沈降防止手段を変更したこと以外は、前記第1実施形態のフロー系レーザーアブレーション用ポンプ20と同様の構成要素を備えて構成されている。   FIG. 2 is a schematic cross-sectional view showing a second embodiment of a flow laser ablation pump according to the present invention. The flow system laser ablation pump 20 of the present embodiment is configured to include the same components as the flow system laser ablation pump 20 of the first embodiment, except that the settling prevention means is changed.

本実施形態において、沈降防止手段は、プランジャー2内に設けられた撹拌機駆動機10と、該撹拌機駆動機10の回転軸に固定された撹拌翼8と、プランジャー2側に設けられた回転軸シール9とからなっている。この撹拌翼8は、撹拌機駆動機10を駆動させることで、シリンジ1内で回転し、シリンジ1内の分散液を撹拌する。撹拌機駆動機10への電力の供給は、前記マグネットスターラ駆動機6の場合と同様に、プランジャー2の後方から電線等を挿通して接続するか、又は無接触給電システムによりポンプ外から行うことができる。   In the present embodiment, the settling prevention means is provided on the side of the plunger 2, the stirrer drive 10 provided in the plunger 2, the stirring blade 8 fixed to the rotating shaft of the stirrer drive 10. And a rotary shaft seal 9. The stirring blade 8 rotates in the syringe 1 by driving the stirrer driving device 10 and stirs the dispersion in the syringe 1. As in the case of the magnet stirrer driving device 6, the power supply to the stirrer driving device 10 is connected by inserting an electric wire or the like from the rear of the plunger 2 or from the outside of the pump by a non-contact power feeding system. be able to.

本実施形態のフロー系レーザーアブレーション用ポンプ20は、前述した第1実施形態のポンプとほぼ同様の効果を得ることができる。   The flow system laser ablation pump 20 of the present embodiment can obtain substantially the same effect as the pump of the first embodiment described above.

図3は、本発明に係るフロー系レーザーアブレーション用ポンプの第3実施形態を示す概略断面図である。本実施形態のフロー系レーザーアブレーション用ポンプ20は、沈降防止手段を変更したこと以外は、前記第1実施形態のフロー系レーザーアブレーション用ポンプ20と同様の構成要素を備えて構成されている。   FIG. 3 is a schematic cross-sectional view showing a third embodiment of a flow laser ablation pump according to the present invention. The flow system laser ablation pump 20 of the present embodiment is configured to include the same components as the flow system laser ablation pump 20 of the first embodiment, except that the settling prevention means is changed.

本実施形態において、沈降防止手段は、プランジャー2内の先端側及びシリンジ1にそれぞれ設けられた超音波素子11と、これらの超音波素子11に高周波電流を送る超音波発振器12とからなっている。このフロー系レーザーアブレーション用ポンプ20では、超音波素子11から超音波を分散液中に照射し、音場を形成することにより、分散液の流動、又は固形物の浮揚を行うことができる。   In the present embodiment, the settling prevention means includes an ultrasonic element 11 provided on each of the distal end side in the plunger 2 and the syringe 1, and an ultrasonic oscillator 12 that sends a high-frequency current to these ultrasonic elements 11. Yes. In this flow system laser ablation pump 20, the dispersion liquid can flow or the solid matter can float by irradiating ultrasonic waves from the ultrasonic element 11 into the dispersion liquid to form a sound field.

超音波素子11から発生させる超音波は、単一波長の適用でも構わないが、分散液に与える流動・浮揚効果は周波数により特性が異なり、また単一波長では効果のムラ(定在波の位置)もあることから、1波長以上の複数波長の適用が安定した沈降防止効果を得る上で望ましい。   The ultrasonic wave generated from the ultrasonic element 11 may be applied with a single wavelength. However, the flow / levitation effect given to the dispersion has different characteristics depending on the frequency, and the non-uniformity of the effect (position of the standing wave) Therefore, application of a plurality of wavelengths of one wavelength or more is desirable for obtaining a stable sedimentation preventing effect.

本実施形態のフロー系レーザーアブレーション用ポンプ20は、前述した第1実施形態や第2実施形態のポンプとほぼ同様の効果を得ることができ、さらに、シリンジ1内面に撹拌子4や撹拌翼8を設けず、プランジャー2内部に設けた超音波素子11やシリンジ1の外側に設けた超音波素子11から、シリンジ1内の分散液に超音波を照射し、分散液の流動、又は固形物の浮揚を行うものなので、より効率よく固形物の沈降を防止することができる。また。シリンジ1内に余分な部品を設けずに沈降防止効果を得ることができ、シリンジ1やプランジャー2の分解洗浄がより容易になる。   The flow laser ablation pump 20 of the present embodiment can obtain substantially the same effect as the pumps of the first embodiment and the second embodiment described above, and further, the stirrer 4 and the stirring blade 8 are provided on the inner surface of the syringe 1. The ultrasonic wave is applied to the dispersion liquid in the syringe 1 from the ultrasonic element 11 provided inside the plunger 2 or the ultrasonic element 11 provided outside the syringe 1, and the flow of the dispersion liquid or solid matter Therefore, sedimentation of solids can be prevented more efficiently. Also. The effect of preventing sedimentation can be obtained without providing extra parts in the syringe 1, and the syringe 1 and the plunger 2 can be easily disassembled and cleaned.

図4は、本発明に係るフロー系レーザーアブレーション用ポンプの第4実施形態を示す概略断面図である。
本実施形態のフロー系レーザーアブレーション用ポンプ20は、シリンジ1と、シリンジ1内に摺動可能に挿入されたプランジャー2と、プランジャー2の先端に装着された往復動シール3と、プランジャー2を進退可能に駆動させるプランジャー駆動機7とを有するシリンジポンプ16と、
サブシリンジ13とフリープランジャ14とを有し、駆動源を有していないフリーピストン17と、
前記シリンジポンプ16の吐出口を第1通路に接続し、前記フリーピストン17の吐出口を第2通路に接続し、第3通路がポンプ吐出口となるように接続された3方弁15とからなっている。
FIG. 4 is a schematic cross-sectional view showing a fourth embodiment of a flow laser ablation pump according to the present invention.
The flow system laser ablation pump 20 of this embodiment includes a syringe 1, a plunger 2 slidably inserted into the syringe 1, a reciprocating seal 3 attached to the tip of the plunger 2, and a plunger A syringe pump 16 having a plunger drive 7 for driving 2 in a reciprocating manner;
A free piston 17 having a sub-syringe 13 and a free plunger 14 and having no drive source;
From the three-way valve 15 connected so that the discharge port of the syringe pump 16 is connected to the first passage, the discharge port of the free piston 17 is connected to the second passage, and the third passage is the pump discharge port. It has become.

本実施形態のフロー系レーザーアブレーション用ポンプ20は、シリンジポンプ16のプランジャー2を往復動させることにより、分散液をシリンジポンプ17とフリーピストン17との間で往復移動させることで、分散液を流動させることにより、固形物の沈降を防止し、また分散液は3方弁15の第3通路から吐出させるようになっている。   The flow system laser ablation pump 20 of this embodiment reciprocates the plunger 2 of the syringe pump 16 to reciprocate the dispersion between the syringe pump 17 and the free piston 17, thereby dispersing the dispersion. By flowing, solid sedimentation is prevented, and the dispersion is discharged from the third passage of the three-way valve 15.

本実施形態のフロー系レーザーアブレーション用ポンプ20は、前述した第1実施形態〜第3実施形態のポンプとほぼ同様の効果を得ることができる。
本実施形態において、シリンジポンプ17とフリーピストン17との一方又は両方に、図1〜図3に示したいずれかの沈降防止手段を設けることも可能である。
The flow system laser ablation pump 20 of this embodiment can obtain substantially the same effect as the pumps of the first to third embodiments described above.
In the present embodiment, one or both of the syringe pump 17 and the free piston 17 may be provided with any of the settling prevention means shown in FIGS.

図5は、本発明の液中レーザーアブレーションシステムの実施形態を示す概略構成図である。図5中、符号20はフロー系レーザーアブレーション用ポンプ、21は分散液供給部、22は配管、23はマイクロ流路導入部、24はレーザー光源、25はマイクロ流路、26は回収部、27は磁気駆動回転翼、28は再凝集防止装置をそれぞれ示している。   FIG. 5 is a schematic configuration diagram showing an embodiment of the submerged laser ablation system of the present invention. In FIG. 5, reference numeral 20 is a flow laser ablation pump, 21 is a dispersion supply unit, 22 is piping, 23 is a microchannel introduction unit, 24 is a laser light source, 25 is a microchannel, 26 is a recovery unit, 27 Indicates a magnetically driven rotor blade, and 28 indicates a reaggregation prevention device.

このレーザーアブレーションシステムは、レーザー光源24より発振したレーザー光LAを、マイクロ流路25内を流動する、固形物を液中に分散させた分散液に照射することにより、分散液中の固形物を微細化するシステムである。
レーザー光源24は、マイクロ流路25の受光部に対向し、所定の間隔を置いて設けられている。
This laser ablation system irradiates laser light LA oscillated from a laser light source 24 to a dispersion liquid flowing in a microchannel 25 and having solids dispersed in the liquid, thereby removing the solids in the dispersion. This is a miniaturized system.
The laser light source 24 faces the light receiving portion of the microchannel 25 and is provided at a predetermined interval.

レーザー光源24としは、エキシマレーザー、窒素レーザー、YAGレーザー、Arイオンレーザー、色素レーザー、半導体レーザー、チタンサファイヤレーザー、ガラスレーザーなどが用いられる。   As the laser light source 24, excimer laser, nitrogen laser, YAG laser, Ar ion laser, dye laser, semiconductor laser, titanium sapphire laser, glass laser, or the like is used.

分散液供給部21は、フロー系レーザーアブレーション用ポンプ20の前段に、流路22を介してフロー系レーザーアブレーション用ポンプ20と接続され、微細化の対象とする固形物を液中に分散させた分散液に対して、超音波処理等を施した一次粒子を一時的に貯留するためのものである。この分散液供給部21は、固形物の飛散を防止するとともに、外部からの不純物の混入を防止し、分散液の濃度を一定に保つために、密閉可能とする。また、分散液供給部21内の分散液の濃度が局所的に不均一にならないように、スターラーなどの撹拌装置を設け、分散液を撹拌することが好ましい。   The dispersion liquid supply unit 21 is connected to the flow system laser ablation pump 20 through the flow path 22 in the previous stage of the flow system laser ablation pump 20, and disperses the solid matter to be refined in the liquid. This is for temporarily storing primary particles subjected to ultrasonic treatment or the like for the dispersion. The dispersion supply unit 21 can be hermetically sealed in order to prevent solids from scattering and to prevent external impurities from being mixed in and to keep the concentration of the dispersion constant. Further, it is preferable to stir the dispersion by providing a stirring device such as a stirrer so that the concentration of the dispersion in the dispersion supply unit 21 does not become locally uneven.

フロー系レーザーアブレーション用ポンプ20は、分散液供給部21とマイクロ流路25の間に設けられ、図1〜図4に示す本発明に係るフロー系レーザーアブレーション用ポンプ20のいずれかを用いている。分散液供給部21から配管22を通して送られる分散液は、フロー系レーザーアブレーション用ポンプ20のシリンジ1内に入り、ここでマグネットスターラ、撹拌翼、超音波発振機などの沈降防止手段によって、又は図4に示すようにシリンジポンプ16とフリーピストン17間で分散液を往復移動させることによって固形物の沈降を防止しながら、その分散液を一定流量でマイクロ流路25に送り込む。   The flow system laser ablation pump 20 is provided between the dispersion liquid supply unit 21 and the microchannel 25, and uses any one of the flow system laser ablation pumps 20 according to the present invention shown in FIGS. . The dispersion liquid sent from the dispersion liquid supply unit 21 through the pipe 22 enters the syringe 1 of the flow system laser ablation pump 20, and here, by a sedimentation prevention means such as a magnet stirrer, a stirring blade, an ultrasonic oscillator, or the like. As shown in FIG. 4, the dispersion is reciprocated between the syringe pump 16 and the free piston 17 to feed the dispersion into the microchannel 25 at a constant flow rate while preventing sedimentation of the solid matter.

マイクロ流路25は、石英ガラスなどの透明材料からなる本体に、幅30〜1000μm、深さ45〜200μm程度のマイクロ流路を設けたものであり、レーザー光LAが照射される受光部は、この流路を複数回折り返してジグザグ状に形成し、流路長さを大きくしている。   The microchannel 25 is a main body made of a transparent material such as quartz glass provided with a microchannel having a width of about 30 to 1000 μm and a depth of about 45 to 200 μm. A plurality of the flow paths are folded back and formed in a zigzag shape to increase the flow path length.

回収部26は、マイクロ流路25の後段に接続され、マイクロ流路25にてレーザー光が照射された分散液を回収するためのものである。この回収部26は、微細化された粒子の飛散を防止するとともに、外部からの不純物の混入を防止するために、密閉可能とする。回収部26には、回収された分散液の固形物が沈降するのを防ぐために、撹拌翼27や超音波発振器を用いた再凝集防止装置28を設けることが望ましい。回収された分散液は、次の工程に送られるまでの間、ここで貯留される。   The recovery unit 26 is connected to the subsequent stage of the microchannel 25 and is for recovering the dispersion liquid irradiated with the laser light in the microchannel 25. The collection unit 26 can be hermetically sealed in order to prevent the fine particles from scattering and to prevent the entry of impurities from the outside. It is desirable to provide the recovery unit 26 with a reaggregation prevention device 28 using a stirring blade 27 or an ultrasonic oscillator in order to prevent the solid matter of the recovered dispersion liquid from settling. The recovered dispersion is stored here until it is sent to the next step.

なお、液中レーザーアブレーションによる固形物の微細化率が100%でない場合や、次工程において微細化前の一次粒子が存在してはならない場合には、マイクロ流路25と回収部26との間に、微細化された粒子と一次粒子を分離する機構を設ける。
また、このレーザーアブレーションシステムでは、分散液供給部21、フロー系レーザーアブレーション用ポンプ20、マイクロ流路25及び回収部26の操作系を密閉系とすることができる。
In addition, when the micronization rate of the solid substance by submerged laser ablation is not 100%, or when the primary particles before the micronization must not be present in the next process, between the microchannel 25 and the recovery unit 26 In addition, a mechanism for separating the fine particles and the primary particles is provided.
In this laser ablation system, the operation system of the dispersion liquid supply unit 21, the flow system laser ablation pump 20, the micro flow path 25, and the recovery unit 26 can be a closed system.

次に、このレーザーアブレーションシステムを用いた、固形物の微細化方法について説明する。
まず、対象とする有機化合物などの固形物を含む分散液を超音波処理し、一次粒子を含む分散液を調製し、この分散液を分散液供給部21のタンクに注入する。
Next, a method for refining solid materials using this laser ablation system will be described.
First, a dispersion liquid containing a solid matter such as a target organic compound is subjected to ultrasonic treatment to prepare a dispersion liquid containing primary particles, and this dispersion liquid is poured into a tank of the dispersion liquid supply unit 21.

固形物を分散させる溶媒としては、微細化しようとする固形物を溶解せず、かつ、懸濁させることができるものが用いられ、例えば、水、アルコールなどの水溶液、有機溶媒、油状液体などが挙げられる。また、溶媒としては、液体ヘリウムや液体窒素などの不活性液体または準不活性液体を用いてもよい。不活性液体または準不活性液体を用いた場合、固形物を微細化した後、直ちに溶媒を蒸発させて、微細化した固形物を容易に回収する事ができるとともに、レーザー光を照射したときの温度上昇を抑えることができるので、温度上昇による固形物の変質も防止することができる。   As the solvent for dispersing the solid material, a solvent that does not dissolve the solid material to be refined and can be suspended is used, for example, an aqueous solution such as water or alcohol, an organic solvent, an oily liquid, or the like. Can be mentioned. Further, as the solvent, an inert liquid or a semi-inert liquid such as liquid helium or liquid nitrogen may be used. When an inert liquid or semi-inert liquid is used, the solvent can be evaporated immediately after the solids are refined, and the refined solids can be easily recovered, and when the laser beam is irradiated Since the temperature rise can be suppressed, the solid matter can be prevented from being deteriorated due to the temperature rise.

液中レーザーアブレーションによる微細化の対象となる固形物としては、粒子状で、かつ、難溶性のものが挙げられ、例えば、難溶性の薬物などの有機化合物が挙げられる。また、分散液を調製する前に、固形物の粒径を予め1μm〜100μm程度にしておくことが好ましい。このようにすれば、微細化したときの固形物の粒径をほぼ均一にすることができる。   Examples of the solid matter to be miniaturized by in-liquid laser ablation include particulate and hardly soluble substances, and examples thereof include organic compounds such as hardly soluble drugs. Moreover, before preparing the dispersion liquid, it is preferable to set the particle size of the solid to about 1 μm to 100 μm in advance. In this way, the particle size of the solid material when refined can be made substantially uniform.

また、固形物を含む分散液の濃度は、固形物の種類(材質)、固形物の吸光度、マイクロ流路25を流動する分散液の流量、レーザー光LAの照射面積、レーザー光源24の仕様などに応じて適宜調整されるが、例えば、1〜3mg/mL程度とする。   In addition, the concentration of the dispersion containing the solids is the type (material) of the solids, the absorbance of the solids, the flow rate of the dispersion flowing through the microchannel 25, the irradiation area of the laser light LA, the specifications of the laser light source 24, and the like. Although it is suitably adjusted according to, it shall be about 1-3 mg / mL, for example.

次いで、ポンプ20を駆動し、マイクロ流路25に、所定の流量で分散液を送出する。マイクロ流路25内における分散液の流量は、固形物の種類(材質)、固形物を含む分散液の濃度(分散液の単位体積中に含まれる固形物の量)、固形物の吸光度、レーザー光の照射面積、レーザー光源24の仕様などに応じて適宜調整されるが、例えば、0.05〜1.00mL/min程度とする。   Next, the pump 20 is driven, and the dispersion liquid is delivered to the microchannel 25 at a predetermined flow rate. The flow rate of the dispersion liquid in the microchannel 25 is the type (material) of the solid substance, the concentration of the dispersion liquid containing the solid substance (the amount of the solid substance contained in the unit volume of the dispersion liquid), the absorbance of the solid substance, and the laser. Although it adjusts suitably according to the irradiation area of light, the specification of the laser light source 24, etc., it shall be about 0.05-1.00 mL / min, for example.

次いで、マイクロ流路25内への分散液の流入を開始すると同時に、レーザー光源24から、マイクロ流路25の受光部へのレーザー光LAの照射を開始する。
レーザー光源24から発振するレーザー光LAの波長は、微細化する固形物の吸収波長あるいは多光子吸収の波長に応じて選択される。レーザー光LAとしては、例えば、紫外光レーザー光、可視光レーザー光、近赤外レーザー光、赤外レーザー光などが挙げられる。
Next, at the same time as the flow of the dispersion liquid into the microchannel 25 is started, irradiation of the laser beam LA from the laser light source 24 to the light receiving portion of the microchannel 25 is started.
The wavelength of the laser beam LA oscillated from the laser light source 24 is selected according to the absorption wavelength of the solid material to be miniaturized or the wavelength of multiphoton absorption. Examples of the laser beam LA include ultraviolet laser beam, visible laser beam, near infrared laser beam, and infrared laser beam.

紫外光レーザー光を用いる場合、エキシマレーザー(193nm、248nm、308nm、351nm)や、窒素レーザー(337nm)、YAGレーザーの3倍波および4倍波(355nm、266nm)などが挙げられる。また、可視光レーザー光を用いる場合、YAGレーザーの2倍波(532nm)、Arイオンレーザー(488nmまたは514nm)、その他の色素レーザーなどが挙げられる。さらに、近赤外レーザー光を用いる場合、種々の半導体レーザー、チタンサファイヤレーザー、YAGレーザー、ガラスレーザーなどが挙げられる。さらに、これらのレーザー光と光パラメトリック発振器を用いて、紫外から赤外領域の任意の光を発振させてもよい。   In the case of using an ultraviolet laser beam, an excimer laser (193 nm, 248 nm, 308 nm, 351 nm), a nitrogen laser (337 nm), a YAG laser triple wave and a fourth harmonic wave (355 nm, 266 nm), and the like can be given. In addition, in the case of using visible light laser light, YAG laser double wave (532 nm), Ar ion laser (488 nm or 514 nm), other dye lasers, and the like can be given. Furthermore, when using near-infrared laser light, various semiconductor lasers, titanium sapphire lasers, YAG lasers, glass lasers and the like can be mentioned. Furthermore, any light in the ultraviolet to infrared region may be oscillated using these laser light and an optical parametric oscillator.

また、レーザー光源24から発振されるレーザー光LAは、パルスレーザー光が好ましい。レーザー光源24は、レーザー光が発せられる点灯状態と、レーザー光が発せられない消灯状態とを交互に繰り返し、間欠的にレーザー光を発振することにより、パルスレーザー光を発振する。特に、レーザー光の強度がパルス状に変化することが好ましい。以下、1つのパルスのレーザー光をパルス光と称する。パルスレーザー光を用いた場合、1つのパルス光によって1回の照射が行われる。   Further, the laser beam LA emitted from the laser light source 24 is preferably a pulsed laser beam. The laser light source 24 oscillates pulsed laser light by alternately repeating a lighting state in which laser light is emitted and a light-off state in which laser light is not emitted, and intermittently oscillating the laser light. In particular, it is preferable that the intensity of the laser light changes in a pulse shape. Hereinafter, one pulse of laser light is referred to as pulsed light. When pulsed laser light is used, one irradiation is performed by one pulsed light.

また、レーザー光源24から発振されるレーザー光LAの励起光強度Pは、1mJ/cm〜1000mJ/cm程度が好ましい。
また、パルス光とパルス光との間のパルス周期Tは、0.1Hz〜1000Hz程度が好ましい。ここで、パルス周期とは、ある一のパルス光の立ち上がりの時点から、一のパルスと隣り合うパルス光の立ち上がりの時点までの時間、またはパルス光の立ち上がりの時点から、隣り合うパルス光の立ち下がりの時点までの時間をいう。
さらに、パルス光の各々のパルス幅sが、10フェムト秒〜1マイクロ秒程度が好ましい。なお、パルス幅とは、ある一のパルス光の立ち上がりの時点から、立ち下がりの時点までの時間をいう。
The excitation light intensity P of the laser beam LA oscillated from the laser light source 24, 1mJ / cm 2 ~1000mJ / cm 2 is preferably about.
The pulse period T between the pulsed light is preferably about 0.1 Hz to 1000 Hz. Here, the pulse period is the time from the rise of one pulse light to the rise of the pulse light adjacent to one pulse, or the rise of the adjacent pulse light from the rise of the pulse light. Time until the time of falling.
Furthermore, the pulse width s of each pulsed light is preferably about 10 femtoseconds to 1 microsecond. The pulse width refers to the time from the rising point of one pulsed light to the falling point.

レーザー光源24から発振したレーザー光LAを、分散液中の固形物に照射することにより、固形物の内部に急激な温度差が生じ、この温度差によって、固形物に生じた内部応力によって固形物が破砕して、微細化する。   By irradiating the solid matter in the dispersion liquid with the laser beam LA oscillated from the laser light source 24, a rapid temperature difference is generated inside the solid matter, and the solid matter is caused by the internal stress generated in the solid matter due to this temperature difference. Crushes and refines.

次いで、マイクロ流路25にて微細化された粒子を含む分散液は、回収部26に送り込まれ、貯留される。   Next, the dispersion liquid containing the particles refined in the micro flow path 25 is sent to the collection unit 26 and stored.

このレーザーアブレーションシステムは、前述したように分散液中の固形物を沈降させずに、常時一定の固形物濃度の分散液を安定して供給可能なフロー系レーザーアブレーション用ポンプ20を用いたものなので、固形物の分散状態が安定した分散液を正確な流量でマイクロ流路25に供給し、その受光部にレーザー光LAを照射して液中レーザーアブレーション微細化処理を行うことができるので、分散液中の固形物の沈降(再凝集)による微細化処理効率の低下を抑制でき、効率よく固形物の微細化処理を行うことができる。   This laser ablation system uses the flow laser ablation pump 20 that can stably supply a dispersion having a constant solid concentration at all times without allowing the solids in the dispersion to settle as described above. Since the dispersion liquid in which the solid dispersion state is stable is supplied to the micro flow path 25 at an accurate flow rate, and the light receiving part is irradiated with the laser light LA, the laser ablation refinement process in the liquid can be performed. It is possible to suppress a reduction in the refinement processing efficiency due to sedimentation (reaggregation) of the solid matter in the liquid, and it is possible to efficiently perform the refinement treatment of the solid matter.

本発明に係るフロー系レーザーアブレーション用ポンプの第1実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 1st Embodiment of the pump for flow type | system | group laser ablation based on this invention. 本発明に係るフロー系レーザーアブレーション用ポンプの第2実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 2nd Embodiment of the pump for flow type | system | group laser ablation based on this invention. 本発明に係るフロー系レーザーアブレーション用ポンプの第3実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 3rd Embodiment of the pump for flow type laser ablation based on this invention. 本発明に係るフロー系レーザーアブレーション用ポンプの第4実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 4th Embodiment of the pump for flow type | system | group laser ablation based on this invention. 本発明に係るレーザーアブレーションシステムの実施形態を示す概略構成図である。It is a schematic structure figure showing an embodiment of a laser ablation system concerning the present invention.

符号の説明Explanation of symbols

1…シリンジ、2…プランジャー、3…往復動シール、4…撹拌子、5…マグネットスターラ、6…マグネットスターラ駆動機、7…プランジャー駆動機、8…撹拌翼、9…回転軸シール、10…攪拌機駆動機、11…超音波素子、12…超音波発振器、13…サブシリンジ、14…フリープランジャー、15…3方弁、16…シリンジポンプ、17…フリーピストン、20…フロー系レーザーアブレーション用ポンプ、21…分散液供給部、22…配管、23…マイクロ流路導入部、24…レーザー光源、25…マイクロ流路、26…回収部、27…磁気駆動回転翼、28…再凝集防止装置。   DESCRIPTION OF SYMBOLS 1 ... Syringe, 2 ... Plunger, 3 ... Reciprocating seal, 4 ... Stirrer, 5 ... Magnet stirrer, 6 ... Magnet stirrer drive, 7 ... Plunger drive, 8 ... Stirrer blade, 9 ... Rotary shaft seal, DESCRIPTION OF SYMBOLS 10 ... Stirrer drive machine, 11 ... Ultrasonic element, 12 ... Ultrasonic oscillator, 13 ... Subsyringe, 14 ... Free plunger, 15 ... Three-way valve, 16 ... Syringe pump, 17 ... Free piston, 20 ... Flow system laser Ablation pump, 21 ... dispersion supply unit, 22 ... pipe, 23 ... micro flow channel introduction unit, 24 ... laser light source, 25 ... micro flow channel, 26 ... recovery unit, 27 ... magnetically driven rotor, 28 ... reaggregation Prevention device.

Claims (5)

レーザー光を発する光源を含み、固形物を分散させた分散液を流路に連続的又は間歇的に供給し、該流路にレーザー光を照射し、分散液中の固形物を微細化させるレーザーアブレーションシステムに分散液を供給するために用いられるフロー系レーザーアブレーション用ポンプであって、
前記ポンプは、前記分散液へ機械的流動又は振動を与える沈降防止手段を有することを特徴とするフロー系レーザーアブレーション用ポンプ。
A laser that includes a light source that emits laser light, continuously or intermittently supplies a dispersion liquid in which solids are dispersed to the flow path, and irradiates the flow path with laser light to refine the solids in the dispersion liquid. A flow laser ablation pump used to supply a dispersion to an ablation system,
The pump for flow system laser ablation, wherein the pump has a sedimentation preventing means for imparting mechanical flow or vibration to the dispersion.
前記ポンプが、シリンジと、該シリンジ内に摺動可能に挿入されたプランジャーと、該プランジャーを進退可能に駆動させるプランジャー駆動機とを有するシリンジポンプであることを特徴とする請求項1に記載のフロー系レーザーアブレーション用ポンプ。   2. The syringe pump according to claim 1, wherein the pump is a syringe pump having a syringe, a plunger slidably inserted into the syringe, and a plunger driver for driving the plunger so as to advance and retreat. The pump for flow system laser ablation described in 1. 前記沈降防止手段は、マグネットスターラ、撹拌翼、超音波発振機からなる群から選択される1種又は2種以上であることを特徴とする請求項1又は2に記載のフロー系レーザーアブレーション用ポンプ。   3. The flow laser ablation pump according to claim 1, wherein the settling prevention means is one or more selected from the group consisting of a magnetic stirrer, a stirring blade, and an ultrasonic oscillator. . レーザー光を発する光源を含み、固形物を分散させた分散液を流路に連続的又は間歇的に供給し、該流路にレーザー光を照射し、分散液中の固形物を微細化させるレーザーアブレーションシステムに分散液を供給するために用いられるフロー系レーザーアブレーション用ポンプであって、
シリンジと、該シリンジ内に摺動可能に挿入されたプランジャーと、該プランジャーを進退可能に駆動させるプランジャー駆動機とを有し、又は分散液へ機械的流動又は振動を与える沈降防止手段をさらに有するシリンジポンプと、
サブシリンジとフリープランジャとを有するフリーピストンと、
前記シリンジポンプの吐出口を第1通路に接続し、前記フリーピストンの吐出口を第2通路に接続し、第3通路がポンプ吐出口となるように接続された3方弁とを有することを特徴とするフロー系レーザーアブレーション用ポンプ。
A laser that includes a light source that emits laser light, continuously or intermittently supplies a dispersion liquid in which solids are dispersed to the flow path, and irradiates the flow path with laser light to refine the solids in the dispersion liquid. A flow laser ablation pump used to supply a dispersion to an ablation system,
An anti-settling means having a syringe, a plunger slidably inserted into the syringe, and a plunger driver for driving the plunger so as to advance and retreat, or imparting mechanical flow or vibration to the dispersion A syringe pump further comprising:
A free piston having a sub-syringe and a free plunger;
A discharge port of the syringe pump is connected to the first passage, a discharge port of the free piston is connected to the second passage, and a three-way valve is connected so that the third passage becomes the pump discharge port. Features a flow laser ablation pump.
レーザー光を発する光源を含み、固形物を分散させた分散液を流路に連続的又は間歇的に供給し、該流路にレーザー光を照射し、分散液中の固形物を微細化させるレーザーアブレーションシステムにおいて、
前記流路に前記分散液を供給するポンプが、請求項1〜4のいずれかに記載のフロー系レーザーアブレーション用ポンプであることを特徴とするレーザーアブレーションシステム。
A laser that includes a light source that emits laser light, continuously or intermittently supplies a dispersion liquid in which solids are dispersed to the flow path, and irradiates the flow path with laser light to refine the solids in the dispersion liquid. In the ablation system,
The laser ablation system, wherein the pump for supplying the dispersion liquid to the flow path is the flow system laser ablation pump according to any one of claims 1 to 4.
JP2007291944A 2007-11-09 2007-11-09 Pump for flow system laser ablation and laser ablation system Pending JP2009115056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291944A JP2009115056A (en) 2007-11-09 2007-11-09 Pump for flow system laser ablation and laser ablation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291944A JP2009115056A (en) 2007-11-09 2007-11-09 Pump for flow system laser ablation and laser ablation system

Publications (1)

Publication Number Publication Date
JP2009115056A true JP2009115056A (en) 2009-05-28

Family

ID=40782446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291944A Pending JP2009115056A (en) 2007-11-09 2007-11-09 Pump for flow system laser ablation and laser ablation system

Country Status (1)

Country Link
JP (1) JP2009115056A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174817A (en) * 2009-01-30 2010-08-12 Nokodai Tlo Kk Syringe pump
US7832922B2 (en) * 2007-11-30 2010-11-16 Levitronix Gmbh Mixing apparatus and container for such
CN102242534A (en) * 2011-06-30 2011-11-16 佛山市绿源纤维模塑科技有限公司 Overflow device of pulp molding machine
JP2012050964A (en) * 2010-09-03 2012-03-15 Toshiba Mach Co Ltd Coating device
JP2012050967A (en) * 2010-09-03 2012-03-15 Toshiba Mach Co Ltd Coating device
JP2013177819A (en) * 2012-02-28 2013-09-09 Ricoh Co Ltd Metering pump, liquid determination apparatus, and fluid purifying apparatus
DE102013218818A1 (en) 2013-09-19 2015-03-19 Agilent Technologies, Inc. - A Delaware Corporation - HPLC pump with active mixing element
CN112753679A (en) * 2021-03-24 2021-05-07 陈维勇 Spraying device for biopesticide
US11241330B1 (en) 2021-04-02 2022-02-08 Brixton Biosciences, Inc. Apparatus for creation of injectable slurry
CN114377599A (en) * 2022-01-13 2022-04-22 青岛花帝食品配料有限公司 A dosing unit for sweet taste essence preparation
CN114534545A (en) * 2022-02-14 2022-05-27 北京中煤矿山工程有限公司 Stirring device and slip casting system are pressed in slip casting area of laboratory high pressure crack
CN116854285A (en) * 2023-07-05 2023-10-10 昆山国通新能源科技有限公司 Reclaimed water jelly conversion equipment

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7832922B2 (en) * 2007-11-30 2010-11-16 Levitronix Gmbh Mixing apparatus and container for such
JP2010174817A (en) * 2009-01-30 2010-08-12 Nokodai Tlo Kk Syringe pump
JP2012050964A (en) * 2010-09-03 2012-03-15 Toshiba Mach Co Ltd Coating device
JP2012050967A (en) * 2010-09-03 2012-03-15 Toshiba Mach Co Ltd Coating device
CN102242534A (en) * 2011-06-30 2011-11-16 佛山市绿源纤维模塑科技有限公司 Overflow device of pulp molding machine
JP2013177819A (en) * 2012-02-28 2013-09-09 Ricoh Co Ltd Metering pump, liquid determination apparatus, and fluid purifying apparatus
DE102013218818A1 (en) 2013-09-19 2015-03-19 Agilent Technologies, Inc. - A Delaware Corporation - HPLC pump with active mixing element
CN112753679A (en) * 2021-03-24 2021-05-07 陈维勇 Spraying device for biopesticide
CN112753679B (en) * 2021-03-24 2023-01-13 深圳九岳农业发展有限公司 Spraying device for biopesticide
US11241330B1 (en) 2021-04-02 2022-02-08 Brixton Biosciences, Inc. Apparatus for creation of injectable slurry
CN114377599A (en) * 2022-01-13 2022-04-22 青岛花帝食品配料有限公司 A dosing unit for sweet taste essence preparation
CN114377599B (en) * 2022-01-13 2023-03-03 青岛花帝食品配料有限公司 A dosing unit for sweet taste essence preparation
CN114534545A (en) * 2022-02-14 2022-05-27 北京中煤矿山工程有限公司 Stirring device and slip casting system are pressed in slip casting area of laboratory high pressure crack
CN116854285A (en) * 2023-07-05 2023-10-10 昆山国通新能源科技有限公司 Reclaimed water jelly conversion equipment

Similar Documents

Publication Publication Date Title
JP2009115056A (en) Pump for flow system laser ablation and laser ablation system
US7597277B2 (en) Microparticles, microparticle production method, and microparticle production apparatus
RU2553881C2 (en) Reactor and method of producing particles in process of precipitation
KR20170008813A (en) Cleaning method and cleaning device using micro/nano-bubbles
CN110235528B (en) Plasma device in liquid
JPWO2009008391A1 (en) Production method of fine particles for living ingestion
US9776149B2 (en) Compositions and methods for preparing nanoformulations and systems for nano-delivery using focused acoustics
JP2007045674A5 (en) Method for producing fullerene dispersion
WO2007132828A1 (en) Method of producing nanoparticle dispersion of medicinal component
WO2005051511A1 (en) Method for producing fine organic compound particles
JP2009119379A (en) Device and system for laser ablation in solution
JP2009119487A (en) Pump device for flow type laser ablation system, its operating method, and flow type laser ablation system
JP2007301534A (en) Atomizer
WO2010073388A1 (en) Laser ablation-in-liquid system and method of subdividing solid material
US20180050317A1 (en) Nanoparticle synthesis apparatus
JP4543202B2 (en) Liposome production apparatus and production method using multiple ultrasonic irradiation
JP2009247999A (en) Mixer
JP2020084205A (en) Control method for particle size of metal nanoparticle and method for production of metal nanoparticle
JP4717376B2 (en) Fine particle production method and production apparatus
JP2004202439A (en) Production apparatus of nanoparticle, and production method of nanoparticle
EP3962464B1 (en) Process for preparing nanoparticles in the form of a powder comprising a bio-resorbable polyester
CN211098940U (en) Embryo microsphere preparation mechanism and microsphere preparation device
JP6863880B2 (en) Metal nanocolloid generation method and metal nanocolloid generation device
JP2022037017A (en) Disinfectant generator
JP2010099623A (en) Gas-liquid mixed dissolving apparatus using shearing by rib of tubular body