JP2009114604A - Antistatic polyester combined filament yarn - Google Patents

Antistatic polyester combined filament yarn Download PDF

Info

Publication number
JP2009114604A
JP2009114604A JP2007292151A JP2007292151A JP2009114604A JP 2009114604 A JP2009114604 A JP 2009114604A JP 2007292151 A JP2007292151 A JP 2007292151A JP 2007292151 A JP2007292151 A JP 2007292151A JP 2009114604 A JP2009114604 A JP 2009114604A
Authority
JP
Japan
Prior art keywords
antistatic
yarn
fiber
polyester
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007292151A
Other languages
Japanese (ja)
Inventor
Masami Ota
雅巳 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2007292151A priority Critical patent/JP2009114604A/en
Publication of JP2009114604A publication Critical patent/JP2009114604A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antistatic polyester combined filament yarn having excellent touch feeling, antistaticity, antistatic persistence, and dyed grade, good in process passableness in higher processing step(s), and excellent in operation stability and quality stability. <P>SOLUTION: The antistatic polyester combined filament yarn is such that at least one component yarn constituting this filament yarn is an extrafine polyester combined filament yarn A having a single filament diameter of 300 nm to 2 μm and containing a specific polyether-esteramide as an antistatic agent, wherein the polyether-esteramide is present as particles of specific shape in the fibers. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、衣料用途ポリエステル繊維において優れた風合いと、優れた制電性能有する極細ポリエステル混繊糸に関する。   The present invention relates to an ultrafine polyester mixed yarn having an excellent texture and excellent antistatic performance in polyester fibers for clothing.

ポリエステルは優れた生産性と製品の低価格であることなどの製造上の優位性に限らず、布帛加工、染色性、縫製品の着心地、衣類製品の取り扱い性、洗濯しやすさと速乾性などにも他合成繊維に比べ優位な点が多く、合成繊維のなかでは最も広く利用されている。またポリエステルは優れた成型加工性から、取り扱い性や布帛製品の商品価値を高める為に他繊維や異なる性質の繊維と混繊複合した混繊複合糸について広く検討されている。   Polyester is not limited to manufacturing advantages such as excellent productivity and low product price, but also fabric processing, dyeability, comfort of sewing products, handling of clothing products, ease of washing and quick drying, etc. However, it has many advantages over other synthetic fibers and is the most widely used among synthetic fibers. Polyester has been widely studied for blended composite yarns that are blended with other fibers or fibers of different properties in order to increase handling properties and commercial value of fabric products due to excellent moldability.

旧来衣料用途に用いられる混繊複合糸が目指したのは、天然繊維対比冷たく硬い触感や人工的な均一さによる布帛の無機質感で、他方混繊複合以外の技術でも検討されてきたが、特に混繊複合糸が目指したところである。これらの代表的技術として特開平2−19528号公報、特開2002−249941号公報等があり、熱収縮率が異なる繊維を複合することにより、布帛形成時に独特のフクラミ感を付与し天然繊維を用いた布帛に近い風合いが達成されていた。   The aim of the mixed fiber composite yarn used for the traditional garment application was the inorganic texture of the fabric due to its cold and hard tactile feel and artificial uniformity compared to natural fibers, while other technologies other than the mixed fiber composite have been studied. This is where mixed fiber composite yarns are aimed. As representative techniques of these, there are JP-A-2-19528, JP-A-2002-249941, and the like, and by combining fibers having different heat shrinkage rates, a unique fluffy feeling is imparted at the time of fabric formation, and natural fibers are added. A texture close to that of the fabric used was achieved.

しかしながら、天然繊維様の柔らかな風合いを実現する為に熱収縮率の異なる混繊複合糸(以後、異収縮混繊糸という)の熱収縮率の低い側、つまり鞘側には手触りをよりソフトタッチにする為に単糸繊度の細い繊維が使用される事が多くなった。これにより肌に触れる繊維は細く、柔らかくなりより繊細な感触を提供できるようになったが、同時に単糸繊度の細繊度化により、繊維表面積が増大し単糸同士の摩擦が大きく、特に冬季など乾燥した環境下では静電気を発生させやすくなった。これらを解決する方法として、これまで種々の手段が提案されており、例えば、糸表面に後加工で帯電防止剤を塗布する方法、糸表面に親水性物質をグラフト重合する方法あるいは繊維成分に制電性物質を練り込む方法などが挙げられる。しかしながら、これらの方法はいずれもその耐久性・耐熱製糸安定性や織編物工程において品位欠点を引き起す問題があり、工業化に問題があった。   However, in order to realize a soft texture like natural fibers, a softer touch is applied to the side with a lower heat shrinkage rate of the mixed fiber composite yarns having different heat shrinkage rates (hereinafter referred to as different shrinkage mixed yarns), that is, the sheath side. Thin fibers with a single yarn fineness are often used for touch. As a result, the fibers touching the skin are thinner and softer and can provide a more delicate feel, but at the same time, the fineness of the single yarn fineness increases the fiber surface area and the friction between the single yarns is large, especially in winter It became easier to generate static electricity in a dry environment. Various methods have been proposed to solve these problems. For example, a method in which an antistatic agent is applied to the yarn surface by post-processing, a method in which a hydrophilic substance is graft-polymerized on the yarn surface, or a fiber component is used. Examples include a method of kneading an electric substance. However, all of these methods have problems in terms of durability, heat-resistant yarn-making stability, and quality defects in the knitting and knitting process.

例えば、糸表面に帯電防止剤を塗布する方法は、染色工程や洗濯によって帯電防止剤が消失しやすく、また布帛工程の最後に塗布する場合にも、同様に耐久性不足や風合いが硬くなる、あるいは他の後加工、具体的には撥水加工などとの併用ができないなど、種々の問題がある。また、糸表面に親水性物質をグラフト重合させる方法は洗濯による帯電防止剤の消失はかなり改善されるが、耐久性や風合いに問題があった。さらに、制電性物質を練り込む方法は、耐久性は向上するが、テキスタイル工程および着用時の白化現象が問題となる。この白化現象は、テキスタイル化工程において機械的ダメージをうけた部分が、布帛品位の欠点となったり、あるいは着用時に摩擦を受ける部分が白くなるという現象で、原因は練り込まれた制電剤物質とポリエステルとの界面で界面剥離が生じ、繊維表面においてフィブリル化が発生しやすく、布帛の品位低下は深刻な問題であった。   For example, in the method of applying an antistatic agent to the yarn surface, the antistatic agent is likely to disappear by a dyeing process or washing, and also when applied at the end of the fabric process, the durability is insufficient and the texture is stiff. Alternatively, there are various problems such as being unable to use in combination with other post-processing, specifically water-repellent processing. In addition, the method of graft polymerizing a hydrophilic substance on the yarn surface significantly improves the disappearance of the antistatic agent by washing, but has a problem in durability and texture. Furthermore, although the method of kneading the antistatic material improves the durability, the textile process and the whitening phenomenon during wearing are problematic. This whitening phenomenon is a phenomenon in which the part that has undergone mechanical damage in the textile process becomes a defect in fabric quality, or the part that receives friction when worn is whitened, and the cause is a kneaded antistatic substance Interfacial delamination occurs at the interface between polyester and polyester, and fibrillation tends to occur on the fiber surface, and degradation of fabric quality was a serious problem.

又、特開昭63−282311号公報や特許第2906989号公報に提案されているように高分子量で耐熱性のあるポリマー型制電成分をブレンドした制電性ポリエステル繊維として、ブロックポリエーテルエステルアミド組成物とスルホン酸金属塩化合物を含有する制電性ポリエステル繊維の技術が提案されている。こうした制電性繊維を混繊糸の一成分として用いて制電性は得られるものの、しかしながら高い制電性能を得るためには多量の制電剤を使用せざるを得ず、紡糸調子が悪化したり、制電剤とポリエステルとの界面剥離による白化現象が生じる等の問題があった。   Further, as proposed in Japanese Patent Laid-Open No. Sho 63-282111 and Japanese Patent No. 2906899, a block polyether ester amide is used as an antistatic polyester fiber blended with a polymer type antistatic component having a high molecular weight and heat resistance. Techniques for antistatic polyester fibers containing a composition and a metal sulfonate compound have been proposed. Although antistatic properties can be obtained by using these antistatic fibers as a component of mixed yarn, however, in order to obtain high antistatic performance, a large amount of antistatic agent must be used, and the spinning tension deteriorates. Or whitening phenomenon due to interfacial peeling between the antistatic agent and polyester.

特開平2−19528号公報Japanese Patent Laid-Open No. 2-19528 特開2002−249941号公報Japanese Patent Application Laid-Open No. 2002-249941 特開昭63−282311号公報JP-A-63-28211 特許第2906989号公報Japanese Patent No. 2990689

本発明は、上記の問題点を解決し、優れた風合いと制電性・制電耐久性・染色品位を有するとともに、高次加工での工程通過性が良好で、操業安定性と品質安定性に優れた制電性極細ポリエステル混繊糸を提供するものである。   The present invention solves the above problems, has excellent texture and antistatic properties, antistatic durability and dyeing quality, and has good processability in high-order processing, operational stability and quality stability. It provides an antistatic ultra-fine polyester blended yarn excellent in.

混繊糸を構成する少なくとも一成分糸がポリエーテルエステルアミドを制電剤として含む制電性極細ポリエステル繊維であり、下記要件を満足する制電性極細ポリエステル混繊糸とする。
(1)制電性ポリエステル繊維の単糸直径が300nm〜2μmであること。
(2)ポリエーテルエステルアミドを制電性ポリエステル繊維全重量に対して3〜10重量%含むこと。
(3)ポリエーテルエステルアミドが、両末端にカルボキシル基を有する数平均分子量500〜5,000のポリアミド(a)と数平均分子量1,600〜3,000のビスフェノール類のエチレンオキシド付加物(b)から誘導され、相対粘度が1.5〜3.5(0.5重量%m−クレゾール溶液、25℃)、その相溶性パラメーターが基体となるポリエステルの相溶性パラメーターに対して±0.5(J/cm)^1/2の範囲であること。
(4)該制電性ポリエステル繊維の繊維軸方向に直交する断面におけるポリエーテルエステルアミドの平均粒子径Dが10〜40nmであること。
(5)該制電性ポリエステル繊維の繊維軸方向に平行する断面におけるポリエーテルエステルアミド粒子の繊維軸方向の平均長さLと上記Dの比、L/D(アスペクト比とも略称する場合がある)が200以上であること。
(6)該制電性ポリエステル繊維の初期帯電圧が3500V以下、半減期が60秒以下であること。
At least one component yarn constituting the mixed yarn is an antistatic ultrafine polyester fiber containing polyether ester amide as an antistatic agent, and an antistatic ultrafine polyester mixed yarn satisfying the following requirements.
(1) The single yarn diameter of the antistatic polyester fiber is 300 nm to 2 μm.
(2) Containing 3 to 10% by weight of polyetheresteramide with respect to the total weight of the antistatic polyester fiber.
(3) Polyetheresteramide is an ethylene oxide adduct (b) of a polyamide (a) having a carboxyl group at both ends and having a number average molecular weight of 500 to 5,000 and a bisphenol having a number average molecular weight of 1,600 to 3,000. The relative viscosity is 1.5 to 3.5 (0.5 wt% m-cresol solution, 25 ° C.) and the compatibility parameter is ± 0.5 (with respect to the compatibility parameter of the polyester serving as the substrate). J / cm 3 ) ^ 1/2.
(4) The average particle diameter D of the polyetheresteramide in the cross section orthogonal to the fiber axis direction of the antistatic polyester fiber is 10 to 40 nm.
(5) The ratio of the average length L in the fiber axis direction of the polyetheresteramide particles in the cross section parallel to the fiber axis direction of the antistatic polyester fiber to the above D, L / D (also sometimes referred to as aspect ratio) ) Is 200 or more.
(6) The antistatic polyester fiber has an initial charged voltage of 3500 V or less and a half-life of 60 seconds or less.

本発明の通り、特定のポリエーテルエステルアミドを使用することでポリエステル繊維内での分散状態を制御し、優れた風合い、品位を有し、且つ耐久制電性、工程通過性の優れる制電性極細ポリエステル混繊糸を提供できる。   As in the present invention, by using a specific polyether ester amide, the dispersion state in the polyester fiber is controlled, and it has excellent texture, quality, durability antistatic property, and antistatic property with excellent process passability. We can provide extra fine polyester blended yarn.

本発明の制電性極細ポリエステル混繊糸は二成分糸以上のポリエステル繊維からなる混繊糸であって、少なくとも一成分が単糸直径が300nm〜2μmの制電性極細ポリエステル繊維からなり、該制電性極細ポリエステル繊維に用いる制電剤に特徴を有するものである。   The antistatic ultrafine polyester blended yarn of the present invention is a blended yarn composed of polyester fibers of two or more component yarns, and at least one component is composed of antistatic ultrafine polyester fibers having a single yarn diameter of 300 nm to 2 μm, The antistatic agent used for the antistatic ultrafine polyester fiber is characterized.

制電性極細ポリエステル繊維の単糸直径とフィラメント数は機能面および布帛風合いにおいて商品価値を高める重要な用件であり、本発明の制電性ポリエステル混繊糸を構成する制電性極細ポリエステル繊維の単糸直径は、300nm〜2μmであることが好ましい。300nm未満では添加した制電剤の効果が損なわれ、また、繊維の取り扱いが困難となり、2μmを超える場合は、風合いが硬くなり好ましくない。また、制電性極細ポリエステル繊維のフィラメント数は400〜15000フィラメントが好ましい。極細繊維の混繊糸であることから、フィラメント数が400未満では絶対強力の不足により紡糸張力に耐え難く生産上好ましくなく、また、混繊糸の芯鞘形成が不十分となり芯糸が露出しやすくなる。フィラメント数が15000以上では布帛の風合いを損ね、軽量感が低下する。   The antistatic ultrafine polyester fiber has a single yarn diameter and the number of filaments, which are important requirements for enhancing the commercial value in terms of function and fabric texture, and the antistatic ultrafine polyester fiber constituting the antistatic polyester blended yarn of the present invention. The single yarn diameter is preferably 300 nm to 2 μm. If it is less than 300 nm, the effect of the added antistatic agent is impaired, and handling of the fiber becomes difficult. If it exceeds 2 μm, the texture becomes hard, which is not preferable. The number of filaments of the antistatic ultrafine polyester fiber is preferably 400-15000 filaments. Since it is a blended yarn of ultrafine fibers, if the number of filaments is less than 400, it is difficult to withstand the spinning tension due to the lack of absolute strength, which is not preferable for production, and the core sheath is not sufficiently formed to expose the core yarn. It becomes easy. If the number of filaments is 15000 or more, the texture of the fabric is impaired, and the lightness is lowered.

これらの制電性極細ポリエステル繊維を製造する方法としては様々な方法で行うことができるが島数20〜1000の海島複合繊維を作成し布帛化後海成分を除去する方法により極細繊維化することが取り扱い性の点で好ましい。   These antistatic ultrafine polyester fibers can be produced by various methods, but a sea-island composite fiber having 20 to 1000 islands is prepared and made into a superfine fiber by a method of removing sea components after making the fabric. Is preferable in terms of handleability.

制電性極細ポリエステル繊維の親糸である海島複合繊維の総繊度は20〜150dtexでフィラメント数は400〜15000フィラメントであることが好ましい。この範囲を外れたものは口金製造コストが高くなるので実用的でない。   The total fineness of the sea-island composite fiber, which is the parent yarn of the antistatic ultrafine polyester fiber, is preferably 20 to 150 dtex and the number of filaments is preferably 400 to 15000 filaments. Those outside this range are not practical because the die manufacturing cost increases.

本発明の制電性ポリエステル繊維にブレンドされている制電剤は、高分子量ビスフェノール類のエチレンオキシド付加物から誘導されるポリエーテルエステルアミド(ポリエーテルエステルアミド(A)と略称する場合がある)であり、両末端にカルボキシル基を有する数平均分子量500〜5000のポリアミド(a1)と数平均分子量1600〜3000のビスフェノール類のエチレンオキサイド付加物(a2)から誘導される。   The antistatic agent blended with the antistatic polyester fiber of the present invention is a polyether ester amide derived from an ethylene oxide adduct of high molecular weight bisphenols (sometimes abbreviated as polyether ester amide (A)). Yes, derived from a polyamide (a1) having a number average molecular weight of 500 to 5000 having carboxyl groups at both ends and an ethylene oxide adduct (a2) of bisphenols having a number average molecular weight of 1600 to 3000.

(a1)は、(1)ラクタム開環重合体、(2)アミノカルボン酸の重縮合体もしくは(3)ジカルボン酸とジアミンの重縮合体であり、(1)のラクタムとしては、カプロラクタム、エナントラクタム、ラウロラクタム、ウンデカノラクタム等が挙げられる。(2)のアミノカルボン酸としては、ω−アミノカプロン酸、ω−アミノエナント酸、ω−アミノペルゴン酸、ω−アミノカプリン酸,11−アミノウンデカン酸、12−アミノドデカン酸等が挙げられる。(3)のジカルボン酸としては、アジピン酸、アゼライン酸、セバシン酸、ウンデカン酸、ドデカンジ酸,イソフタル酸等が挙げられ、またジアミンとしては、ヘキサメチレンジアミン,ヘプタメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン等が挙げられる。上記アミド形成性モノマーとして例示したものは2種以上を併用してもよい。これらのうち好ましいものは、カプロラクタム,12−アミノドデカン酸およびアジピン酸−ヘキサメチレンジアミンであり、特に好ましいものは、カプロラクタムである。   (A1) is (1) a lactam ring-opening polymer, (2) a polycondensate of an aminocarboxylic acid or (3) a polycondensate of a dicarboxylic acid and a diamine, and the lactam of (1) includes caprolactam, enanthate Examples include lactam, laurolactam, undecanolactam and the like. Examples of the aminocarboxylic acid (2) include ω-aminocaproic acid, ω-aminoenanthic acid, ω-aminopergonic acid, ω-aminocapric acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid. Examples of the dicarboxylic acid (3) include adipic acid, azelaic acid, sebacic acid, undecanoic acid, dodecanedioic acid, isophthalic acid, and the diamines include hexamethylenediamine, heptamethylenediamine, octamethylenediamine, and decamethylene. Examples include diamines. Those exemplified as the amide-forming monomer may be used in combination of two or more. Among these, caprolactam, 12-aminododecanoic acid and adipic acid-hexamethylenediamine are preferable, and caprolactam is particularly preferable.

(a1)は、炭素数4〜20のジカルボン酸成分を分子量調整剤として使用し、これの存在下に上記アミド形成性モノマーを常法により開環重合あるいは重縮合させることによって得られる。炭素数4〜20のジカルボン酸としては、コハク酸、グルタル酸,アジピン酸,ピメリン酸,スベリン酸,アゼライン酸,セバシン酸、ウンデカジ酸,ドデカンジ酸等の脂肪酸ジカルボン酸; テレフタル酸,イソフタル酸,フタル酸,ナフタレンジカルボン酸等の芳香族ジカルボン酸、1,4−シクロヘキサンジカルボン酸、ジシクロヘキシル−4,4−ジカルボン酸等の脂肪族ジカルボン酸、3−スルホイソフタル酸ナトリウム,3−スルホイソフタル酸カリウム等の3−スルホイソフタル酸アルカリ金属塩などが挙げられる。これらのうち好ましいものは脂肪族ジカルボン酸、芳香族ジカルボン酸および3−スルホイソフタル酸アルカリ金属塩である。上記(a1)の数平均分子量は、通常500〜5000、好ましくは500〜3000である。数平均分子量が500未満ではポリエーテルエステルアミド自体の耐熱性が低下し、5000を超えると反応性が低下するためポリエーテルエステルアミド(A)製造時に多大な時間を要する。   (A1) can be obtained by using a dicarboxylic acid component having 4 to 20 carbon atoms as a molecular weight adjusting agent, and subjecting the amide-forming monomer to ring-opening polymerization or polycondensation in the presence of the dicarboxylic acid component by a conventional method. Examples of the dicarboxylic acid having 4 to 20 carbon atoms include fatty acid dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecadiic acid, dodecanediic acid; terephthalic acid, isophthalic acid, phthalate Acid, aromatic dicarboxylic acid such as naphthalenedicarboxylic acid, aliphatic dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid, dicyclohexyl-4,4-dicarboxylic acid, sodium 3-sulfoisophthalate, potassium 3-sulfoisophthalate, etc. Examples include alkali metal salts of 3-sulfoisophthalic acid. Of these, preferred are aliphatic dicarboxylic acids, aromatic dicarboxylic acids and alkali metal salts of 3-sulfoisophthalic acid. The number average molecular weight of the above (a1) is usually 500 to 5000, preferably 500 to 3000. When the number average molecular weight is less than 500, the heat resistance of the polyether ester amide itself is lowered, and when it exceeds 5000, the reactivity is lowered. Therefore, it takes much time to produce the polyether ester amide (A).

ビスフェノール類のエチレンオキシド付加物(a2)のビスフェノール類としては、ビスフェノールA(4,4’−ジヒドロキシジフェニル−2,2−プロパン)、ビスフェノールF(4,4’−ジヒドロキシジフェニルメタン)、 ビスフェノールS(4,4’−ジヒドロキシジフェニルスルホン)および4,4’−ジヒドロキシジフェニル−2,2ブタン等が挙げられ、これらのうちビスフェノールAが好ましい。(a2)はこれらのビスフェノール類にエチレンオキシドを常法により付加させることにより得られる。また、エチレンオキシドと共に他のアルキレンオキシド(プロピレンオキシド,1,2−ブチレンオキシド,1,4−ブチレンオキシド等)を併用することもできるが、他のアルキレンオキシドの量はエチレンオキシドの量に基づいて通常10重量以下である。   The bisphenols of the ethylene oxide adduct (a2) of bisphenols include bisphenol A (4,4′-dihydroxydiphenyl-2,2-propane), bisphenol F (4,4′-dihydroxydiphenylmethane), bisphenol S (4,4). 4'-dihydroxydiphenylsulfone), 4,4'-dihydroxydiphenyl-2,2 butane, etc., among which bisphenol A is preferred. (A2) can be obtained by adding ethylene oxide to these bisphenols by a conventional method. In addition, other alkylene oxides (propylene oxide, 1,2-butylene oxide, 1,4-butylene oxide, etc.) can be used in combination with ethylene oxide, but the amount of other alkylene oxide is usually 10 based on the amount of ethylene oxide. Less than weight.

ビスフェノール類を用いない場合はポリエーテルエステルアミドの相対粘度が低下し繊維内での粒子径(D)が小さくなり好ましくない。ビスフェノール類の使用量はポリエーテル成分中1〜数モル%含むことが望ましい。   When bisphenols are not used, the relative viscosity of the polyether ester amide is lowered, and the particle diameter (D) in the fiber is decreased, which is not preferable. The amount of bisphenol used is desirably 1 to several mol% in the polyether component.

上記(a2)の数平均分子量は、通常1600〜3000であり、特にエチレンオキシド付加モル数が32〜60のものを使用することが好ましい。数平均分子量が1600未満では、帯電防止性が不十分となり、3000を超えると反応性が低下するためポリエーテルエステルアミド(A)製造時に多大な時間を要する。   The number average molecular weight of the above (a2) is usually 1600 to 3000, and it is particularly preferable to use those having an ethylene oxide addition mole number of 32 to 60. When the number average molecular weight is less than 1600, the antistatic property is insufficient, and when it exceeds 3000, the reactivity is lowered, so that a great amount of time is required for producing the polyether ester amide (A).

(a2)は、前記(a1)と(a2)の合計重量に基づいて20〜80重量%の範囲で用いられる。(a2)の量が20重量%未満ではポリエーテルエステルアミド(A)の制電性能が劣り、80重量%を超えると耐熱性が低下するために好ましくない。   (A2) is used in the range of 20 to 80% by weight based on the total weight of (a1) and (a2). If the amount of (a2) is less than 20% by weight, the antistatic performance of the polyetheresteramide (A) is inferior, and if it exceeds 80% by weight, the heat resistance decreases, which is not preferable.

又上記の本発明のポリエーテルエステルアミド(A)の組成は、基体となるポリエステルとの相溶性に極めて重要な要件である。相溶性は一般に相溶性パラメーター(溶解度パラメーターとも呼ぶ)が近いものほど親和性が増し界面剥離が生じにくくなる。   The composition of the polyether ester amide (A) of the present invention is a very important requirement for compatibility with the polyester as a substrate. In general, as the compatibility parameter (also referred to as the solubility parameter) is closer, the affinity increases and the interfacial peeling is less likely to occur.

従って本発明のポリエーテルエステルアミド(A)の相溶性パラメーターはポリエステルの相溶性パラメーター値に対して、±0.5(J/cm)^1/2の範囲内の制電剤ポリマー組成とすることが必要である。例えば、ポリエチレンテレフタレートの場合は、相溶性パラメーターが20.9(J/cm)^1/2であることから、ポリエーテルエステルアミドの相溶性パラメーターは20.4〜21.4の範囲であることが必要である。この範囲を超えると、ポリエステルと制電ポリマーの界面接着性が不十分なため、後加工工程および着用時の摩擦によって界面剥離による白化現象が起こる。好ましくは、ベースポリエステルに対して、±0.3(J/cm)^1/2以内がよい。
ポリエーテルエステルアミド(A)の相溶性パラメーターを調整するためにはポリアミド成分量とポリエーテル成分量の構成比等を調整することにより行える。
Accordingly, the compatibility parameter of the polyetheresteramide (A) of the present invention is such that the antistatic polymer composition is within the range of ± 0.5 (J / cm 3 ) ^ 1/2 with respect to the compatibility parameter value of the polyester. It is necessary to. For example, in the case of polyethylene terephthalate, since the compatibility parameter is 20.9 (J / cm 3 ) ^ 1/2, the compatibility parameter of polyetheresteramide is in the range of 20.4 to 21.4. It is necessary. Beyond this range, the interfacial adhesion between the polyester and the antistatic polymer is insufficient, and a whitening phenomenon due to interfacial delamination occurs due to friction during post-processing and wearing. Preferably, it is within ± 0.3 (J / cm 3 ) ^ 1/2 with respect to the base polyester.
The compatibility parameter of the polyether ester amide (A) can be adjusted by adjusting the composition ratio of the polyamide component amount and the polyether component amount.

ポリエーテルエステルアミド(A)の製法としては、下記製法1または製法2が例示されるが、特に限定されるものではない。
製法1:アミド形成性モノマーおよびジカルボン酸を反応させて(a1)を形成せしめ、これに(a2)を加えて、高温、減圧下で重合反応を行う方法。
製法2:アミド形成性モノマーおよびジカルボン酸と(a2)を同時に反応槽に仕込み、水の存在下または非存在下に、高温で加圧反応させることによって中間体として(a1)を生成させ、その後減圧下で(a1)と(a2)との重合反応を行う方法。
As a manufacturing method of polyetheresteramide (A), although the following manufacturing method 1 or manufacturing method 2 is illustrated, it is not specifically limited.
Production Method 1: A method in which an amide-forming monomer and a dicarboxylic acid are reacted to form (a1), (a2) is added thereto, and a polymerization reaction is performed at high temperature and under reduced pressure.
Production method 2: An amide-forming monomer and dicarboxylic acid and (a2) are simultaneously charged into a reaction vessel, and (a1) is produced as an intermediate by pressure reaction at high temperature in the presence or absence of water. A method of performing a polymerization reaction of (a1) and (a2) under reduced pressure.

また、上記の重合反応には、公知のエステル化触媒が通常使用される。該触媒としては、例えば三酸化アンチモンなどのアンチモン系触媒、モノブチルスズオキシドなどのスズ系触媒、テトラブチルチタネートなどのチタン系触媒、テトラブチルジルコネートなどのジルコニウム系触媒,酢酸亜鉛などの酢酸金属塩系触媒などが挙げられる。触媒の使用量は、(a1)と(a2)の合計重量に対して通常0.1〜5重量%である。   Moreover, a well-known esterification catalyst is normally used for said polymerization reaction. Examples of the catalyst include antimony catalysts such as antimony trioxide, tin catalysts such as monobutyltin oxide, titanium catalysts such as tetrabutyl titanate, zirconium catalysts such as tetrabutyl zirconate, and metal acetates such as zinc acetate. And system catalysts. The usage-amount of a catalyst is 0.1 to 5 weight% normally with respect to the total weight of (a1) and (a2).

ポリエーテルエステルアミド(A)の相対粘度は、1.5〜3.5(0.5重量%m−クレゾール溶液、25℃)、好ましくは、1.5.0〜3.0である。1.5未満では、制電剤の分散粒径が小さくなり制電性が不足する。また、3.5を超える範囲では、製糸段階での断糸原因となる。   The relative viscosity of the polyetheresteramide (A) is 1.5 to 3.5 (0.5 wt% m-cresol solution, 25 ° C.), preferably 1.5.0 to 3.0. If it is less than 1.5, the dispersed particle size of the antistatic agent becomes small and the antistatic property is insufficient. Moreover, in the range exceeding 3.5, it becomes the cause of thread breakage in the yarn making stage.

ポリエーテルエステルアミド(A)の制電性極細ポリエステル繊維への添加量は、3〜10重量%を含むことが必要である。好ましくは、6〜9重量%の範囲である。3重量%未満では、制電性が不足であり、10wt%を超える場合は、製糸工程調子の悪化や強度低下、また熱セット性の低下により品位低下を招く。
又本発明の制電性極細ポリエステル繊維には該ポリエーテルエステルアミド制電剤の他に有機電解質を制電剤として含むことが好ましい。
The addition amount of the polyether ester amide (A) to the antistatic ultrafine polyester fiber needs to contain 3 to 10% by weight. Preferably, it is the range of 6-9 weight%. If it is less than 3% by weight, the antistatic property is insufficient, and if it exceeds 10% by weight, the quality of the yarn is deteriorated, the strength is lowered, and the heat setting property is lowered, thereby deteriorating the quality.
The antistatic ultrafine polyester fiber of the present invention preferably contains an organic electrolyte as an antistatic agent in addition to the polyether ester amide antistatic agent.

該有機電解質としては、例えば、ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ノニルベンゼンスルホン酸、ヘキサデシルスルホン酸およびドデシルスルホン酸などのスルホン酸と、ナトリウム、カリウムおよびリチウムなどのアルカリ金属から形成されるスルホン酸のアルカリ金属塩、ジステアリルリン酸ソーダなどのリン酸のアルカリ金属塩などが挙げられ、なかでもアルキルスルホン酸ソーダなどのスルホン酸の金属塩が良好である。含有量は、0.05〜0.8wt%であり、0.05以下では、制電性が不十分であり、0.8以上では、均一に分散せず、会合状態を形成して分散性不良やそれに伴う白化現象を引き起こし好ましくない。   Examples of the organic electrolyte include sulfonic acids such as dodecylbenzenesulfonic acid, dodecylbenzenesulfonic acid, nonylbenzenesulfonic acid, hexadecylsulfonic acid and dodecylsulfonic acid, and alkali metals such as sodium, potassium and lithium. Examples thereof include alkali metal salts of sulfonic acid, alkali metal salts of phosphoric acid such as distearyl phosphate, and among them, metal salts of sulfonic acid such as sodium alkyl sulfonate are preferable. The content is 0.05 to 0.8 wt%, and if it is 0.05 or less, the antistatic property is insufficient, and if it is 0.8 or more, it does not disperse uniformly and forms an associated state to disperse. This is undesirable because it causes defects and the accompanying whitening phenomenon.

本発明の制電性極細ポリエステル繊維に用いるポリエステルとしては、ポリエチレンテレフタレート、ポリトリメチレンテレフタレートに代表されるポリアルキレンテレフタレート,ポリアルキレンフタレート等が挙げられるが、中でも前者のテレフタル酸を主たる酸成分とし、炭素数2〜6のアルキレングリコール成分、即ちエチレングリコール、トリメチレングリコール,テトラメチレングリコール、ペンタメチレングリコール及びヘキサメチレングリコールから選ばれた少なくとも一種のグリコールを主たるグリコール成分とするポリエステルを対象とする。かかるポリエステルは任意の方法で製造されたものでよく、例えばポリエチレンテレフタレートについて説明すれば、テレフタル酸とエチレングリコールとを直接エステル化反応させるか、テレフタル酸ジメチルの如きテレフタル酸の低級アルキルエステルとエチレングリコールとを直接エステル化反応させるか、又はテレフタル酸とエチレンオキサイドとを反応させるなどして、テレフタル酸のグリコールエステル及び/又はその低重合度を生成させ、次いでこの生成物を減圧下加熱して所望の重合度になるまで重縮合反応させることによって製造される。   Examples of the polyester used in the antistatic ultrafine polyester fiber of the present invention include polyethylene terephthalate, polyalkylene terephthalate typified by polytrimethylene terephthalate, polyalkylene phthalate, etc. A polyester having 2 to 6 carbon atoms of an alkylene glycol component, that is, a polyester having at least one glycol selected from ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol and hexamethylene glycol as a main glycol component is used. Such a polyester may be produced by an arbitrary method. For example, polyethylene terephthalate can be described by directly esterifying terephthalic acid and ethylene glycol, or lower alkyl ester of terephthalic acid such as dimethyl terephthalate and ethylene glycol. To form a glycol ester of terephthalic acid and / or its low degree of polymerization, such as by reacting terephthalic acid with ethylene oxide, and then heating the product under reduced pressure to produce the desired The polycondensation reaction is carried out until the degree of polymerization becomes.

尚、上記ポリエステルはそのテレフタル酸成分の一部を他の二官能性カルボン酸成分で置き換えてもよい。かかるカルボン酸としては、例えば、イソフタル酸、フタル酸、ジブロモテレフタル酸、ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェキシエタンジカルボン酸、β−オキシエトキシ安息香酸の如き二官能性芳香族カルボン酸、セバシン酸、アジピン酸、シュウ酸の如き二官能性脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸等を挙げることができる。また上記グリコール成分の一部を他のグリコール成分で置き換えてもよく、かかるグリコール成分としては例えばシクロヘキサン−1,4−ジメタノール、ネオペンチルグリコール,ビスフェノールA,ビスフェノールS、2,2−ビス(3,5−ジブロモ−4−(2−ハイドロキシエトキシ)フェニル)プロパンの如き脂肪族、脂環族、芳香族のジオールが挙げられる。更に、上述のポリエステルに必要に応じて他のポリマーを少量ブレンド溶融したもの、ペンタエリスリオトール、トリメチロールプロパン、トリメリット酸等の鎖分岐剤を少割合使用したものであってもよい。このほか本発明のポリエステルは通常のポリエステルと同様に酸化チタン、カーボンブラック等の顔料他、従来公知の抗酸化剤、着色防止剤が添加されていても勿論良い。   In the above polyester, a part of the terephthalic acid component may be replaced with another bifunctional carboxylic acid component. Examples of such carboxylic acids include isophthalic acid, phthalic acid, dibromoterephthalic acid, naphthalene dicarboxylic acid, diphenyl carboxylic acid, diphenethane carboxylic acid, bifunctional aromatic carboxylic acid such as β-oxyethoxybenzoic acid, and sebacin. Bifunctional aliphatic dicarboxylic acid such as acid, adipic acid and oxalic acid, 1,4-cyclohexanedicarboxylic acid and the like can be mentioned. Further, part of the glycol component may be replaced with another glycol component. Examples of the glycol component include cyclohexane-1,4-dimethanol, neopentyl glycol, bisphenol A, bisphenol S, 2,2-bis (3 , 5-dibromo-4- (2-hydroxyethoxy) phenyl) propane, and aliphatic, alicyclic and aromatic diols. Further, the above-mentioned polyester may be obtained by blending and melting a small amount of other polymers as required, or by using a small amount of a chain branching agent such as pentaerythritol, trimethylolpropane, trimellitic acid or the like. In addition, the polyester of the present invention may be added with pigments such as titanium oxide and carbon black, as well as conventionally known antioxidants and anti-coloring agents in the same manner as ordinary polyesters.

本発明のポリエーテルエステルアミド(A)の制電性ポリエステル繊維内での分散状態は重要な発明要件であり下記要件を満足する必要がある。
(1)繊維軸に直交する断面でのポリエーテルエステルアミド(A)の平均粒径Dが10〜40nmの範囲であることが必要である。好ましくは、15〜40nmの範囲である。10未満の場合は、初期帯電圧、および/または半減期が悪化し、一方40nmを超える大きさの場合は、各フィラメントの太さ斑が発生しやすく、紡糸・延伸加工断糸などが多発し生産性が悪くなる。
The dispersion state of the polyether ester amide (A) of the present invention in the antistatic polyester fiber is an important invention requirement and must satisfy the following requirements.
(1) It is necessary that the average particle diameter D of the polyether ester amide (A) in the cross section orthogonal to the fiber axis is in the range of 10 to 40 nm. Preferably, it is the range of 15-40 nm. If it is less than 10, the initial charging voltage and / or the half-life is deteriorated. On the other hand, if it exceeds 40 nm, unevenness of the thickness of each filament is likely to occur, and spinning / drawing process breakage occurs frequently. Productivity deteriorates.

(2)繊維軸に平行する断面でのポリエーテルエステルアミド(A)粒子の繊維軸方向の平均長さLとしたとき、L(繊維軸方向の粒子の平均長さ)/D(繊維軸に直交する断面での平均粒子径)が200以上必要である。制電性付与には、制電剤が繊維内で、長く連なった状態であり電荷が移動しやすい場を提供することが重要である。そのため、剤の繊維軸方向の長さは長いほど好ましい。好ましくは、250以上であり、より好ましくは300〜400である。 (2) When the average length L in the fiber axis direction of the polyetheresteramide (A) particles in a cross section parallel to the fiber axis is L (average length of the particles in the fiber axis direction) / D (in the fiber axis) The average particle diameter in an orthogonal cross section is required to be 200 or more. In order to impart antistatic properties, it is important to provide a field where the antistatic agent is in a long continuous state in the fiber and the charge easily moves. Therefore, the longer the length of the agent in the fiber axis direction, the better. Preferably, it is 250 or more, More preferably, it is 300-400.

又制電性ポリエステル繊維内のポリエーテルエステルアミド(A)の分散状態を決定する要件として、製造方法における紡糸工程での口金内での剪断および口金吐出後の紡糸ドラフトが重要である。これは、制電剤の粒径と長さをある範囲内に設定することにより制電性と品位を達成するために必要な要件である。すなわち、吐出孔内での剪断速度(式1)が400〜9000の範囲になるように、口金孔径と吐出量を設定する必要がある。
剪断速度:Vs(sec−1)=4Q(cm/sec)/πr(cm)^3・・・式1
Q:吐出孔1孔あたりのポリマー吐出量(cm/sec)
r:吐出孔の半径(cm
Further, as a requirement for determining the dispersion state of the polyether ester amide (A) in the antistatic polyester fiber, shearing in the die in the spinning step in the production method and spinning draft after discharging the die are important. This is a requirement necessary to achieve antistatic properties and quality by setting the particle size and length of the antistatic agent within a certain range. That is, it is necessary to set the cap hole diameter and the discharge amount so that the shear rate (formula 1) in the discharge hole is in the range of 400 to 9000.
Shear rate: Vs (sec −1 ) = 4Q (cm 3 / sec) / πr (cm) ^ 3 Formula 1
Q: Polymer discharge amount per discharge hole (cm 3 / sec)
r: radius of the discharge hole (cm 3 )

吐出量に対して、孔径が大きすぎると吐出孔内での制電剤の分散(粒径細化)作用が小さいために、粒径のばらつきが大きく、断糸の原因となりやすい。一方、吐出孔径を小さくしすぎて、分散作用が大きすぎると、粒径が小さくなり、制電効果が未達である。従って、剪断速度400〜9000の範囲が必要であり、このましくは、600〜8000の範囲である。また、吐出孔からの押し出し速度V1と引き取りローラー速度V2の比である紡糸ドラフト率=V2/V1が、200〜2000までの範囲であることが好ましい。これは、吐出されたブレンドポリマー流内ではある範囲の粒径をもった丸から楕円状をした形状をもっており、その中でポリマー流全体は冷却を受けながら徐々に引き伸ばされ加速し、ガラス転移温度になった時点で引き取り速度V2に達している。その間の加速度dV/dxが紡糸ドラフトを大きくすると大きくなり、ポリマー流は大変形をうけることになる。従って、制電剤を引き伸ばすには、ドラフトを大きい範囲、すなわち200〜2000とする必要がある。ここで、200未満の場合は、剤の伸長が不十分でありL/Dが100未満となり制電性が不足である。一方で、2000を超える場合には、大変形作用が過剰であり紡糸断糸の問題があり不十分である。   If the hole diameter is too large relative to the discharge amount, the dispersion (particle size reduction) action of the antistatic agent in the discharge hole is small, so that the dispersion of the particle diameter is large, which is likely to cause yarn breakage. On the other hand, if the discharge hole diameter is too small and the dispersion action is too large, the particle diameter becomes small and the antistatic effect is not achieved. Accordingly, a shear rate range of 400 to 9000 is required, and preferably 600 to 8000. Moreover, it is preferable that the spinning draft ratio = V2 / V1, which is the ratio of the extrusion speed V1 from the discharge hole and the take-up roller speed V2, is in the range of 200 to 2000. It has a round to oval shape with a range of particle sizes within the discharged blend polymer stream, in which the entire polymer stream is gradually stretched and accelerated while being cooled, resulting in a glass transition temperature. At this point, the take-up speed V2 has been reached. The acceleration dV / dx during that time increases as the spinning draft increases, and the polymer stream undergoes large deformation. Therefore, in order to stretch the antistatic agent, the draft needs to be in a large range, that is, 200 to 2000. Here, when it is less than 200, the agent is not sufficiently elongated, and the L / D is less than 100, resulting in insufficient antistatic properties. On the other hand, if it exceeds 2000, the large deformation action is excessive and there is a problem of spun yarn, which is insufficient.

混繊糸に使用する制電性極細ポリエステル繊維の制電性能としては、初期帯電圧が3500V以下、半減期が60秒以下であることが必要である。好ましくは、初期帯電圧が3400V以下、半減期が40秒以下、さらに好ましくは初期帯電圧が3000V以下、半減期が20秒以下である。初期帯電圧が3500V、半減期が60秒を超える場合は、衣服のまとわりつきや静電気の発生が起こる場合があり、実用面での制電効果がでない。   As the antistatic performance of the antistatic ultrafine polyester fiber used for the mixed yarn, it is necessary that the initial charging voltage is 3500 V or less and the half-life is 60 seconds or less. Preferably, the initial charging voltage is 3400 V or less and the half-life is 40 seconds or less, more preferably the initial charging voltage is 3000 V or less and the half-life is 20 seconds or less. When the initial charged voltage is 3500 V and the half-life exceeds 60 seconds, clothing clinging or generation of static electricity may occur, and there is no practical antistatic effect.

混繊糸工程について次に説明する。
本発明の制電性極細ポリエステル混繊糸を構成する少なくとも一成分が制電性極細ポリエステル繊維からなるものであり、風合い触感等から鞘部繊維が制電性極細ポリエステル繊維であることが好ましい。
Next, the blended yarn process will be described.
It is preferable that at least one component constituting the antistatic ultrafine polyester mixed yarn of the present invention is an antistatic ultrafine polyester fiber, and the sheath fiber is an antistatic ultrafine polyester fiber from the touch feeling.

混繊糸の鞘部繊維を制電性極細ポリエステル繊維とするには、公知の方法により行うことができるが、例えば島成分を制電性ポリエステルとした低沸水収縮性海島複合繊維糸条(親糸)を高沸水収縮性ポリエステル繊維糸条と空気交絡処理して混繊糸とし製織編等により布帛後アルカリ減量により海成分を脱海処理し、染色等の熱水処理して収縮差を利用して高沸水収縮性ポリエステル繊維糸条が芯部となる混繊糸とすることが好ましい。極細化後の総繊度は20から150dtexで、その時のフィラメント数は400から15000のフィラメントであることが好ましい。鞘部繊維の総繊度が20dtex未満であると、布帛形成時に芯糸が露出し品位が低下しやすくなり、また150dtexを超える場合は混繊糸の取扱い性の点で実用に耐えない。フィラメント数が400未満であれば強度の弱いものとなり、15000を超える場合は風合いが低下し好ましくない。好ましくは500〜10000である。   The sheath fiber of the mixed yarn can be made an antistatic ultrafine polyester fiber by a known method. For example, a low boiling water shrinkable sea-island composite fiber yarn (parent material) having an island component as an antistatic polyester can be used. Yarn) is entangled with high-boiling water shrinkable polyester fiber yarns to make blended yarns, weaving and knitting to remove sea components from fabric by alkali weight reduction, and use hot water treatment such as dyeing to use the difference in shrinkage Thus, it is preferable to use a high-boiling water-shrinkable polyester fiber yarn as a mixed fiber in which the core portion is formed. The total fineness after ultrafinening is preferably 20 to 150 dtex, and the number of filaments at that time is preferably 400 to 15000. When the total fineness of the sheath fiber is less than 20 dtex, the core yarn is exposed and the quality is liable to be deteriorated when forming the fabric, and when it exceeds 150 dtex, it is not practical in terms of handling of the mixed yarn. If the number of filaments is less than 400, the strength is weak, and if it exceeds 15000, the texture is undesirably lowered. Preferably it is 500-10000.

芯部繊維の総繊度は、芯鞘形成性の点から20〜110dtexでその時のフィラメント数は5〜288フィラメントが好ましい。極端に総繊度が細いと布帛での強度が不十分で、また単糸繊度が細くても同様な不具合を生じる。
芯鞘とも両方制電性ポリエステル極細繊維とする場合は海島複合繊維の段階で延伸倍率等を調整して沸水収縮率の異なる海島複合繊維としておくことができる。
The total fineness of the core fiber is 20 to 110 dtex from the viewpoint of core-sheath formation, and the number of filaments at that time is preferably 5 to 288 filaments. If the total fineness is extremely thin, the strength of the fabric is insufficient, and the same problem occurs even if the single yarn fineness is thin.
When both the core and sheath are antistatic polyester ultrafine fibers, they can be prepared as sea-island composite fibers having different boiling water shrinkage rates by adjusting the draw ratio and the like at the stage of sea-island composite fibers.

本発明の代表的な混繊糸工程を添付図面(図1)により説明する。高配向ポリエステル未延伸マルチフィラメント(A)とポリエステルマルチフィラメント(B)とを、引き揃えて供給ローラー(1)に供給し、その後交絡用空気噴射ノズル(3)にて糸を交絡させた後、予熱ローラー(2)にて予熱し引き取りローラー(4)にて所定の倍率に延伸する。この時、予熱ローラーと引き取りローラーの間に設けたセットヒーター(5)により、これら混繊糸条を熱セットする。また引き取りローラーにて引き取られた糸条は、後方に配された捲取装置に連続して捲き取られ、目的とする混繊糸パッケージ(6)となる。   A typical mixed yarn process of the present invention will be described with reference to the accompanying drawings (FIG. 1). After the highly oriented polyester unstretched multifilament (A) and the polyester multifilament (B) are aligned and supplied to the supply roller (1), and then entangled with the entanglement air jet nozzle (3), Pre-heated by the pre-heating roller (2) and stretched to a predetermined magnification by the take-off roller (4). At this time, these mixed yarns are heat-set by a set heater (5) provided between the preheating roller and the take-up roller. Further, the yarn taken up by the take-up roller is continuously wound up by a take-up device arranged on the rear side to obtain a target mixed yarn package (6).

ポリエステル繊維を製織する方法や、製織組織については特に制限はないが、混繊されたポリエステル糸による外観の特徴や、混繊によるふくらみと風合いを生かせる製織方法、組織を選ぶことが好ましい。混繊糸の特徴を効果的に発現する為には、該糸を布帛とした後、常法に従いボイルオフ、プレセット、脱海処理、染色、ファイナルセットを行うことにより特徴を発現させることが好ましい。   The method of weaving the polyester fiber and the weaving structure are not particularly limited, but it is preferable to select a weaving method and a structure that make use of the characteristics of the appearance of the blended polyester yarn and the swelling and texture of the blended fiber. In order to effectively express the characteristics of the mixed yarn, it is preferable to express the characteristics by making the yarn into a fabric and then performing boil-off, pre-setting, sea removal treatment, dyeing, and final setting according to a conventional method. .

以下、具体的な実施例を用いて本発明を詳細に説明する。
各測定方法は以下の要領で実施する。
(1)制電剤の粒径測定
本発明の制電性ポリエステル繊維の厚さ100nmの繊維に直交する断面切片を作製し、透過型電子顕微鏡にて測定するために観察し、繊維断面内の粒子の直径をn=100にて測定し、平均値を算出する。
(2)制電剤のL/Dの測定
本発明の制電性ポリエステル繊維を透過型電子顕微鏡にて測定するために、厚さ100nmの繊維軸方向切片を作製し、観察する。この時、繊維軸方向の制電剤粒子の長さをn=50にて測定し、平均値を算出する。その平均L値と(1)の平均D値の比を算出して、L/D値を求める。
(3)初期帯電圧、半減期測定
本発明の制電性ポリエステル繊維をJIS L 1094 半減期測定法に準じて測定し、所定電圧印加から30秒後の帯電圧(V)および帯電圧がその半分になるのに要する時間(s)を測定する。測定は、温度20±1℃、相対湿度40±2%の状態の試験室中で実施した。
(4)白化テスト
染色工程を終えた試験布を準備する。150±5℃にあらかじめ加熱した電気アイロンを用いて試験布上を毎秒2cmの速さで6回(3往復)スライドさせる。尚、温度は電気アイロン底面中央部の表面温度である。次に高温のアルカリ水溶液を用いて15%減量を行う。これら二段階にわたって外部から負荷を与えた試験布(L1)と、外部から負荷を与えていない試験布(L0) のL値(白化度)の測色n=2を行い、次の式で求めた色差値を白化性とする。
白化性=L1−L0 (式)
白化性は1.0以下を合格とする。
Hereinafter, the present invention will be described in detail using specific examples.
Each measurement method is implemented as follows.
(1) Measurement of particle size of antistatic agent A cross section perpendicular to a 100 nm thick fiber of the antistatic polyester fiber of the present invention was prepared and observed for measurement with a transmission electron microscope. The diameter of the particles is measured at n = 100, and the average value is calculated.
(2) Measurement of L / D of antistatic agent In order to measure the antistatic polyester fiber of the present invention with a transmission electron microscope, a fiber axis section having a thickness of 100 nm is prepared and observed. At this time, the length of the antistatic agent particles in the fiber axis direction is measured at n = 50, and the average value is calculated. The ratio of the average L value and the average D value of (1) is calculated to obtain the L / D value.
(3) Measurement of initial charged voltage and half-life The antistatic polyester fiber of the present invention was measured according to the JIS L 1094 half-life measuring method, and the charged voltage (V) and charged voltage after 30 seconds from application of a predetermined voltage were Measure the time (s) required to halve. The measurement was carried out in a test room at a temperature of 20 ± 1 ° C. and a relative humidity of 40 ± 2%.
(4) Whitening test Prepare a test cloth after the dyeing process. Using an electric iron preheated to 150 ± 5 ° C., the test cloth is slid 6 times (3 reciprocations) at a speed of 2 cm per second. The temperature is the surface temperature at the center of the bottom surface of the electric iron. Next, 15% weight reduction is performed using a hot alkaline aqueous solution. Color measurement n = 2 of the L value (degree of whitening) of the test cloth (L1) to which the load is applied from the outside and the test cloth (L0) to which the load is not applied from the outside is performed by the following formula. The obtained color difference value is defined as whitening.
Whitening property = L1-L0 (formula)
The whitening property is 1.0 or less.

[実施例1〜4]
表1に記載のポリエーテルエステルアミド(イオン性物質として、アルキルスルホン酸Naを0.8%含む)を80℃で乾燥したものを、160℃で乾燥したポリエチレンテレフタレートチップ(IV=0.65)とブレンドして溶融温度295℃にて溶融したものを島成分、5−ナトリウムスルホイソフタル酸9モル%と数平均分子量4,000のポリエチレングリコール3重量%を共重合した改質ポリエチレンテレフタレートを海成分として、表1に記載の通り海島複合繊維用口金および添加量を変化させて、ポリマーを吐出し巻き取った。その原糸を用いて、予熱温度90℃のローラーおよびセット温度170℃のスリットヒーターにて延伸熱セットし、島数、フィラメント数、総繊度、熱水収縮率が表1の通りの制電性ポリエステル糸親糸を作製した。別に相手糸としてポリエチレンテレフタレートの常法によって、144孔を有する口金より吐出し70dtex、熱水収縮率50%の高配向未延伸糸(POY)を作製し、先の延伸糸と図1のような工程で空気交絡法によって混繊糸を作製した。この混繊糸を20Gの筒編み機にて丸編み状態とし、精錬、3.5%の苛性ソーダで55℃で10〜40分アルカリ減量を行い海成分を除去し水洗乾燥した。布重量換算で4%の染料を用いて120℃にて高圧染色すると同時に熱水収縮させた。制電剤を含むポリエステル極細繊維が鞘部、相手糸ポリエステル繊維が芯部の混繊糸からなる筒編物を作成した。その染色サンプルを用いて、初期帯電圧と半減期を測定した。得られた繊維のL/D、繊維径、初期電圧、白化、風合い等は表の通りである。
[Examples 1 to 4]
Polyethylene terephthalate chips (IV = 0.65) obtained by drying the polyether ester amide described in Table 1 (containing 0.8% Na alkyl sulfonate as an ionic substance) at 80 ° C. and dried at 160 ° C. And blended with the melt and melted at 295 ° C. Island component, modified polyethylene terephthalate copolymerized with 9% mol of 5-sodium sulfoisophthalic acid and 3% by weight of polyethylene glycol with a number average molecular weight of 4,000. As shown in Table 1, the base for sea-island composite fibers and the addition amount were changed, and the polymer was discharged and wound up. The raw yarn is drawn and heat set with a roller having a preheating temperature of 90 ° C. and a slit heater with a setting temperature of 170 ° C., and the number of islands, the number of filaments, the total fineness, and the hot water shrinkage are as shown in Table 1. A polyester yarn parent yarn was produced. Separately, a highly oriented undrawn yarn (POY) with 70 dtex and hot water shrinkage of 50% is produced from a die having 144 holes by a conventional method of polyethylene terephthalate as a partner yarn, and the previous drawn yarn and the one shown in FIG. In the process, a mixed fiber was produced by an air entanglement method. This mixed yarn was put into a circular knitting state with a 20G cylinder knitting machine, refined and subjected to alkali weight reduction at 55 ° C. for 10 to 40 minutes with 3.5% caustic soda to remove sea components and washed with water and dried. High-pressure dyeing was performed at 120 ° C. using 4% dye in terms of cloth weight, and simultaneously hot water shrinkage was performed. A tubular knitted fabric was produced in which a polyester extra-fine fiber containing an antistatic agent was made of a mixed yarn having a sheath portion and a counterpart yarn polyester fiber being a core portion. The initial charged voltage and half-life were measured using the stained sample. The L / D, fiber diameter, initial voltage, whitening, texture, etc. of the obtained fiber are as shown in the table.

実施例1,2,3,4は、ポリエーテルエステルアミド(以下PEEA)の量が適正で相溶性パラメーターが範囲内のものであり、制電剤の粒径・繊維軸方向長さを満足し、初期帯電圧、半減期および白化現象もなく性能と品位に優れた制電性ポリエステル混繊糸となっている。   In Examples 1, 2, 3, and 4, the amount of polyether ester amide (hereinafter PEEA) is appropriate and the compatibility parameter is within the range, and the particle size of the antistatic agent and the length in the fiber axis direction are satisfied. It is an antistatic polyester blended yarn excellent in performance and quality without initial charging voltage, half-life and whitening phenomenon.

[比較例1〜7]
比較例1〜7では表に示す通り、紡糸準備段階までは実施例と同様に行い、紡糸段階で制電剤ブレンド率を変更して行った。比較例1は、PEEAの添加量が少ない為に、制電性が不十分であり、一方比較例2においては、PEEAの添加量が多すぎるために、紡糸における断糸が頻発し、本発明を満足するものではない。比較例3は、参考までにPEEAを添加しないものであり初期帯電圧が高く、半減期も長い、比較例4は相対粘度が高く発明外のものであり紡糸調子が悪く又白化が見られ、比較例5はビスフェノールAを含有しないポリエーテルエステルアミドであり、粘度が低く繊維内での粒径が小さく理由は定かでないが初期帯電圧が高いものとなった。比較例6、7は相溶性パラメーターが低い制電剤、高い制電剤でいずれも白化と半減期が満足しない。
[Comparative Examples 1 to 7]
In Comparative Examples 1 to 7, as shown in the table, the process up to the spinning preparation stage was performed in the same manner as in the Examples, and the antistatic agent blend ratio was changed in the spinning stage. In Comparative Example 1, since the amount of PEEA added is small, the antistatic property is insufficient. On the other hand, in Comparative Example 2, since the amount of PEEA added is too large, yarn breakage frequently occurs in spinning, and the present invention. It does not satisfy. In Comparative Example 3, PEEA was not added for reference, the initial voltage was high, and the half-life was long.Comparative Example 4 was high in relative viscosity and was outside the invention, and the spinning condition was poor and whitening was observed. Comparative Example 5 is a polyether ester amide that does not contain bisphenol A and has a low initial viscosity due to its low viscosity and small particle size within the fiber, although the reason is not clear. Comparative Examples 6 and 7 are antistatic agents having a low compatibility parameter and high antistatic agents, and neither of the whitening and the half-life is satisfied.

Figure 2009114604
Figure 2009114604

本発明の制電性ポリエステル混繊糸は優れた風合いと共に制電性、制電耐久性を有するので紳士婦人衣料用途に有用である。   Since the antistatic polyester blended yarn of the present invention has antistatic properties and antistatic durability as well as excellent texture, it is useful for men's and women's clothing applications.

は本願実施例の杢調混繊糸の製造方法に関する説明図である。These are explanatory drawings regarding the manufacturing method of the toned blended yarn of an Example of this application.

符号の説明Explanation of symbols

1:原糸供給ローラー
2:予熱ローラー
3:圧縮空気交絡装置
4:引き取りローラー
5:セットヒーター
6:製品
A:鞘糸(制電性ポリエステル糸)
B:芯糸(相手糸)
1: Raw yarn supply roller 2: Preheating roller 3: Compressed air entanglement device 4: Take-off roller 5: Set heater 6: Product A: Sheath yarn (antistatic polyester yarn)
B: Core yarn (mating yarn)

Claims (2)

混繊糸を構成する少なくとも一成分糸がポリエーテルエステルアミドを制電剤として含む制電性極細ポリエステル繊維であり、下記要件を満足することを特徴とする制電性極細ポリエステル混繊糸。
(1)制電性ポリエステル繊維の単糸直径が300nm〜2μmであること。
(2)ポリエーテルエステルアミドを制電性ポリエステル繊維全重量に対して3〜10重量%含むこと。
(3)ポリエーテルエステルアミドが、両末端にカルボキシル基を有する数平均分子量500〜5,000のポリアミド(a)と数平均分子量1,600〜3,000のビスフェノール類のエチレンオキシド付加物(b)から誘導され、相対粘度が1.5〜3.5(0.5重量%m−クレゾール溶液、25℃)、その相溶性パラメーターが基体となるポリエステルの相溶性パラメーターに対して±0.5(J/cm)^1/2の範囲であること。
(4)該制電性ポリエステル繊維の繊維軸方向に直交する断面におけるポリエーテルエステルアミドの平均粒子径Dが10〜40nmであること。
(5)該制電性ポリエステル繊維の繊維軸方向に平行する断面におけるポリエーテルエステルアミド粒子の繊維軸方向の平均長さLと上記Dの比、L/D(アスペクト比とも略称する場合がある)が200以上であること。
(6)該制電性ポリエステル繊維の初期帯電圧が3500V以下、半減期が60秒以下であること。
An antistatic ultrafine polyester mixed yarn characterized in that at least one component yarn constituting the mixed yarn is an antistatic ultrafine polyester fiber containing polyetheresteramide as an antistatic agent, and satisfies the following requirements.
(1) The single yarn diameter of the antistatic polyester fiber is 300 nm to 2 μm.
(2) Containing 3 to 10% by weight of polyetheresteramide with respect to the total weight of the antistatic polyester fiber.
(3) Polyetheresteramide is an ethylene oxide adduct (b) of a polyamide (a) having a carboxyl group at both ends and having a number average molecular weight of 500 to 5,000 and a bisphenol having a number average molecular weight of 1,600 to 3,000. The relative viscosity is 1.5 to 3.5 (0.5 wt% m-cresol solution, 25 ° C.) and the compatibility parameter is ± 0.5 (with respect to the compatibility parameter of the polyester serving as the substrate). J / cm 3 ) ^ 1/2.
(4) The average particle diameter D of the polyetheresteramide in the cross section orthogonal to the fiber axis direction of the antistatic polyester fiber is 10 to 40 nm.
(5) The ratio of the average length L in the fiber axis direction of the polyetheresteramide particles in the cross section parallel to the fiber axis direction of the antistatic polyester fiber to the above D, L / D (also sometimes referred to as aspect ratio) ) Is 200 or more.
(6) The antistatic polyester fiber has an initial charged voltage of 3500 V or less and a half-life of 60 seconds or less.
請求項1の制電性ポリエステル混繊糸を含む繊維製品。   A textile product comprising the antistatic polyester blended yarn of claim 1.
JP2007292151A 2007-11-09 2007-11-09 Antistatic polyester combined filament yarn Pending JP2009114604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292151A JP2009114604A (en) 2007-11-09 2007-11-09 Antistatic polyester combined filament yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292151A JP2009114604A (en) 2007-11-09 2007-11-09 Antistatic polyester combined filament yarn

Publications (1)

Publication Number Publication Date
JP2009114604A true JP2009114604A (en) 2009-05-28

Family

ID=40782053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292151A Pending JP2009114604A (en) 2007-11-09 2007-11-09 Antistatic polyester combined filament yarn

Country Status (1)

Country Link
JP (1) JP2009114604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015146790A1 (en) * 2014-03-25 2017-04-13 東レ株式会社 Fiber having phase separation structure and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015146790A1 (en) * 2014-03-25 2017-04-13 東レ株式会社 Fiber having phase separation structure and method for producing the same

Similar Documents

Publication Publication Date Title
TWI245821B (en) The conjugate fiber
JP2014080718A (en) Normal pressure cation-dyeable polyester fiber, and production method thereof
TWI531694B (en) Cationic dyeable polyester fiber and composite fiber
TW200819569A (en) Antistatic polyester false twist yarn, process for producing the same, and antistatic special composite false twist yarn including the antistatic polyester false twist yarn
TW567257B (en) Polytrimethyleneterephthalate modified cross section yarn
TWI746672B (en) Polymer blend fiber and fiber structure containing it
JP2011047068A (en) Water-repelling polyester blended yarn
JP2011157646A (en) Polyester microfiber
JP2010018927A (en) Polyester nanofiber
JP2005133250A (en) Core-sheath conjugate fiber
JP2002088586A (en) Highly stretchable conjugated polyester fiber
JP2009114604A (en) Antistatic polyester combined filament yarn
JP2009263807A (en) Electrostatic water-repellent fabric and clothes
JP2007131980A (en) Polyester sheath-core conjugated fiber and fiber fabric thereof
JP4639889B2 (en) Polytrimethylene terephthalate extra fine yarn
JP2009019287A (en) Antistatic polyester combined filament yarn
JP2008013868A (en) Antistatic polyester fiber and method for producing the same
JP2010018926A (en) Method for producing polyester nanofiber
JP2011157647A (en) Wiping cloth
JP2007332476A (en) Nano fiber fabric
JP2015007297A (en) Polyester fiber excellent in antistatic properties and woven knitted fabric of the same
JP2019026991A (en) Black spun-dyed polyester fiber
JP2009019288A (en) Antistatic hollow polyester fiber and method for producing the same
JP2005344255A (en) Polyester-based combined filament undrawn yarn having excellent color-developing property and excellent antistatic property
JP2004277912A (en) Antistatic polyester-based conjugate fiber and method for producing the same