JP2009103181A - Fixed type constant velocity universal joint - Google Patents

Fixed type constant velocity universal joint Download PDF

Info

Publication number
JP2009103181A
JP2009103181A JP2007274095A JP2007274095A JP2009103181A JP 2009103181 A JP2009103181 A JP 2009103181A JP 2007274095 A JP2007274095 A JP 2007274095A JP 2007274095 A JP2007274095 A JP 2007274095A JP 2009103181 A JP2009103181 A JP 2009103181A
Authority
JP
Japan
Prior art keywords
joint
fixed
constant velocity
spherical
velocity universal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007274095A
Other languages
Japanese (ja)
Inventor
Keisuke Sone
啓助 曽根
Daiji Okamoto
大路 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007274095A priority Critical patent/JP2009103181A/en
Publication of JP2009103181A publication Critical patent/JP2009103181A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pivots And Pivotal Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily attain a high operation angle of UJ or more at high efficiency equal to TJ by combining two constant velocity universal joints. <P>SOLUTION: A UJ part 10 is arranged on one end side and a TJ part 20 is arranged at the other end side while using a cylindrical outer ring 30 in common. A recessed spherical part 12 is provided on a TJ side end part of a shaft 11 of the UJ part 10 and a projected spherical part 22 is provided on a UJ side end part of a shaft 21 of the TJ part 20. The shaft 11 of the UJ part 10 is connected to the shaft 21 of the TJ part 20 through spherical pair of element 40 comprising the projected spherical part 22 and the recessed spherical part 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、自動車や各種産業機械の動力伝達系において使用されるもので、駆動側と従動側の二軸間で作動角度変位のみを許容する固定式等速自在継手に関する。   The present invention relates to a fixed type constant velocity universal joint that is used, for example, in a power transmission system of an automobile or various industrial machines and allows only an operating angle displacement between two axes of a driving side and a driven side.

例えば、自動車のエンジンから車輪に回転力を等速で伝達する手段として使用される等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これら両者の等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。   For example, there are two types of constant velocity universal joints that are used as means for transmitting a rotational force from an automobile engine to wheels at a constant velocity: a fixed constant velocity universal joint and a sliding constant velocity universal joint. Both of these constant velocity universal joints have a structure in which two shafts on the driving side and the driven side are connected so that rotational torque can be transmitted at a constant speed even if the two shafts have an operating angle.

自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトでは、エンジンと車輪との相対的位置関係の変化による角度変位と軸方向変位に対応する必要があるため、エンジン側(インボード側)に摺動式等速自在継手を、駆動車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装備し、両者の等速自在継手をシャフトで連結した構造を具備する。   A drive shaft that transmits power from the engine of a car to a drive wheel needs to cope with angular displacement and axial displacement due to a change in the relative positional relationship between the engine and the wheel, so it slides on the engine side (inboard side). A dynamic constant velocity universal joint is provided with a fixed constant velocity universal joint on the drive wheel side (outboard side), and both constant velocity universal joints are connected by a shaft.

一般的に、前述した固定式等速自在継手としては、ツェッパ型(以下、BJと称す)や作動角の大きなアンダーカットフリー型(以下、UJと称す)が広く知られている。この作動角の大きなアンダーカットフリー型の固定式等速自在継手では、最大作動角が約50°となっている。また、摺動式等速自在継手としては、ダブルオフセット型(以下、DOJと称す)やトリポード型(以下、TJと称す)が広く知られている。   Generally, as the above-mentioned fixed type constant velocity universal joint, a Rzeppa type (hereinafter referred to as BJ) and an undercut free type (hereinafter referred to as UJ) having a large operating angle are widely known. In the undercut-free fixed constant velocity universal joint having a large operating angle, the maximum operating angle is about 50 °. As the sliding constant velocity universal joint, a double offset type (hereinafter referred to as DOJ) and a tripod type (hereinafter referred to as TJ) are widely known.

一方、TJを固定式とした構造を具備する等速自在継手がある(例えば、特許文献1,2参照)。この種の固定式等速自在継手では、その最大作動角が約45°となっている。   On the other hand, there is a constant velocity universal joint having a structure in which TJ is fixed (see, for example, Patent Documents 1 and 2). This type of fixed type constant velocity universal joint has a maximum operating angle of about 45 °.

特許文献1に開示された固定式等速自在継手は、一方の軸と剛接され、軌道を有するチューリップ形部材と、そのチューリップ形部材の軌道内にローラを回転および滑動可能に配設されたトラニオンが延びるハブを含む他方の軸と剛接された3脚部材とで主要部が構成されている。この等速自在継手では、チューリップ形部材に取り付けられたファスナの弾性力でもってハブの球面接触部の軸方向移動を規制することにより固定式としている。   The fixed type constant velocity universal joint disclosed in Patent Document 1 is a tulip-shaped member that is rigidly connected to one shaft and has a track, and a roller is disposed in the track of the tulip-shaped member so as to be rotatable and slidable. The main part is composed of the other shaft including the hub in which the trunnion extends and the tripod member rigidly connected. This constant velocity universal joint is fixed by restricting the axial movement of the spherical contact portion of the hub by the elastic force of the fastener attached to the tulip-shaped member.

また、特許文献2に開示された固定式等速自在継手は、一方の軸に一体的に設けられ、トラニオンおよびローラセクタを有する3脚要素と、他方の軸に一体的に設けられ、3脚要素を収容するたる形要素と、3脚要素とたる形要素との間に配設されたばね性の3脚スパイダとで主要部が構成されている。この等速自在継手では、ばね性を有する3脚スパイダにより3脚要素の軸方向移動を規制すると共にその円周方向のすきまを詰めることによって固定式としている。
特開昭54−49443号公報 特開昭58−191323号公報
The fixed type constant velocity universal joint disclosed in Patent Document 2 is integrally provided on one shaft, and is integrally provided on a three-leg element having a trunnion and a roller sector and on the other shaft. The main part is composed of a barrel element that accommodates the element and a springy tripod spider disposed between the tripod element and the barrel element. This constant velocity universal joint is of a fixed type by restricting the movement of the tripod element in the axial direction by a tripod spider having a spring property and closing the clearance in the circumferential direction.
JP 54-49443 A JP 58-191323 A

ところで、前述した特許文献1,2に開示されたTJタイプの固定式等速自在継手の両者とも、ばね性を有する部材などからなる構成部品が多く、しかも複雑な構造となっていることから、部品点数の増加により製品のコストアップを招来すると共に、構成部品の組立ても困難でその製造工程においても作業効率が悪いという問題がある。   By the way, since both of the TJ type fixed type constant velocity universal joints disclosed in Patent Documents 1 and 2 described above have many components composed of members having spring properties, etc., and have a complicated structure, The increase in the number of parts leads to an increase in the cost of the product, and there are problems that it is difficult to assemble the component parts and the work efficiency is poor in the manufacturing process.

また、一般的な摺動式等速自在継手であるTJでは、ローラと軸との間に転動体(ニードル)が介在する構造となっているのに対して、特許文献1に開示されたTJタイプの固定式等速自在継手では、ローラと軸との間を滑り接触とする構造であるため、トルク伝達効率が悪いという問題もある。   The TJ, which is a general sliding constant velocity universal joint, has a structure in which a rolling element (needle) is interposed between a roller and a shaft, whereas the TJ disclosed in Patent Document 1 is used. Since the fixed type constant velocity universal joint of the type has a structure in which the roller and the shaft are in sliding contact, there is also a problem that the torque transmission efficiency is poor.

さらに、これら特許文献1,2に開示されたTJタイプの固定式等速自在継手では、大きな作動角をとった時、TJタイプ固有の軸芯の偏心が生じて振動などが発生するという問題もある。   Furthermore, in the TJ type fixed type constant velocity universal joints disclosed in Patent Documents 1 and 2, there is a problem that when a large operating angle is taken, an eccentricity of the shaft core peculiar to the TJ type occurs and vibrations occur. is there.

なお、一般的な固定式等速自在継手には、前述したようにBJや作動角の大きなUJがあるが、UJの最大作動角としては、約50°が限界となっている。また、これらBJやUJは、一般的な摺動式等速自在継手であるTJに比べてトルク伝達効率が悪いという問題もあった。   Note that, as described above, BJ and UJ having a large operating angle are included in general fixed type constant velocity universal joints, but the maximum operating angle of UJ is limited to about 50 °. In addition, these BJs and UJs also have a problem that the torque transmission efficiency is lower than that of TJ which is a general sliding type constant velocity universal joint.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、二つの等速自在継手を組み合わせた簡単な構造で、TJに匹敵する高効率でUJ以上の高作動角を実現し得る固定式等速自在継手を提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and its object is a simple structure combining two constant velocity universal joints, with high efficiency comparable to TJ and higher than UJ. An object of the present invention is to provide a fixed type constant velocity universal joint capable of realizing an operating angle.

前述の目的を達成するための技術的手段として、本発明は、円筒状外方部材を共通にしてその一端側に固定式継手部を配設すると共に他端側にトリポード型継手部を配設し、その固定式継手部の内方部材あるいはトリポード型継手部の内方部材のいずれか一方の対向端部に凸球面部を設けると共に他方の対向端部に凹球面部を設け、その凸球面部と凹球面部からなる球対偶を介して固定式継手部の内方部材とトリポード型継手部の内方部材を連結したことを特徴とする。   As technical means for achieving the above-mentioned object, the present invention has a cylindrical outer member in common and a fixed joint portion disposed on one end side thereof and a tripod type joint portion disposed on the other end side. A convex spherical surface is provided at the opposite end of either the inner member of the fixed joint or the inner member of the tripod type joint, and a concave spherical portion is provided at the other opposite end. The inner member of the fixed joint portion and the inner member of the tripod type joint portion are connected via a spherical pair made up of a concave portion and a concave spherical portion.

ここで、前述の内方部材とは、外方部材としての外輪の内周側に配置された内輪あるいはトリポード部材だけではなく、その内輪あるいはトリポード部材の軸孔にスプライン嵌合で連結一体化されたシャフトを含む。   Here, the above-mentioned inner member is not only the inner ring or tripod member arranged on the inner peripheral side of the outer ring as the outer member, but is also connected and integrated with the shaft hole of the inner ring or tripod member by spline fitting. Including shaft.

また、前述の外方部材は、単一の部材で構成することが可能であるが、固定式継手部側とトリポード型継手部側の二部材で分割構成し、両部材を同軸的に突き合わせて接合一体化した構成とすることも可能である。   Moreover, although the above-mentioned outer member can be comprised with a single member, it is divided | segmented and comprised by two members of a fixed joint part side and a tripod type | mold joint part side, and both members are faced | matched coaxially. It is also possible to adopt a structure in which the joints are integrated.

さらに、前述の球対偶は、切り欠き等による嵌め合い構造の凸球面部と凹球面部からなり、凸球面部と凹球面部の相対回転による位相合わせでもって両者の係合離脱を可能にした構造としてもよい。   Furthermore, the above-mentioned ball pair is composed of a convex spherical surface portion and a concave spherical surface portion with a fitting structure by notches or the like, and enables the engagement and disengagement of both by phase alignment by relative rotation of the convex spherical surface portion and the concave spherical surface portion. It is good also as a structure.

本発明では、固定式継手部とトリポード型継手部とで円筒状外方部材を共通にしたことにより、その外方部材内に固定式とトリポード型の二つの継手部を組み合わせた構造を具備する。さらに、固定式継手部の内方部材あるいはトリポード型継手部の内方部材のいずれか一方の対向端部に凸球面部を設けると共に他方の対向端部に凹球面部を設け、凸球面部と凹球面部からなる球対偶を介して固定式継手部の内方部材とトリポード型継手部の内方部材を連結したことにより、凸球面部と凹球面部からなる球対偶は、固定式継手部の内方部材とトリポード型継手部の内方部材とを連結し、固定式継手部とトリポード型継手部で共通の一点を中心とした球面案内機構とすることで、この球面中心を作動角の中心とする固定式等速自在継手となる。   In the present invention, the cylindrical outer member is shared by the fixed joint portion and the tripod type joint portion, so that the outer member has a structure in which two fixed and tripod type joint portions are combined. . Further, a convex spherical surface portion is provided at one opposing end portion of either the inner member of the fixed joint portion or the inner member of the tripod type joint portion, and a concave spherical surface portion is provided at the other opposing end portion. By connecting the inner member of the fixed joint part and the inner member of the tripod type joint part via a spherical pair consisting of a concave spherical part, the spherical pair consisting of a convex spherical part and a concave spherical part becomes a fixed joint part. The inner member of the tripod joint and the inner member of the tripod joint are connected to form a spherical guide mechanism centered on one point common to the fixed joint and the tripod joint. It becomes a fixed type constant velocity universal joint.

このように固定式継手部とトリポード型継手部を共通の外方部材に組み込み、両者の固定式継手部とトリポード型継手部を球対偶で連結した構造としたことにより、固定式継手部とトリポード型継手部のそれぞれの作動角を加えた大きな作動角を実現できる。この等速自在継手の作動角は、固定式継手部とトリポード型継手部のそれぞれが分担するため、固定式継手部とトリポード型継手部のそれぞれが分担する作動角分は少なくて済むのでトルク損失も低く、トリポード型等速自在継手に匹敵する高効率化が図れる。また、固定式継手部とトリポード型継手部間に凸球面部と凹球面部からなる球対偶が介在するのみであるため、固定式等速自在継手の構造の簡略化も図れる。   In this way, the fixed joint part and the tripod type joint part are incorporated into a common outer member, and the fixed joint part and the tripod type joint part are connected to each other by a ball pair. A large operating angle can be realized by adding each operating angle of the mold joint. The operating angle of this constant velocity universal joint is shared by the fixed joint part and the tripod type joint part. Therefore, the operating angle part shared by the fixed joint part and the tripod type joint part is small, so torque loss is reduced. The efficiency is comparable to that of a tripod type constant velocity universal joint. Further, since only a ball pair consisting of a convex spherical surface portion and a concave spherical surface portion is interposed between the fixed joint portion and the tripod type joint portion, the structure of the fixed constant velocity universal joint can be simplified.

前述した構成における固定式継手部は、軸方向に延びる複数のトラック溝が球面状内周面に形成された外方部材と、その外方部材のトラック溝と対をなして軸方向に延びる複数のトラック溝を球面状外周面に形成された内方部材と、外方部材のトラック溝と内方部材のトラック溝とで形成されるボールトラックに配されてトルクを伝達する複数のボールと、外方部材の球面状内周面と内方部材の球面状外周面との間に介在してボールを保持するケージとを備えた構造のものが適用可能である。この固定式継手部としては、BJやUJがある。   The fixed joint portion having the above-described configuration includes an outer member in which a plurality of track grooves extending in the axial direction are formed on the spherical inner peripheral surface, and a plurality of members extending in the axial direction in pairs with the track grooves of the outer member. A plurality of balls arranged on a ball track formed of an inner member formed on the outer circumferential surface of the spherical track groove, a track groove of the outer member and a track groove of the inner member, and transmitting torque. A structure having a cage for holding a ball interposed between the spherical inner peripheral surface of the outer member and the spherical outer peripheral surface of the inner member is applicable. As this fixed joint portion, there are BJ and UJ.

特に、この固定式継手部は、外方部材のトラック溝の軸方向一端側に軸方向と平行な直線部分が形成されると共に内方部材のトラック溝の軸方向他端側に軸方向と平行な直線部分が形成された構造、つまり、UJとする。このUJにおいて、外方部材のトラック溝の曲率中心と内方部材のトラック溝の曲率中心とを継手中心を挟んで等距離だけ軸方向逆向きにオフセットさせることにより、ボールトラックを軸方向に拡開する楔形状とし、そのボールトラックの楔拡開側を外方部材の開口側と一致させることが望ましい。   In particular, the fixed joint portion is formed with a linear portion parallel to the axial direction at one axial end side of the track groove of the outer member and parallel to the axial direction at the other axial end side of the track groove of the inner member. A structure in which a straight line portion is formed, that is, UJ. In this UJ, the ball track is expanded in the axial direction by offsetting the center of curvature of the track groove of the outer member and the center of curvature of the track groove of the inner member in the opposite axial direction by an equal distance across the joint center. It is desirable that the wedge shape be opened, and the wedge expansion side of the ball track coincide with the opening side of the outer member.

このようにすれば、内方部材の奥側端部においてトラック溝底の肉厚が厚くなる。そのため、この内方部材にセレーション嵌合される軸部材の端部に球対偶の凹球面部をより大きく、また、球対偶の球面中心から固定式継手部の継手中心までの距離L1とを小さくすることが容易となる。ここで、球対偶の凹球面部の径が大きいことは、凸球面部の首部の径を大きくできて高強度となり、球対偶の球面中心から固定式継手部の継手中心までの距離L1とが小さいことは、軸方向にコンパクトとなるために望ましい。 If it does in this way, the thickness of a track groove bottom will become thick in the back end part of an inward member. Therefore, the concave spherical surface portion of the ball pair is larger at the end of the shaft member that is serrated to the inner member, and the distance L 1 from the spherical center of the ball pair to the joint center of the fixed joint portion is It becomes easy to make it smaller. Here, the large diameter of the concave spherical portion of the ball pair increases the diameter of the neck of the convex spherical portion and increases the strength, and the distance L 1 from the spherical center of the ball pair to the joint center of the fixed joint portion is A small is desirable for compactness in the axial direction.

また、トリポード型継手部は、軸方向に延びる三本のトラック溝が円筒状内周面に形成され、各トラック溝の両側にローラ案内面を有する外方部材と、半径方向に突出した三本の脚軸を有するトリポード部材を含む内方部材と、トリポード部材の各脚軸に回転自在に装着され、各トラック溝に挿入されてローラ案内面と摺接するローラ機構とを備えた構造のものが適用可能である。このトリポード型継手部としては、一般的なTJと同一構造である。   Further, the tripod type joint portion has three track grooves extending in the axial direction on the cylindrical inner peripheral surface, an outer member having roller guide surfaces on both sides of each track groove, and three protruding in the radial direction. And a roller mechanism that is rotatably mounted on each leg shaft of the tripod member and is inserted into each track groove to be in sliding contact with the roller guide surface. Applicable. This tripod type joint has the same structure as a general TJ.

このトリポード型継手部においては、ローラ案内面に沿って外側継手部材の軸線と平行な方向に案内される外側ローラと、脚軸の外周面に外嵌されて複数の転動体を介して外側ローラを回転自在に支持する内側ローラとからなるダブルローラタイプのローラ機構や、脚軸の外周面を球面形状としたトリポード部材を採用することが望ましい。   In this tripod type joint portion, an outer roller guided in a direction parallel to the axis of the outer joint member along the roller guide surface, and an outer roller fitted on the outer peripheral surface of the leg shaft through a plurality of rolling elements It is desirable to employ a double roller type roller mechanism composed of an inner roller that rotatably supports a tripod member having a spherical outer peripheral surface of the leg shaft.

このようにすれば、一般的なTJに比べて三次振動が低減できるため、さらに高い常用角(車両の直進状態での作動角)に適用できる。また、この等速自在継手の作動角のうち、トリポード型継手部が分担する作動角分を大きくすることで、さらに高効率の等速自在継手を実現できる。   In this way, since the tertiary vibration can be reduced as compared with a general TJ, it can be applied to a higher normal angle (an operating angle when the vehicle is traveling straight). Further, by increasing the operating angle shared by the tripod type joint portion among the operating angles of the constant velocity universal joint, a further efficient constant velocity universal joint can be realized.

本発明に係る固定式等速自在継手においては、固定式継手部とトリポード型継手部の作動角を0°とした時、凸球面部と凹球面部からなる球対偶の球面中心から固定式継手部の継手中心までの距離L1と、球対偶の球面中心からトリポード型継手部の継手中心までの距離L2とした場合、L1<L2の条件を満足するように設定することが望ましい。 In the fixed type constant velocity universal joint according to the present invention, when the operating angle of the fixed type joint part and the tripod type joint part is 0 °, the fixed type joint is formed from the spherical center of the spherical pair consisting of the convex spherical part and the concave spherical part. When the distance L 1 to the joint center of the part and the distance L 2 from the spherical center of the ball pair to the joint center of the tripod-type joint part are desirably set so as to satisfy the condition of L 1 <L 2 .

通常、固定式継手部(例えばUJ)がトリポード型継手部(TJ)よりも構造上大きな作動角をとることができる。このことから、前述したように球対偶の球面中心から固定式継手部の継手中心までの距離L1と、球対偶の球面中心からトリポード型継手部の継手中心までの距離L2について、L1<L2の条件を満足するように設定すれば、固定式継手部にトリポード型継手部よりも大きな作動角を分担させることになり、全体としての固定式等速自在継手において、より大きな作動角が得られる。 Usually, a fixed joint part (for example, UJ) can take a larger operating angle structurally than a tripod type | mold joint part (TJ). From this, as described above, the distance L 1 from the spherical center of the ball pair to the joint center of the fixed joint portion and the distance L 2 from the spherical center of the ball pair to the joint center of the tripod joint portion are expressed as L 1. <be set so as to satisfy the condition of L 2, will be sharing the large operating angle than tripod type joint portion fixed joint, in the fixed constant velocity universal joint as a whole, a larger operating angle Is obtained.

本発明では、円筒状外方部材を共通にしてその一端側に固定式継手部を配設すると共に他端側にトリポード型継手部を配設し、その固定式継手部の内方部材あるいはトリポード型継手部の内方部材のいずれか一方の対向端部に凸球面部を設けると共に他方の対向端部に凹球面部を設け、その凸球面部と凹球面部からなる球対偶を介して固定式継手部の内方部材とトリポード型継手部の内方部材を連結した構造としている。   In the present invention, a cylindrical outer member is used in common and a fixed joint portion is provided on one end side thereof, and a tripod type joint portion is provided on the other end side, and an inner member or tripod of the fixed joint portion is provided. A convex spherical surface is provided at one of the opposing ends of the inner member of the mold joint, and a concave spherical surface is provided at the other opposing end, and is fixed via a spherical pair of convex spherical and concave spherical portions. The inner member of the type joint part and the inner member of the tripod type joint part are connected.

これにより、固定式継手部とトリポード型継手部のそれぞれの作動角を加えた大きな作動角を実現することができ、固定式継手部とトリポード型継手部とを組み合わせた簡単な構造で、一般的なTJに匹敵する高効率でUJ以上の高作動角を実現した固定式等速自在継手を提供できる。その結果、例えば、近年における自動車のドライブシャフトに使用される固定式等速自在継手の高角化による前輪の操舵角の増大への要望に迅速に対応することができる。   As a result, it is possible to achieve a large operating angle by adding the operating angles of the fixed joint part and tripod type joint part, and a simple structure combining the fixed joint part and tripod type joint part. It is possible to provide a fixed type constant velocity universal joint that realizes a high operating angle equal to or higher than UJ with high efficiency comparable to that of TJ. As a result, for example, in recent years, it is possible to quickly respond to the demand for an increase in the steering angle of the front wheels by increasing the angle of a fixed type constant velocity universal joint used for a drive shaft of an automobile.

本発明に係る固定式等速自在継手の実施形態を以下に詳述する。以下で説明する実施形態の固定式等速自在継手は、固定式継手部としてUJ、トリポード型継手部としてTJをそれぞれ適用して組み合わせた構造を例示する。なお、固定式継手部としてはUJ以外にBJを適用して組み合わせることも可能である。   An embodiment of a fixed type constant velocity universal joint according to the present invention will be described in detail below. The fixed constant velocity universal joint of the embodiment described below exemplifies a structure in which UJ is applied as a fixed joint part and TJ is applied as a tripod type joint part. In addition, as a fixed joint part, it is also possible to apply and combine BJ in addition to UJ.

図1はUJとTJを組み合わせた固定式等速自在継手の全体構成を示す。この実施形態の固定式等速自在継手は、円筒状外方部材である外輪30を共通にしてその一端側(図示左側)に固定式継手部としてのUJ部10を配設すると共に他端側(図示右側)に摺動式のトリポード型継手部としてのTJ部20を配設し、そのUJ部10の内方部材であるシャフト11のTJ側端部に凹球面部12を設けると共にTJ部20の内方部材であるシャフト21のUJ側端部に凸球面部22を設け、その凸球面部12と凹球面部22からなる球対偶40を介してUJ部10のシャフト11とTJ部20のシャフト21をトルク伝達可能に連結した構造を具備する。   FIG. 1 shows the overall configuration of a fixed type constant velocity universal joint combining UJ and TJ. The fixed type constant velocity universal joint of this embodiment has a common outer ring 30 which is a cylindrical outer member, and a UJ part 10 as a fixed type joint part is disposed on one end side (the left side in the drawing) and the other end side. A TJ portion 20 as a sliding tripod joint is disposed on the right side of the drawing, and a concave spherical surface portion 12 is provided at the TJ side end portion of the shaft 11 which is an inner member of the UJ portion 10 and the TJ portion. A convex spherical surface 22 is provided at the UJ side end of the shaft 21 which is an inner member of the shaft 20, and the shaft 11 and the TJ portion 20 of the UJ portion 10 are connected via a spherical pair 40 including the convex spherical surface 12 and the concave spherical surface 22. The shaft 21 is connected so that torque can be transmitted.

この実施形態における外輪30は、UJ用外輪31とTJ用外輪32とを溶接(図中で示す符号34は溶接部)により接合一体化した場合であるが、UJ部10とTJ部20で共通する単一構造の外輪を使用することも可能である。この固定式等速自在継手では、UJ部10のシャフト11の中心軸M1とTJ部20のシャフト21の中心軸M2とが一致した状態に配されている。 The outer ring 30 in this embodiment is a case where the UJ outer ring 31 and the TJ outer ring 32 are joined and integrated by welding (the reference numeral 34 in the drawing is a welded portion), but the UJ portion 10 and the TJ portion 20 are common. It is also possible to use a single structure outer ring. In this fixed type constant velocity universal joint, the central axis M 1 of the shaft 11 of the UJ portion 10 and the central axis M 2 of the shaft 21 of the TJ portion 20 are arranged to coincide with each other.

この固定式等速自在継手に組み込まれたUJ部10は、軸方向に延びる複数のトラック溝33が球面状内周面の開口端側で円周方向等間隔に形成された外輪30をTJ部20と共通にし、その外輪30のトラック溝33と対をなして軸方向に延びる複数のトラック溝13が球面状外周面に円周方向等間隔に形成された内方部材である内輪14と、外輪30のトラック溝33と内輪14のトラック溝13とで形成されるボールトラック15に配されてトルクを伝達する複数のボール16と、外輪30の球面状内周面と内輪14の球面状外周面との間に介在して各ボール16を保持するケージ17とを備えている。複数のボール16は、ケージ17に形成されたポケット18に収容されて円周方向等間隔に配置されている。   The UJ portion 10 incorporated in the fixed type constant velocity universal joint includes an outer ring 30 in which a plurality of track grooves 33 extending in the axial direction are formed at equal intervals in the circumferential direction on the opening end side of the spherical inner peripheral surface. 20, an inner ring 14 which is an inner member in which a plurality of track grooves 13 extending in the axial direction in pairs with the track grooves 33 of the outer ring 30 are formed on the spherical outer peripheral surface at equal intervals in the circumferential direction; A plurality of balls 16 arranged on a ball track 15 formed by a track groove 33 of the outer ring 30 and a track groove 13 of the inner ring 14 and transmitting torque, a spherical inner peripheral surface of the outer ring 30 and a spherical outer periphery of the inner ring 14 And a cage 17 for holding the balls 16 interposed between the surfaces. The plurality of balls 16 are accommodated in pockets 18 formed in the cage 17 and arranged at equal intervals in the circumferential direction.

このUJ部10では、外輪30のトラック溝33の曲率中心O11と内輪14のトラック溝13の曲率中心O12とを、継手中心O1に対して等距離fだけ軸方向逆向きにオフセットさせている。また、外輪30のトラック溝33は、曲率中心O11を持つ円弧部分33aと、その曲率中心O11から径方向に延びる線分がトラック溝33の底部と交わる部位を境として軸方向と平行な直線部分33bとで構成されている。同様に、内輪14のトラック溝13は、曲率中心O12を持つ円弧部分13aと、その曲率中心O12から径方向に延びる線分がトラック溝13の底部と交わる部位を境として軸方向と平行な直線部分13bとで構成されている。 In the UJ portion 10, and a center of curvature O 12 of the track grooves 13 of the center of curvature O 11 and the inner ring 14 of the track grooves 33 of the outer ring 30, is axially offset opposite equal distance f with respect to the joint center O 1 ing. Further, the track grooves 33 of the outer ring 30 has a circular arc portion 33a having a center of curvature O 11, a line segment extending from the center of curvature O 11 in the radial direction parallel to the axial direction as a boundary portion which intersects with the bottom of the track grooves 33 It is comprised with the linear part 33b. Similarly parallel track grooves 13 of the inner ring 14, an arcuate portion 13a having a center of curvature O 12, a line segment extending from the center of curvature O 12 in the radial direction and axial direction as a boundary portion which intersects with the bottom of the track groove 13 And a straight line portion 13b.

このUJ部10では、前述したトラックオフセットにより、ボールトラック15を軸方向に拡開する楔形状とし、外輪30のトラック溝33の直線部分33bを外輪開口側に配すると共に内輪14のトラック溝13の直線部分13bを外輪奥側に配することにより、楔形状のボールトラック15の楔拡開側を外輪30の開口側と一致させている。   In the UJ portion 10, the ball track 15 is formed in a wedge shape that expands in the axial direction by the track offset described above, the linear portion 33 b of the track groove 33 of the outer ring 30 is arranged on the outer ring opening side, and the track groove 13 of the inner ring 14. By arranging the straight portion 13b on the back side of the outer ring, the wedge expanding side of the wedge-shaped ball track 15 is made to coincide with the opening side of the outer ring 30.

前述の内輪14の軸孔には、駆動側あるいは従動側のシャフト11がスプライン嵌合により結合されて止め輪19により内輪14に対して抜け止めされている。このようにして、シャフト11と外輪30との間で作動角度変位を許容しながらトルク伝達が可能な構造となっている。なお、この内輪14とシャフト11で内方部材を構成する。   The driving or driven shaft 11 is coupled to the shaft hole of the inner ring 14 by spline fitting and is prevented from coming off from the inner ring 14 by a retaining ring 19. In this way, the torque can be transmitted while allowing the operating angle displacement between the shaft 11 and the outer ring 30. The inner ring 14 and the shaft 11 constitute an inner member.

また、外輪30とシャフト11との間には、継手外部からの異物侵入や継手内部からのグリース漏洩を防止するため、例えば蛇腹状の樹脂製ブーツ50が装着されている。このブーツ50の大径端部51は、外輪30の開口端外周面にブーツバンド52により締め付け固定され、その小径端部53は、シャフト11の取り付けられたフレーム54の外周面にブーツバンド55により締め付け固定されている。   In addition, a bellows-like resin boot 50 is mounted between the outer ring 30 and the shaft 11 in order to prevent foreign matter from entering from the outside of the joint and grease leakage from the inside of the joint. The large-diameter end 51 of the boot 50 is fastened and fixed to the outer peripheral surface of the opening end of the outer ring 30 by a boot band 52, and the small-diameter end 53 is fixed to the outer peripheral surface of the frame 54 to which the shaft 11 is attached by the boot band 55. Tightened and fixed.

図2は、図1のA−A線に沿う断面を示す。この固定式等速自在継手に組み込まれたTJ部20は、図1および図2に示すように、軸方向に延びて軸線に平行な三本の直線状トラック溝23が円筒状内周面に円周方向等間隔に形成された外輪30を前述のUJ部10と共通にし、半径方向に突出した三本の脚軸24aを有する内方部材であるトリポード部材24と、トリポード部材24の各脚軸24aに回転自在に装着され、各トラック溝23の両側に形成されたローラ案内面23aと摺接するローラ機構25とを備えている。   FIG. 2 shows a cross section taken along line AA of FIG. As shown in FIGS. 1 and 2, the TJ portion 20 incorporated in the fixed type constant velocity universal joint has three linear track grooves 23 extending in the axial direction and parallel to the axis line on the cylindrical inner peripheral surface. The outer ring 30 formed at equal intervals in the circumferential direction is shared with the UJ portion 10 described above, and a tripod member 24 that is an inner member having three leg shafts 24a projecting in the radial direction, and each leg of the tripod member 24 A roller mechanism 25 is rotatably mounted on the shaft 24a and is in sliding contact with the roller guide surfaces 23a formed on both sides of each track groove 23.

このローラ機構25は、トリポード部材24の脚軸24aに針状ころ25aを介してローラ25bを回転自在に外嵌し、それら針状ころ25aおよびローラ25bをワッシャ26および止め輪27により脚軸24aに対して抜け止めした構造を具備する。   The roller mechanism 25 is configured such that a roller 25b is rotatably fitted to a leg shaft 24a of a tripod member 24 via needle rollers 25a. The needle rollers 25a and the rollers 25b are connected to the leg shaft 24a by washers 26 and retaining rings 27. It has a structure that prevents it from coming off.

なお、図2中の符号R1は、外輪30の中心軸から外輪30の軸方向に円筒状に延びるトラック溝23の円筒中心軸までの距離であり、符号R2は、R1の延長線上で、外輪30の中心軸から前記トラック溝23以外の他のトラック溝23の円筒中心軸までの距離である。 Reference numeral R 1 in FIG. 2 is a distance from the central axis of the outer ring 30 to the cylinder center axis of the track grooves 23 extending in a cylindrical shape in the axial direction of the outer ring 30, reference numeral R 2 is an extension of R 1 The distance from the central axis of the outer ring 30 to the cylindrical central axis of the track groove 23 other than the track groove 23.

前述のトリポード部材24の軸孔には、従動側あるいは駆動側のシャフト21がスプライン嵌合により結合されて止め輪28により抜け止めされている。このようにして、シャフト21と外輪30との間で作動角度変位を許容しながらトルク伝達が可能な構造となっている。なお、このトリポード部材24とシャフト21で内方部材を構成する。   The driven or driving shaft 21 is coupled to the shaft hole of the tripod member 24 by spline fitting and is prevented from coming off by a retaining ring 28. In this way, the torque can be transmitted while allowing the operating angle displacement between the shaft 21 and the outer ring 30. The tripod member 24 and the shaft 21 constitute an inner member.

また、外輪30とシャフト21との間には、継手外部からの異物侵入や継手内部からのグリース漏洩を防止するため、例えば蛇腹状のゴム製ブーツ60が装着されている。このブーツ60の大径端部61は、外輪30の開口端外周面にブーツバンド62により締め付け固定され、その小径端部63は、シャフト21の外周面にブーツバンド64により締め付け固定されている。   In addition, a bellows-like rubber boot 60 is mounted between the outer ring 30 and the shaft 21 in order to prevent foreign matter from entering from the outside of the joint and grease leakage from the inside of the joint. The large-diameter end portion 61 of the boot 60 is fastened and fixed to the outer peripheral surface of the outer end of the outer ring 30 by a boot band 62, and the small-diameter end portion 63 is fastened and fixed to the outer peripheral surface of the shaft 21 by a boot band 64.

これらUJ部10とTJ部20を組み込んだ固定式等速自在継手では、TJ部20のシャフト21のUJ側端部に凸球面部22が形成されている。この凸球面部22の球面中心Oはシャフト21の中心軸M2上に配置されている。凸球面部22から一体的に延びる軸部22aをシャフト21の軸端に形成された孔(図示せず)に圧入することにより凸球面部22をシャフト21に取り付けている。なお、この凸球面部22は、シャフト21と一体的に形成することも可能である。 In the fixed type constant velocity universal joint incorporating the UJ portion 10 and the TJ portion 20, a convex spherical surface portion 22 is formed at the UJ side end portion of the shaft 21 of the TJ portion 20. The spherical center O of the convex spherical portion 22 is disposed on the central axis M 2 of the shaft 21. The convex spherical portion 22 is attached to the shaft 21 by press-fitting a shaft portion 22 a extending integrally from the convex spherical portion 22 into a hole (not shown) formed at the shaft end of the shaft 21. Note that the convex spherical portion 22 can be formed integrally with the shaft 21.

一方、UJ部10のシャフト11のTJ側端部に、前述の凸球面部22を受ける凹球面部12が形成されている。この凹球面部12の球面中心Oはシャフト11の中心軸M1上に配置され、そのシャフト11の中心軸M1はTJ部20のシャフト21の中心軸M2と一致する。これら凸球面部22の球面中心Oと凹球面部12の球面中心Oは一致して継手中心となる。なお、この凹球面部12は、シャフト11のTJ側端部に一体的に形成されているが、別体で形成することも可能である。 On the other hand, a concave spherical portion 12 that receives the convex spherical portion 22 is formed at the TJ side end of the shaft 11 of the UJ portion 10. The spherical center O of the concave spherical portion 12 is disposed on the central axis M 1 of the shaft 11, and the central axis M 1 of the shaft 11 coincides with the central axis M 2 of the shaft 21 of the TJ portion 20. The spherical center O of the convex spherical portion 22 and the spherical center O of the concave spherical portion 12 coincide with each other to become the joint center. The concave spherical surface portion 12 is formed integrally with the end portion of the shaft 11 on the TJ side, but may be formed separately.

この凸球面部22と凹球面部12からなる球対偶40を、UJ部10のシャフト11とTJ部20のシャフト21で共通の一点を中心Oとして球面案内機構とすることにより、UJ部10の内輪14とTJ部20のトリポード部材24とを連結し、この球面中心Oを継手中心とする固定式等速自在継手となる。このようにUJ部10とTJ部20を共通の外輪30に組み込み、両者のUJ部10の内輪14とTJ部20のトリポード部材24とを球対偶40で連結した構造としたことにより、UJ部10とTJ部20のそれぞれの作動角を加えた大きな作動角を実現することができ、構造が簡単で軽量コンパクトな固定式等速自在継手を提供できる。   By making the spherical pair 40 composed of the convex spherical portion 22 and the concave spherical portion 12 into a spherical guide mechanism with a common point O between the shaft 11 of the UJ portion 10 and the shaft 21 of the TJ portion 20 as a center O, The inner ring 14 and the tripod member 24 of the TJ portion 20 are connected to form a fixed type constant velocity universal joint having the spherical surface center O as a joint center. As described above, the UJ portion 10 and the TJ portion 20 are incorporated into the common outer ring 30, and the inner ring 14 of the UJ portion 10 and the tripod member 24 of the TJ portion 20 are connected by the ball pair 40. A large operating angle obtained by adding the respective operating angles of 10 and TJ portion 20 can be realized, and a light-weight and compact fixed type constant velocity universal joint can be provided.

図3は、図1の固定式等速自在継手が最大作動角αをとった状態を示す。この等速自在継手の作動角は、UJ部10とTJ部20とで分担され、UJ部10の作動角α11とTJ部20の作動角α21の合計となる(図4参照)。これらUJ部10とTJ部20との作動角分担比は、図1に示すようにUJ部10の作動角α11が0°での球対偶40の球面中心OからUJ部10の継手中心O1までの距離L1と、TJ部20の作動角α21が0°での球対偶40の球面中心OからTJ部20の継手中心O2までの距離L2とによって決定される。 FIG. 3 shows a state where the fixed type constant velocity universal joint of FIG. 1 takes a maximum operating angle α. Operating angle of the constant velocity universal joint is shared between UJ portion 10 and TJ 20, the sum of the operating angle alpha 21 operating angle alpha 11 and TJ 20 of UJ portion 10 (see FIG. 4). As shown in FIG. 1, the operating angle sharing ratio between the UJ portion 10 and the TJ portion 20 is as follows. The spherical center O of the ball pair 40 when the operating angle α 11 of the UJ portion 10 is 0 ° to the joint center O of the UJ portion 10. a distance L 1 to 1 is determined by the distance L 2 of the working angle alpha 21 of TJ portion 20 is a spherical center O of the sphere even number 40 in 0 ° to the joint center O 2 of the TJ section 20.

そのため、UJ部10とTJ部20とで分担される作動角α11,α21は、従来における単一の固定式等速自在継手や摺動式等速自在継手よりも小さくて済み、シンプルな摺動構造を有するTJ部20の作動角α21を従前の20°としても、UJ部10の作動角α11を40°(限界作動角が約50°)とすることで、従来における単一の固定式等速自在継手や摺動式等速自在継手よりも大きな作動角α=60°を持つ固定式等速自在継手を実現できる。 Therefore, the operating angles α 11 and α 21 shared by the UJ portion 10 and the TJ portion 20 can be smaller than the conventional single fixed type constant velocity universal joint and sliding type constant velocity universal joint. Even if the operating angle α 21 of the TJ portion 20 having the sliding structure is set to 20 °, the operating angle α 11 of the UJ portion 10 is set to 40 ° (the limit operating angle is about 50 °). The fixed type constant velocity universal joint having a larger operating angle α = 60 ° than the fixed type constant velocity universal joint and the sliding type constant velocity universal joint can be realized.

球対偶40の球面中心OからUJ部10の継手中心O1までの距離L1と、球対偶40の球面中心OからTJ部20の継手中心O2までの距離L2との関係では、L1<L2の条件を満足させている。通常、UJ部10がTJ部20よりも構造上大きな作動角をとることができる。このことから、前述したようにL1<L2の条件を満足するように設定すれば、UJ部10にTJ部20よりも大きな作動角を分担させることになり、全体としての固定式等速自在継手において、より大きな作動角が得られる。 In the relationship between the distance L 1 from the spherical center O of the ball pair 40 to the joint center O 1 of the UJ portion 10 and the distance L 2 from the spherical center O of the ball pair 40 to the joint center O 2 of the TJ portion 20, L 1 <L 2 is satisfied. Usually, the UJ portion 10 can take a larger operating angle than the TJ portion 20 in structure. Therefore, by setting so as to satisfy L 1 <L 2 conditions as described above, will be sharing the large operating angle than TJ unit 20 to UJ unit 10, as a whole the fixed type constant velocity of A larger operating angle can be obtained in a universal joint.

この実施形態の固定式等速自在継手が作動角をとった時、TJ部20のトリポード部材24の脚軸24aの中心O2が、外輪30の軸方向の中心軸M4に対して変位する。この脚軸24aの中心O2の変位を外輪30の中心軸M4が微小量だけ角度変化することで吸収し、これにより等速自在継手におけるUJ部10とTJ部20の等速性を確保するようにしている。この外輪30の中心軸M4の角度変化を図3〜図6に基づいて以下に説明する。 When the fixed constant velocity universal joint of this embodiment takes an operating angle, the center O 2 of the leg shaft 24 a of the tripod member 24 of the TJ portion 20 is displaced with respect to the axial center axis M 4 of the outer ring 30. . The displacement of the center O 2 of the leg shaft 24a is absorbed by changing the angle of the center axis M 4 of the outer ring 30 by a minute amount, thereby ensuring constant velocity of the UJ portion 10 and the TJ portion 20 in the constant velocity universal joint. Like to do. The angular change of the center axis M 4 of the outer ring 30 on the basis of FIGS. 3 to 6 will be described below.

ここで、図3はUJ部10に対して球対偶40の球面中心Oを中心にしてTJ部20が作動角をとった状態で、UJ部10のシャフト11(内輪14)の中心軸M1とTJ部20のシャフト21(トリポード部材24)の中心軸M2とがなす角度(180°−α°)の内側(図中下側)にトリポード部材24の脚軸24aが位置する状態を示す。図4は、図3の状態におけるUJ部10、TJ部20および外輪30の位置関係を模式的に示す。 Here, FIG. 3 shows the central axis M 1 of the shaft 11 (inner ring 14) of the UJ portion 10 in a state where the TJ portion 20 takes an operating angle with respect to the spherical center O of the ball pair 40 with respect to the UJ portion 10. shows the inner state of trunnions 24a of the tripod member 24 (lower side in the drawing) is positioned in the center axis M 2 and the angle (180 °-.alpha. °) of the shaft 21 of the TJ 20 (tripod member 24) . FIG. 4 schematically shows the positional relationship between the UJ portion 10, the TJ portion 20, and the outer ring 30 in the state of FIG.

また、図5はUJ部10に対して球対偶40の球面中心Oを中心にしてTJ部20が作動角をとった状態で、UJ部10のシャフト11(内輪14)の中心軸M1とTJ部20のシャフト21(トリポード部材24)の中心軸M2とがなす角度(180°−α°)の外側(図中上側)にトリポード部材24の脚軸24aが位置する状態を示す。図6は、図5の状態におけるUJ部10、TJ部20および外輪30の位置関係を模式的に示す。 FIG. 5 shows the central axis M 1 of the shaft 11 (inner ring 14) of the UJ portion 10 in a state where the TJ portion 20 takes an operating angle with respect to the spherical center O of the ball pair 40 with respect to the UJ portion 10. trunnion 24a of the outer tripod member 24 (in the drawing upper) of the shaft 21 of the TJ portion 20 the central axis M 2 and the angle (180 °-.alpha. °) formed by the (tripod member 24) shows a state that position. FIG. 6 schematically shows the positional relationship between the UJ portion 10, the TJ portion 20, and the outer ring 30 in the state of FIG.

なお、図4および図6中の符号S1は、R1側に位置するローラ25bの外球面中心であり、S2は、R2側に位置するローラ25bの外球面中心である(図2参照)。 4 and 6, the symbol S 1 is the outer spherical center of the roller 25b located on the R 1 side, and S 2 is the outer spherical center of the roller 25b located on the R 2 side (FIG. 2). reference).

実施形態の固定式等速自在継手が作動角をとった時、UJ部10のシャフト11の中心軸M1とTJ部20のシャフト21の中心軸M2とがなす角度(180°−α°)の内側(図3では下側)にトリポード部材24の脚軸24aが位置する状態(図3および図4参照)と、UJ部10のシャフト11の中心軸M1とTJ部20のシャフト21の中心軸M2とがなす角度(180°−α°)の外側(図3では上側)にトリポード部材24の脚軸24aが位置する状態(図5および図6参照)とを比較すると、等速自在継手の作動角αが一定の状態で、図3および図4に示す状態では外輪30の中心軸M4が、等速自在継手の作動角αをUJ部10の作動角α11とTJ部20の作動角α21とで分担される位置にあるのに対して、図5および図6に示す状態では外輪30の中心軸M4が、等速自在継手の作動角αをUJ部10の作動角α12(α12≠α11)とTJ部20の作動角α22(α22≠α21)とで分担される位置にある。 When the fixed type constant velocity universal joint of the embodiment takes an operating angle, an angle formed by the central axis M 1 of the shaft 11 of the UJ portion 10 and the central axis M 2 of the shaft 21 of the TJ portion 20 (180 ° −α °). ) On the inner side (lower side in FIG. 3) of the tripod member 24 (see FIGS. 3 and 4), the central axis M 1 of the shaft 11 of the UJ portion 10 and the shaft 21 of the TJ portion 20. When the trunnion 24a of the outer tripod member 24 in (in FIG. 3 top) of the center axis M 2 and the angle of (180 °-.alpha. °) is compared with the state of position (see FIGS. 5 and 6), etc. 3 and 4, the central axis M 4 of the outer ring 30 sets the operating angle α of the constant velocity universal joint to the operating angle α 11 of the UJ portion 10 and TJ. whereas in the position which is shared between the operating angle alpha 21 parts 20, the state shown in FIGS. 5 and 6 Operating angle alpha 22 of the center axis M 4 of the outer ring 30, a constant velocity universal operating angle α 12 (α 12 ≠ α 11 ) of the UJ section 10 an operating angle alpha of the joint and TJ section 20 (α 22 ≠ α 21) It is in a position shared with.

つまり、等速自在継手が作動角αが一定の状態で、外輪30の中心軸M4がUJ部10の継手中心O1を中心にして微小量だけ角度変化している。このように、等速自在継手が作動角をとった時、TJ部20の脚軸24aの中心O2の外輪中心軸M4に対する変位を外輪30の中心軸M4が微小量だけ角度変化することで吸収し、これにより等速自在継手におけるUJ部10とTJ部20の等速性を確保するようにしている。 That is, the constant velocity universal joint has a constant operating angle α, and the central axis M 4 of the outer ring 30 changes by a minute amount around the joint center O 1 of the UJ portion 10. Thus, when the constant velocity universal joint forms an operating angle, a displacement relative to the trunnion 24a center O 2 of the outer ring central axis M 4 of the TJ portion 20 the central axis M 4 of the outer ring 30 by an angle change small amount Thus, the constant velocity performance of the UJ portion 10 and the TJ portion 20 in the constant velocity universal joint is ensured.

以上の実施形態における球対偶40は、凸球面部22を凹球面部12に圧入することにより球面嵌合させた構造であるが、その球対偶40は以下のような構造も可能である。つまり、図7(a)(b)に示すように凹球面部12の内周面の円周方向等間隔に複数の切り欠き12bを設けると共に、図8(a)(b)に示すように凸球面部22の外周面の円周方向等間隔に前述の凹球面部12の切り欠き12bと対応させて複数の切り欠き22bを設ける。   The ball pair 40 in the above embodiment has a structure in which the convex spherical surface 22 is fitted into the spherical surface by press-fitting the convex spherical surface portion 22 into the concave spherical surface portion 12, but the ball pair 40 may have the following structure. That is, as shown in FIGS. 7A and 7B, a plurality of notches 12b are provided at equal intervals in the circumferential direction of the inner circumferential surface of the concave spherical surface portion 12, and as shown in FIGS. 8A and 8B. A plurality of notches 22b are provided at equal intervals in the circumferential direction of the outer peripheral surface of the convex spherical portion 22 so as to correspond to the notches 12b of the concave spherical portion 12 described above.

この場合、凹球面部12の切り欠き12bと凸球面部22の切り欠き22bを互いに切り欠きではない部分と対応させて位相合わせした状態で、凹球面部12に凸球面部22を嵌め込んだ上で両者を相互に回転させて凹球面部12と凸球面部22を合わせることにより球対偶40を形成することができる。このようにすれば、凸球面部22を凹球面部12に圧入することなく、凸球面部22と凹球面部12の係合離脱が容易に行える。   In this case, the convex spherical surface portion 22 is fitted into the concave spherical surface portion 12 in a state where the notch 12b of the concave spherical surface portion 12 and the notch 22b of the convex spherical surface portion 22 are phase-matched with each other so as to correspond to the non-notched portions. The ball pair 40 can be formed by rotating both of the above and combining the concave spherical surface portion 12 and the convex spherical surface portion 22. In this way, the convex spherical portion 22 and the concave spherical portion 12 can be easily engaged and disengaged without pressing the convex spherical portion 22 into the concave spherical portion 12.

以上の構成からなる実施形態の固定式等速自在継手は、例えば、以下のような要領でもって組み立てることが可能である。図9に示すように外輪30の一方の開口側に、内輪14、ボール16およびケージ17からなるUJアッセンブリ体を組み付ける。一方、トリポード部材24の脚軸24aにローラ機構25を組み付けてそのトリポード部材24にシャフト21をスプライン嵌合させ、そのシャフト先端の凸球面部22をUJ部10のシャフト11の凹球面部12に球面嵌合させたTJアッセンブリ体を、UJアッセンブリ体が組み付けられた外輪30の他方の開口側から挿入する。このTJアッセンブリ体の挿入により、シャフト11をUJ部10の内輪14にスプライン嵌合させ、UJ側のブーツ50およびTJ側のブーツ60を装着することにより、等速自在継手の組み立てを完了する。   The fixed type constant velocity universal joint of the embodiment having the above configuration can be assembled, for example, in the following manner. As shown in FIG. 9, a UJ assembly comprising an inner ring 14, a ball 16 and a cage 17 is assembled to one opening side of the outer ring 30. On the other hand, the roller mechanism 25 is assembled to the leg shaft 24a of the tripod member 24, the shaft 21 is spline-fitted to the tripod member 24, and the convex spherical portion 22 at the tip of the shaft is connected to the concave spherical portion 12 of the shaft 11 of the UJ portion 10. The spherically fitted TJ assembly body is inserted from the other opening side of the outer ring 30 to which the UJ assembly body is assembled. By inserting the TJ assembly body, the shaft 11 is spline-fitted to the inner ring 14 of the UJ portion 10 and the UJ-side boot 50 and the TJ-side boot 60 are mounted, thereby completing the assembly of the constant velocity universal joint.

この等速自在継手は、UJ部10とTJ部20を共通の外輪30に組み込み、両者のUJ部10とTJ部20を球対偶40で連結した構造としたことにより、UJ部10とTJ部20のそれぞれの作動角を加えた大きな作動角を実現することができる。この等速自在継手の作動角は、UJ部10とTJ部20のそれぞれが分担するため、UJ部10とTJ部20のそれぞれが分担する作動角分は少なくて済むのでトルク損失も低く、トリポード型等速自在継手に匹敵する高効率化が図れる。   This constant velocity universal joint has a structure in which the UJ portion 10 and the TJ portion 20 are incorporated in a common outer ring 30 and the UJ portion 10 and the TJ portion 20 are connected to each other by a ball pair 40. A large operating angle can be realized by adding 20 operating angles. Since the operating angle of this constant velocity universal joint is shared by the UJ section 10 and the TJ section 20, since the operating angle shared by the UJ section 10 and the TJ section 20 is small, the torque loss is low and the tripod High efficiency comparable to mold constant velocity universal joints can be achieved.

本出願人は、本発明品における等速自在継手と従来におけるUJ、TJ、DOJとについて、作動角とトルク損失率との関係を図10に示す。本発明品は、従来のUJに比べて作動角全域に亘ってトルク損失率が低く、特に常用角域においてトルク損失率が低く、高常用角となる10°前後においてトルク損失の低減が顕著であることが判明した。   FIG. 10 shows the relationship between the operating angle and the torque loss rate for the constant velocity universal joint according to the present invention and the conventional UJ, TJ, and DOJ. The product of the present invention has a low torque loss rate over the entire operating angle compared to the conventional UJ, particularly a low torque loss rate in the normal angle range, and a remarkable reduction in torque loss at around 10 °, which is a high normal angle. It turned out to be.

例えば、等速自在継手の作動角が10°の時、UJ部10およびTJ部20のそれぞれの作動角は5°前後であり、UJ部10およびTJ部20では作動角が小さいほうがトルク損失も小さくなるためであり、また、継手中心を形成する球対偶40での損失の影響も小さいためである。   For example, when the operating angle of the constant velocity universal joint is 10 °, the operating angle of each of the UJ portion 10 and the TJ portion 20 is around 5 °. In the UJ portion 10 and the TJ portion 20, the smaller the operating angle, the more the torque loss. This is because the effect of the loss at the ball pair 40 forming the joint center is small.

このように、等速自在継手の作動角に対してTJ部20の作動角は小さいため、そのTJ部20におけるトリポード部材24の脚軸24aの中心O2の変位については、一般的なTJが作動角をとる時に比べて小さくなる。その結果、等速自在継手の作動角に対するTJ部20による三次振動が低減できる。 Thus, since the operating angle of the TJ portion 20 is smaller than the operating angle of the constant velocity universal joint, the general TJ is about the displacement of the center O 2 of the leg shaft 24a of the tripod member 24 in the TJ portion 20. Smaller than when operating angle is taken. As a result, the tertiary vibration by the TJ portion 20 with respect to the operating angle of the constant velocity universal joint can be reduced.

この等速自在継手は、TJ部20を内蔵させた構造であるが、継手中心Oの偏心がないため、シャフト21の振れ回りがなく、低振動となる。   This constant velocity universal joint has a structure in which the TJ portion 20 is built, but since there is no eccentricity of the joint center O, the shaft 21 does not sway and vibration is low.

また、この等速自在継手では、UJ部10を内蔵させた構造であり、特に、このUJ部10において、トラックオフセットにより、ボールトラック15を軸方向に拡開する楔形状とし、外輪30のトラック溝33の直線部分33bを外輪開口側に配すると共に内輪14のトラック溝13の直線部分13bを外輪奥側に配することにより、楔形状のボールトラック15の楔拡開側を外輪30の開口側と一致させている。   In addition, this constant velocity universal joint has a structure in which the UJ portion 10 is built. In particular, the UJ portion 10 has a wedge shape that expands the ball track 15 in the axial direction due to a track offset, and the track of the outer ring 30. The linear portion 33b of the groove 33 is arranged on the outer ring opening side and the linear portion 13b of the track groove 13 of the inner ring 14 is arranged on the outer ring inner side, so that the wedge expanding side of the wedge-shaped ball track 15 is opened on the outer ring 30. Match with the side.

このようにすれば、内輪14の奥側端部においてトラック溝底の肉厚が厚くなる。そのため、この内輪14にセレーション嵌合されるシャフト11の端部に球対偶40の凹球面部12をより大きく、また、球対偶40の球面中心OからUJ部10の継手中心O1までの距離L1とを小さくすることが容易となる。ここで、球対偶40の凹球面部12の径が大きいことは、凸球面部22の首部22aの径を大きくできて高強度となり、球対偶40の球面中心OからUJ部10の継手中心O1までの距離L1とが小さいことは、軸方向にコンパクトとなるために望ましい。 In this way, the thickness of the track groove bottom is increased at the inner end of the inner ring 14. Therefore, the concave spherical surface portion 12 of the ball pair 40 is larger at the end of the shaft 11 that is serrated to the inner ring 14, and the distance from the spherical center O of the ball pair 40 to the joint center O 1 of the UJ portion 10. It becomes easy to make L 1 small. Here, when the diameter of the concave spherical portion 12 of the ball pair 40 is large, the diameter of the neck portion 22a of the convex spherical portion 22 can be increased and the strength becomes high, and the joint center O of the UJ portion 10 extends from the spherical center O of the ball pair 40. A small distance L 1 up to 1 is desirable in order to be compact in the axial direction.

その結果、球対偶40の球面中心OからUJ部10の継手中心O1までの距離L1を短くすることができ、伝達部材との接触面(UJ側のブーツ50のフレーム54の外側端面)からUJ部10の継手中心O1までの距離L3も短くなる。この伝達部材との接触面からUJ部10の継手中心O1までの距離L3が短くできることは、UJ部10のシャフト11を車両ホイール側とした場合、タイヤの切れ角を大きくできることになり、車両旋回半径を小さくできる効果がある。 As a result, the distance L 1 from the spherical surface center O of the ball pair 40 to the joint center O 1 of the UJ portion 10 can be shortened, and the contact surface with the transmission member (the outer end surface of the frame 54 of the boot 50 on the UJ side). The distance L 3 from the joint center O 1 of the UJ portion 10 to the distance is also shortened. The fact that the distance L 3 from the contact surface with the transmission member to the joint center O 1 of the UJ portion 10 can be shortened means that when the shaft 11 of the UJ portion 10 is on the vehicle wheel side, the tire turning angle can be increased. This has the effect of reducing the vehicle turning radius.

なお、前述の実施形態におけるTJ部20のローラ機構26は、脚軸24aに針状ころ25aを介して単一のローラ25bを回転自在に装着した構造であるが、本発明はこれに限定されることなく、例えば図11に示すように、ローラ案内面23aに沿って外輪30の軸線と平行な方向に案内される外側ローラ25b’と、脚軸24aの外周面に外嵌されて複数の転動体である針状ころ25a’を介して外側ローラ25b’を回転自在に支持する内側ローラ25c’とからなるダブルローラタイプのローラ機構25’にも適用可能である。また、前述の実施形態におけるTJ部20の脚軸24aは、円筒面形状の外周面を有するが、図12に示すように脚軸24a’の外周面を球面形状とすることも可能である。   The roller mechanism 26 of the TJ section 20 in the above-described embodiment has a structure in which a single roller 25b is rotatably mounted on the leg shaft 24a via the needle rollers 25a, but the present invention is not limited to this. For example, as shown in FIG. 11, an outer roller 25b ′ guided along the roller guide surface 23a in a direction parallel to the axis of the outer ring 30 and a plurality of outer rollers 25b ′ fitted on the outer peripheral surface of the leg shaft 24a. The present invention can also be applied to a double roller type roller mechanism 25 ′ including an inner roller 25c ′ that rotatably supports an outer roller 25b ′ via needle rollers 25a ′ that are rolling elements. Further, the leg shaft 24a of the TJ portion 20 in the above-described embodiment has a cylindrical outer peripheral surface. However, as shown in FIG. 12, the outer peripheral surface of the leg shaft 24a 'may be a spherical shape.

このように、ダブルローラタイプのローラ機構25’や脚軸24a’の外周面を球面形状した構造の場合、一般的なTJに比べて三次振動がより一層低減することができ、さらに高常用角に適用でき、TJ部20が分担する作動角分を大きくすることで、より一層高効率の等速自在継手を実現できる。   As described above, when the outer peripheral surface of the double roller type roller mechanism 25 ′ or the leg shaft 24a ′ is formed into a spherical shape, the tertiary vibration can be further reduced as compared with a general TJ, and a higher common angle is obtained. It is possible to realize a constant velocity universal joint with higher efficiency by increasing the operating angle shared by the TJ portion 20.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

本発明の実施形態で、固定式等速自在継手の全体構成を示す断面図である。In embodiment of this invention, it is sectional drawing which shows the whole structure of a fixed type constant velocity universal joint. 図1のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 図1の固定式等速自在継手が作動角をとった状態で、UJ部のシャフトの中心軸とTJ部のシャフトの中心軸とがなす角度の内側にトリポード部材の脚軸が位置する状態を示す断面図である。In the state where the fixed type constant velocity universal joint of FIG. 1 has an operating angle, the leg shaft of the tripod member is located inside the angle formed by the central axis of the shaft of the UJ portion and the central axis of the shaft of the TJ portion. It is sectional drawing shown. 図3の状態におけるUJ部、TJ部および外輪の位置関係を模式的に示す図である。It is a figure which shows typically the positional relationship of the UJ part in the state of FIG. 3, a TJ part, and an outer ring. 図1の固定式等速自在継手が作動角をとった状態で、UJ部のシャフトの中心軸とTJ部のシャフトの中心軸とがなす角度の外側にトリポード部材の脚軸が位置する状態を示す断面図である。In a state where the fixed type constant velocity universal joint of FIG. 1 takes an operating angle, the leg shaft of the tripod member is located outside the angle formed by the central axis of the shaft of the UJ portion and the central axis of the shaft of the TJ portion. It is sectional drawing shown. 図5の状態におけるUJ部、TJ部および外輪の位置関係を模式的に示す図である。It is a figure which shows typically the positional relationship of the UJ part in the state of FIG. 5, a TJ part, and an outer ring. (a)はUJ部において、切り欠きを設けた凹球面部を示す縦断面図、(b)は(a)の右側面図である。(A) is a longitudinal cross-sectional view which shows the concave spherical surface part which provided the notch in UJ part, (b) is a right view of (a). (a)はTJ部において、切り欠きを設けた凸球面部を示す正面図、(b)は(a)の左側面図である。(A) is a front view which shows the convex spherical surface part which provided the notch in TJ part, (b) is a left view of (a). 図1の固定式等速自在継手の組み立て要領を説明するための断面図である。It is sectional drawing for demonstrating the assembly point of the fixed type constant velocity universal joint of FIG. 作動角とトルク損失率との関係を示すグラフである。It is a graph which shows the relationship between an operating angle and a torque loss rate. ダブルローラタイプのローラ機構を示す部分拡大断面図である。It is a partial expanded sectional view which shows the roller mechanism of a double roller type. 外周面を球面形状とした脚軸を示す部分拡大断面図である。It is a partial expanded sectional view which shows the leg axis which made the outer peripheral surface spherical.

符号の説明Explanation of symbols

10 固定式継手部(UJ部)
11 固定式継手部の内方部材(シャフト)
12 凹球面部
13 トラック溝
13b 直線部分
14 固定式継手部の内方部材(内輪)
15 ボールトラック
16 ボール
17 ケージ
20 トリポード型継手部(TJ部)
21 トリポード型継手部の内方部材(シャフト)
22 凸球面部
23 トラック溝
23a ローラ案内面
24 トリポード型継手部の内方部材(トリポード部材)
24a,24a’ 脚軸
25,25’ ローラ機構
25a’ 転動体(針状ころ)
25b’ 外側ローラ
25c’ 内側ローラ
30 円筒状外方部材(外輪)
33 トラック溝
33b 直線部分
40 球対偶
11,O12 トラック溝の曲率中心
10 Fixed joint (UJ)
11 Inner member (shaft) of fixed joint
12 Concave spherical surface portion 13 Track groove 13b Linear portion 14 Inner member (inner ring) of fixed joint portion
15 ball track 16 ball 17 cage 20 tripod joint (TJ)
21 Inner member of the tripod joint (shaft)
22 Convex spherical surface portion 23 Track groove 23a Roller guide surface 24 Inner member of tripod joint (tripod member)
24a, 24a 'leg shaft 25, 25' roller mechanism 25a 'rolling element (needle roller)
25b 'outer roller 25c' inner roller 30 cylindrical outer member (outer ring)
33 Track groove 33b Straight portion 40 Ball pair O 11 , O 12 Track groove center of curvature

Claims (9)

円筒状外方部材を共通にしてその一端側に固定式継手部を配設すると共に他端側にトリポード型継手部を配設し、前記固定式継手部の内方部材あるいは前記トリポード型継手部の内方部材のいずれか一方の対向端部に凸球面部を設けると共に他方の対向端部に凹球面部を設け、前記凸球面部と凹球面部からなる球対偶を介して前記固定式継手部の内方部材とトリポード型継手部の内方部材を連結したことを特徴とする固定式等速自在継手。   A cylindrical outer member is used in common, and a fixed joint portion is provided on one end side thereof, and a tripod type joint portion is provided on the other end side, and an inner member of the fixed joint portion or the tripod type joint portion is provided. A fixed spherical joint is provided via a spherical pair formed of the convex spherical surface and the concave spherical surface, and a convex spherical surface is provided at one opposing end of the inner member and a concave spherical surface is provided at the other opposing end. The fixed type constant velocity universal joint characterized by connecting the inner member of the part and the inner member of the tripod type joint part. 前記外方部材は、固定式継手部側とトリポード型継手部側の二部材で分割構成し、両部材を同軸的に突き合わせて接合一体化した請求項1に記載の固定式等速自在継手。   2. The fixed type constant velocity universal joint according to claim 1, wherein the outer member is divided into two members of a fixed joint portion side and a tripod type joint portion side, and both members are coaxially butted and joined together. 前記固定式継手部とトリポード型継手部との間に配された球対偶は、嵌め合い構造の凸球面部と凹球面部からなり、前記凸球面部と凹球面部の相対回転による位相合わせでもって両者の係合離脱を可能とした請求項1又は2に記載の固定式等速自在継手。   The ball pair disposed between the fixed joint portion and the tripod joint portion is composed of a convex spherical surface portion and a concave spherical surface portion of a fitting structure, and is phase-matched by relative rotation of the convex spherical surface portion and the concave spherical surface portion. 3. The fixed type constant velocity universal joint according to claim 1, wherein the engagement and disengagement of both of them can be performed. 前記固定式継手部は、軸方向に延びる複数のトラック溝が球面状内周面に形成された前記外方部材と、前記外方部材のトラック溝と対をなして軸方向に延びる複数のトラック溝が球面状外周面に形成された内方部材と、前記外方部材のトラック溝と内方部材のトラック溝とで形成されるボールトラックに配されてトルクを伝達する複数のボールと、外方部材の球面状内周面と内方部材の球面状外周面との間に介在してボールを保持するケージとを備えた請求項1〜3のいずれか一項に記載の固定式等速自在継手。   The fixed joint portion includes a plurality of tracks extending in the axial direction in pairs with the outer member in which a plurality of track grooves extending in the axial direction are formed on a spherical inner peripheral surface and the track grooves of the outer member. A plurality of balls arranged on a ball track formed by an inner member having a groove formed on a spherical outer peripheral surface, a track groove of the outer member and a track groove of the inner member, and transmitting torque; The fixed constant velocity according to any one of claims 1 to 3, further comprising a cage for holding a ball interposed between the spherical inner peripheral surface of the side member and the spherical outer peripheral surface of the inner member. Universal joint. 前記固定式継手部は、外方部材のトラック溝の軸方向一端側に軸方向と平行な直線部分が形成されると共に内方部材のトラック溝の軸方向他端側に軸方向と平行な直線部分が形成され、前記外方部材のトラック溝の曲率中心と内方部材のトラック溝の曲率中心とを継手中心を挟んで等距離だけ軸方向逆向きにオフセットさせることにより、前記ボールトラックを軸方向に拡開する楔形状とし、そのボールトラックの楔拡開側を外方部材の開口側と一致させた請求項4に記載の固定式等速自在継手。   The fixed joint portion has a straight line portion parallel to the axial direction at one axial end side of the track groove of the outer member and a straight line parallel to the axial direction at the other axial end side of the track groove of the inner member. The ball track is pivoted by offsetting the center of curvature of the track groove of the outer member and the center of curvature of the track groove of the inner member in the opposite axial direction across the joint center. 5. The fixed type constant velocity universal joint according to claim 4, wherein a wedge shape that expands in a direction is formed, and a wedge expansion side of the ball track coincides with an opening side of the outer member. 前記トリポード型継手部は、軸方向に延びる三本のトラック溝が円筒状内周面に形成され、各トラック溝の両側にローラ案内面を有する前記外方部材と、半径方向に突出した三本の脚軸を有するトリポード部材を含む内方部材と、前記トリポード部材の各脚軸に回転自在に装着され、各トラック溝に挿入されてローラ案内面と摺接するローラ機構とを備えた請求項1〜3のいずれか一項に記載の固定式等速自在継手。   The tripod type joint portion has three track grooves extending in the axial direction formed on a cylindrical inner peripheral surface, the outer member having roller guide surfaces on both sides of each track groove, and three protruding in the radial direction. An inward member including a tripod member having a leg shaft, and a roller mechanism rotatably mounted on each leg shaft of the tripod member and inserted in each track groove so as to be in sliding contact with the roller guide surface. The fixed type constant velocity universal joint as described in any one of -3. 前記ローラ機構は、ローラ案内面に沿って外側継手部材の軸線と平行な方向に案内される外側ローラと、脚軸の外周面に外嵌されて複数の転動体を介して前記外側ローラを回転自在に支持する内側ローラとからなる請求項6に記載の固定式等速自在継手。   The roller mechanism includes an outer roller guided along a roller guide surface in a direction parallel to the axis of the outer joint member, and an outer roller that is fitted on the outer peripheral surface of the leg shaft and rotates the outer roller via a plurality of rolling elements. The fixed constant velocity universal joint according to claim 6, comprising an inner roller that is freely supported. 前記トリポード部材は、脚軸の外周面を球面形状とした請求項6又は7に記載の固定式等速自在継手。   The fixed constant velocity universal joint according to claim 6 or 7, wherein the tripod member has a spherical outer peripheral surface of a leg shaft. 前記固定式継手部とトリポード型継手部の作動角を0°とした時、前記凸球面部と凹球面部からなる球対偶の球面中心から固定式継手部の継手中心までの距離L1と、前記球対偶の球面中心からトリポード型継手部の継手中心までの距離L2とを、L1<L2の条件を満足するように設定した請求項1〜6のいずれか一項に記載の固定式等速自在継手。 When the operating angle of the fixed joint part and tripod type joint part is 0 °, a distance L 1 from the spherical center of the ball pair consisting of the convex spherical part and the concave spherical part to the joint center of the fixed joint part; fixed according to the distance L 2 from the spherical center of the sphere even number up to the joint center of the tripod type joint, to L 1 <any one of claims 1-6 that is set so as to satisfy the condition L 2 Type constant velocity universal joint.
JP2007274095A 2007-10-22 2007-10-22 Fixed type constant velocity universal joint Withdrawn JP2009103181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274095A JP2009103181A (en) 2007-10-22 2007-10-22 Fixed type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274095A JP2009103181A (en) 2007-10-22 2007-10-22 Fixed type constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2009103181A true JP2009103181A (en) 2009-05-14

Family

ID=40705070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274095A Withdrawn JP2009103181A (en) 2007-10-22 2007-10-22 Fixed type constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2009103181A (en)

Similar Documents

Publication Publication Date Title
JP4541203B2 (en) Tripod type constant velocity universal joint
WO2014208242A1 (en) Fixed-type constant velocity universal joint
EP3067582B1 (en) Stationary constant velocity universal joint
JP2007100797A (en) Slide type constant velocity universal joint
JP4579112B2 (en) Sliding type constant velocity universal joint and manufacturing method thereof
JP2008256180A (en) Fixed type constant velocity universal joint and its assembling method
JP4941351B2 (en) Tripod type constant velocity universal joint
JP2009103181A (en) Fixed type constant velocity universal joint
JP2008196591A (en) Fixed type constant velocity universal joint and its manufacturing method
JP2010127311A (en) Fixed type constant velocity universal joint and wheel bearing device using the same
JP6779723B2 (en) Sliding constant velocity universal joint
JP2009121667A (en) Sliding type constant velocity universal joint
JP2010249295A (en) Fixed constant velocity universal joint and method of manufacturing the same
JP2010025207A (en) Constant velocity universal joint
JP4588591B2 (en) Fixed type constant velocity universal joint and manufacturing method thereof
WO2023100522A1 (en) Sliding-type constant-velocity joint
JP2010127312A (en) Fixed type constant velocity universal joint and wheel drive device using the same
WO2023047930A1 (en) Tripod-type constant-velocity universal joint
JP2011069404A (en) Fixed type constant velocity universal joint
JP2009121661A (en) Fixed constant velocity universal joint
JP2008175362A (en) Stationary constant velocity universal joint
JP2005133890A (en) Tripod type constant velocity universal joint
KR20060060342A (en) Tripod constant velocity joint
JP2008019952A (en) Tripod type constant velocity universal joint
JP2009103182A (en) Fixed type constant velocity universal joint and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110104