JP2009110808A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2009110808A
JP2009110808A JP2007281944A JP2007281944A JP2009110808A JP 2009110808 A JP2009110808 A JP 2009110808A JP 2007281944 A JP2007281944 A JP 2007281944A JP 2007281944 A JP2007281944 A JP 2007281944A JP 2009110808 A JP2009110808 A JP 2009110808A
Authority
JP
Japan
Prior art keywords
sealed battery
safety valve
battery
groove
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007281944A
Other languages
Japanese (ja)
Inventor
Shuichi Yamashita
修一 山下
Masanori Ogi
雅統 大木
Shuichi Matsuura
周一 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007281944A priority Critical patent/JP2009110808A/en
Publication of JP2009110808A publication Critical patent/JP2009110808A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed battery superior in safety at a low cost. <P>SOLUTION: In a sealed battery sealed by swaging a sealing piece 10 at an opening of an exterior cladding can 20 having a bottomed cylindrical shape, the sealing piece 10 comprises: a terminal cap 5 having an external terminal 6 projecting outward from the battery; a safety valve 3 situated more inside of the battery than the terminal cap 5 and conductively connected with the terminal cap 5 at its peripheral portion; and a terminal plate 1 situated more inside of the battery than the safety valve 3, electrically connected with an electrode via an electrode tab 8, and conductively connected with the safety valve 3 by ultrasonic-welding its central portion with the safety valve 3 via an insulating plate 2 at the peripheral portion thereof. A central portion of the terminal plate 1 has a thin portion 1b having a wall thinner than a remaining area, and the thin portion 1b has a rupture groove 1c for stopping conductivity between the safety valve 3 and the terminal plate 1 by the rupture of itself when the internal pressure of the battery is increased in a form of surrounding the welding portion. The rupture groove 1c has a shape for mitigating stress at the time of welding. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、密閉型電池の改良に関し、より詳しくは密閉型電池の密閉性の向上に関する。   The present invention relates to an improvement in a sealed battery, and more particularly to an improvement in the sealing performance of a sealed battery.

非水電解質二次電池は、高いエネルギー密度を有し、高容量であるため、携帯機器の駆動電源として広く利用されている。この非水電解質二次電池には、極めて反応性の高い物質が用いられているため、安全性の確保が重要となる。   Nonaqueous electrolyte secondary batteries have high energy density and high capacity, and are therefore widely used as drive power sources for portable devices. In this non-aqueous electrolyte secondary battery, since a highly reactive substance is used, ensuring safety is important.

非水電解質二次電池の安全性を高めるためには、電池を密閉化するとともに、電池内部で異常が生じた場合には速やかに通電を遮断する等の機構が不可欠である。このため、この種の電池の封口体には、電池内圧が上昇した場合に動作する電流遮断機構が組み込まれている。   In order to improve the safety of the non-aqueous electrolyte secondary battery, a mechanism is required such as sealing the battery and quickly shutting off the current when an abnormality occurs inside the battery. For this reason, a current blocking mechanism that operates when the internal pressure of the battery rises is incorporated in the sealing body of this type of battery.

電流遮断機構を組み込んだ密閉型電池に関する技術としては、下記特許文献1、2がある。   The following Patent Documents 1 and 2 are related to a sealed battery incorporating a current interruption mechanism.

特開2000-48801号公報JP 2000-48801 A 特開平10-64499号公報Japanese Patent Laid-Open No. 10-64499

しかし、これらの技術では、電流遮断の作動圧にバラツキが生じたり、電流遮断機構を組み込んだ封口体の作製における溶接工程において、溶接のストレスにより機械的強度の弱い部分が破断して、歩留まりが低下したりするという問題があった。   However, in these technologies, the working pressure of current interruption varies, and in the welding process in the production of a sealing body incorporating a current interruption mechanism, a portion with weak mechanical strength is broken due to welding stress, and the yield is increased. There was a problem of being lowered.

本発明は、この問題を解決するためになされたものであって、安全性に優れた密閉型電池を高い歩留まりで提供することを課題とする。   The present invention has been made to solve this problem, and it is an object of the present invention to provide a sealed battery excellent in safety at a high yield.

上記課題を解決するための本発明は次のように構成されている。
有底筒状の外装缶20の開口部に封口体10をカシメ固定することにより密閉した密閉型電池において、前記封口体10は、電池外方に突出した外部端子部6を有する端子キャップ5と、前記端子キャップ5より電池内方に位置し、周辺部が前記端子キャップ5と通電可能に接続された安全弁3と、前記安全弁3より電池内方に位置し、電極タブ8を介して電極と電気的に接続され、周辺部に絶縁板2を介してその中央部が前記安全弁3と超音波溶接されることにより前記安全弁3と通電可能に接続された端子板1と、を有し、前記端子板1の中央部には、その残余の領域よりも肉厚の薄い薄肉部1bが設けられ、且つ当該薄肉部1bには、溶接部を囲むように、電池内圧が上昇したときに破断して前記安全弁3と前記端子板1との通電を阻止する破断溝1cが設けられ、前記破断溝1cは、溶接時のストレスを緩和する形状であることを特徴とする。
The present invention for solving the above problems is configured as follows.
In a sealed battery sealed by caulking and fixing the sealing body 10 to the opening of the bottomed cylindrical outer can 20, the sealing body 10 includes a terminal cap 5 having an external terminal portion 6 protruding outward from the battery. The safety valve 3 is located inward of the battery from the terminal cap 5 and has a peripheral portion connected to the terminal cap 5 so as to be energized; the safety valve 3 is located inward of the battery from the safety valve 3; A terminal plate 1 that is electrically connected and has a central portion thereof ultrasonically welded to the safety valve 3 via an insulating plate 2 at a peripheral portion thereof, and is connected to the safety valve 3 so as to be energized, The central portion of the terminal plate 1 is provided with a thin portion 1b that is thinner than the remaining region, and the thin portion 1b breaks when the battery internal pressure rises so as to surround the welded portion. This prevents the safety valve 3 and the terminal plate 1 from being energized. Breaking groove 1c is provided to the rupture grooves 1c is characterized in that it is shaped to relieve stress during welding.

封口体10は、図1に示すように、外装缶20の開口部に絶縁ガスケット30とともにカシメ固定されるため、端子板1の周辺部1aにはカシメ固定による圧力や変形力が加えられる。このため、端子板1の周辺部1aはある程度の強度が必要であり、ある程度の肉厚を確保する必要がある。この一方、端子板1には、電池内圧が上昇したときに破断して安全弁3と端子板1との通電を阻止する機能が求められる。このため、端子板1の溶接部の周囲には、溶接部(通電接触部)を囲うように、機械的強度の弱い部分(残肉厚が薄い部分)を設ける必要がある。また、所望の圧力で確実に端子板を破断させるためには、破断する基点となる部分(破断溝1c)を設けることが好ましい。ここで、肉厚が厚い部分に直接、残肉厚の薄い破断溝1cを設けるためには、強い圧力を加える必要があるが、強い圧力を加えて破断溝1cを設けると、破断溝1cの残肉厚のバラツキが大きくなり、所望の圧力で確実に破断溝1cを破断させることができなくなる。上記構成では、図2(b)に示すように、端子板1の中央部には、その残余の領域(周辺部1a)よりも肉厚の薄い薄肉部1bが設けられ、且つ当該薄肉部に破断溝1cが設けられている。このため、破断溝1cの形成に強い圧力を必要としない。よって、所望の圧力で確実に破断溝1cを破断させることができ、安全性が向上する。   As shown in FIG. 1, the sealing body 10 is caulked and fixed together with the insulating gasket 30 in the opening of the outer can 20, so that pressure and deformation force due to caulking are applied to the peripheral portion 1 a of the terminal board 1. For this reason, the peripheral part 1a of the terminal board 1 needs a certain amount of strength, and needs to ensure a certain thickness. On the other hand, the terminal plate 1 is required to have a function of breaking when the internal pressure of the battery increases and preventing the safety valve 3 and the terminal plate 1 from being energized. For this reason, it is necessary to provide a portion with a low mechanical strength (a portion having a thin remaining thickness) around the welded portion of the terminal plate 1 so as to surround the welded portion (the current contact portion). Further, in order to reliably break the terminal plate with a desired pressure, it is preferable to provide a portion (breaking groove 1c) that serves as a base point to be broken. Here, it is necessary to apply a strong pressure in order to directly provide the breaking groove 1c having a thin remaining thickness directly in the thick portion, but if the breaking groove 1c is provided by applying a strong pressure, the breaking groove 1c The variation in the remaining thickness increases, and the fracture groove 1c cannot be reliably broken at a desired pressure. In the above configuration, as shown in FIG. 2 (b), the central portion of the terminal board 1 is provided with a thin portion 1b that is thinner than the remaining region (peripheral portion 1a), and the thin portion A breaking groove 1c is provided. For this reason, a strong pressure is not required for formation of the fracture | rupture groove | channel 1c. Therefore, the breaking groove 1c can be reliably broken at a desired pressure, and safety is improved.

また、端子板1と安全弁3とを超音波溶接する時に、残肉厚の薄い破断溝1cにストレス(振動によるストレス)がかかり、破断溝1cが破断してしまい、歩留まりが悪くなるという問題がある。ここで、破断溝1cの形状を、溶接時のストレスを緩和することができる形状とすると、このような問題が生じなくなる。このため、安全性に優れた密閉型電池を高い歩留まりで生産することができる。   Further, when the terminal plate 1 and the safety valve 3 are ultrasonically welded, a stress (stress due to vibration) is applied to the breaking groove 1c having a thin remaining thickness, and the breaking groove 1c is broken, resulting in a poor yield. is there. Here, if the shape of the fracture groove 1c is a shape that can relieve stress during welding, such a problem does not occur. For this reason, a sealed battery excellent in safety can be produced with a high yield.

ここで、ストレスを緩和可能な溝形状としては、破断溝の断面形状を四角以上の多角形状(図3参照)としたり、断面形状において、破断溝1cの先端部分をR化した形状(図2(b)参照)としたりすることが好ましい。   Here, as the groove shape that can relieve stress, the cross-sectional shape of the fractured groove is a polygonal shape of four or more squares (see FIG. 3), or the shape of the cross-sectional shape in which the tip of the fractured groove 1c is rounded (FIG. 2). (See (b)).

破断溝1cの先端部分をR化(曲線化)した場合、Rの曲率半径を0.03mm以上とすることが好ましい。また、Rの曲率半径を0.2mmよりも大きくした場合、ストレス緩和の向上効果がほぼ上限に達するとともに、破断溝1cの大きさが大きくなりすぎて、所望の圧力で破断溝を破断させ難くなる。よって、断面形状において破断溝1cの先端部分をR化させた場合、Rの曲率半径を、0.03〜0.2mmとすることが好ましい。   When the tip of the fracture groove 1c is rounded (curved), the radius of curvature of R is preferably 0.03 mm or more. Further, when the radius of curvature of R is larger than 0.2 mm, the effect of improving stress relaxation reaches almost the upper limit, and the size of the fracture groove 1c becomes too large, making it difficult to break the fracture groove with a desired pressure. Become. Therefore, when the tip end portion of the fracture groove 1c is R-shaped in the cross-sectional shape, the radius of curvature of R is preferably 0.03 to 0.2 mm.

上記構成において、前記破断溝1cの残肉厚をA、前記薄肉部1bの肉厚をBとしたとき、0.4≦A/B<1が成立する構成とすることができる。   In the above configuration, when the remaining thickness of the breaking groove 1c is A and the thickness of the thin portion 1b is B, 0.4 ≦ A / B <1 can be established.

薄肉部1bに対する破断溝1cの相対的な厚み(A/B)が小さすぎると、溶接によるストレスを確実に緩和できなくなるおそれがある。このため、A/Bの値は、0.4以上であることが好ましい。また、A/Bの値の上限値は特に設けなくてもよいが、所望の圧力で確実に破断溝1cを破断させるためには、A/Bの値は0.8以下であることが好ましく、0.6以下であることがより好ましい。   If the relative thickness (A / B) of the fracture groove 1c with respect to the thin-walled portion 1b is too small, there is a risk that stress due to welding cannot be relieved reliably. For this reason, it is preferable that the value of A / B is 0.4 or more. In addition, the upper limit value of the A / B value is not particularly required, but the A / B value is preferably 0.8 or less in order to reliably break the fracture groove 1c with a desired pressure. More preferably, it is 0.6 or less.

上記構成において、前記薄肉部1bの肉厚が0.1〜0.5mmである構成とすることができる。   The said structure WHEREIN: It can be set as the structure whose thickness of the said thin part 1b is 0.1-0.5 mm.

薄肉部1bの肉厚が厚すぎると、破断溝1cの形成のために大きな圧力を必要とするため、破断溝1cの作動圧力のバラツキが大きくなるおそれがある。他方、薄肉部1bの肉厚が薄すぎると、破断溝1cを形成する際に端子板1が破断してしまうおそれがある。よって、薄肉部1bの肉厚を、上記範囲内に規制することが好ましい。   If the thin wall portion 1b is too thick, a large pressure is required to form the fractured groove 1c, so that there is a risk that the operating pressure of the fractured groove 1c varies greatly. On the other hand, if the thin portion 1b is too thin, the terminal plate 1 may be broken when the fracture groove 1c is formed. Therefore, it is preferable to regulate the thickness of the thin portion 1b within the above range.

上記構成において、前記破断溝1cが、前記薄肉部1bの外周縁よりも中央側に設けられている構成とすることができる。   The said structure WHEREIN: The said fracture | rupture groove | channel 1c can be set as the structure provided in the center side rather than the outer periphery of the said thin part 1b.

破断溝1cが薄肉部1bの外周縁に設けられていると、溶接の際のストレスを十分に緩和させることができなくなり、破断溝1cが破断するおそれがある。よって、破断溝1cは、薄肉部1bの外周縁よりも中央側に設けることが好ましい。   If the breaking groove 1c is provided on the outer peripheral edge of the thin portion 1b, the stress during welding cannot be sufficiently relaxed, and the breaking groove 1c may be broken. Therefore, it is preferable to provide the fracture | rupture groove | channel 1c in the center side rather than the outer periphery of the thin part 1b.

上記で説明したように、本発明によると、所望の圧力で確実に作動する安全機構を備えた密閉型電池を生産性よく提供することができる。   As described above, according to the present invention, a sealed battery including a safety mechanism that operates reliably at a desired pressure can be provided with high productivity.

本発明を実施するための最良の形態を、図面を用いて詳細に説明する。なお、本発明は下記の形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができる。   The best mode for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following form, In the range which does not change the summary, it can change suitably and can implement.

(実施の形態1)
図1は、本実施の形態にかかる密閉型電池の要部拡大断面図であり、図2(a)は、本実施の形態にかかる密閉型電池に用いる封口体の断面図であり、図2(b)は、図2(a)の要部拡大断面図である。
(Embodiment 1)
1 is an enlarged cross-sectional view of a main part of the sealed battery according to the present embodiment, and FIG. 2A is a cross-sectional view of a sealing body used in the sealed battery according to the present embodiment. (B) is a principal part expanded sectional view of Fig.2 (a).

図1、図2に示すように、封口体10は、電極タブ8を介して正極または負極と電気的に接続される端子板1と、電池外方に突出した外部端子部6を有する端子キャップ5と、端子板1と端子キャップ5との間に介在し、中央部が電池内方側に突出した部分(通電接触部7)を有する安全弁3と、を備えている。また、端子板1の中央部には、その残余の領域(周辺部1a)よりも肉厚の薄い薄肉部1bが設けられ、当該薄肉部1bの電池内方面には、電池内圧が上昇した際に破断して端子板1と安全弁3との電気的接続を遮断する、平面視リング状の破断溝1cが設けられている。また、安全弁3と端子板1とが超音波溶接により固定されている。   As shown in FIGS. 1 and 2, the sealing body 10 includes a terminal plate 1 that is electrically connected to a positive electrode or a negative electrode through an electrode tab 8, and a terminal cap having an external terminal portion 6 that protrudes outward from the battery. 5, and a safety valve 3 that is interposed between the terminal plate 1 and the terminal cap 5 and has a portion (a current-carrying contact portion 7) whose central portion protrudes inward of the battery. Further, the central portion of the terminal plate 1 is provided with a thin portion 1b that is thinner than the remaining region (peripheral portion 1a), and when the battery internal pressure rises on the inner surface of the battery of the thin portion 1b. There is provided a ring-shaped fracture groove 1c that is broken in a plan view and cuts off the electrical connection between the terminal plate 1 and the safety valve 3. Further, the safety valve 3 and the terminal plate 1 are fixed by ultrasonic welding.

また、封口体10は、安全弁3が電流を遮断する際、安全弁3と端子板1との電気的接触を防止する絶縁板2と、安全弁3と端子キャップ5との間に介在する中間材4と、を備えている。また、安全弁3の電池外方面には、電池内圧が上昇した際に破断して開放孔を形成し、電池内部のガスを電池外部に放出させるためのノッチ3aが設けられている。   The sealing body 10 includes an insulating plate 2 that prevents electrical contact between the safety valve 3 and the terminal plate 1 when the safety valve 3 cuts off the current, and an intermediate material 4 interposed between the safety valve 3 and the terminal cap 5. And. Further, a notch 3a is formed on the outer surface of the battery of the safety valve 3 so as to be broken to form an open hole when the battery internal pressure rises and to release the gas inside the battery to the outside of the battery.

なお、中間材4は、端子キャップ5と安全弁3(端子キャップ5にはある程度の強度が必要である一方、安全弁3には変形しやすいことが求められるため、通常異なる材料が用いられる)との溶接固定を容易にするためのものであり、本発明の必須の構成要素ではない。   The intermediate material 4 is composed of a terminal cap 5 and a safety valve 3 (the terminal cap 5 requires a certain degree of strength, but the safety valve 3 is required to be easily deformed, and thus different materials are usually used). It is for facilitating welding and fixing and is not an essential component of the present invention.

また、図1に示すように、外装缶20の内部には電極体40が収容され、当該電極体の電極と封口体10とが、電極タブ8により電気的に接続されている。また、外装缶20の開口部は、絶縁ガスケット30を介して封口体10がカシメ固定されて封口されている。   As shown in FIG. 1, an electrode body 40 is accommodated in the outer can 20, and the electrode of the electrode body and the sealing body 10 are electrically connected by the electrode tab 8. Further, the opening of the outer can 20 is sealed with the sealing body 10 being caulked and fixed via an insulating gasket 30.

この密閉型電池の電流遮断の動作を説明する。電池内圧が上昇すると、安全弁3の中央部が持ち上がるように変形し、この変形に伴い、端子板1の中央部が持ち上がるように変形する。電池内圧が所定の値になると、端子板1の薄肉部1bに設けられた平面視リング状の破断溝1cが破断して、端子板1と安全弁3との電気的な接続が遮断され、電流が遮断される。さらに電池内圧の上昇が進むと、安全弁3に設けられたノッチ3aが破断して開放孔が形成され、電池内部のガスが開放孔を経由して電池外部に放出される。これにより電池の安全性が確保される。   The operation of interrupting the current of the sealed battery will be described. When the battery internal pressure rises, the center part of the safety valve 3 is deformed so as to be lifted, and along with this deformation, the terminal part 1 is deformed so that the center part is lifted. When the internal pressure of the battery reaches a predetermined value, the ring-shaped fracture groove 1c provided in the thin portion 1b of the terminal plate 1 is broken, and the electrical connection between the terminal plate 1 and the safety valve 3 is interrupted. Is cut off. When the battery internal pressure further increases, the notch 3a provided in the safety valve 3 is broken to form an open hole, and the gas inside the battery is released to the outside of the battery through the open hole. This ensures the safety of the battery.

本発明を、実験例を用いて詳細に説明する。   The present invention will be described in detail using experimental examples.

[実験1]
(実験例1)
〈封口体の作製〉
厚み0.5mmのアルミニウム板を円形に打ち抜き、その中央部(直径3mmの領域)を鍛造することにより、肉厚が0.1mmである薄肉部1bを形成した。この後、平面視リング状で且つ先端部がR化された(Rの曲率半径が0.03mm)の加圧ジグを、薄肉部1bに押し当ててプレスし、残肉厚が0.06mmである破断溝1cを形成し、端子板1を作製した。
[Experiment 1]
(Experimental example 1)
<Preparation of sealing body>
A thin plate 1b having a thickness of 0.1 mm was formed by punching out an aluminum plate having a thickness of 0.5 mm in a circular shape and forging the central portion (region having a diameter of 3 mm). Thereafter, a pressing jig having a ring shape in plan view and having a rounded tip (R radius of curvature is 0.03 mm) is pressed against the thin portion 1b and pressed, and the remaining thickness is 0.06 mm. A certain fracture groove 1c was formed, and the terminal plate 1 was produced.

アルミニウム板に、断面V字状のノッチを形成すると共に中心部をプレスし通電接触部7(凸部)を形成した後、所定形状に打ち抜いて、図2に示すような安全弁3を作製した。
この後、安全弁3の上面に、ニッケルめっきが施された鉄製の端子キャップ5を、ニッケル−アルミニウムクラッド材製の中間材4を介してレーザ溶接し、下面に、樹脂製の絶縁板2を介してアルミニウム製の端子板1を超音波溶接し、封口体10を作製した。なお、中間材4のニッケル面は端子キャップ5と面し、アルミニウム面は安全弁3と面するように配置した。
A notch having a V-shaped cross section was formed on an aluminum plate, and the central portion was pressed to form an energizing contact portion 7 (convex portion), which was then punched into a predetermined shape to produce a safety valve 3 as shown in FIG.
Thereafter, an iron terminal cap 5 plated with nickel is laser-welded to the upper surface of the safety valve 3 via an intermediate material 4 made of nickel-aluminum clad material, and a resin insulating plate 2 is interposed on the lower surface. Then, the aluminum terminal plate 1 was ultrasonically welded to produce a sealing body 10. Note that the nickel surface of the intermediate member 4 faces the terminal cap 5, and the aluminum surface faces the safety valve 3.

〈仮電池の組み立て〉
圧力センサと加圧装置を組み込み、上記封口体10により外装缶20の開口を、絶縁ガスケット30を介してカシメ封止することにより、実験例1に係る仮電池を作製した。
<Assembly of temporary battery>
A temporary battery according to Experimental Example 1 was manufactured by incorporating a pressure sensor and a pressurizing device, and sealing the opening of the outer can 20 with the sealing body 10 via the insulating gasket 30.

(実験例2)
端子板1に破断溝1cを設けなかったこと以外は、上記実験例1と同様にして、図5に示す実験例2に係る仮電池を作製した。なお、本実験例は、本発明の範囲外である。
(Experimental example 2)
A temporary battery according to Experimental Example 2 shown in FIG. 5 was produced in the same manner as in Experimental Example 1 except that the terminal plate 1 was not provided with the breaking groove 1c. Note that this experimental example is outside the scope of the present invention.

〔作動圧力の測定〕
上記実施例1、2にかかる仮電池をそれぞれ30個用意し、加圧装置により仮電池内部の圧力を上昇させて、電流が遮断される圧力を圧力センサにより測定した。この結果を、下記表1に示す。
[Measurement of working pressure]
Thirty temporary batteries according to Examples 1 and 2 were prepared, the pressure inside the temporary battery was increased by a pressurizing device, and the pressure at which the current was interrupted was measured by a pressure sensor. The results are shown in Table 1 below.

上記表1から、薄肉部1bに破断溝1cを設けた実験例1の作動圧は11.5〜13.2kgf/cmと、薄肉部1bに破断溝1cを設けなかった実験例2の作動圧の11.8〜14.3kgf/cmよりも小さく、且つバラツキが小さいことがわかる。 From Table 1, the operating pressure of Experimental Example 1 in which a breaking groove 1c to the thin portion 1b has a 11.5~13.2kgf / cm 2, the operation of the experimental example 2 not provided with a breaking groove 1c to the thin portion 1b It can be seen that the pressure is smaller than 11.8 to 14.3 kgf / cm 2 and the variation is small.

このことは、次のように考えられる。薄肉部1bに薄肉部の肉厚よりも残肉厚が小さい破断溝1cを設けると、電池内圧の上昇時にこの破断溝1cを基点として端子板1が破断する。他方、破断溝1cを設けていないと、破断する際の基点位置にバラツキが生じる。このため、薄肉部1bに破断溝1cを設けた実験例1は、破断溝1cを設けていない実験例2よりも作動圧が小さくなるとともに、作動圧のバラツキが小さくなる。   This is considered as follows. If the rupture groove 1c having a remaining thickness smaller than the thickness of the thin wall portion is provided in the thin wall portion 1b, the terminal plate 1 is broken with the rupture groove 1c as a base point when the battery internal pressure increases. On the other hand, if the breaking groove 1c is not provided, variation occurs in the base point position when breaking. For this reason, in Experimental Example 1 in which the rupture groove 1c is provided in the thin-walled portion 1b, the operating pressure becomes smaller and the variation in the operating pressure becomes smaller than in Experimental Example 2 in which the rupture groove 1c is not provided.

[実験2]
(実験例3群)
下記表2に示すように、破断溝1cの残肉厚Aと薄肉部の肉厚Bとを変化させたこと以外は、上記実験例1と同様にして、実験例3群にかかる封口体10を、作製条件ごとにそれぞれ10個作製した。なお、超音波溶接の出力は10ジュールとした。
[Experiment 2]
(Experimental group 3)
As shown in Table 2 below, the sealing body 10 according to the experimental example 3 group is similar to the experimental example 1 except that the remaining thickness A of the fracture groove 1c and the thickness B of the thin portion are changed. 10 were produced for each production condition. The output of ultrasonic welding was 10 joules.

(実験例4群)
破断溝の先端形状を鋭角(60°)としたこと以外は、上記実験例3群と同様にして、図6に示す実験例4群にかかる封口体10を、作製条件ごとにそれぞれ10個作製した。なお、本実験例群は、本発明の範囲外である。
(Experimental group 4)
Except that the tip shape of the fracture groove was an acute angle (60 °), 10 sealing bodies 10 according to Experimental Example 4 group shown in FIG. did. In addition, this experimental example group is outside the scope of the present invention.

〔超音波溶接によるクラックの発生数の確認〕
上記で作製した封口体の破断溝1c付近の状態を目視により確認し、破れ、穴あきが発生していたものをNGと判定した。この結果を下記表2に示す。
[Confirmation of the number of cracks generated by ultrasonic welding]
The state in the vicinity of the breaking groove 1c of the sealing body produced as described above was visually confirmed, and the one that had been torn and perforated was determined to be NG. The results are shown in Table 2 below.

上記表2から、破断溝の先端部分の断面形状が鋭角である実験例4群は、実験例3群よりも、同一作製条件におけるNG発生数が多いことがわかる。   From Table 2 above, it can be seen that the experimental group 4 in which the cross-sectional shape of the tip portion of the fracture groove has an acute angle has a higher number of NG occurrences under the same production conditions than the experimental example 3 group.

このことは、次のように考えられる。破断溝の先端部分の断面形状が鋭角であると、超音波溶接の際のストレスが破断溝先端部分に集中して作用するため、この先端部分が破れたり、穴あきが発生したりしやすくなる。他方、破断溝の先端部分の断面形状がR化されていると、超音波溶接の際のストレスが緩和されるので、破れや穴あきが発生しにくくなる。   This is considered as follows. If the cross-sectional shape of the tip of the fractured groove is an acute angle, the stress during ultrasonic welding is concentrated on the tip of the fractured groove and this tip is easily broken or perforated. . On the other hand, when the cross-sectional shape of the tip portion of the fracture groove is rounded, stress during ultrasonic welding is relieved, so that tearing and perforation are less likely to occur.

また、薄肉部肉厚Bが0.2mmであり、且つA/Bが0.3以下であるもの、薄肉部肉厚Bが0.15mmであり、且つA/Bが0.3以下であるもの、薄肉部肉厚Bが0.1mmであり、且つA/Bが0.3であるものにおいては、破断溝の先端部分の断面形状がR化されているものにおいても、破れや穴あきが発生していることがわかる。   Further, the thin part thickness B is 0.2 mm and A / B is 0.3 or less, the thin part thickness B is 0.15 mm, and A / B is 0.3 or less. In the case where the thin wall thickness B is 0.1 mm and A / B is 0.3, even if the cross-sectional shape of the tip portion of the fracture groove is R, tearing or perforation It can be seen that has occurred.

このことは、次のように考えられる。薄肉部の肉厚を0.2mm以下と薄くした場合、薄肉部の肉厚Bに対する破断溝の残肉厚Aの比A/Bが小さすぎると、超音波溶接によるストレスを緩和する効果が小さくなり、破れや穴あきが発生する。よって、薄肉部の肉厚Bが0.2mm以下の場合、A/Bを0.4以上とすることが好ましい。また、薄肉部の肉厚Bが0.3mm以下の場合、A/Bを0.33以上とすることが好ましく、薄肉部の肉厚Bが0.4mm以下の場合、A/Bを0.25以上とすることが好ましく、薄肉部の肉厚Bが0.5mm以下の場合、A/Bを0.2以上とすることが好ましい。   This is considered as follows. When the thickness of the thin portion is reduced to 0.2 mm or less, if the ratio A / B of the remaining thickness A of the fractured groove to the thickness B of the thin portion is too small, the effect of alleviating stress due to ultrasonic welding is small. Torn and perforated. Therefore, when the thickness B of the thin portion is 0.2 mm or less, A / B is preferably set to 0.4 or more. Further, when the thickness B of the thin portion is 0.3 mm or less, A / B is preferably set to 0.33 or more, and when the thickness B of the thin portion is 0.4 mm or less, A / B is set to 0.00. The thickness is preferably 25 or more, and when the thickness B of the thin portion is 0.5 mm or less, A / B is preferably 0.2 or more.

[実験3]
(実験例5群)
下記表3に示すように、薄肉部1bの直径D及び破断溝1cの直径C(図3参照)を変化させたこと以外は、上記実験例1と同様にして、実験例5群にかかる封口体10を、作製条件ごとにそれぞれ10個作製した。
[Experiment 3]
(Experimental group 5)
As shown in Table 3 below, the sealing according to the experimental group 5 was performed in the same manner as in the experimental example 1 except that the diameter D of the thin-walled portion 1b and the diameter C (see FIG. 3) of the fracture groove 1c were changed. Ten bodies 10 were produced for each production condition.

〔超音波溶接によるクラックの発生数の確認〕
上記で作製した封口体の破断溝1c付近の状態を目視により確認し、破れ、穴あきが発生していたものをNGと判定した。この結果を下記表3に示す。
[Confirmation of the number of cracks generated by ultrasonic welding]
The state in the vicinity of the breaking groove 1c of the sealing body produced as described above was visually confirmed, and the one that had been torn and perforated was determined to be NG. The results are shown in Table 3 below.

上記表3から、破断溝1cを薄肉部1bの外周縁に設けた例(C=D)では、NGが発生しているのに対し、破断溝1cを薄肉部1bの外周縁よりも中央側に設けた例(C<D)では、NGが発生していないことがわかる。   From Table 3 above, in the example (C = D) in which the breaking groove 1c is provided on the outer peripheral edge of the thin portion 1b, NG is generated, whereas the breaking groove 1c is located on the center side of the outer peripheral edge of the thin portion 1b. It can be seen that NG is not generated in the example (C <D) provided in FIG.

このことは、次のように考えられる。破断溝1cが薄肉部1bの外周縁に設けられていると、超音波溶接の際のストレスを十分に緩和させることができなくなり、破れ、穴あきが発生する。他方、破断溝1cが薄肉部1bの外周縁よりも中央側に設けられていると、ストレスが十分に緩和されるので、破れ、穴あきが発生しない。   This is considered as follows. If the fracture groove 1c is provided at the outer peripheral edge of the thin wall portion 1b, the stress during ultrasonic welding cannot be sufficiently relaxed, and tearing or perforation occurs. On the other hand, if the breaking groove 1c is provided on the center side with respect to the outer peripheral edge of the thin portion 1b, the stress is sufficiently relieved, so that no tearing or perforation occurs.

なお、上記実験例では、破断溝1cの断面形状を、先端部分がR化された形状としていたが、図4に示すように、断面形状が多角形であってもよい。   In the above experimental example, the cross-sectional shape of the fracture groove 1c is a shape having a rounded tip, but the cross-sectional shape may be a polygon as shown in FIG.

以上に説明したように、本発明によれば、安全性に優れた密閉型電池を、低コストで実現することができる。よって、産業上の利用可能性は大きい。   As described above, according to the present invention, a sealed battery excellent in safety can be realized at low cost. Therefore, industrial applicability is great.

図1は、実施の形態1にかかる密閉型電池の要部断面図である。FIG. 1 is a cross-sectional view of a main part of the sealed battery according to the first embodiment. 図2(a)は、実施の形態1にかかる密閉型電池の封口体の断面図であり、図2(b)は、図2(a)の要部拡大断面図である。FIG. 2A is a cross-sectional view of the sealing body of the sealed battery according to the first embodiment, and FIG. 2B is an enlarged cross-sectional view of a main part of FIG. 図3は、実験例5にかかる封口体の端子板の薄肉部の直径及び破断溝の直径を説明する図である。FIG. 3 is a diagram for explaining the diameter of the thin portion of the terminal plate of the sealing body according to Experimental Example 5 and the diameter of the fracture groove. 図4は、本発明にかかる端子板に設けられた破断溝の断面形状の変形例を示す図である。FIG. 4 is a view showing a modification of the cross-sectional shape of the fracture groove provided in the terminal plate according to the present invention. 図5(a)は、実験例2にかかる密閉型電池の封口体の断面図であり、図5(b)は、図5(a)の要部拡大断面図である。Fig.5 (a) is sectional drawing of the sealing body of the sealed battery concerning Experimental example 2, FIG.5 (b) is a principal part expanded sectional view of Fig.5 (a). 図6(a)は、実験例4群にかかる密閉型電池の封口体の断面図であり、図6(b)は、図6(a)の要部拡大断面図である。Fig.6 (a) is sectional drawing of the sealing body of the sealed battery concerning Experimental example 4 group, FIG.6 (b) is principal part expanded sectional drawing of Fig.6 (a).

符号の説明Explanation of symbols

1 端子板
1a 周辺部
1b 薄肉部
1c 破断溝
2 絶縁板
3 安全弁
3a ノッチ
4 中間材
5 端子キャップ
6 外部端子部
7 通電接触部
8 電極タブ
10 封口体
20 外装缶
30 絶縁ガスケット
40 電極体
DESCRIPTION OF SYMBOLS 1 Terminal board 1a Peripheral part 1b Thin part 1c Breaking groove 2 Insulating board 3 Safety valve 3a Notch 4 Intermediate material 5 Terminal cap 6 External terminal part 7 Current supply contact part 8 Electrode tab 10 Sealing body 20 Exterior can 30 Insulating gasket 40 Electrode body

Claims (7)

有底筒状の外装缶(20)の開口部に封口体(10)をカシメ固定することにより密閉した密閉型電池において、
前記封口体(10)は、
電池外方に突出した外部端子部(6)を有する端子キャップ(5)と、
前記端子キャップ(5)より電池内方に位置し、周辺部が前記端子キャップ(5)と通電可能に接続された安全弁(3)と、
前記安全弁(3)より電池内方に位置し、電極タブ(8)を介して電極と電気的に接続され、周辺部に絶縁板(2)を介してその中央部が前記安全弁(3)と超音波溶接されることにより前記安全弁(3)と通電可能に接続された端子板(1)と、を有し、
前記端子板(1)の中央部には、その残余の領域よりも肉厚の薄い薄肉部(1b)が設けられ、且つ当該薄肉部(1b)には、溶接部を囲むように、電池内圧が上昇したときに破断して前記安全弁(3)と前記端子板(1)との通電を阻止する破断溝(1c)が設けられ、
前記破断溝(1c)は、溶接時のストレスを緩和する形状である、
ことを特徴とする密閉型電池。
In a sealed battery sealed by caulking and fixing the sealing body (10) to the opening of the bottomed cylindrical outer can (20),
The sealing body (10)
A terminal cap (5) having an external terminal portion (6) protruding outward from the battery;
A safety valve (3) located inside the battery from the terminal cap (5) and having a peripheral portion connected to the terminal cap (5) so as to be energized;
It is located inside the battery from the safety valve (3), and is electrically connected to the electrode through the electrode tab (8), and the central part of the peripheral part through the insulating plate (2) is connected to the safety valve (3). A terminal plate (1) connected to the safety valve (3) and energized by ultrasonic welding;
The central portion of the terminal plate (1) is provided with a thin-walled portion (1b) that is thinner than the remaining region, and the thin-walled portion (1b) has a battery internal pressure so as to surround the welded portion. Is provided with a breaking groove (1c) that breaks when the valve rises and prevents energization between the safety valve (3) and the terminal plate (1),
The fracture groove (1c) has a shape that relieves stress during welding.
A sealed battery characterized by that.
請求項1に記載の密閉型電池において、
前記破断溝(1c)の断面形状が、四角形以上の多角形である、
ことを特徴とする密閉型電池。
The sealed battery according to claim 1,
The cross-sectional shape of the fracture groove (1c) is a quadrilateral or more polygon.
A sealed battery characterized by that.
請求項1に記載の密閉型電池において、
前記破断溝(1c)の先端部分の断面形状が、R化されている、
ことを特徴とする密閉型電池。
The sealed battery according to claim 1,
The cross-sectional shape of the tip portion of the fracture groove (1c) is R-shaped,
A sealed battery characterized by that.
請求項3に記載の密閉型電池において、
前記Rの曲率半径が、0.03〜0.2mmである、
ことを特徴とする密閉型電池。
The sealed battery according to claim 3,
The radius of curvature of the R is 0.03 to 0.2 mm.
A sealed battery characterized by that.
請求項1ないし4いずれかに記載の密閉型電池において、
前記破断溝(1c)の残肉厚をA、前記薄肉部(1b)の肉厚をBとしたとき、
0.4≦A/B<1が成立する、
ことを特徴とする密閉型電池。
The sealed battery according to any one of claims 1 to 4,
When the remaining thickness of the fractured groove (1c) is A and the thickness of the thin portion (1b) is B,
0.4 ≦ A / B <1 holds,
A sealed battery characterized by that.
請求項1ないし5いずれかに記載の密閉型電池において、
前記薄肉部(1b)の肉厚が0.1〜0.5mmである、
ことを特徴とする密閉型電池。
The sealed battery according to any one of claims 1 to 5,
The thin part (1b) has a thickness of 0.1 to 0.5 mm.
A sealed battery characterized by that.
請求項1ないし6いずれかに記載の密閉型電池において、
前記破断溝(1c)が、前記薄肉部(1b)の外周縁よりも中央側に設けられている、
ことを特徴とする密閉型電池。
The sealed battery according to any one of claims 1 to 6,
The breaking groove (1c) is provided closer to the center than the outer peripheral edge of the thin portion (1b).
A sealed battery characterized by that.
JP2007281944A 2007-10-30 2007-10-30 Sealed battery Pending JP2009110808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007281944A JP2009110808A (en) 2007-10-30 2007-10-30 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007281944A JP2009110808A (en) 2007-10-30 2007-10-30 Sealed battery

Publications (1)

Publication Number Publication Date
JP2009110808A true JP2009110808A (en) 2009-05-21

Family

ID=40779073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007281944A Pending JP2009110808A (en) 2007-10-30 2007-10-30 Sealed battery

Country Status (1)

Country Link
JP (1) JP2009110808A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136608A (en) * 2010-01-25 2011-07-27 日立车辆能源株式会社 Sealed battery cell and method of producing the same
WO2011118359A1 (en) * 2010-03-26 2011-09-29 日立マクセルエナジー株式会社 Hermetic battery
CN103227311A (en) * 2012-01-27 2013-07-31 丰田自动车株式会社 Sealed secondary battery
JP2013157137A (en) * 2012-01-27 2013-08-15 Sanyo Electric Co Ltd Rectangular secondary battery
JP2014186949A (en) * 2013-03-25 2014-10-02 Toyota Industries Corp Power storage apparatus and secondary battery
WO2016157750A1 (en) * 2015-03-27 2016-10-06 三洋電機株式会社 Cylindrical battery
JP2017059526A (en) * 2015-09-16 2017-03-23 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN108886129A (en) * 2016-03-25 2018-11-23 三洋电机株式会社 Cylindrical battery
WO2018230148A1 (en) * 2017-06-15 2018-12-20 株式会社村田製作所 Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
WO2021106729A1 (en) * 2019-11-29 2021-06-03 三洋電機株式会社 Sealed battery
US11069916B2 (en) 2016-03-25 2021-07-20 Sanyo Electric Co., Ltd. Cylindrical battery
CN113302786A (en) * 2019-01-18 2021-08-24 三洋电机株式会社 Sealed battery
JP2022049726A (en) * 2020-09-17 2022-03-30 プライムプラネットエナジー&ソリューションズ株式会社 Terminal for secondary battery and secondary battery including the same
WO2023097584A1 (en) * 2021-12-01 2023-06-08 宁德时代新能源科技股份有限公司 Battery cell, battery, electrical apparatus and manufacturing method and apparatus for battery cell
US11710880B2 (en) 2020-09-17 2023-07-25 Prime Planet Energy & Solutions, Inc. Terminal for secondary battery and secondary battery provided with the terminal
WO2024055257A1 (en) * 2022-09-15 2024-03-21 宁德时代新能源科技股份有限公司 Battery cell, battery, and electrical apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826460U (en) * 1981-08-17 1983-02-19 東芝テック株式会社 vacuum cleaner
JPH06203818A (en) * 1992-12-26 1994-07-22 Hitachi Maxell Ltd Explosion-proof sealed battery
JPH08115714A (en) * 1994-10-14 1996-05-07 Hitachi Maxell Ltd Explosion-proof sealed battery
JPH09129195A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Explosion-proof sealing plate
JPH1064499A (en) * 1996-07-10 1998-03-06 Saft America Inc Lithium ion electrochemical battery with safety valve and electric circuit breaker
JP2000003702A (en) * 1998-06-15 2000-01-07 Alps Electric Co Ltd Electric circuit interrupt structure of battery
JP2005038773A (en) * 2003-07-17 2005-02-10 Sanyo Electric Co Ltd Sealed type battery with cleavage groove

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826460U (en) * 1981-08-17 1983-02-19 東芝テック株式会社 vacuum cleaner
JPH06203818A (en) * 1992-12-26 1994-07-22 Hitachi Maxell Ltd Explosion-proof sealed battery
JPH08115714A (en) * 1994-10-14 1996-05-07 Hitachi Maxell Ltd Explosion-proof sealed battery
JPH09129195A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Explosion-proof sealing plate
JPH1064499A (en) * 1996-07-10 1998-03-06 Saft America Inc Lithium ion electrochemical battery with safety valve and electric circuit breaker
JP2000003702A (en) * 1998-06-15 2000-01-07 Alps Electric Co Ltd Electric circuit interrupt structure of battery
JP2005038773A (en) * 2003-07-17 2005-02-10 Sanyo Electric Co Ltd Sealed type battery with cleavage groove

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136608A (en) * 2010-01-25 2011-07-27 日立车辆能源株式会社 Sealed battery cell and method of producing the same
JP2011150966A (en) * 2010-01-25 2011-08-04 Hitachi Vehicle Energy Ltd Sealed battery and method of manufacturing the same
US9287587B2 (en) 2010-01-25 2016-03-15 Hitachi Automotive Systems, Ltd. Sealed battery cell and manufacturing method thereof
WO2011118359A1 (en) * 2010-03-26 2011-09-29 日立マクセルエナジー株式会社 Hermetic battery
CN103227311A (en) * 2012-01-27 2013-07-31 丰田自动车株式会社 Sealed secondary battery
JP2013157156A (en) * 2012-01-27 2013-08-15 Toyota Motor Corp Sealed secondary battery
JP2013157137A (en) * 2012-01-27 2013-08-15 Sanyo Electric Co Ltd Rectangular secondary battery
JP2014186949A (en) * 2013-03-25 2014-10-02 Toyota Industries Corp Power storage apparatus and secondary battery
WO2016157750A1 (en) * 2015-03-27 2016-10-06 三洋電機株式会社 Cylindrical battery
CN107431179A (en) * 2015-03-27 2017-12-01 三洋电机株式会社 Cylindrical battery
JPWO2016157750A1 (en) * 2015-03-27 2018-01-25 三洋電機株式会社 Cylindrical battery
US10403872B2 (en) 2015-03-27 2019-09-03 Sanyo Electric Co., Ltd. Cylindrical batteries
JP2017059526A (en) * 2015-09-16 2017-03-23 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN106549129A (en) * 2015-09-16 2017-03-29 松下电器产业株式会社 Rechargeable nonaqueous electrolytic battery
US10535860B2 (en) 2015-09-16 2020-01-14 Panasonic Corporation Nonaqueous electrolyte secondary battery
CN108886129A (en) * 2016-03-25 2018-11-23 三洋电机株式会社 Cylindrical battery
US11069916B2 (en) 2016-03-25 2021-07-20 Sanyo Electric Co., Ltd. Cylindrical battery
US11145942B2 (en) 2016-03-25 2021-10-12 Sanyo Electric Co., Ltd. Cylindrical battery
WO2018230148A1 (en) * 2017-06-15 2018-12-20 株式会社村田製作所 Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
JPWO2018230148A1 (en) * 2017-06-15 2020-05-21 株式会社村田製作所 Secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices
CN110720149A (en) * 2017-06-15 2020-01-21 株式会社村田制作所 Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
US11424477B2 (en) 2017-06-15 2022-08-23 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
CN113302786A (en) * 2019-01-18 2021-08-24 三洋电机株式会社 Sealed battery
WO2021106729A1 (en) * 2019-11-29 2021-06-03 三洋電機株式会社 Sealed battery
EP4068443A4 (en) * 2019-11-29 2023-01-18 SANYO Electric Co., Ltd. Sealed battery
JP2022049726A (en) * 2020-09-17 2022-03-30 プライムプラネットエナジー&ソリューションズ株式会社 Terminal for secondary battery and secondary battery including the same
JP7252926B2 (en) 2020-09-17 2023-04-05 プライムプラネットエナジー&ソリューションズ株式会社 SECONDARY BATTERY TERMINAL AND SECONDARY BATTERY INCLUDING THE TERMINAL
US11710880B2 (en) 2020-09-17 2023-07-25 Prime Planet Energy & Solutions, Inc. Terminal for secondary battery and secondary battery provided with the terminal
WO2023097584A1 (en) * 2021-12-01 2023-06-08 宁德时代新能源科技股份有限公司 Battery cell, battery, electrical apparatus and manufacturing method and apparatus for battery cell
WO2024055257A1 (en) * 2022-09-15 2024-03-21 宁德时代新能源科技股份有限公司 Battery cell, battery, and electrical apparatus

Similar Documents

Publication Publication Date Title
JP2009110808A (en) Sealed battery
KR100324863B1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
CN102057517B (en) Battery manufacturing method, press tools therefor, and batteries
US6376120B1 (en) Current cutoff mechanism for cell
JP5224324B2 (en) Sealed battery
JPH09139196A (en) Cleavage type relief valve of sealed battery container
JP2012525663A (en) Battery safety vent and battery equipped with the safety vent
JP2000077058A (en) Electric circuit breaking mechanism of battery
JP5110958B2 (en) Sealed battery
US9859547B2 (en) Current interrupting device of sealed battery
JP6523722B2 (en) Sealing plate of cylindrical battery and cylindrical battery
JPH11260334A (en) Explosion-proof sealing plate for sealed battery, manufacture thereof, and sealed battery using the same
JP2007234305A (en) Cylindrical cell
JP2001023596A (en) Explosion-proof construction of secondary battery
JP3682390B2 (en) Sealed parts with safety valve
WO2011118359A1 (en) Hermetic battery
JPH10284034A (en) Explosion proof sealing plate for sealed battery and its manufacture
JP2001325933A (en) Safety valve for battery
JP2002063888A (en) Sealing component with safety valve, and its manufacturing method
JP5990064B2 (en) Secondary battery case and secondary battery
JP2001102023A (en) Sealed member attached with safety valve and method for manufacturing the same
JP4622268B2 (en) Safety valve for sealed cylindrical battery and manufacturing method thereof
JP2005123060A (en) Manufacturing method of sealed battery
JP2019050081A (en) Sealed battery and manufacturing method for sealed battery
JP2000223103A (en) Sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312