JP2009114242A - Organic matter gasification method - Google Patents

Organic matter gasification method Download PDF

Info

Publication number
JP2009114242A
JP2009114242A JP2007285841A JP2007285841A JP2009114242A JP 2009114242 A JP2009114242 A JP 2009114242A JP 2007285841 A JP2007285841 A JP 2007285841A JP 2007285841 A JP2007285841 A JP 2007285841A JP 2009114242 A JP2009114242 A JP 2009114242A
Authority
JP
Japan
Prior art keywords
waste
gas
sludge
raw material
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007285841A
Other languages
Japanese (ja)
Inventor
Osamu Nakanishi
治 中西
Masaya Adachi
昌哉 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Original Assignee
Daio Paper Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp filed Critical Daio Paper Corp
Priority to JP2007285841A priority Critical patent/JP2009114242A/en
Publication of JP2009114242A publication Critical patent/JP2009114242A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for effectively using waste resources and efficiently and stably generating gas recoverable as fuel. <P>SOLUTION: In this organic matter gasification method, biomass organic waste and paper manufacture sludge are mixed together and thermally decomposed in a non-oxidation atmosphere, and generated pyrolysis gas is reacted with steam. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機物のガス化方法に関する。さらに詳しくは、生物由来の有機系廃棄資源を有効利用し、燃料として回収可能なガスを効率よく、かつ安定して生成する方法に関する。   The present invention relates to a method for gasifying organic matter. More specifically, the present invention relates to a method for efficiently and stably generating a gas that can be recovered as a fuel by effectively using organic organic waste resources.

近年、地球温暖化防止、循環型社会形成の推進により、従来焼却処分されていた、例えば廃木材、間伐材、流木、廃割り箸、バーク材等の廃棄資源、いわゆる「バイオマス」を有効利用する方法が種々検討されている。このようなバイオマスを処理する方法としては、一般に直接燃焼方式とガス化方式とが考えられる。   In recent years, methods to effectively use waste resources such as waste wood, thinned wood, driftwood, waste chopsticks, bark, etc., so-called "biomass", which have been disposed of by incineration in the past in order to prevent global warming and promote a recycling-oriented society Various studies have been made. As a method for treating such biomass, a direct combustion method and a gasification method are generally considered.

直接燃焼方式は、バイオマスを完全燃焼させるものであり、例えばストーカ炉、流動床炉、微粉燃焼炉、噴流床炉等の燃焼炉が用いられる。該直接燃焼方式によって回収、利用し得るのは熱エネルギーのみであり、該熱エネルギーにより温水やスチームを発生させて発電を行う。   The direct combustion method completely burns biomass, and for example, a combustion furnace such as a stoker furnace, a fluidized bed furnace, a fine powder combustion furnace, or a spouted bed furnace is used. Only the thermal energy can be recovered and utilized by the direct combustion method, and electricity is generated by generating hot water or steam by the thermal energy.

ガス化方式は、バイオマスを酸素や空気によって部分酸化させるものであり、例えば固定床炉、流動床炉、バブリング型流動床炉、循環流動床炉、循環移動床炉等のガス化炉が用いられる。該ガス化方式では、熱エネルギー及びガスを回収、利用することができ、該熱エネルギーを利用して温水や電力を得ることができる。また、該ガスを燃料として温水や電力を回収したり、熱源としてキルン炉等での助燃剤として利用することも可能である。   In the gasification method, biomass is partially oxidized by oxygen or air, and gasification furnaces such as a fixed bed furnace, a fluidized bed furnace, a bubbling type fluidized bed furnace, a circulating fluidized bed furnace, and a circulating moving bed furnace are used. . In the gasification method, thermal energy and gas can be recovered and used, and hot water and electric power can be obtained using the thermal energy. Moreover, it is also possible to collect hot water and electric power using the gas as fuel, or to use it as a heat source as a combustion aid in a kiln furnace or the like.

また、廃棄物焼却により発生するダイオキシン削減のための規制措置により、バイオマス等の産業廃棄物の単純焼却処理も規制されるようになり、単純な焼却処理が不可能となりつつある。一方で、建設廃木材のリサイクル推進が建設リサイクル法基本方針に盛り込まれ、該建設廃木材等のリサイクル処理が余儀なくされている。   In addition, due to regulatory measures to reduce dioxins generated by waste incineration, simple incineration processing of industrial waste such as biomass is also regulated, and simple incineration processing is becoming impossible. On the other hand, the promotion of recycling of construction waste wood is included in the basic policy of the Construction Recycling Law, and the construction waste wood and the like have to be recycled.

ところが、産業廃棄物及び一般廃棄物の国内総排出量は、通常0.5〜3トン/日程度で、前記バイオマスの主材である廃木材となると、1トン/日程度の排出量に留まり、前記直接燃焼方式やガス化方式における処理量と比較するとかなり少ない。特に廃木材は、一度家屋等の建設用材として用いられたものであり、経年により木材中の水分が低下して極めて低い含水率の素材となっている。ガス化炉においては、原料中に含有される水分により、ガス化炉内の気密性が上昇し、ガス化炉での操業安定性やガス化効率の向上に寄与するが、乾燥素材の場合は水分を供給する必要が生じる。しかしながら、廃木材に水分を供給しても、廃木材の原料中(素材中)にまで水分を含浸させ、含水率を高めることは困難であり、廃木材の外表面に付着した水は、ガス化炉への供給直後に蒸発してガス化炉内の気密性に寄与しない。したがって、バイオマスの処理及び有効利用は要求されているものの、同時にガス化炉での操業安定性やガス化効率の新たな向上技術の開発が望まれている。   However, the total domestic emission of industrial waste and general waste is usually about 0.5 to 3 tons / day, and when it becomes the waste wood that is the main material of the biomass, it is only about 1 ton / day. Compared with the processing amount in the direct combustion method or gasification method, it is considerably small. In particular, waste wood has been used once as a construction material for houses and the like, and has become a material with an extremely low moisture content due to a decrease in moisture in the wood over time. In the gasification furnace, the moisture contained in the raw material increases the gas tightness in the gasification furnace, which contributes to the improvement of operational stability and gasification efficiency in the gasification furnace. It becomes necessary to supply moisture. However, even if moisture is supplied to the waste wood, it is difficult to increase the water content by impregnating the waste wood into the raw material (in the raw material). It evaporates immediately after being supplied to the gasifier and does not contribute to the gas tightness in the gasifier. Therefore, although treatment and effective utilization of biomass are required, development of a new technology for improving operation stability and gasification efficiency in a gasification furnace is desired at the same time.

一方、製紙工場においては、近年の微細繊維を多く含む古紙パルプの高配合化と用紙の軽量化、抄紙機の高速化に伴うワイヤーパートでの急激かつ強制的な脱水により、該微細繊維の歩留まりや灰分の歩留まりが極めて低い状況である。その結果、各製紙工程にて排出される製紙スラッジが年々増加してきている。   On the other hand, in paper mills, the yield of fine fibers is increased by the rapid and forced dehydration at the wire part due to the high blending of waste paper pulp containing many fine fibers in recent years, the paper weight reduction, and the speed of the paper machine. And the yield of ash is very low. As a result, papermaking sludge discharged in each papermaking process has been increasing year by year.

特に、古紙パルプを使用した再生紙の生産比率の増加と古紙パルプの高配合化により、多量の古紙パルプが必要となり、古紙の使用量も増大している。新聞古紙や雑誌古紙等の古紙には、非塗工紙に使用された填料や塗工紙に使用された填料・顔料に由来する無機物が多く含まれているため、古紙処理工程からは、パルプ繊維と分離され、填料・顔料等の無機物が多く含まれた脱墨スラッジが多量に発生している。   In particular, a large amount of used paper pulp is required due to an increase in the production ratio of recycled paper using used paper pulp and a high blending of used paper pulp, and the amount of used paper is also increasing. Waste paper such as used newspapers and magazines contains a lot of inorganic substances derived from fillers used in uncoated paper and fillers and pigments used in coated paper. A large amount of deinking sludge separated from fibers and containing a large amount of inorganic substances such as fillers and pigments is generated.

このような填料・顔料等の無機物を多量に含む古紙処理工程から排出される脱墨スラッジや、各製紙工程から排出される排水・脱水スラッジ等の製紙スラッジは、従来、燃焼して減容化を図ったうえで、多くは埋立て処分されてきた。   Conventionally, deinking sludge discharged from waste paper processing processes that contain a large amount of inorganic substances such as fillers and pigments, and paper sludges such as wastewater and dewatered sludge discharged from each papermaking process, are conventionally burned to reduce the volume. Many have been disposed of in landfills.

しかしながら、環境保護、資源保護、ゴミ減少等に貢献することができる再生紙を、その品質を維持乃至向上しながら継続的に製造するためには、製紙工場にとって、このような製紙スラッジの再資源化や有効利用が重要な課題となってきている。   However, in order to continuously produce recycled paper that can contribute to environmental protection, resource protection, dust reduction, etc., while maintaining or improving its quality, paper mills need to recycle such paper sludge. And effective use have become important issues.

そこで、前記バイオマスや製紙スラッジを再資源化して有効利用するために、さらに各種処理方法が研究されてきている。   Therefore, various treatment methods have been further studied in order to recycle and effectively use the biomass and paper sludge.

例えば特許文献1には、高炉及びコークス炉、シャフト炉、ロータリーキルン、キュポラ、溶融炉やゴミのガス化溶融装置等の処理装置に、一般生ゴミや廃食品残渣、古紙や廃木材、家畜糞、活性汚泥類、製紙スラッジ、シュレッダー屑、廃プラスチック等炭化水素系を含んだ廃棄物、あるいは水分を含む廃棄物及び未利用資源を投入し、還元ガスとして生成した水素ガスを回収する方法が提案されている。   For example, in Patent Document 1, blast furnaces and coke ovens, shaft furnaces, rotary kilns, cupolas, melting furnaces and waste gasification and melting equipment, and other processing equipment such as general garbage and waste food residues, waste paper and waste wood, livestock dung, A method for recovering hydrogen gas generated as reducing gas by introducing waste containing hydrocarbons such as activated sludge, paper sludge, shredder scrap, waste plastic, or waste containing water and unused resources has been proposed. ing.

また例えば特許文献2には、1つの容器内に有機系廃棄物を熱分解する領域と発生した熱分解ガスを改質する領域とを備えるガス化炉を有し、該有機系廃棄物を熱分解する領域に、所定の定圧モル熱容量を有する固体状熱媒体が充填されたガス化装置を用い、有機系廃棄物を熱分解かつ改質してガス化する方法が提案されている。   Further, for example, Patent Document 2 has a gasification furnace having a region for thermally decomposing organic waste and a region for reforming generated pyrolysis gas in one container, and heats the organic waste. There has been proposed a method of gasifying organic waste by pyrolysis and reforming using a gasification apparatus in which a solid heat medium having a predetermined constant pressure molar heat capacity is filled in a region to be decomposed.

これらの方法により、いわゆるバイオマスや製紙スラッジを原料として利用し、資源としての熱エネルギーやガスを得ることは可能である。しかしながら、これらの方法では、原料の保有水分を適度に調整することができず、特に原料を揮発、熱分解させる際の反応系の気密性を維持することができず、ガスの生成効率や安定性が損なわれてしまうという問題がある。
特開2001−311084号公報 特開2005−146056号公報
By these methods, it is possible to use so-called biomass and papermaking sludge as raw materials to obtain thermal energy and gas as resources. However, in these methods, the water content of the raw material cannot be adjusted appropriately, and the gas tightness of the reaction system cannot be maintained especially when the raw material is volatilized or thermally decomposed. There is a problem that the performance is impaired.
JP 2001-311084 A JP 2005-146056 A

本発明は、前記背景技術に鑑みてなされたものであり、廃棄資源を有効利用し、燃料として回収可能なガスを効率よく、かつ安定して生成する方法を提供することを目的とする。   The present invention has been made in view of the background art described above, and an object of the present invention is to provide a method for efficiently and stably generating a gas that can be recovered as a fuel by effectively using waste resources.

本発明は、
生物由来有機系廃棄物と製紙スラッジとを混在させて非酸化性雰囲気下で熱分解し、発生した熱分解ガスをスチームと反応させることを特徴とする、有機物のガス化方法に関する。
The present invention
The present invention relates to a method for gasifying organic matter, characterized in that biological organic waste and paper sludge are mixed and thermally decomposed in a non-oxidizing atmosphere, and the generated pyrolysis gas is reacted with steam.

本発明のガス化方法は、廃棄資源を有効利用した資源循環型の方法であり、該ガス化方法により、燃料として回収可能なガスを熱量と共に効率よく、かつ安定して生成することができ、しかも操業変動に伴うピッチ分の析出を抑制することもできる。   The gasification method of the present invention is a resource circulation type method that effectively uses waste resources, and by the gasification method, a gas that can be recovered as fuel can be efficiently and stably generated together with the amount of heat. Moreover, it is possible to suppress the precipitation of the pitch due to operational fluctuations.

(実施の形態)
本発明のガス化方法では、生物由来有機系廃棄物と製紙スラッジとを原料として用い、両者を混在させて非酸化性雰囲気下で熱分解し、発生した熱分解ガスをスチームと反応させる。
(Embodiment)
In the gasification method of the present invention, biological organic waste and paper sludge are used as raw materials, both are mixed and thermally decomposed in a non-oxidizing atmosphere, and the generated pyrolysis gas is reacted with steam.

まず、本実施の形態に係るガス化方法に用いる原料について説明する。   First, the raw material used for the gasification method according to the present embodiment will be described.

本実施の形態に用いられる原料の1つである生物由来有機系廃棄物とは、例えば廃木材、間伐材、流木、廃割り箸、バーク材等の、生物由来で有機物を含有した木材廃棄物であり、通常含水率が低い原料である。   Biological organic waste, which is one of the raw materials used in the present embodiment, refers to biologically derived wood waste containing organic matter such as waste wood, thinned wood, driftwood, waste chopsticks, bark wood, etc. Yes, it is usually a raw material with low moisture content.

前記生物由来有機系廃棄物は、例えば後述するガス化装置におけるガス化炉にて処理が可能な形状であれば特に限定がなく、例えば板状、シート状、棒状、粒状、粉末状等であればよい。また該生物由来有機系廃棄物の大きさにも特に限定がなく、例えば板状、シート状であれば、面積が4〜20cm2程度で、厚さが5〜10mm程度のものを、棒状であれば、底面積が0.5〜2cm2程度で、長さが20〜100mm程度のものを、また粒状、粉末状であれば、粒径が0.5〜2cm程度のものを好適に用いることができる。 The biological organic waste is not particularly limited as long as it can be processed in a gasification furnace in a gasification apparatus to be described later, for example, a plate shape, a sheet shape, a rod shape, a granular shape, a powder shape, or the like. That's fine. The size of the biological organic waste is not particularly limited. For example, in the case of a plate shape or a sheet shape, an area having an area of about 4 to 20 cm 2 and a thickness of about 5 to 10 mm is a rod shape. If there is, the one having a bottom area of about 0.5 to 2 cm 2 and a length of about 20 to 100 mm is used, and if it is granular or powdery, one having a particle size of about 0.5 to 2 cm is preferably used. be able to.

生物由来有機系廃棄物は、前記したように、通常含水率が低い原料であり、その形状によっても異なるが、その含水率は40質量%以下であることが好ましい。   As described above, the biological organic waste is usually a raw material having a low moisture content, and the moisture content is preferably 40% by mass or less, although it varies depending on its shape.

なお、本明細書において、含水率はJIS Z 7302−3「廃棄物固形化燃料−第3部:水分試験方法」に記載の方法に準拠して測定した値をいう。   In addition, in this specification, a moisture content means the value measured based on the method as described in JISZ7302-3 "Waste solidified fuel-Part 3: Water test method."

本実施の形態では、生物由来有機系廃棄物として例えば前記のごとき低含水率を有するものが用いられ、しかも後述するように、該生物由来有機系廃棄物及び製紙スラッジを熱分解するにあたって適度な保有水分が必要であることから、該生物由来有機系廃棄物にあらかじめ乾燥処理を施さなくてもよい。   In the present embodiment, for example, those having a low water content as described above are used as the biological organic waste, and, as will be described later, it is appropriate to thermally decompose the biological organic waste and paper sludge. Since retained moisture is required, the biological organic waste does not have to be subjected to a drying treatment in advance.

本実施の形態に用いられる原料のもう1つである製紙スラッジとは、例えば、特に古紙リサイクル工程等の古紙から脱墨古紙パルプを製造する脱墨処理工程で発生する、例えば微細なパルプ繊維等の有機物と、多孔性の填料、顔料等の無機物、いわゆる炭酸カルシウム、カオリン、タルク、二酸化チタン、シリカ、アルミナ等の無機物とが含有される脱墨スラッジや、製紙工程から発生した各種排水スラッジを集合させて処理した工場排水スラッジや、製紙工程での微生物処理における余剰汚泥スラッジといった、有機物・無機物を含有した製紙工程からの廃棄物であり、通常含水率が高い原料である。   The papermaking sludge, which is another raw material used in the present embodiment, is, for example, generated in a deinking treatment process for producing deinked wastepaper pulp from wastepaper, such as a wastepaper recycling process, for example, fine pulp fibers, etc. Deinking sludge containing various organic substances and inorganic substances such as porous fillers and pigments, so-called calcium carbonate, kaolin, talc, titanium dioxide, silica, alumina, and various wastewater sludges generated from the papermaking process. Waste from the papermaking process containing organic and inorganic substances, such as factory wastewater sludge that has been collected and treated, and surplus sludge sludge in microbial treatment in the papermaking process, and is usually a raw material with a high water content.

含水率が高い工場排水スラッジや、製紙工程での微生物処理における余剰汚泥スラッジといった、有機物・無機物を含有した製紙工程からの廃棄物は、ガス化炉内に供給しても含有する水分を容易に気散させないことから、含水率の低い木材廃棄物と組み合わせることでガス化炉内の水分の適切な調節が可能になり、ガス化炉内の気密性を上昇させることが可能になるので、ガスの生成効率や安定性を向上させることができる。   Waste from the papermaking process that contains organic and inorganic substances, such as industrial wastewater sludge with a high water content and surplus sludge sludge from microbial treatment in the papermaking process, can easily contain moisture even if it is supplied to the gasifier. Since it does not disperse, it becomes possible to appropriately adjust the moisture in the gasifier by combining with wood waste with low moisture content, and it becomes possible to increase the gas tightness in the gasifier, so gas The production efficiency and stability of can be improved.

本実施の形態に係るガス化方法において、前記生物由来有機系廃棄物と共に、高い含水率で水分の保持能力の高い原料として製紙スラッジ等を用いることが大きな特徴の1つである。このように生物由来有機系廃棄物と製紙スラッジ等とを併用することで、非酸化性雰囲気下での熱分解の際に、例えば生物由来有機系廃棄物を単独で原料とした場合のように系内に水分を別途補給しなくとも、効率よくかつ安定してガス化を進行させることができる。   In the gasification method according to the present embodiment, it is one of the major features that papermaking sludge or the like is used as a raw material having a high moisture content and a high moisture retention capacity together with the biological organic waste. By using biological organic waste and paper sludge together in this way, when pyrolyzing in a non-oxidizing atmosphere, for example, when using biological organic waste as a raw material alone Gasification can proceed efficiently and stably without separately supplying water to the system.

製紙スラッジは、前記したように、通常含水率が高い原料であり、その種類によっても多少異なるが、その含水率は50質量%以上であることが好ましい。   As described above, papermaking sludge is usually a raw material having a high moisture content, and the moisture content is preferably 50% by mass or more, although it varies slightly depending on the type.

本実施の形態に係るガス化方法において、まず、生物由来有機系廃棄物と製紙スラッジとを、両者の質量比が特定範囲内に含まれるように調整して混在させて混合原料とし、ガス化装置内のガス化炉において、該混合原料を非酸化性雰囲気下で熱分解する。   In the gasification method according to the present embodiment, first, the biological organic waste and the papermaking sludge are mixed so that the mass ratio of both is included in a specific range to be a mixed raw material, and the gasification is performed. In the gasification furnace in the apparatus, the mixed raw material is pyrolyzed in a non-oxidizing atmosphere.

前記ガス化装置及びそれに備えられるガス化炉の仕様には特に限定がなく、例えば前記混合原料を熱分解し、さらに該熱分解によって発生した熱分解ガスをスチームと反応させることが可能なものであればよい。   There are no particular limitations on the specifications of the gasifier and the gasification furnace provided therein, for example, it is possible to thermally decompose the mixed raw material and to react the pyrolysis gas generated by the thermal decomposition with steam. I just need it.

前記ガス化炉としては、例えばアップドラフトガス化炉があげられる。該アップドラフトガス化炉は、炉下部層から上部層に向けて、灰化層、チャー層、揮発・熱分解層、未反応原料層の略4層の反応層を形成し、炉下部層からの過熱蒸気により原料をガス化させる一種の反応塔の構成からなる。このようなアップドラフトガス化炉では、炉下部層から供給される過熱蒸気によりチャー層下部で燃焼反応が生じ、これによってチャー層上部にて水性ガス化反応、発生炉ガス化反応等の吸熱反応が進行する。したがって、揮発・熱分解層は、燃料ガスとなるCOやH2が生成する反応を維持するために、下部からのガス流が適度な気密性を保持するような層構成を呈することが必要である。該揮発・熱分解層での気密性を適度に保持させるには、反応系が適度な保有水分を有するように調整すればよい。かかる保有水分が不充分であったり、逆に過剰であると、ガスの生成効率や生成安定性が損なわれる。 Examples of the gasification furnace include an updraft gasification furnace. The updraft gasification furnace forms approximately four reaction layers of an ashing layer, a char layer, a volatilization / pyrolysis layer, and an unreacted raw material layer from the lower layer to the upper layer. It consists of the kind of reaction tower which gasifies the raw material with the superheated steam. In such an updraft gasification furnace, a combustion reaction occurs in the lower part of the char layer due to the superheated steam supplied from the lower layer of the furnace, thereby causing an endothermic reaction such as a water gasification reaction and a generating furnace gasification reaction in the upper part of the char layer. Progresses. Therefore, the volatilization / pyrolysis layer needs to have a layer structure in which the gas flow from the lower part maintains an appropriate hermeticity in order to maintain the reaction of generating CO or H 2 as fuel gas. is there. In order to appropriately maintain the airtightness in the volatile / thermal decomposition layer, the reaction system may be adjusted so as to have appropriate retained moisture. If the retained moisture is insufficient or conversely excessive, the gas generation efficiency and generation stability are impaired.

本実施の形態に係るガス化方法では、前記したように、従来ガス化の原料として用いられている、比較的含水率が低い生物由来有機系廃棄物だけでなく、その構成成分中に多孔性の填料や顔料が含有され、比較的含水率が高い製紙スラッジを併用するので、容易に揮発しない該多孔性の填料や顔料に保持された水分によって反応系に適度な保有水分が付与される。したがって、非酸化性雰囲気下での熱分解の際に、例えば生物由来有機系廃棄物を単独で原料とした場合のように系内に水分を別途補給しなくとも、前記揮発・熱分解層での気密性が適度に保持され、ガスの生成効率や生成安定性が著しく向上する。   In the gasification method according to the present embodiment, as described above, not only biologically-derived organic waste having a relatively low moisture content, which is conventionally used as a raw material for gasification, but also its constituent components are porous. Since a paper sludge having a relatively high water content is used in combination with the above filler and pigment, moderately retained moisture is imparted to the reaction system by the moisture retained in the porous filler and pigment that does not easily volatilize. Therefore, when pyrolyzing in a non-oxidizing atmosphere, the volatile / pyrolytic layer does not need to be replenished with water, as in the case where a biological organic waste is used alone as a raw material. The gas tightness is moderately maintained, and the gas production efficiency and production stability are remarkably improved.

前記生物由来有機系廃棄物と製紙スラッジとを混在させる際に、製紙スラッジに対して生物由来有機系廃棄物が少なすぎると、混合原料の水分が過多となってガス温度が低下してしまい、逆に生物由来有機系廃棄物に対して製紙スラッジが少なすぎると、混合原料の水分が過少となってガス温度が上昇してしまうので、両者の質量比は、混合原料の水分が適切な量となるように適宜調整することが好ましい。   When mixing the biological organic waste and paper sludge, if there is too little biological organic waste relative to the paper sludge, the mixed raw material will have excessive moisture and the gas temperature will decrease, Conversely, if there is too little paper sludge for biological organic waste, the water content of the mixed raw material will be too low and the gas temperature will rise. It is preferable to adjust as appropriate.

また、前記したように、例えば生物由来有機系廃棄物の含水率は40質量%以下で、製紙スラッジの含水率は50質量%以上であるが、両者を混在させた混合原料の含水率は、前記揮発・熱分解層での気密性が適度に保持され、ガスの生成効率や生成安定性が向上するようにするには、35質量%以上、60質量%以下となるように調整することが好ましい。   In addition, as described above, for example, the moisture content of the biological organic waste is 40% by mass or less, and the moisture content of the paper sludge is 50% by mass or more. In order to maintain the airtightness in the volatile / thermal decomposition layer appropriately and improve the gas generation efficiency and generation stability, it is adjusted to be 35% by mass or more and 60% by mass or less. preferable.

生物由来有機系廃棄物と製紙スラッジとを混在させた混合原料を熱分解する際の加熱温度は、該混合原料の熱分解反応がほぼ終了し、充分な量の熱分解ガスを発生させることが可能な温度であればよく、例えば1000℃以上であることが好ましい。該加熱温度が前記下限値未満では、混合原料の熱分解が不充分となる恐れがある。   The heating temperature when pyrolyzing the mixed raw material in which biological organic waste and papermaking sludge are mixed is such that the thermal decomposition reaction of the mixed raw material is almost completed and a sufficient amount of pyrolytic gas is generated. Any temperature can be used, and for example, it is preferably 1000 ° C. or higher. When the heating temperature is less than the lower limit, the thermal decomposition of the mixed raw material may be insufficient.

前記熱分解の際の加熱手段として、点火時には例えばプロパンガス等のガスを用いるが、点火後は原料である生物由来有機系廃棄物が自燃し、熱分解が進行する。   As the heating means at the time of the pyrolysis, a gas such as propane gas is used at the time of ignition, but after ignition, the biological organic waste as a raw material burns and pyrolysis proceeds.

また前記混合原料を熱分解する際の圧力は、やはり該混合原料の熱分解反応がほぼ終了し、充分な量の熱分解ガスを発生させることが可能な圧力であればよく、特に限定されるものではない。   The pressure at which the mixed raw material is pyrolyzed is not particularly limited as long as the thermal decomposition reaction of the mixed raw material is almost completed and a sufficient amount of pyrolytic gas can be generated. It is not a thing.

前記混合原料は非酸化性雰囲気下で熱分解するが、該非酸化性雰囲気としては、例えば水蒸気と空気との混合気体や、チッ素ガス、ヘリウムガス等の不活性ガスの雰囲気があげられる。また該混合原料を熱分解に供する時間には特に限定がなく、熱分解反応がほぼ終了し、充分な量の熱分解ガスを発生させることが可能な時間であればよい。   The mixed raw material is thermally decomposed in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include a mixed gas of water vapor and air, and an inert gas atmosphere such as nitrogen gas and helium gas. The time for subjecting the mixed raw material to pyrolysis is not particularly limited as long as the pyrolysis reaction is almost completed and a sufficient amount of pyrolysis gas can be generated.

次に、前記のごとき熱分解により発生した熱分解ガスを、スチームと反応させ、例えばCO、H2等を多く含む燃料ガスを回収することができる。 Next, the pyrolysis gas generated by pyrolysis as described above can be reacted with steam to recover, for example, a fuel gas containing a large amount of CO, H 2 and the like.

前記熱分解ガスとスチームとを反応させる際には、例えば空気と水蒸気とを混合した混合気体を、ガス化炉下部から吹き込む等して供給すればよい。なお、前記熱分解ガスを発生させる際に、生物由来有機系廃棄物と製紙スラッジとを混在させた混合原料の含水率を例えば前記範囲内に調整することにより、該混合原料中の水をスチームとして用いることも可能である。   When the pyrolysis gas and steam are reacted, for example, a mixed gas in which air and water vapor are mixed may be supplied by blowing from the lower part of the gasification furnace. When generating the pyrolysis gas, the water content of the mixed raw material in which biological organic waste and paper sludge are mixed is adjusted within the above range, for example. Can also be used.

熱分解ガスに対するスチームの供給量は、例えば原料である生物由来有機系廃棄物及び製紙スラッジの種類や目的とする燃料ガスの性状等によっても異なり、一概に決定し得るものではなく、両者の反応が充分に進行し、充分な量及び所望の成分を有する燃料ガスが得られるように調整すればよい。   The amount of steam supplied to the pyrolysis gas differs depending on, for example, the type of biological organic waste and paper sludge used as raw materials and the properties of the target fuel gas, and cannot be determined in general. May be adjusted so that the fuel gas having a sufficient amount and a desired component can be obtained.

熱分解ガスとスチームとを反応させる際の反応温度は、両者の反応が終了し、充分な量及び所望の成分を有する燃料ガスを得ることが可能な温度であればよく、特に限定されるものではない。   The reaction temperature at the time of reacting the pyrolysis gas and steam is not particularly limited as long as the reaction of both ends and a fuel gas having a sufficient amount and a desired component can be obtained. is not.

また前記熱分解ガスとスチームとを反応させる際の圧力や時間は、両者の反応が終了し、充分な量及び所望の成分を有する燃料ガスを得ることが可能な圧力であればよく、いずれも特に限定されるものではない。   Further, the pressure and time for reacting the pyrolysis gas and steam may be any pressure as long as the reaction of both ends and a fuel gas having a sufficient amount and a desired component can be obtained. There is no particular limitation.

かくして得られる燃料ガスには、例えばCO、H2等が多く含まれており、各々通常の方法にて精製、濃縮等して適宜回収することができる。 The fuel gas thus obtained contains a large amount of, for example, CO, H 2 and the like, and can be appropriately recovered by purification, concentration, etc., respectively, by a usual method.

このように、本発明のガス化方法によれば、廃棄資源を有効に循環利用して、例えばCO、H2といった燃料ガスを熱量と共に効率よく、かつ安定して回収することができ、しかも操業変動に伴うピッチ分の析出を抑制することもできる。 As described above, according to the gasification method of the present invention, it is possible to efficiently and stably recover the fuel gas such as CO and H 2 together with the heat amount by effectively recycling and using the waste resources. It is also possible to suppress the precipitation of the pitch due to the fluctuation.

次に、本発明の有機物のガス化方法を以下の実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。   Next, the organic gasification method of the present invention will be described in more detail based on the following examples, but the present invention is not limited to these examples.

実施例1〜5及び比較例1〜2
以下に示す生物由来有機系廃棄物及び製紙スラッジを、以下の組み合わせで混在させた混合原料を準備した。該混合原料を、ガス化装置内のアップドラフトガス化炉(炉下部層から上部層に向けて、灰化層、チャー層、揮発・熱分解層及び未反応原料層からなる4層の反応層を備えたガス化炉)に供給し、水蒸気と空気との混合気体雰囲気下で熱分解し、熱分解ガスを発生させた。なお、かかる熱分解の際、点火時にはプロパンガスを使用し、その後は生物由来有機系廃棄物が自燃して熱分解が進行した。
Examples 1-5 and Comparative Examples 1-2
A mixed raw material in which the following biological organic waste and papermaking sludge were mixed in the following combinations was prepared. The mixed raw material is an updraft gasification furnace in a gasifier (four reaction layers comprising an ashing layer, a char layer, a volatilization / thermal decomposition layer, and an unreacted raw material layer from the lower layer to the upper layer) And pyrolyzed in a mixed gas atmosphere of water vapor and air to generate pyrolysis gas. In this thermal decomposition, propane gas was used at the time of ignition, and then the biological organic waste was burned and the thermal decomposition proceeded.

(生物由来有機系廃棄物)
A−1:板状・棒状廃木材混合材
(以下のA−2・A−3を略同量で混合した混合材、含水率:約35質量%)
A−2:板状廃木材(面積:約10cm2、厚さ:約5mm、含水率:約35質量%)
A−3:棒状廃木材(底面積:約1cm2、長さ:約50mm、含水率:約35質量%)
(製紙スラッジ)
B−1:脱墨・排水スラッジ混合材
(以下のB−2・B−3を略同量で混合した混合材、含水率:約50質量%)
B−2:脱墨スラッジ
(古紙から脱墨古紙パルプを製造する脱墨処理工程のフローテーション工程で
発生したもの、含水率:約50質量%)
B−3:排水スラッジ
(製紙工程からの各種排水スラッジを集合処理したもの、
含水率:約50質量%)
(混合原料の組み合わせ)
実施例1 A−1・B−1
2 A−2・B−2
3 A−2・B−3
4 A−3・B−2
5 A−3・B−3
比較例1 A−1のみ
2 B−1のみ
(Biological organic waste)
A-1: Plate / bar waste wood mixed material (mixed material in which the following A-2 and A-3 are mixed in substantially the same amount, moisture content: about 35% by mass)
A-2: Plate-like waste wood (area: about 10 cm 2 , thickness: about 5 mm, moisture content: about 35% by mass)
A-3: Rod-like waste wood (bottom area: about 1 cm 2 , length: about 50 mm, moisture content: about 35% by mass)
(Paper sludge)
B-1: Deinking / drainage sludge mixed material (mixed material in which the following B-2 and B-3 are mixed in substantially the same amount, moisture content: about 50% by mass)
B-2: Deinking sludge (In the flotation process of the deinking process to manufacture deinked wastepaper pulp from wastepaper
Generated, water content: about 50% by mass)
B-3: Wastewater sludge (A collection of various wastewater sludge from the papermaking process,
(Moisture content: about 50% by mass)
(Combination of mixed raw materials)
Example 1 A-1 and B-1
2 A-2 / B-2
3 A-2 / B-3
4 A-3 / B-2
5 A-3 / B-3
Comparative Example 1 A-1 only 2 B-1 only

次に、空気と水蒸気とを混合した混合空気をガス化炉下部から吹き込み、発生した熱分解ガスとスチームとを反応させてガス化を行った。   Next, mixed air in which air and water vapor were mixed was blown from the lower part of the gasification furnace, and the generated pyrolysis gas and steam were reacted to perform gasification.

その結果、実施例1〜5では、効率よくかつ安定した状態で燃料混合ガスを得ることができた。しかし、比較例1〜2では、ガス化炉内のガス化反応が進行しないだけでなく、不安定で燃料混合ガスとして使用不可であった。   As a result, in Examples 1-5, the fuel mixed gas was able to be obtained in an efficient and stable state. However, in Comparative Examples 1 and 2, not only did the gasification reaction in the gasification furnace not proceed, but it was unstable and could not be used as a fuel mixed gas.

なお、各実施例及び比較例において、原料の準備から燃料混合ガスを得るまでを1セットとした一連の操作を、各々3セットずつ行った。   In each of the examples and comparative examples, a series of operations in which one set from the preparation of the raw material to obtaining the fuel mixed gas was performed was performed in three sets.

本発明のガス化方法は、廃棄資源を有効利用した資源循環型の方法であり、例えば建設業、環境事業、燃料供給開発事業等の分野にて広く利用することができる。   The gasification method of the present invention is a resource circulation method that effectively uses waste resources, and can be widely used in fields such as the construction industry, environmental business, and fuel supply development business.

Claims (3)

生物由来有機系廃棄物と製紙スラッジとを混在させて非酸化性雰囲気下で熱分解し、発生した熱分解ガスをスチームと反応させることを特徴とする、有機物のガス化方法。   A method for gasifying an organic substance, comprising mixing biological organic waste and paper sludge, pyrolyzing in a non-oxidizing atmosphere, and reacting the generated pyrolysis gas with steam. 含水率が40質量%以下の生物由来有機系廃棄物と、含水率が50質量%以上の製紙スラッジとを混在させる、請求項1に記載のガス化方法。   The gasification method according to claim 1, wherein a biological organic waste having a water content of 40% by mass or less and papermaking sludge having a water content of 50% by mass or more are mixed. 生物由来有機系廃棄物と製紙スラッジとを混在させた混合原料の含水率が35〜60質量%となるように調整する、請求項1又は2に記載のガス化方法。   The gasification method of Claim 1 or 2 adjusted so that the moisture content of the mixed raw material which mixed biological organic waste and papermaking sludge may be 35-60 mass%.
JP2007285841A 2007-11-02 2007-11-02 Organic matter gasification method Pending JP2009114242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007285841A JP2009114242A (en) 2007-11-02 2007-11-02 Organic matter gasification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007285841A JP2009114242A (en) 2007-11-02 2007-11-02 Organic matter gasification method

Publications (1)

Publication Number Publication Date
JP2009114242A true JP2009114242A (en) 2009-05-28

Family

ID=40781749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285841A Pending JP2009114242A (en) 2007-11-02 2007-11-02 Organic matter gasification method

Country Status (1)

Country Link
JP (1) JP2009114242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335668A (en) * 2010-07-19 2012-02-01 车磊 Method for treating industrial hazardous wastes containing organic solvent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311084A (en) * 2000-04-26 2001-11-09 Kangen Yoyu Gijutsu Kenkyusho:Kk Method for recovering hydrogen from waste or unutilized resource
JP2004083340A (en) * 2002-08-27 2004-03-18 Japan Planning Organization Inc Process for recovering hydrogen from organic waste
JP2004262701A (en) * 2003-02-28 2004-09-24 Jfe Plant & Service Corp Method and apparatus for recovering calcium carbonate from papermaking sludge waste
JP2005146056A (en) * 2003-11-12 2005-06-09 Aimura Kensetsu Kk Apparatus for gasifying organic waste
JP2006225483A (en) * 2005-02-16 2006-08-31 Nippon Steel Corp Method for carbonizing biomass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311084A (en) * 2000-04-26 2001-11-09 Kangen Yoyu Gijutsu Kenkyusho:Kk Method for recovering hydrogen from waste or unutilized resource
JP2004083340A (en) * 2002-08-27 2004-03-18 Japan Planning Organization Inc Process for recovering hydrogen from organic waste
JP2004262701A (en) * 2003-02-28 2004-09-24 Jfe Plant & Service Corp Method and apparatus for recovering calcium carbonate from papermaking sludge waste
JP2005146056A (en) * 2003-11-12 2005-06-09 Aimura Kensetsu Kk Apparatus for gasifying organic waste
JP2006225483A (en) * 2005-02-16 2006-08-31 Nippon Steel Corp Method for carbonizing biomass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335668A (en) * 2010-07-19 2012-02-01 车磊 Method for treating industrial hazardous wastes containing organic solvent

Similar Documents

Publication Publication Date Title
JP5687409B2 (en) Waste treatment method and apparatus
KR100445363B1 (en) Waste treatment apparatus and method through vaporization
Zhang et al. A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment
DK2385096T3 (en) Process for drying biomass
US4398476A (en) Method for incinerating sewage sludge
JP4377824B2 (en) Waste melting treatment method using biomass
Han et al. Thermal characterization and syngas production from the pyrolysis of biophysical dried and traditional thermal dried sewage sludge
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
CN108314040A (en) A kind of method of wood substance grain gasifying electricity generation co-producing active carbon
JP3916179B2 (en) High temperature gasification method and apparatus for waste
JP7140341B2 (en) Hydrogen production method using biomass as raw material
JP2009233619A (en) Organic waste treatment method, gasifying furnace, reforming furnace and organic waste treatment apparatus
CN105567327A (en) Method for preparing hydrogen-rich fuel gas by gasifying high-humidity sludge based on blast furnace slag waste heat recovery
JP5385396B2 (en) Method for producing hydrogen-containing gas
JP2009013027A (en) System for producing hydrogen using biomass
JP4246456B2 (en) Method for recovering hydrogen from organic waste
JP2007031492A (en) Method for producing hydrogen from sludge
JP4218443B2 (en) Ferro-coke manufacturing method
JP2009114242A (en) Organic matter gasification method
EP2208000B1 (en) Method and apparatus for simultaneous gasification of organic materials and residual humus materials of stabilized municipal and industrial sewage sludges
JP4397423B1 (en) Gasification method
JP4397424B1 (en) Gasification method
US20190276746A1 (en) Plasma arc carbonizer
JP2004210904A (en) Gasification system of biomass
JP2005241054A (en) Waste material melting method using powder biomass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120827