JP6523722B2 - Sealing plate of cylindrical battery and cylindrical battery - Google Patents

Sealing plate of cylindrical battery and cylindrical battery Download PDF

Info

Publication number
JP6523722B2
JP6523722B2 JP2015054947A JP2015054947A JP6523722B2 JP 6523722 B2 JP6523722 B2 JP 6523722B2 JP 2015054947 A JP2015054947 A JP 2015054947A JP 2015054947 A JP2015054947 A JP 2015054947A JP 6523722 B2 JP6523722 B2 JP 6523722B2
Authority
JP
Japan
Prior art keywords
sealing plate
battery
thin portion
thin
cylindrical battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015054947A
Other languages
Japanese (ja)
Other versions
JP2016177877A (en
Inventor
孝英 小橋
孝英 小橋
西口 信博
信博 西口
賢 砂田
賢 砂田
佳恵 飯田
佳恵 飯田
翔平 板垣
翔平 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2015054947A priority Critical patent/JP6523722B2/en
Publication of JP2016177877A publication Critical patent/JP2016177877A/en
Application granted granted Critical
Publication of JP6523722B2 publication Critical patent/JP6523722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

本発明は、筒型電池の封口板及び筒型電池に関する。   The present invention relates to a sealing plate of a cylindrical battery and a cylindrical battery.

筒型電池は、各種電気機器の電源用電池として広く使用されている。筒型電池は、発電要素を収容している有底筒型電池缶の開口部を当該電池缶を封止するための金属製封口板で封口し、電極端子板を取り付けてなる基本構造を有している。筒型電池は、逆接続等により電池内圧が上昇した場合の安全策として、上昇した内圧を外部に逃がす機構を設けている。例えば特許文献1には、図2に例示されているように、円筒型電池において、金属からなる封口板20aの表面にV字溝形状等の薄肉部21を設け、電池1a内の内圧が異常上昇した際に、薄肉部21が先行破断して内圧を開放するように構成されている。   Cylindrical batteries are widely used as power supply batteries for various electric devices. The cylindrical battery has a basic structure in which the opening of the bottomed cylindrical battery can containing the power generation element is sealed with a metal sealing plate for sealing the battery can, and an electrode terminal plate is attached. doing. The cylindrical battery is provided with a mechanism for escaping the increased internal pressure to the outside as a safety measure when the internal pressure of the battery is increased due to reverse connection or the like. For example, as illustrated in FIG. 2 in Patent Document 1, in a cylindrical battery, a thin portion 21 such as a V-shaped groove is provided on the surface of a sealing plate 20a made of metal, and the internal pressure in the battery 1a is abnormal. When raised, the thin-walled portion 21 is pre-ruptured to release the internal pressure.

特開2009−123375号公報JP, 2009-123375, A

特許文献1の封口板20aでは、薄肉部21が形成されている表面と薄肉部21が形成されている表面と対向する表面とは、封口板21の全体にわたって同一平面を形成している。すなわち、薄肉部21は、平板状の封口板20aの一方の面に刻設されている。しかし、このような構成の封口板20aでは、電池内圧の上昇に対して薄肉部21が破断する圧力にばらつきが生じることが観察された。電池内圧の上昇に対して薄肉部21がなかなか破断せず電池内圧が極度に上昇した状態で薄肉部21が破断した場合には、電池内圧が一気に開放されるとともに電解液等の電池内容物が放出されてしまうという問題点があった。   In the sealing plate 20 a of Patent Document 1, the surface on which the thin portion 21 is formed and the surface facing the surface on which the thin portion 21 is formed form the same plane over the entire sealing plate 21. That is, the thin portion 21 is engraved on one surface of the flat sealing plate 20a. However, in the sealing plate 20a having such a configuration, it was observed that variation occurs in the pressure at which the thin portion 21 breaks due to the increase in the battery internal pressure. When the thin portion 21 does not break easily due to the rise of the internal pressure of the battery and the thin portion 21 breaks at a state where the internal pressure of the battery rises extremely, the internal pressure of the battery is released at once and the contents of the battery such as electrolyte There was a problem that it was released.

本発明は、上記のような問題点を解決するためになされたもので、電池内圧の上昇に対して安定して内圧開放動作を行う筒型電池の封口板及び筒型電池を提供することを一つの目的としている。   The present invention has been made to solve the above-mentioned problems, and to provide a cylindrical battery sealing plate and a cylindrical battery capable of performing the internal pressure releasing operation stably against the rise of the battery internal pressure. It is one purpose.

前記の、及び他の問題点を解決するために、本発明の一つの態様は、有底筒状の電池缶と、当該電池缶の内側に配置されている発電要素と、前記発電要素と電気的に接続されている電極端子とを有する筒型電池を構成すべく、前記電池缶の開口部を封止するための封口板であって、前記封口板は前記電池缶の内周部と封止状態に接続される外周部と、前記電極端子の周縁部を封止するための内周部とを有する平板状に形成されており、前記封口板の前記外周部と前記内周部との間には、当該封口板の周方向に沿って所定の幅でもって、他の前記封口板の部分の厚みよりも厚みが薄く形成されている帯状の領域である薄肉部が形成されており、前記封口板の前記薄肉部より内周側部分が、前記封口板の前記薄肉部の外周側よりも前記電池缶の底方向に偏位されていることを特徴とする筒型電池の封口板である。   In order to solve the above-mentioned and other problems, one aspect of the present invention is a bottomed cylindrical battery can, a power generation element disposed inside the battery can, the power generation element and electricity. A sealing plate for sealing the opening of the battery can, in order to form a cylindrical battery having electrode terminals connected in series, the sealing plate being sealed with the inner circumferential portion of the battery can It is formed in the shape of a flat plate having an outer peripheral part connected in a closed state and an inner peripheral part for sealing the peripheral part of the electrode terminal, and the outer peripheral part and the inner peripheral part of the sealing plate Between them, a thin-walled portion is formed, which is a band-like region formed with a predetermined width along the circumferential direction of the sealing plate and a thickness smaller than the thickness of the other sealing plate portions, The inner peripheral side portion of the sealing plate with respect to the thin-walled portion is the bottom of the battery can than the outer peripheral side of the thin-walled portion of the sealing plate That it is displaced in direction a sealing plate of the cylindrical battery according to claim.

また、本発明の他の態様は、有底筒状の電池缶と、当該電池缶の内側に配置されている発電要素と、前記発電要素と電気的に接続されている電極端子と、前記電池缶の開口部を封止するための封口板とを有する筒型電池であって、前記封口板は前記電池缶の内周部と封止状態に接続される外周部と、前記電極端子の周縁部を封止するための内周部とを有する平板状に形成されており、前記封口板の前記外周部と前記内周部との間には、当該封口板の周方向に沿って所定の幅でもって、他の前記封口板の部分の厚みよりも厚みが薄く形成されている帯状の領域である薄肉部が形成されており、前記封口板の前記薄肉部より内周側部分が、前記封口板の前記薄肉部の外周側よりも前記電池缶の底方向に偏位されていることを特徴とする筒型電池である。   Moreover, the other aspect of this invention is a bottomed cylindrical battery can, the electric power generation element arrange | positioned inside the said battery can, the electrode terminal electrically connected with the said electric power generation element, The said battery A cylindrical battery having a sealing plate for sealing an opening of the can, wherein the sealing plate is an outer peripheral portion connected to an inner peripheral portion of the battery can and a sealing state, and a peripheral edge of the electrode terminal The sealing plate is formed in a flat plate shape having an inner circumferential portion for sealing the portion, and between the outer circumferential portion and the inner circumferential portion of the sealing plate, a predetermined shape is provided along the circumferential direction of the sealing plate. A thin portion which is a band-like region formed so as to be thinner than the other portions of the sealing plate by a width is formed, and an inner peripheral side portion from the thin portion of the sealing plate is the The cylindrical battery is characterized in that it is offset in the bottom direction of the battery can from the outer peripheral side of the thin portion of the sealing plate. That.

本発明の一態様によれば、電池内圧の上昇に対して安定して内圧開放動作を行う筒型電池の封口板及び筒型電池を提供することができる。   According to one aspect of the present invention, it is possible to provide a cylindrical battery sealing plate and a cylindrical battery that perform the internal pressure release operation stably with respect to a rise in the battery internal pressure.

図1は、本発明の一実施形態に係る筒型電池1の構成を例示する縦断面図である。FIG. 1 is a longitudinal cross-sectional view illustrating the configuration of a cylindrical battery 1 according to an embodiment of the present invention. 図2は、図1の筒型電池1に設けられる封口板30の模式平面図である。FIG. 2 is a schematic plan view of the sealing plate 30 provided in the cylindrical battery 1 of FIG. 図3は、図1の筒型電池1に設けられる薄肉部32周辺部の構成を例示する縦断面図である。FIG. 3 is a longitudinal sectional view illustrating the configuration of the peripheral portion of the thin portion 32 provided in the cylindrical battery 1 of FIG. 図4は、本実施形態の封口体30の薄肉部32の破断シミュレーション用モデルを示す模式図である。FIG. 4: is a schematic diagram which shows the model for fracture simulation of the thin part 32 of the sealing body 30 of this embodiment. 図5は、各シミュレーションモデルについての発生応力と薄肉部32の変位との関係を例示するグラフである。FIG. 5 is a graph illustrating the relationship between the generated stress and the displacement of the thin portion 32 for each simulation model. 図6は、本実施形態と従来例について封口体30の薄肉部32による破断応力のばらつきを示すヒストグラムである。FIG. 6 is a histogram showing variation in breaking stress due to the thin portion 32 of the sealing body 30 in the present embodiment and the conventional example.

以下に、添付図面を参照して、本発明の実施形態について具体的に説明する。なお、本発明は、それらの実施形態に限定されるものではない。   Embodiments of the present invention will be specifically described below with reference to the accompanying drawings. The present invention is not limited to these embodiments.

まず、図1に、本実施形態に係る筒型電池1の構成例を示す縦断面図を示している。図1の筒型電池1は、有底筒型の電池缶10の内部に発電要素20を収容して構成されている。筒型の形状は、円筒形であっても他の角筒形であってもよい。発電要素20としては、正極合剤と負極合剤とをセパレータを介してスパイラル状に形成してリチウム一次電池を構成した例として示しているが、アルカリ電池などの他の形式の電池にも適用することができる。   First, FIG. 1 shows a longitudinal sectional view showing a configuration example of a cylindrical battery 1 according to the present embodiment. The cylindrical battery 1 of FIG. 1 is configured by housing a power generation element 20 inside a bottomed cylindrical battery can 10. The cylindrical shape may be cylindrical or any other rectangular shape. Although the positive electrode mixture and the negative electrode mixture are spirally formed via the separator as the power generation element 20 as an example of forming a lithium primary battery, the power generation element 20 is also applied to other types of batteries such as alkaline batteries. can do.

図1に示されるように、電池缶10は略平板状の封口板30の周縁折り曲げ部30aを電池缶10の内周に沿って溶接することにより封止されている。封口板30の中央開口部には、この封口板30と一体的に設けられる合成樹脂でなる絶縁ガスケット36を有する。絶縁ガスケット36の中央に設けられた開口部には正極端子40が挿通されており、その電池缶10内に突出する一端部には集電リード50がその一端部において固接されて発電要素20の正極材料と接続している。正極端子40の一端部にはワッシャ34がはめ込まれ、正極端子40の端部を軸方向に押圧変形させることにより、封口板30と絶縁ガスケット36とをかしめつけている。なお、封口板30による電池缶10の封止構造としては、上記の溶接による構成に限定されることなく、封口板30の外周と電池缶10とを封止状態に接続するための種々の構成が含まれる。   As shown in FIG. 1, the battery can 10 is sealed by welding the peripheral bent portions 30 a of the substantially flat plate-like sealing plate 30 along the inner periphery of the battery can 10. At the central opening of the sealing plate 30, an insulating gasket 36 made of a synthetic resin provided integrally with the sealing plate 30 is provided. The positive electrode terminal 40 is inserted through the opening provided at the center of the insulating gasket 36, and the current collection lead 50 is fixedly connected at one end to the one end protruding into the battery can 10, thereby the power generating element 20. Connected to the positive electrode material of A washer 34 is fitted into one end of the positive electrode terminal 40, and the sealing plate 30 and the insulating gasket 36 are crimped by pressing and deforming the end of the positive electrode terminal 40 in the axial direction. The sealing structure of the battery can 10 by the sealing plate 30 is not limited to the above configuration by welding, and various configurations for connecting the outer periphery of the sealing plate 30 and the battery can 10 in a sealed state Is included.

封口板30には、その折り曲げ部30a及び絶縁ガスケット36のいずれとも重複しない範囲で、封口板30を周回するように設けられた薄肉部32を有する。薄肉部32の外周側と薄肉部32の内周側とでは、電池缶10の軸方向における封口板30の位置が異なる。すなわち、封口板30には、その半径方向で見て、薄肉部32の外周側と内周側とで段差が設けられている。図2に封口板30を電池缶10の開口端側から見た平面図を、図3に封口板30の薄肉部32周辺の構成を部分断面図として示している。   The sealing plate 30 has a thin portion 32 provided so as to go around the sealing plate 30 within a range not overlapping with any of the bent portion 30 a and the insulating gasket 36. The position of the sealing plate 30 in the axial direction of the battery can 10 is different between the outer peripheral side of the thin portion 32 and the inner peripheral side of the thin portion 32. That is, the sealing plate 30 is provided with a step on the outer peripheral side and the inner peripheral side of the thin portion 32 as viewed in the radial direction. The top view which looked at the sealing board 30 from the opening end side of the battery can 10 in FIG. 2 is shown as a fragmentary sectional view about the structure of thin-walled part 32 periphery of the sealing board 30 in FIG.

封口板30の薄肉部32は、封口板30の素材となる金属板(例えばステンレス板)をプレス加工することによって形成することができる。封口板30の薄肉部32の形状は、薄肉部32を挟んだ封口板30の段差H、薄肉部32の厚みT、薄肉部32の封口板30半径方向の幅Wによって規定され、その形状によって電池内圧上昇時に圧力を逃がす作用を行う排出弁としての性能が変化する。本出願人は、この封口板30の薄肉部32の形状を種々変更した場合の排出弁としての性能を確認するためのシミュレーションモデルを制作し、当該シミュレーションモデルを用いて本実施形態による封口板30の薄肉部32の効果を確認した。以下にそのシミュレーションモデルとシミュレーション結果について説明する。   The thin portion 32 of the sealing plate 30 can be formed by pressing a metal plate (for example, a stainless steel plate) which is a material of the sealing plate 30. The shape of the thin portion 32 of the sealing plate 30 is defined by the step H of the sealing plate 30 sandwiching the thin portion 32, the thickness T of the thin portion 32, and the width W in the radial direction of the sealing plate 30 of the thin portion 32 When the battery internal pressure rises, the performance as a discharge valve for releasing the pressure changes. The applicant has produced a simulation model for confirming the performance as a discharge valve when variously changing the shape of the thin portion 32 of the sealing plate 30, and using the simulation model, the sealing plate 30 according to the present embodiment. The effect of the thin-walled portion 32 was confirmed. The simulation model and the simulation results will be described below.

図4に、本実施形態に関する封口板30の薄肉部32の破断シミュレーションのために制作したシミュレーションモデルを示している。シミュレーションモデルは、従来モデル、本願モデル1、本願モデル2の3種類とし、封口板30の薄肉部32を半径方向に切断して得られる二次元モデルとしている。封口板30の素材としては、ステンレス材のSUS430を非線形材として想定した。従来モデルは封口板30に段差Hがなく、幅W、厚みTの薄肉部32が設けられているのみである。薄肉部32を形成するための溝は、電池1の内方側(電池内圧が印加される側)の表面に設けている。これは、電池内圧上昇時に、電池内圧が薄肉部32に形成される凹溝部に集中して安定した破断効果が得られるようにするためである。本願モデル1は、封口板30に薄肉部32を挟んで段差H=0.1mmを設けている。本願モデル2は、封口板30に薄肉部32を挟んで段差H=0.2mmを設けている。段差Hは、封口板30の外周側が内周側よりも電池1の正極端子40よりとなるように設定されている。すなわち封口板30は正極端子40側から見て略凹状となっている。   FIG. 4 shows a simulation model created for the fracture simulation of the thin portion 32 of the sealing plate 30 according to the present embodiment. The simulation model is a conventional model, the present application model 1, and the present application model 2, and is a two-dimensional model obtained by cutting the thin-walled portion 32 of the sealing plate 30 in the radial direction. As a material of the sealing plate 30, stainless steel SUS430 was assumed as a non-linear material. In the conventional model, the sealing plate 30 has no step H, and only a thin portion 32 having a width W and a thickness T is provided. The groove for forming the thin portion 32 is provided on the surface of the battery 1 on the inner side (the side to which the battery internal pressure is applied). This is for the battery internal pressure to be concentrated in the recessed groove portion formed in the thin portion 32 when the battery internal pressure rises, and to obtain a stable breaking effect. In the present application model 1, the sealing plate 30 is provided with a step H = 0.1 mm with the thin portion 32 interposed therebetween. In the present application model 2, the sealing plate 30 is provided with a step H = 0.2 mm across the thin portion 32. The level difference H is set so that the outer peripheral side of the sealing plate 30 is closer to the positive electrode terminal 40 of the battery 1 than the inner peripheral side. That is, the sealing plate 30 is substantially concave when viewed from the positive electrode terminal 40 side.

まず、本実施形態の薄肉部32を設けた封口板30の内圧上昇時の挙動に与える効果を確認するシミュレーションを実施した。前記3つのモデルについて、薄肉部32の厚みT=0.3mm、幅W=1.0mmと設定した。これらのシミュレーションモデルについて、封口板30の薄肉部32の内方側の部分が電池1の軸方向に電池缶10外方へ向けて0.2mm変位したときに薄肉部32に発生する応力を算出した。この想定は、電池1の内圧上昇により、封口板30の薄肉部32内方部分が0.2mm押し出された状態を意味している。   First, a simulation was performed to confirm the effect on the behavior of the sealing plate 30 provided with the thin-walled portion 32 of the present embodiment when the internal pressure is increased. The thickness T of the thin portion 32 was set to 0.3 mm and the width W was set to 1.0 mm for the three models. In these simulation models, the stress generated in the thin portion 32 when the inward portion of the thin portion 32 of the sealing plate 30 is displaced 0.2 mm in the axial direction of the battery 1 outward of the battery can 10 is calculated. did. This assumption means that the inward portion of the thin portion 32 of the sealing plate 30 is pushed out by 0.2 mm due to the increase in internal pressure of the battery 1.

各シミュレーションモデルについて薄肉部32内方側の変位(mm)に対する薄肉部32での発生応力(GPa)を算出した。電池内圧を安全に開放することができるために薄肉部32に発生する応力として、0.5GPaを想定した。図5のグラフに、各シミュレーションモデルについての発生応力と薄肉部32の変位との関係を例示している。図5に示されているように、薄肉部32が破断して排出弁として機能する0.5GPaに応力が到達する際の変位は、
従来モデル 0.12mm
本願モデル1 0.05mm
本願モデル2 0.13mm
となった。このことから、従来モデル、本願モデル2と比較して、本願モデル1では約1/3程度の変位量で薄肉部32が破断し、確実に電池内圧を開放可能であることが確認された。
The generated stress (GPa) in the thin portion 32 with respect to the displacement (mm) on the inward side of the thin portion 32 was calculated for each simulation model. In order to be able to release the battery internal pressure safely, 0.5 GPa was assumed as stress generated in the thin portion 32. The graph of FIG. 5 illustrates the relationship between the generated stress and the displacement of the thin portion 32 for each simulation model. As shown in FIG. 5, the displacement when the thin portion 32 breaks and the stress reaches 0.5 GPa functioning as a discharge valve is
Conventional model 0.12 mm
The present application model 1 0.05 mm
This application model 2 0.13 mm
It became. From this, it is confirmed that the thin portion 32 is broken at a displacement amount of about 1/3 in the present model 1 compared to the conventional model and the present application model 2, and the battery internal pressure can be reliably released.

本願モデル1では、電池内圧の上昇により封口板30が膨張する過程で、薄肉部32に作用する応力が圧縮から引張へと変化する。このため、発生応力が排出弁作動の閾値として設定した0.5GPaに達するまでに薄肉部32に圧縮・引張による金属疲労が生じ、破断しやすくなっていると考えられる。一方、本願モデル2では、電池内圧の上昇により膨張する過程で、本願モデル1よりも段差Hが大きく、その結果薄肉部32の長さも長くなっているので、その薄肉部32が複雑に変形することとなり、従来モデルと大差ない結果となったと考えられる。本願モデル2は、薄肉部32が比較的長いため、その変形を適切に制御することは難しいと考えられる。以上のことから、本願発明を適切に実施するためには本願モデル1がより好適と考えられたので、以下、従来モデルと本願モデル1とを用いて他のシミュレーションを実施した。なお、以下の各シミュレーションにおいても前記した図5と同様の発生圧力と薄肉部32の変位との関係を得たが、個々のグラフの記載は省略して読み取った数値を各表に記載した。   In the present application model 1, the stress acting on the thin-walled portion 32 changes from compression to tension in the process of expansion of the sealing plate 30 due to the increase of the battery internal pressure. For this reason, it is considered that metal fatigue due to compression and tension occurs in the thin portion 32 by the time the generated stress reaches 0.5 GPa set as the threshold value of the discharge valve operation, and it is easy to break. On the other hand, in the present application model 2, the step H is larger than that of the present application model 1 in the process of expansion due to the increase of the battery internal pressure, and as a result, the length of the thin portion 32 is longer. It is considered that the result is not much different from the conventional model. Since the thin-walled portion 32 of the present application model 2 is relatively long, it is considered difficult to appropriately control its deformation. From the above, the model 1 of the present application was considered to be more preferable in order to appropriately implement the present invention. Therefore, another simulation was performed using the conventional model and the model of the present application 1 hereinafter. In each of the following simulations, although the relationship between the generated pressure and the displacement of the thin portion 32 similar to that of FIG. 5 described above was obtained, the description of each graph was omitted and the read numerical values were described in each table.

薄肉部32の厚みに関するシミュレーション
まず、封口板30に設ける薄肉部32の厚みと、薄肉部32に発生する応力との関係を、前記シミュレーションモデルにより算出した。シミュレーションモデルは、従来モデル(段差なし)と本願モデル1(段差H=0.1mm)であり、薄肉部32の幅Wは1.0mmとした。各モデルについて、薄肉部32に発生する応力が、排出弁として作動する閾値と想定している0.5GPaに達するときの薄肉部32の変位(封口板30で、薄肉部32の内方側部分が外方側部分に対して電池1の軸方向に移動した距離)を求めた。表1に、薄肉部32の厚みをパラメータとして、各モデルについて算出された変位を示している。なお、薄肉部32の厚みは、四捨五入して小数点以下2桁に丸めたものである。
Simulation on the Thickness of the Thin-Walled Part 32 First, the relationship between the thickness of the thin-walled part 32 provided on the sealing plate 30 and the stress generated in the thin-walled part 32 was calculated by the simulation model. The simulation model is the conventional model (no level difference) and the present application model 1 (level difference H = 0.1 mm), and the width W of the thin portion 32 is 1.0 mm. For each model, the displacement of the thin-walled portion 32 when the stress generated in the thin-walled portion 32 reaches 0.5 GPa assumed to be the threshold acting as a discharge valve (in the inner side portion of the thin-walled portion 32 in the sealing plate 30) The distance traveled in the axial direction of the battery 1 with respect to the outer side portion was determined. Table 1 shows the displacement calculated for each model, using the thickness of the thin portion 32 as a parameter. The thickness of the thin portion 32 is rounded to two decimal places.

Figure 0006523722
Figure 0006523722

表1に示すように、従来モデルでは、薄肉部32の厚みを0.02、0.03、0.04mmと変更した場合、いずれの厚みについても応力が閾値に達するには0.1mm以上変位している。一方、本願モデル1では、薄肉部32の厚みが0.04mmと厚い場合に変位が0.2mmを超えているが、薄肉部32の厚みが0.02、0.03mmの場合にはそれぞれ0.06、0.04mm程度の小さな変位で排出弁作動閾値に達している。これらの場合には、電池内圧が上昇した場合、わずかな変位で安全に内圧を開放することができることを意味している。薄肉部32の厚みが小さいほど、圧縮力、引張力いずれについても薄肉部32に発生する応力は大きくなる傾向があるため、小さな変位で作動するようになる。ただし、薄肉部32の厚みを小さくしすぎると、薄肉部32の強度低下により、電池1に衝撃が与えられた場合などに薄肉部32が損傷するおそれがあるので、薄肉部32の厚みは上記シミュレーション結果と耐久性とのバランスで決定すればよい。   As shown in Table 1, in the conventional model, when the thickness of the thin-walled part 32 is changed to 0.02, 0.03, 0.04 mm, the displacement reaches 0.1 mm or more for the stress to reach the threshold for any thickness. doing. On the other hand, in the present application model 1, the displacement exceeds 0.2 mm when the thickness of the thin portion 32 is as thick as 0.04 mm, but 0 when the thickness of the thin portion 32 is 0.02 and 0.03 mm. The discharge valve operation threshold is reached with a small displacement of about .06 mm. In these cases, when the battery internal pressure rises, it means that the internal pressure can be safely released with a slight displacement. As the thickness of the thin portion 32 is smaller, the stress generated in the thin portion 32 tends to increase with respect to either the compressive force or the tensile force, so that it operates with a small displacement. However, if the thickness of the thin portion 32 is too small, there is a possibility that the thin portion 32 may be damaged when an impact is given to the battery 1 due to the strength reduction of the thin portion 32. It may be determined by the balance between simulation results and durability.

薄肉部32の幅に関するシミュレーション
次に、封口板30に設ける薄肉部32の幅と、薄肉部32に発生する応力との関係を、前記シミュレーションモデルにより算出した。シミュレーションモデルは、従来モデル(段差なし)と本願モデル1(段差H=0.1mm)であり、薄肉部32の厚みTは0.03mmとした。各モデルについて、薄肉部32に発生する応力が、排出弁として作動する閾値と想定している0.5GPaに達するときの薄肉部32の変位を求めた。表2に、薄肉部32の幅をパラメータとして、各モデルについて算出された変位を示している。なお、薄肉部32の幅は、四捨五入して小数点以下2桁に丸めたものである。
Next, the relationship between the width of the thin portion 32 provided on the sealing plate 30 and the stress generated in the thin portion 32 was calculated using the simulation model. The simulation model is the conventional model (no level difference) and the present application model 1 (level difference H = 0.1 mm), and the thickness T of the thin portion 32 is 0.03 mm. For each model, the displacement of the thin-walled portion 32 was determined when the stress generated in the thin-walled portion 32 reached 0.5 GPa, which is assumed to be the threshold value acting as the discharge valve. Table 2 shows the displacement calculated for each model using the width of the thin portion 32 as a parameter. The width of the thin portion 32 is rounded to two decimal places.

Figure 0006523722
Figure 0006523722

表2に示すように、従来モデルでは、薄肉部32の幅を0.75、1.00、1.25mmと変更した場合、いずれの幅についても応力が閾値に達するには0.1mm以上変位していることがわかる。一方、本願モデル1では、薄肉部32の幅が1.25mmと大きい場合に変位が0.2mmを超えているが、薄肉部32の幅が0.75、1.0mmの場合にはそれぞれ0.03、0.05mm程度の小さな変位で排出弁作動閾値に達している。これらの場合には、電池内圧が上昇した場合、わずかな変位で安全に内圧を開放することができることを意味している。   As shown in Table 2, in the conventional model, when the width of the thin-walled portion 32 is changed to 0.75, 1.00, and 1.25 mm, the displacement reaches 0.1 mm or more for the stress to reach the threshold for any width. You can see that On the other hand, in the present application model 1, the displacement exceeds 0.2 mm when the width of the thin portion 32 is as large as 1.25 mm, but 0 when the width of the thin portion 32 is 0.75 and 1.0 mm. The discharge valve operation threshold is reached with a small displacement of about .03 mm. In these cases, when the battery internal pressure rises, it means that the internal pressure can be safely released with a slight displacement.

薄肉部32の段差に関するシミュレーション
次に、封口板30に設ける薄肉部32の段差と、薄肉部32に発生する応力との関係を、前記シミュレーションモデルにより算出した。シミュレーションモデルは、薄肉部32の幅W=1.0mm、厚みT=0.03mmとし、段差Hを0(従来モデルの段差なし)から本願モデル1(段差H=0.1mm)を含み0.2mmまで変化させ、薄肉部32に発生する応力が、排出弁として作動する閾値と想定している0.5GPaに達するときの薄肉部32の変位を求めた。なお、薄肉部32の段差は、四捨五入して小数点以下2桁に丸めたものである。表3に、薄肉部32の段差をパラメータとして算出された変位を示している。表3で段差Hのマイナス記号は、封口板30の薄肉部32を挟んだ内方側が外方側よりも低くなっている(封口板30を正極端子側から見たときに略凹状となっている)ことを示している。なお、逆に薄肉部32の外方側を内方側よりも0.1mm低くしたモデルについて変位を算出したが、薄肉部32での発生応力が高まる(従来モデルよりも小さい変位で閾値応力に達する)効果は見られなかった。
Next, the relationship between the step of the thin portion 32 provided on the sealing plate 30 and the stress generated in the thin portion 32 was calculated by the simulation model. The simulation model has a width W = 1.0 mm and a thickness T = 0.03 mm of the thin-walled part 32, and the step H is from 0 (no step of the conventional model) to the present application model 1 (step H = 0.1 mm). The displacement was changed to 2 mm, and the displacement of the thin-walled portion 32 when the stress generated in the thin-walled portion 32 reached 0.5 GPa assumed to be a threshold operating as a discharge valve was determined. In addition, the level | step difference of the thin part 32 is rounded off and rounded off to two decimal places. Table 3 shows the displacement calculated using the step of the thin portion 32 as a parameter. The minus sign of the step H in Table 3 is lower at the inner side of the thin plate 32 of the sealing plate 30 than at the outer side (when the sealing plate 30 is viewed from the positive electrode terminal side, it is substantially concave) Show that). Although the displacement was calculated for a model in which the outer side of the thin portion 32 was 0.1 mm lower than the inner side, the generated stress in the thin portion 32 increased (the threshold stress was smaller than the conventional model). The effect was not seen.

Figure 0006523722
Figure 0006523722

表3に示すように、薄肉部32の幅と厚みを前記のように一定として段差Hを変化させた場合、H=−0.10mm近辺では0.05mmと比較的小さい変位で閾値応力に達しており、電池1の内圧上昇に対して小さい変位で、すなわち小さな内圧上昇で薄肉部32が破断して内圧を開放可能と期待できることがわかる。   As shown in Table 3, when the step H is changed with the width and thickness of the thin portion 32 fixed as described above, the threshold stress is reached with a relatively small displacement of 0.05 mm around H = −0.10 mm. It can be seen that the thin portion 32 is broken with a small displacement relative to the rise in the internal pressure of the battery 1, that is, it can be expected that the internal pressure can be released.

上記のほか、封口板30の材質を変更したシミュレーションも実施した。シミュレーションモデルは、薄肉部32の段差H=0.10mm、幅W=1.00mm、厚みT=0.03mmとし、材質は、ステンレス材のSUS316、SUS430を想定した。これらの場合、材質により変位に対する発生応力の挙動、大きさに差異は見られたが、いずれも変位が0.05mm以下で閾値応力に達する効果が見られた。   In addition to the above, a simulation was also performed in which the material of the sealing plate 30 was changed. In the simulation model, the difference in height H of the thin portion 32 was 0.10 mm, the width W was 1.00 mm, and the thickness T was 0.03 mm, and the materials were stainless steels SUS316 and SUS430. In these cases, the behavior and magnitude of the generated stress with respect to displacement were different depending on the material, but in any case, the effect of reaching the threshold stress was observed when the displacement was 0.05 mm or less.

以上のように、封口板30の本実施形態の薄肉部32を設けた場合の効果が明らかとなったが、ここで、本実施形態の封口板30を設けた電池缶10を用いて、実際に電池内圧を上昇させたとした場合の作動圧(薄肉部32が排出弁として動作するときの圧力)を測定した。電池1として円筒型電池を想定し、以下の手順で測定を行った。測定対象としては、シミュレーションにおける従来モデルと本願モデル1とし、薄肉部32の幅W=1.0mm、厚みT=0.03mmとした。   As mentioned above, although the effect at the time of providing thin part 32 of this embodiment of sealing board 30 became clear, here, using battery can 10 which provided sealing board 30 of this embodiment, actually The operating pressure (pressure when the thin portion 32 operates as a discharge valve) when the battery internal pressure was raised was measured. Assuming that a cylindrical battery was used as the battery 1, measurement was performed according to the following procedure. The measurement target was the conventional model in the simulation and the present application model 1, and the width W of the thin portion 32 was 1.0 mm, and the thickness T was 0.03 mm.

まず、封口板30を溶接して密封した電池缶10を作動圧試験機に取り付け、作動圧試験機から純水が封口板付きの外装缶に自動供給されるように設定した。そして、電池缶10内に純水が貯留されて内圧が上昇し、封口板30の薄肉部32が破断した時の圧力を測定した。測定結果を図6に示している。   First, the battery can 10 in which the sealing plate 30 was welded and sealed was attached to the working pressure tester, and it was set so that pure water was automatically supplied from the working pressure tester to the outer can with the sealing plate. Then, pure water was stored in the battery can 10, the internal pressure increased, and the pressure when the thin portion 32 of the sealing plate 30 was broken was measured. The measurement results are shown in FIG.

図6は、従来モデル、本願モデル1各10個のサンプルについて、上記の作動圧を測定した結果を示している。図示のヒストグラムの縦軸は作動圧を、横軸は対応するサンプル数を示している。図6の結果から明らかなように、本発明を適用した本願モデル1によるサンプル電池では、従来モデルと比較して作動圧のばらつきが抑制されており、安定した弁差動が可能となっている。   FIG. 6 shows the results of measuring the above-mentioned operating pressure for each of ten samples of the conventional model and the present model 1. The vertical axis of the illustrated histogram indicates the operating pressure, and the horizontal axis indicates the corresponding number of samples. As apparent from the results of FIG. 6, in the sample battery according to the present application model 1 to which the present invention is applied, the variation in operating pressure is suppressed as compared with the conventional model, and stable valve differential is possible. .

以上詳細に説明したように、本発明の実施形態に係る、薄肉部32を有する封口板30を備えた筒型電池では、なんらかの原因で電池内圧が上昇した場合、電池内圧が比較的低い段階で薄肉部32が破断して電池内圧を外部に開放することができる。したがって、電池が破裂して内容物が噴出するような状況を防止することができる。また、薄肉部32が破断する際の圧力にばらつきが少ないため、電池内圧を安全に開放する効果を確実に得ることができる。   As described above in detail, in the cylindrical battery provided with the sealing plate 30 having the thin portion 32 according to the embodiment of the present invention, when the battery internal pressure rises for some reason, the battery internal pressure is relatively low. The thin portion 32 can be broken to release the battery internal pressure to the outside. Therefore, it is possible to prevent a situation where the battery is ruptured and the contents are spouted. In addition, since the variation in pressure at the time of breakage of the thin portion 32 is small, the effect of safely releasing the battery internal pressure can be reliably obtained.

1 筒型電池 10 電池缶 20 発電要素
30 封口板 32 薄肉部
1 cylindrical battery 10 battery can 20 power generation element 30 sealing plate 32 thin-walled portion

Claims (3)

有底筒状の電池缶と、当該電池缶の内側に配置されている発電要素と、前記発電要素と電気的に接続されている電極端子とを有する筒型電池を構成すべく、前記電池缶の開口部を封止するための封口板であって、
前記封口板は前記電池缶の内周部と封止状態に接続される外周部と、前記電極端子の周縁部を封止するための内周部とを有する平板状に形成されており、
前記封口板の前記外周部と前記内周部との間には、当該封口板の周方向に沿って所定の幅でもって、他の前記封口板の部分の厚みよりも厚みが薄く形成されている帯状の領域である薄肉部が形成されており、前記封口板の前記薄肉部より内周側部分が、前記封口板の前記薄肉部の外周側よりも前記電池缶の底方向に偏位されている、
ことを特徴とする筒型電池の封口板。
The battery can comprises a cylindrical battery having a bottomed cylindrical battery can, a power generating element disposed inside the battery can, and an electrode terminal electrically connected to the power generating element. A sealing plate for sealing the opening of the
The sealing plate is formed in a flat plate shape having an inner peripheral portion connected to the inner peripheral portion of the battery can and a sealing state, and an inner peripheral portion for sealing the peripheral portion of the electrode terminal.
Between the outer peripheral portion and the inner peripheral portion of the sealing plate, the thickness is formed thinner than the thickness of the other sealing plate with a predetermined width along the circumferential direction of the sealing plate A thin portion which is a band-like region is formed, and the inner peripheral side portion from the thin portion of the sealing plate is offset in the bottom direction of the battery can than the outer peripheral side of the thin portion of the sealing plate ing,
A sealing plate of a cylindrical battery characterized in that.
請求項1に記載の筒型電池の封口板であって、
前記薄肉部は、前記封口板の前記電池缶内部の側から設けられた前記幅の溝として形成されていることを特徴とする筒型電池の封口板。
It is a sealing plate of the cylindrical battery of Claim 1, Comprising:
The sealing plate of a cylindrical battery, wherein the thin-walled portion is formed as a groove of the width provided from the inside of the battery can of the sealing plate.
有底筒状の電池缶と、当該電池缶の内側に配置されている発電要素と、前記発電要素と電気的に接続されている電極端子と、前記電池缶の開口部を封止するための封口板とを有する筒型電池であって、
前記封口板は前記電池缶の内周部と封止状態に接続される外周部と、前記電極端子の周縁部を封止するための内周部とを有する平板状に形成されており、
前記封口板の前記外周部と前記内周部との間には、当該封口板の周方向に沿って所定の幅でもって、他の前記封口板の部分の厚みよりも厚みが薄く形成されている帯状の領域である薄肉部が形成されており、前記封口板の前記薄肉部より内周側部分が、前記封口板の前記薄肉部の外周側よりも前記電池缶の底方向に偏位されている、
ことを特徴とする筒型電池。
A bottomed cylindrical battery can, a power generation element disposed inside the battery can, an electrode terminal electrically connected to the power generation element, and a seal for the opening of the battery can A cylindrical battery having a sealing plate,
The sealing plate is formed in a flat plate shape having an inner peripheral portion connected to the inner peripheral portion of the battery can and a sealing state, and an inner peripheral portion for sealing the peripheral portion of the electrode terminal.
Between the outer peripheral portion and the inner peripheral portion of the sealing plate, the thickness is formed thinner than the thickness of the other sealing plate with a predetermined width along the circumferential direction of the sealing plate A thin portion which is a band-like region is formed, and the inner peripheral side portion from the thin portion of the sealing plate is offset in the bottom direction of the battery can than the outer peripheral side of the thin portion of the sealing plate ing,
A cylindrical battery characterized by
JP2015054947A 2015-03-18 2015-03-18 Sealing plate of cylindrical battery and cylindrical battery Active JP6523722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054947A JP6523722B2 (en) 2015-03-18 2015-03-18 Sealing plate of cylindrical battery and cylindrical battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015054947A JP6523722B2 (en) 2015-03-18 2015-03-18 Sealing plate of cylindrical battery and cylindrical battery

Publications (2)

Publication Number Publication Date
JP2016177877A JP2016177877A (en) 2016-10-06
JP6523722B2 true JP6523722B2 (en) 2019-06-05

Family

ID=57071449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015054947A Active JP6523722B2 (en) 2015-03-18 2015-03-18 Sealing plate of cylindrical battery and cylindrical battery

Country Status (1)

Country Link
JP (1) JP6523722B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220029232A1 (en) * 2018-12-28 2022-01-27 Sanyo Electric Co., Ltd. Cylindrical battery
JP7286429B2 (en) * 2019-06-20 2023-06-05 Fdk株式会社 Sealing gaskets and batteries
WO2021199692A1 (en) 2020-04-01 2021-10-07 パナソニックIpマネジメント株式会社 Hermetically sealed battery
WO2022158378A1 (en) * 2021-01-21 2022-07-28 三洋電機株式会社 Cylindrical battery
WO2024090079A1 (en) * 2022-10-27 2024-05-02 パナソニックエナジー株式会社 Battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827859U (en) * 1981-08-19 1983-02-23 富士電気化学株式会社 Sealing gasket for explosion-proof batteries
JPH03104953U (en) * 1990-02-13 1991-10-30
JP2529327Y2 (en) * 1990-04-27 1997-03-19 富士電気化学株式会社 Manganese dry cell
HU914042D0 (en) * 1991-12-19 1992-04-28 Environmetal Batteries Systems Cylindrical cell with improved current lead
US8486546B2 (en) * 2008-12-01 2013-07-16 Samsung Sdi Co., Ltd. Cap assembly and secondary battery using the same with notched vent member

Also Published As

Publication number Publication date
JP2016177877A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6523722B2 (en) Sealing plate of cylindrical battery and cylindrical battery
KR100945067B1 (en) Sealed and square type battery
JP4756392B2 (en) battery
JP4715843B2 (en) Sealed battery
US9692033B2 (en) Manufacturing method of sealed battery
JP6476710B2 (en) Storage element
JP6017873B2 (en) Sealed battery
JPH07169452A (en) Explosionproof container
US20150104700A1 (en) Sealed battery and method for manufacturing the same
JP6693042B2 (en) Storage element
JP5494794B2 (en) Battery manufacturing method and battery
JP5423812B2 (en) Battery manufacturing method and battery
JP6623074B2 (en) Bobbin-type lithium primary battery
JP6413580B2 (en) Power storage device and method for manufacturing power storage device
JP7110010B2 (en) secondary battery
JP7325474B2 (en) Sealing plate with gas exhaust valve and secondary battery using the same
JP2014063745A (en) Sealed battery and manufacturing method therefor
JP6761961B2 (en) Lithium primary battery
JP4622268B2 (en) Safety valve for sealed cylindrical battery and manufacturing method thereof
JP2008108603A (en) Cylindrical alkaline battery
JP2015082495A (en) Temporary sealing plug for power storage device
KR102290955B1 (en) Secondary battery
JP2014041718A (en) Case for secondary battery and secondary battery
JP2011243381A (en) Manufacturing method of battery
JP2007059823A (en) Electric double-layer capacitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190426

R150 Certificate of patent or registration of utility model

Ref document number: 6523722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250