JP2009121661A - Fixed constant velocity universal joint - Google Patents

Fixed constant velocity universal joint Download PDF

Info

Publication number
JP2009121661A
JP2009121661A JP2007308743A JP2007308743A JP2009121661A JP 2009121661 A JP2009121661 A JP 2009121661A JP 2007308743 A JP2007308743 A JP 2007308743A JP 2007308743 A JP2007308743 A JP 2007308743A JP 2009121661 A JP2009121661 A JP 2009121661A
Authority
JP
Japan
Prior art keywords
spherical
joint
fixed
constant velocity
spherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007308743A
Other languages
Japanese (ja)
Inventor
Daiji Okamoto
大路 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007308743A priority Critical patent/JP2009121661A/en
Publication of JP2009121661A publication Critical patent/JP2009121661A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pivots And Pivotal Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixed constant velocity universal joint which increases the spherical holding power and the strength with spherical pairs, and is easily assembled. <P>SOLUTION: A cylindrical outer ring 30 is common, and a fixed joint part 10 is arranged on its one end side, and a sliding joint part 20 is arranged on the other end side. A recessed spherical part 15 is integrally formed on an end of a shaft 11 inserted in an inner ring 12 of the fixed joint part 10 in a torque transmitting manner, and a projecting spherical part 25 is integrally formed on an end of a shaft 21 inserted in an inner ring 22 of the sliding type joint part 20 in a torque transmitting manner. The shaft 11 of the fixed joint part 10 and the shaft 21 of the sliding joint part 20 are connected to each other via spherical pairs 40 consisting of a recessed spherical part 15 and the projecting spherical part 25. An assembly part 25b to be inserted in the recessed spherical part 15 is formed on an outer spherical surface of the projecting spherical part 25 with its outside diameter being smaller than the opening diameter of the recessed spherical part 15 and a predetermined operating angle being ensured between the shaft 11 of the fixed joint part 10 and the shaft 21 of the sliding joint part 20. The projecting spherical part 25 is spherically fitted to the recessed spherical part 15 by the insertion from the assembly part 25b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、自動車や各種産業機械の動力伝達系において使用され、駆動側と従動側の二軸間で作動角度変位のみを許容する固定式等速自在継手に関する。   The present invention relates to a fixed type constant velocity universal joint that is used, for example, in a power transmission system of an automobile or various industrial machines and allows only an operating angle displacement between two axes of a driving side and a driven side.

例えば、自動車のエンジンから車輪に回転力を等速で伝達する手段として使用される等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これら両者の等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。   For example, there are two types of constant velocity universal joints that are used as means for transmitting a rotational force from an automobile engine to wheels at a constant velocity: a fixed constant velocity universal joint and a sliding constant velocity universal joint. Both of these constant velocity universal joints have a structure in which two shafts on the driving side and the driven side are connected so that rotational torque can be transmitted at a constant speed even if the two shafts have an operating angle.

自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトは、エンジンと車輪との相対的位置関係の変化による角度変位と軸方向変位に対応する必要があるため、エンジン側(インボード側)に摺動式等速自在継手を、駆動車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装備し、両者の等速自在継手をシャフトで連結した構造を具備する。   The drive shaft that transmits power from the engine of the automobile to the drive wheel needs to cope with the angular displacement and axial displacement caused by the change in the relative positional relationship between the engine and the wheel, so it slides on the engine side (inboard side). A dynamic constant velocity universal joint is provided with a fixed constant velocity universal joint on the drive wheel side (outboard side), and both constant velocity universal joints are connected by a shaft.

一般的に、前述した固定式等速自在継手としては、バーフィールド型等速自在継手(以下、BJと称す)や作動角の大きなアンダーカットフリー型等速自在継手(以下、UJと称す)が広く知られている。また、摺動式等速自在継手としては、ダブルオフセット型等速自在継手(以下、DOJと称す)やレブロ型等速自在継手(以下、LJと称す)が広く知られている。   Generally, as the above-mentioned fixed type constant velocity universal joint, a Barfield type constant velocity universal joint (hereinafter referred to as BJ) or an undercut free constant velocity universal joint (hereinafter referred to as UJ) having a large operating angle is used. Widely known. Further, as the sliding type constant velocity universal joint, a double offset type constant velocity universal joint (hereinafter referred to as DOJ) and a Lebro type constant velocity universal joint (hereinafter referred to as LJ) are widely known.

近年、自動車の乗車空間拡大の観点からホイールベースを長くすることがあるが、それに伴って車両回転半径が大きくならないようにするため、自動車のドライブシャフトの連結用継手として使用されている固定式等速自在継手の高角化による前輪の操舵角の増大が求められている。   In recent years, the wheelbase may be lengthened from the viewpoint of expanding the riding space of automobiles, but in order to prevent the turning radius of the vehicle from increasing accordingly, a fixed type used as a coupling for connecting a drive shaft of an automobile, etc. There is a need to increase the steering angle of the front wheels by increasing the angle of the speed universal joint.

この要望に対して、二個のBJを組み合わせたものがある(例えば、特許文献1,2参照)。なお、二つの等速自在継手を組み合わせた構造例では、摺動式等速自在継手として、BJとDOJを組み合わせたものもある(例えば、特許文献3参照)。
特開平4−191523号公報 特開平1−210619号公報 特開平7−269585号公報
In response to this demand, there is a combination of two BJs (see, for example, Patent Documents 1 and 2). In addition, in a structural example in which two constant velocity universal joints are combined, there is a combination of BJ and DOJ as a sliding type constant velocity universal joint (for example, see Patent Document 3).
JP-A-4-191523 JP-A-1-210619 JP-A-7-269585

ところで、前述した特許文献に開示された等速自在継手では、二個のBJを組み合わせたり、あるいはBJとDOJを組み合わせたりすることにより、通常のUJ単体よりも大きな作動角をとることができるという利点がある。   By the way, in the constant velocity universal joint disclosed in the aforementioned patent document, it is possible to take a larger operating angle than a normal UJ unit by combining two BJs or combining BJ and DOJ. There are advantages.

しかしながら、特許文献1,2に開示された固定式等速自在継手のように二個のBJを組み合わせた構造では、二つのBJが作動角をとった時に、入出力軸であるBJのそれぞれの軸間での軸方向変位を吸収するための機構を二つのBJ間に配設しなければならない。このように二つのBJの作動角を制御する機構を外輪であるハウジングに支持した構造を有することから、全体の重量が大きくなると共に大型化し、また、構造も複雑となって部品点数の増加により製品のコストアップを招来する。   However, in the structure in which two BJs are combined as in the fixed type constant velocity universal joint disclosed in Patent Documents 1 and 2, when the two BJs take an operating angle, each of the input / output shafts BJs A mechanism for absorbing axial displacement between the shafts must be disposed between the two BJs. Since the mechanism for controlling the operating angle of the two BJs is supported by the housing which is the outer ring in this way, the overall weight increases and the size increases, and the structure becomes complicated and the number of parts increases. Incurs an increase in product costs.

一方、特許文献3に開示された摺動式等速自在継手のようにBJとDOJを組み合わせた構造では、前述したように二つのBJを組み合わせた固定式等速自在継手のように二軸間の角度変位のみを許容する機能はなく、また、入出力軸の軸周りの回転自由度以外(例えば、軸方向、角度位置など)を固定しないと、入力軸に対する出力軸の位置が定まらない。   On the other hand, in the structure in which BJ and DOJ are combined as in the sliding type constant velocity universal joint disclosed in Patent Document 3, as described above, the fixed axis constant velocity universal joint in which two BJs are combined. There is no function that allows only the angular displacement, and the position of the output shaft relative to the input shaft cannot be determined unless the rotational degrees of freedom around the axis of the input / output shaft are fixed (for example, axial direction, angular position, etc.).

そこで、本出願人は、前述の問題点を改善するため、二つの等速自在継手、例えばUJとDOJを組み合わせて、構造が簡単で高角化を実現容易にした軽量コンパクトな固定式等速自在継手を先に提案している(特願2007−32283参照)。   Therefore, in order to improve the above-mentioned problems, the present applicant combined two constant velocity universal joints, for example, UJ and DOJ, to achieve a lightweight and compact fixed type constant velocity universal with a simple structure and easy to realize a high angle. A joint has been proposed previously (see Japanese Patent Application No. 2007-32283).

この固定式等速自在継手は、図16に示すように、単一の円筒状外輪130を共通にしてその一端側に固定式継手部110(UJ)を配設すると共に他端側に摺動式継手部120(DOJ)を配設し、その固定式継手部110の内輪112にスプライン嵌合されたシャフト111のDOJ側端部に凹球面部115を設けると共に摺動式継手部120の内輪122にスプライン嵌合されたシャフト121のUJ側端部に凸球面部125を設け、その凹球面部115と凸球面部125からなる球対偶140を介して固定式継手部110のシャフト111と摺動式継手部120のシャフト121とを連結した構造を具備する。   As shown in FIG. 16, this fixed type constant velocity universal joint has a single cylindrical outer ring 130 in common, and a fixed type joint portion 110 (UJ) is disposed on one end side thereof and slides on the other end side. Type joint portion 120 (DOJ) is provided, and a concave spherical surface portion 115 is provided at the end of the DOJ side of the shaft 111 that is spline-fitted to the inner ring 112 of the fixed joint portion 110, and the inner ring of the sliding joint portion 120 A convex spherical surface 125 is provided at the UJ side end of the shaft 121 that is spline-fitted to 122, and the shaft 111 and the shaft 111 of the fixed joint 110 are slid through a spherical pair 140 composed of the concave spherical surface 115 and the convex spherical surface 125. A structure in which the shaft 121 of the dynamic joint 120 is connected is provided.

このように固定式継手部110と摺動式継手部120を共通の外輪130に組み込み、両者の固定式継手部110と摺動式継手部120を球対偶140で連結した構造としたことにより、固定式継手部110と摺動式継手部120のそれぞれの作動角を加えた大きな作動角を実現することができ、固定式継手部110と摺動式継手部120間に凹球面部115と凸球面部125からなる球対偶140が介在するのみであるため、構造が簡単で軽量コンパクトな固定式等速自在継手を実現している。   As described above, the fixed joint 110 and the sliding joint 120 are incorporated into the common outer ring 130, and both the fixed joint 110 and the sliding joint 120 are connected by the ball pair 140. A large operating angle obtained by adding the operating angles of the fixed joint portion 110 and the sliding joint portion 120 can be realized, and the concave spherical portion 115 and the convex portion are formed between the fixed joint portion 110 and the sliding joint portion 120. Since only the ball pair 140 composed of the spherical surface portion 125 is interposed, a fixed type constant velocity universal joint that is simple in structure and lightweight and compact is realized.

ところで、球対偶140は、固定式継手部110のシャフト111の端部に設けられた凹球面部115と、摺動式継手部120のシャフト121の端部に設けられた凸球面部125とを球面嵌合により結合することにより形成されている。この等速自在継手の組立て時に、凹球面部115と凸球面部125との球面嵌合による結合を容易に行うために、図17(a)(b)に示すように凹球面部115の開口部内周面に複数の切り欠き115cを円周方向等間隔に設けると共に、図18(a)(b)に示すように凸球面部125の外周面に前述の凹球面部115の切り欠き115cと対応させて複数の切り欠き125cを円周方向等間隔に設けている。   By the way, the ball pair 140 includes a concave spherical portion 115 provided at the end of the shaft 111 of the fixed joint 110 and a convex spherical portion 125 provided at the end of the shaft 121 of the sliding joint 120. It is formed by coupling by spherical fitting. When the constant velocity universal joint is assembled, an opening of the concave spherical surface portion 115 is formed as shown in FIGS. 17A and 17B in order to facilitate the coupling of the concave spherical surface portion 115 and the convex spherical surface portion 125 by spherical fitting. A plurality of notches 115c are provided at equal intervals in the circumferential direction on the inner peripheral surface of the portion, and the notches 115c of the concave spherical portion 115 are formed on the outer peripheral surface of the convex spherical portion 125 as shown in FIGS. Correspondingly, a plurality of notches 125c are provided at equal intervals in the circumferential direction.

この構造に基づいて、凹球面部115と凸球面部125の球面嵌合は、以下の要領でもって行う。つまり、凹球面部115の切り欠き115cと凸球面部125の切り欠き125cを対応させて位相合わせした上で、凹球面部115と凸球面部125の軸線を一致させた状態でその凹球面部115に凸球面部125を軸方向から挿入して嵌め込んだ上で両者を相互に回転させる。これにより、凹球面部115に凸球面部125が球面嵌合した球対偶140を形成するようにしている。   Based on this structure, the spherical surface fitting of the concave spherical surface portion 115 and the convex spherical surface portion 125 is performed in the following manner. That is, the notch 115c of the concave spherical portion 115 and the notch 125c of the convex spherical portion 125 are matched and phase-matched, and the concave spherical portion 115 and the convex spherical portion 125 are aligned with the axis of the concave spherical portion. The convex spherical portion 125 is inserted and fitted in 115 from the axial direction, and both are rotated with respect to each other. Thus, a spherical pair 140 in which the convex spherical surface 125 is spherically fitted to the concave spherical surface 115 is formed.

しかしながら、前述したように凹球面部115の内球面および凸球面部125の外球面のそれぞれに切り欠き115c,125cを設けると、それら凹球面部115と凸球面部125を球面嵌合させた球対偶140において、凹球面部115と凸球面部125の球面保持面積が少なくなり、等速自在継手が作動角をとった状態ではその球面保持面積が作動角が0°の時よりもさらに少なくなる。その結果、球対偶140における球面保持力が低下する可能性がある。   However, as described above, when the notches 115c and 125c are provided in the inner spherical surface of the concave spherical surface portion 115 and the outer spherical surface of the convex spherical surface portion 125, the spherical surface in which the concave spherical surface portion 115 and the convex spherical surface portion 125 are spherically fitted. In the pair 140, the spherical holding area of the concave spherical portion 115 and the convex spherical portion 125 is reduced, and in the state where the constant velocity universal joint takes an operating angle, the spherical holding area becomes even smaller than when the operating angle is 0 °. . As a result, the spherical surface holding force in the ball pair 140 may be reduced.

また、凹球面部115に切り欠き115cを形成した場合、その凹球面部115の切り欠き形成部位の肉厚が薄くなることから、凹球面部115の強度が低下するおそれもあった。等速自在継手の組立て時においても、凹球面部115の切り欠き115cと凸球面部125の切り欠き125cを対応させて位相合わせを行わなければならず、組立てが煩雑となる可能性もあった。   In addition, when the notch 115c is formed in the concave spherical portion 115, the thickness of the notch forming portion of the concave spherical portion 115 becomes thin, so that the strength of the concave spherical portion 115 may be reduced. Even at the time of assembling the constant velocity universal joint, it is necessary to perform the phase matching by matching the notch 115c of the concave spherical portion 115 and the notch 125c of the convex spherical portion 125, and there is a possibility that the assembly becomes complicated. .

そこで、本発明は前述の点を改善して提案されたもので、その目的とするところは、球対偶での球面保持力および強度を向上させると共に、組立てを容易にし得る固定式等速自在継手を提供することにある。   Therefore, the present invention has been proposed by improving the above-mentioned points, and the object of the present invention is to improve a spherical holding force and strength at a ball pair and to make assembly easy. Is to provide.

前述の目的を達成するための技術的手段として、本発明は、円筒状外方部材を共通にしてその一端側に固定式継手部を配設すると共に他端側に摺動式継手部を配設し、固定式継手部の内方部材あるいは摺動式継手部の内方部材のいずれか一方の対向端部に凸球面部を設けると共に他方の対向端部に凹球面部を設け、凹球面部と凸球面部からなる球対偶を介して固定式継手部の内方部材と摺動式継手部の内方部材とを連結した固定式等速自在継手であって、凹球面部の開口径よりも小さい外径を有し、かつ、固定式継手部の内方部材と摺動式継手部の内方部材とが所定の作動角をとった状態で凹球面部に挿入可能とする円筒側面状または凹溝状の組込み部を凸球面部の外球面に形成し、この組込み部からの挿入により凸球面部を凹球面部に球面嵌合させたことを特徴とする。   As a technical means for achieving the above-described object, the present invention provides a cylindrical outer member in common and a fixed joint portion disposed on one end side and a sliding joint portion disposed on the other end side. A convex spherical surface is provided at one opposing end of either the inner member of the fixed joint or the inner member of the sliding joint, and a concave spherical surface is provided at the other opposing end. A fixed constant velocity universal joint in which an inner member of a fixed joint portion and an inner member of a sliding joint portion are connected via a spherical pair formed of a convex portion and a convex spherical portion, and the opening diameter of the concave spherical portion A cylindrical side surface that has a smaller outer diameter and can be inserted into the concave spherical surface portion with the inner member of the fixed joint portion and the inner member of the sliding joint portion having a predetermined operating angle. Or a concave groove-shaped built-in part is formed on the outer spherical surface of the convex spherical part, and the convex spherical part is turned into a concave spherical part by insertion from this built-in part. Characterized in that engaged.

本発明では、固定式継手部と摺動式継手部とで円筒状外方部材を共通にしたことにより、その外方部材内に固定式と摺動式の二つの継手部を組み合わせた構造を具備する。さらに、固定式継手部の内方部材あるいは摺動式継手部の内方部材のいずれか一方の対向端部に凸球面部を設けると共に他方の対向端部に凹球面部を設け、凹球面部と凸球面部からなる球対偶を介して固定式継手部と摺動式継手部を連結したことにより、凸球面部と凹球面部からなる球対偶は、固定式継手部と摺動式継手部で共通の一点を中心とした球面案内機構となり、この球面中心を作動角の中心とする固定式等速自在継手となる。   In the present invention, since the cylindrical outer member is made common to the fixed joint portion and the sliding joint portion, a structure in which two fixed and sliding joint portions are combined in the outer member. It has. Furthermore, a convex spherical surface portion is provided at one of the opposing end portions of either the inner member of the fixed joint portion or the inner member of the sliding joint portion, and a concave spherical surface portion is provided at the other opposing end portion. By connecting a fixed joint part and a sliding joint part via a spherical pair consisting of a convex spherical part and a convex spherical part, a spherical pair consisting of a convex spherical part and a concave spherical part becomes a fixed joint part and a sliding joint part. Thus, a spherical guide mechanism centered on a common point is formed, and a fixed type constant velocity universal joint having the spherical center as the center of the operating angle is obtained.

このように固定式継手部と摺動式継手部を共通の外方部材に組み込み、両者の固定式継手部と摺動式継手部を球対偶で連結した構造とすることにより、固定式継手部と摺動式継手部のそれぞれの作動角を加えた大きな作動角を実現することができ、固定式継手部と摺動式継手部間に凸球面部と凹球面部からなる球対偶が介在するのみであるため、構造が簡単で軽量コンパクトな固定式等速自在継手を提供できる。   In this way, the fixed joint part and the sliding joint part are assembled in a common outer member, and the fixed joint part and the sliding joint part are connected by a ball pair, thereby fixing the fixed joint part. A large working angle can be realized by adding the respective working angles of the sliding joint part, and a ball pair consisting of a convex spherical part and a concave spherical part is interposed between the fixed joint part and the sliding joint part. Therefore, it is possible to provide a fixed type constant velocity universal joint that is simple in structure and lightweight and compact.

さらに、この固定式等速自在継手では、凹球面部の開口径よりも小さい外径を有し、かつ、固定式継手部の内方部材と摺動式継手部の内方部材とが所定の作動角をとった状態で凹球面部に挿入可能とする円筒側面状または凹溝状の組込み部を凸球面部の外球面に形成し、この組込み部からの挿入により凸球面部を凹球面部に球面嵌合させたことにより、凹球面部は複数の切り欠きが形成されていない単純な内球面とすることができると共に、凸球面部は一つの組込み部が形成された外球面であることから、球対偶における凸球面部と凹球面部の球面保持面積を確保することが容易となり、等速自在継手が作動角をとったとしても、その球面保持面積が減少することはなく、球面保持力の向上が図れると共に凹球面部の強度向上も図れる。   Further, the fixed type constant velocity universal joint has an outer diameter smaller than the opening diameter of the concave spherical portion, and the inner member of the fixed type joint portion and the inner member of the sliding type joint portion have a predetermined size. A cylindrical side surface or concave groove-shaped built-in part that can be inserted into the concave spherical part with the operating angle taken is formed on the outer spherical surface of the convex spherical part, and the convex spherical part is inserted into the concave spherical part by insertion from this built-in part. The concave spherical surface portion can be a simple inner spherical surface in which a plurality of notches are not formed, and the convex spherical surface portion is an outer spherical surface formed with one built-in portion. Therefore, it is easy to secure the spherical holding area of the convex spherical part and the concave spherical part in the ball pair, and even if the constant velocity universal joint takes an operating angle, the spherical holding area does not decrease and the spherical holding The force can be improved and the strength of the concave spherical surface can be improved.

本発明の固定式等速自在継手の製造時、凹球面部に凸球面部を組み付けるに際しては、固定式継手部の内方部材と摺動式継手部の内方部材とを所定の作動角をとった状態に設定する。凸球面部は、凹球面部の開口径よりも小さい外径を有する組込み部が外球面に形成されていることから、所定の作動角をとった状態で、凹球面部に凸球面部が挿入可能であり、組込み部からの挿入により凸球面部を凹球面部に球面嵌合させることになる。   At the time of manufacturing the fixed constant velocity universal joint of the present invention, when assembling the convex spherical surface portion to the concave spherical surface portion, the inner member of the fixed joint portion and the inner member of the sliding joint portion have a predetermined operating angle. Set to the taken state. The convex spherical part has a built-in part with an outer diameter smaller than the opening diameter of the concave spherical part formed on the outer spherical surface, so that the convex spherical part is inserted into the concave spherical part with a predetermined operating angle. It is possible to insert the convex spherical portion into the concave spherical portion by insertion from the built-in portion.

この組込み部は、凸球面部の外球面中心と一致した中心周りで凸球面部の外球面の全周に亘って形成された円筒側面状または凹溝状をなす構造が可能である。この場合、凹球面部の内球面中心に対して凸球面部の外球面中心を一致させた状態で凹球面部に組込み部を挿入することにより組み付けが可能となる。   The built-in portion can have a cylindrical side surface shape or a concave groove shape formed around the entire center of the outer spherical surface of the convex spherical portion around the center coincident with the outer spherical center of the convex spherical portion. In this case, the assembly can be performed by inserting the built-in portion into the concave spherical surface in a state in which the outer spherical center of the convex spherical portion is aligned with the inner spherical center of the concave spherical portion.

また、組込み部は、凸球面部の外球面中心からずれた中心周りで凸球面部の外球面の一部に形成された円筒側面状または凹溝状をなす構造が可能である。この場合、凹球面部の内球面中心に対して凸球面部の外球面中心をずらした状態で凹球面部に組込み部を挿入することにより組み付けが可能となる。   Further, the built-in portion can have a cylindrical side surface shape or a concave groove shape formed on a part of the outer spherical surface of the convex spherical portion around the center shifted from the outer spherical center of the convex spherical portion. In this case, the assembly can be performed by inserting the built-in portion into the concave spherical portion with the outer spherical center of the convex spherical portion shifted from the inner spherical center of the concave spherical portion.

凹球面部に凸球面部を組み付けるに際しては、固定式継手部の内方部材と摺動式継手部の内方部材とがなす所定の作動角を限界作動角(最大作動角)よりも大きく設定することが望ましい。このように、凹球面部への凸球面部の組付時における所定の作動角を限界作動角よりも大きく設定しておけば、固定式等速自在継手の作動時、つまり、固定式継手部と摺動式継手部とが限界作動角以下の範囲内で角度変位する場合に、球対偶の凹球面部から凸球面部が抜脱することはない。   When assembling the convex spherical surface to the concave spherical surface, the predetermined operating angle formed by the inner member of the fixed joint and the inner member of the sliding joint is set larger than the limit operating angle (maximum operating angle). It is desirable to do. In this way, if the predetermined operating angle at the time of assembling the convex spherical portion to the concave spherical portion is set to be larger than the limit operating angle, the fixed constant velocity universal joint is operated, that is, the fixed joint portion. And the sliding joint portion are not displaced from the concave spherical surface portion of the ball pair even when they are angularly displaced within the range of the limit operating angle or less.

なお、組込み部が、凸球面部の外球面中心と一致した中心周りで凸球面部の外球面の全周に亘って形成された円筒側面状または凹溝状をなす構造の場合、凹球面部の内球面中心に対して凸球面部の外球面中心を一致させた状態で凹球面部に組込み部を挿入することから、その組込み部の挿入時における所定の作動角を限界作動角以下とすると、固定式継手部と摺動式継手部とが限界作動角以下の範囲内で角度変位する時に、その所定の作動角で球対偶の凹球面部から凸球面部が抜脱する可能性がある。   In the case where the built-in portion has a cylindrical side surface shape or a concave groove shape formed around the entire center of the outer spherical surface of the convex spherical portion around the center coincident with the outer spherical center of the convex spherical portion, the concave spherical portion Since the built-in part is inserted into the concave spherical surface with the center of the outer spherical surface of the convex spherical part aligned with the center of the inner spherical surface, the predetermined operating angle at the time of inserting the built-in part is less than the limit operating angle. When the fixed joint part and the sliding joint part are angularly displaced within the range of the limit operating angle or less, the convex spherical part may be detached from the concave spherical part of the ball pair at the predetermined operating angle. .

この場合、凹球面部と球面嵌合した状態にある凸球面部の外球面と接触して支持する抜け止め機構を外方部材の内径に設ける必要がある。このように、外方部材の内径に凸球面部の抜け止め機構を設ければ、組込み部の挿入時における所定の作動角を限界作動角以下とした場合であっても、固定式等速自在継手の作動時に、抜け止め機構により、所定の作動角で球対偶の凹球面部から凸球面部が抜脱することはない。   In this case, it is necessary to provide a retaining mechanism on the inner diameter of the outer member that contacts and supports the outer spherical surface of the convex spherical surface that is in spherical engagement with the concave spherical surface. In this way, if a convex spherical surface retaining mechanism is provided on the inner diameter of the outer member, even if the predetermined operating angle during insertion of the built-in portion is less than or equal to the limit operating angle, the fixed type constant velocity can be freely adjusted. At the time of operation of the joint, the convex spherical portion is not pulled out from the concave spherical portion of the ball pair by a predetermined operating angle by the retaining mechanism.

これに対して、組込み部が、凸球面部の外球面中心からずれた中心周りで凸球面部の外球面の一部に形成された円筒側面状または凹溝状をなす構造の場合、凹球面部への凸球面部の組付時における所定の作動角を限界作動角以下としても、凹球面部の内球面中心に対して凸球面部の外球面中心をずらした状態で凹球面部に組込み部を挿入することから、固定式等速自在継手の作動時には凹球面部の内球面中心に対して凸球面部の外球面中心が一致しているので、固定式継手部と摺動式継手部とが限界作動角以下の範囲内で角度変位しても、球対偶の凹球面部から凸球面部が抜脱することはない。その結果、前述した抜け止め機構を外方部材の内径に設ける必要はない。従って、この場合、凹球面部への凸球面部の組付時における所定の作動角は、限界作動角に制約されることなく、任意の角度に設定可能である。   On the other hand, in the case where the built-in portion has a cylindrical side surface shape or a concave groove shape formed on a part of the outer spherical surface of the convex spherical portion around the center shifted from the outer spherical center of the convex spherical surface portion, the concave spherical surface Even if the predetermined operating angle when assembling the convex spherical part to the part is less than the limit operating angle, it is incorporated into the concave spherical part with the outer spherical center of the convex spherical part shifted from the inner spherical center of the concave spherical part. Because the center of the outer spherical surface of the convex spherical surface portion coincides with the inner spherical surface center of the concave spherical surface portion when the fixed type constant velocity universal joint is operated, the fixed joint portion and the sliding joint portion are Even if the angle is displaced within the range of the limit operating angle or less, the convex spherical surface portion does not come out of the concave spherical surface portion of the ball pair. As a result, it is not necessary to provide the above-described retaining mechanism on the inner diameter of the outer member. Therefore, in this case, the predetermined operating angle at the time of assembling the convex spherical portion to the concave spherical portion can be set to an arbitrary angle without being restricted by the limit operating angle.

なお、前述した組込み部は円筒側面状または凹溝状をなすことから、特に凹溝状の場合、凹球面部の内球面との間に隙間を形成することが容易となり、その隙間にグリース等の潤滑材が入り込むことで、球対偶における凸球面部と凹球面部との相対運動がスムーズになって作動性の向上が図れる。   In addition, since the built-in portion described above has a cylindrical side surface shape or a concave groove shape, it is easy to form a gap between the concave spherical surface portion and the inner spherical surface especially in the case of the concave groove shape, and grease or the like is formed in the gap. As the lubricant enters, the relative motion between the convex spherical surface portion and the concave spherical surface portion in the ball pair becomes smooth, and the operability can be improved.

また、この固定式等速自在継手において、固定式継手部と摺動式継手部とで共通にした外方部材は、単一の部材で構成することが可能であるが、固定式継手部と摺動式継手部のそれぞれで二部材により分割構成し、両部材を同軸的に突き合わせて接合一体化した構成とすることも可能である。   Further, in this fixed type constant velocity universal joint, the outer member common to the fixed type joint part and the sliding type joint part can be constituted by a single member. Each of the sliding joint portions may be divided into two members, and both members may be coaxially butted and joined and integrated.

本発明によれば、固定式継手部と摺動式継手部を共通の外方部材に組み込み、両者の固定式継手部と摺動式継手部を球対偶で連結した構造としたことにより、固定式継手部と摺動式継手部のそれぞれの作動角を加えた大きな作動角を実現することができ、固定式継手部と摺動式継手部間に凸球面部と凹球面部からなる球対偶が介在するのみであるため、構造が簡単で軽量コンパクトな固定式等速自在継手を提供できる。   According to the present invention, the fixed joint portion and the sliding joint portion are incorporated in a common outer member, and the fixed joint portion and the sliding joint portion are connected by a ball pair. A large operating angle can be realized by adding the operating angles of the sliding joint part and sliding joint part, and a spherical pair consisting of a convex spherical part and a concave spherical part between the fixed joint part and the sliding joint part. Therefore, it is possible to provide a fixed type constant velocity universal joint that is simple in structure and lightweight and compact.

しかも、凹球面部の開口径よりも小さい外径を有し、かつ、固定式継手部の内方部材と摺動式継手部の内方部材とが所定の作動角をとった状態で凹球面部に挿入可能とする円筒側面状または凹溝状の組込み部を凸球面部の外球面に形成し、この組込み部からの挿入により凸球面部を凹球面部に球面嵌合させたことにより、凹球面部は複数の切り欠きが形成されていない単純な内球面とすることができると共に、凸球面部は一つの組込み部が形成された外球面であることから、球対偶における凸球面部と凹球面部の球面保持面積を確保することが容易となり、等速自在継手が作動角をとったとしても、その球面保持面積が減少することはなく、球面保持力の向上が図れると共に凹球面部の強度向上も図れる。   In addition, the concave spherical surface has an outer diameter smaller than the opening diameter of the concave spherical portion, and the inner member of the fixed joint portion and the inner member of the sliding joint portion have a predetermined operating angle. By forming the cylindrical side surface or concave groove-shaped built-in portion that can be inserted into the outer spherical surface of the convex spherical portion, and inserting the convex spherical portion into the concave spherical portion by insertion from this built-in portion, The concave spherical surface portion can be a simple inner spherical surface in which a plurality of notches are not formed, and the convex spherical surface portion is an outer spherical surface formed with one built-in portion. It becomes easy to secure the spherical holding area of the concave spherical part, and even if the constant velocity universal joint takes an operating angle, the spherical holding area does not decrease, the spherical holding force can be improved and the concave spherical part The strength can be improved.

その結果、例えば、近年における自動車のドライブシャフトに使用される固定式等速自在継手の高角化による前輪の操舵角の増大への要望に迅速に対応することができる。   As a result, for example, in recent years, it is possible to quickly respond to a demand for an increase in the steering angle of the front wheels by increasing the angle of the fixed type constant velocity universal joint used in the drive shaft of an automobile.

本発明に係る固定式等速自在継手の実施形態を以下に詳述する。図1に示す実施形態の固定式等速自在継手は、固定式継手部としてUJ、摺動式継手部としてDOJをそれぞれ適用して組み合わせた構造を例示する。その他、固定式継手部としてはBJ、摺動式継手部としてはLJを適用して組み合わせることも可能である。   An embodiment of a fixed type constant velocity universal joint according to the present invention will be described in detail below. The fixed type constant velocity universal joint of the embodiment shown in FIG. 1 exemplifies a structure in which UJ is applied as a fixed joint part and DOJ is applied as a sliding joint part. In addition, BJ can be used as a fixed joint, and LJ can be combined as a sliding joint.

この実施形態の固定式等速自在継手は、以下の構造を具備する。図1に示すように円筒状外方部材である単一の外輪30を共通にしてその一端側(図示左側)に固定式継手部10(UJ)を配設すると共に他端側(図示右側)に摺動式継手部20(DOJ)を配設している。固定式継手部10の内方部材である内輪12にスプライン嵌合されたシャフト11のDOJ側端部に凹球面部15を一体的に設けると共に摺動式継手部20の内方部材である内輪22にスプライン嵌合されたシャフト21のUJ側端部に凸球面部25を一体的に設けている。凹球面部15と凸球面部25からなる球対偶40を介して固定式継手部10のシャフト11と摺動式継手部20のシャフト21を連結した構造を具備する。   The fixed type constant velocity universal joint of this embodiment has the following structure. As shown in FIG. 1, a single outer ring 30 that is a cylindrical outer member is shared, and a fixed joint portion 10 (UJ) is disposed on one end side (the left side in the figure) and the other end side (the right side in the figure). Is provided with a sliding joint 20 (DOJ). A concave spherical surface portion 15 is integrally provided at the DOJ side end portion of the shaft 11 that is spline-fitted to an inner ring 12 that is an inner member of the fixed joint portion 10 and an inner ring that is an inner member of the sliding joint portion 20. A convex spherical surface portion 25 is integrally provided at the UJ side end portion of the shaft 21 that is spline-fitted to the shaft 22. A structure in which the shaft 11 of the fixed joint portion 10 and the shaft 21 of the sliding joint portion 20 are connected via a ball pair 40 including the concave spherical portion 15 and the convex spherical portion 25 is provided.

固定式継手部10は、軸方向に延びる複数のトラック溝31が円筒状内周面に円周方向等間隔で形成された外輪30を摺動式継手部20と共通にし、外輪30のトラック溝31と対をなして軸方向に延びる複数のトラック溝16が球面状外周面に円周方向等間隔で形成された内方部材である内輪12と、外輪30のトラック溝31と内輪12のトラック溝16との間に介在してトルクを伝達する複数のボール14と、外輪30の円筒状内周面と内輪12の球面状外周面との間に介在して各ボール14を保持するケージ13とを備えている。複数のボール14は、ケージ13に形成されたポケット17に収容されて円周方向等間隔に配置されている。   The fixed joint portion 10 has the outer ring 30 in which a plurality of track grooves 31 extending in the axial direction are formed on the cylindrical inner peripheral surface at equal intervals in the circumferential direction in common with the sliding joint portion 20. The inner ring 12 is an inner member in which a plurality of track grooves 16 extending in the axial direction in pairs with the outer circumferential surface 31 are formed on the spherical outer peripheral surface at equal intervals in the circumferential direction, the track grooves 31 of the outer ring 30 and the tracks of the inner ring 12 A plurality of balls 14 interposed between the grooves 16 for transmitting torque, and a cage 13 interposed between the cylindrical inner peripheral surface of the outer ring 30 and the spherical outer peripheral surface of the inner ring 12 for holding the balls 14. And. The plurality of balls 14 are accommodated in pockets 17 formed in the cage 13 and arranged at equal intervals in the circumferential direction.

内輪12の軸孔18には、駆動側あるいは従動側のシャフト11がスプライン嵌合によりトルク伝達可能に結合されている。また、シャフト11の外周面に形成された環状凹溝11aにサークリップ等の止め輪19を、内輪12の外輪開口側端部に形成された凹段部12aで係止させることにより、内輪12に対するシャフト11の抜け止め構造としている。このシャフト11と内輪14とで内方部材を構成している。   A shaft 11 on the driving side or the driven side is coupled to the shaft hole 18 of the inner ring 12 so that torque can be transmitted by spline fitting. In addition, a retaining ring 19 such as a circlip is engaged with an annular groove 11 a formed on the outer peripheral surface of the shaft 11 by a recessed step portion 12 a formed on the outer ring opening side end portion of the inner ring 12, thereby The shaft 11 is prevented from coming off. The shaft 11 and the inner ring 14 constitute an inner member.

なお、図示しないが、外輪30とシャフト11との間には、例えば、樹脂あるいはゴム製の蛇腹状ブーツが装着され、このブーツにより外輪30の開口部を閉塞することで、継手内部からのグリース漏洩および継手外部からの異物侵入を防止している。ブーツの両端部は、外輪30の外周面およびシャフト11の外周面に締付けバンドにより固定されている。   Although not shown, for example, a resin or rubber bellows-like boot is mounted between the outer ring 30 and the shaft 11, and the opening of the outer ring 30 is closed by this boot, so that grease from the inside of the joint can be obtained. Prevents leakage and entry of foreign matter from the outside of the joint. Both ends of the boot are fixed to the outer peripheral surface of the outer ring 30 and the outer peripheral surface of the shaft 11 by fastening bands.

この固定式継手部10では、外輪30のトラック溝31の曲率中心O11と内輪12のトラック溝16の曲率中心O12とを継手中心O10に対して等距離fだけ軸方向逆向きにオフセットさせている。このトラックオフセットにより、シャフト11と外輪30とが相対的に角度変位すると、ケージ13のポケット17に収容されたボール14は常にどの作動角においても、その作動角の二等分面内に維持され、継手の等速性が確保される。 In the fixed joint 10, offset only axially opposite equidistant f the curvature center O 12 of the track grooves 16 of the center of curvature O 11 and the inner ring 12 of the track grooves 31 of the outer ring 30 relative to the joint center O 10 I am letting. When the shaft 11 and the outer ring 30 are relatively angularly displaced by this track offset, the ball 14 accommodated in the pocket 17 of the cage 13 is always maintained within the bisector of the operating angle at any operating angle. The constant velocity of the joint is ensured.

また、外輪30のトラック溝31は、外輪開口側(図示左側)に位置して曲率中心O11を持つ円弧部分と、その曲率中心O11から径方向に延びる線分がトラック溝31の底部と交わる部位を境として外輪奥側(図示右側)に位置する軸方向と平行な直線部分とで構成されている。同様に、内輪12のトラック溝16は、外輪奥側に位置して曲率中心O12を持つ円弧部分と、その曲率中心O12から径方向に延びる線分がトラック溝16の底部と交わる部位を境として外輪開口側に位置する軸方向と平行な直線部分とで構成されている。 Further, the track grooves 31 of the outer ring 30, an arcuate portion having a curvature center O 11 positioned on the outer ring opening side (left side), and the bottom line segment track grooves 31 extending from the center of curvature O 11 in the radial direction It is composed of a straight line portion parallel to the axial direction and located on the outer ring inner side (the right side in the figure) with the intersecting part as a boundary. Similarly, the track grooves 16 of the inner ring 12 has an arcuate portion having a curvature center O 12 positioned to the outer ring inner side, a portion line segment extending from the center of curvature O 12 radially intersects the bottom of the track grooves 16 It is comprised by the linear part parallel to the axial direction located in the outer ring | wheel opening side as a boundary.

一方、摺動式継手部20は、軸線と平行に延びる複数の直線状トラック溝31が円筒状内周面に円周方向等間隔で形成された外輪30を固定式継手部10と共通にし、外輪30のトラック溝31と対をなして軸線と平行に延びる複数の直線状トラック溝26が球面状外周面に円周方向等間隔で形成された内方部材である内輪22と、外輪30のトラック溝31と内輪22のトラック溝26との間に介在してトルクを伝達する複数のボール24と、外輪30の円筒状内周面と内輪22の球面状外周面との間に介在して各ボール24を保持するケージ23とを備えている。複数のボール24は、ケージ23に形成されたポケット27に収容されて円周方向等間隔に配置されている。   On the other hand, the sliding joint part 20 shares the outer ring 30 in which a plurality of linear track grooves 31 extending in parallel with the axis are formed on the cylindrical inner peripheral surface at equal intervals in the circumferential direction, in common with the fixed joint part 10, An inner ring 22 that is an inner member in which a plurality of linear track grooves 26 that are paired with the track groove 31 of the outer ring 30 and extend parallel to the axis are formed on the spherical outer circumferential surface at equal intervals in the circumferential direction; A plurality of balls 24 interposed between the track groove 31 and the track groove 26 of the inner ring 22 to transmit torque, and a cylindrical inner peripheral surface of the outer ring 30 and a spherical outer peripheral surface of the inner ring 22 are interposed. And a cage 23 for holding each ball 24. The plurality of balls 24 are accommodated in pockets 27 formed in the cage 23 and arranged at equal intervals in the circumferential direction.

内輪22の軸孔28には、従動側あるいは駆動側のシャフト21がスプライン嵌合によりトルク伝達可能に結合されている。また、シャフト21の外周面に形成された二つの環状凹溝21a,21bにサークリップ等の止め輪29a,29bを嵌合させ、内輪22の外輪開口側と外輪奥側のそれぞれの端面で止め輪29a,29bを係止させることにより、内輪22に対するシャフト21の抜け止め構造としている。このシャフト21と内輪22とで内方部材を構成している。   A shaft 21 on the driven side or the drive side is coupled to the shaft hole 28 of the inner ring 22 so that torque can be transmitted by spline fitting. Further, retaining rings 29a and 29b such as circlips are fitted into two annular concave grooves 21a and 21b formed on the outer peripheral surface of the shaft 21, and are stopped at the end surfaces of the inner ring 22 on the outer ring opening side and the outer ring rear side. By locking the rings 29a and 29b, the shaft 21 is prevented from coming off from the inner ring 22. The shaft 21 and the inner ring 22 constitute an inner member.

なお、図示しないが、外輪30とシャフト21との間には、例えば、樹脂あるいはゴム製の蛇腹状ブーツが装着され、このブーツにより外輪30の開口部を閉塞することで、継手内部からのグリース漏洩および継手外部からの異物侵入を防止している。ブーツの両端部は、外輪30の外周面およびシャフト21の外周面に締付けバンドにより固定されている。   Although not shown, a bellows-like boot made of, for example, resin or rubber is mounted between the outer ring 30 and the shaft 21, and the opening of the outer ring 30 is closed by this boot, so that grease from the inside of the joint can be obtained. Prevents leakage and entry of foreign matter from the outside of the joint. Both ends of the boot are fixed to the outer peripheral surface of the outer ring 30 and the outer peripheral surface of the shaft 21 by fastening bands.

この摺動式継手部20では、ケージ23の球面状内周面の曲率中心O21と球面状外周面の曲率中心O22とを継手中心O20に対して等距離Fだけ軸方向にオフセットさせている。このケージオフセットにより、シャフト21と外輪30とが角度変位すると、ケージ23のポケット27に収容されたボール24は常にどの作動角においても、その作動角の二等分面内に維持され、継手の等速性が確保される。 In this sliding joint 20, the center of curvature O 21 of the spherical inner peripheral surface of the cage 23 and the center of curvature O 22 of the spherical outer peripheral surface are offset in the axial direction by an equal distance F with respect to the joint center O 20 . ing. When the shaft 21 and the outer ring 30 are angularly displaced by this cage offset, the ball 24 accommodated in the pocket 27 of the cage 23 is always maintained within the bisector of the operating angle at any operating angle, Constant velocity is ensured.

これら固定式継手部10と摺動式継手部20を組み込んだ固定式等速自在継手では、摺動式継手部20のシャフト21の先端部(固定式継手部10のシャフト11との対向端部)に凸球面部25が一体的に形成されている。この凸球面部25の球面中心Oはシャフト21の中心軸M2上に配置されている。一方、固定式継手部10のシャフト11の先端部(摺動式継手部20のシャフト21との対向端部)に、凸球面部25を受ける凹球面部15が一体的に形成されている。この凹球面部15の球面中心Oはシャフト11の中心軸M1上に配置され、そのシャフト11の中心軸M1は摺動式継手部20のシャフト21の中心軸M2と一致する。凸球面部25の球面中心Oと凹球面部15の球面中心Oは一致して継手中心となる。なお、この凹球面部15および凸球面部25は、シャフト11,21の先端部に一体的に形成されているが、別体で形成することも可能である。 In the fixed constant velocity universal joint in which the fixed joint portion 10 and the sliding joint portion 20 are incorporated, the tip end portion of the shaft 21 of the sliding joint portion 20 (the end portion facing the shaft 11 of the fixed joint portion 10). ) Is formed integrally with the convex spherical surface portion 25. The spherical center O of the convex spherical portion 25 is arranged on the central axis M 2 of the shaft 21. On the other hand, a concave spherical portion 15 that receives the convex spherical portion 25 is integrally formed at the tip end portion of the shaft 11 of the fixed joint portion 10 (the end portion facing the shaft 21 of the sliding joint portion 20). The spherical center O of the concave spherical portion 15 is disposed on the central axis M 1 of the shaft 11, and the central axis M 1 of the shaft 11 coincides with the central axis M 2 of the shaft 21 of the sliding joint portion 20. The spherical center O of the convex spherical portion 25 and the spherical center O of the concave spherical portion 15 coincide with each other and become the joint center. The concave spherical surface portion 15 and the convex spherical surface portion 25 are integrally formed at the tip portions of the shafts 11 and 21, but may be formed separately.

凹球面部15と凸球面部25からなる球対偶40を、固定式継手部10のシャフト11と摺動式継手部20のシャフト21で共通の一点を中心Oとして球面案内機構とすることにより、この球面中心Oを作動角の中心とする固定式等速自在継手となる。このように固定式継手部10と摺動式継手部20を共通の外輪30に組み込み、固定式継手部10のシャフト11と摺動式継手部20のシャフト21を球対偶40で連結した構造とすることにより、固定式継手部10の作動角と摺動式継手部20の作動角を加えた大きな作動角を実現することができ、構造が簡単で軽量コンパクトな固定式等速自在継手を提供できる。   By making the spherical pair 40 composed of the concave spherical portion 15 and the convex spherical portion 25 into a spherical guide mechanism with a common point O as the center O between the shaft 11 of the fixed joint portion 10 and the shaft 21 of the sliding joint portion 20, This is a fixed type constant velocity universal joint having the spherical center O as the center of the operating angle. In this way, the fixed joint portion 10 and the sliding joint portion 20 are incorporated into a common outer ring 30, and the shaft 11 of the fixed joint portion 10 and the shaft 21 of the sliding joint portion 20 are connected by a ball pair 40. By doing so, it is possible to realize a large operating angle by adding the operating angle of the fixed joint portion 10 and the operating angle of the sliding joint portion 20, and provide a fixed type constant velocity universal joint that is simple in structure and lightweight. it can.

図2は固定式継手部10のシャフト11と摺動式継手部20のシャフト21が限界作動角θ(最大作動角)をとった状態を示す。この限界作動角θは、固定式継手部10の作動角と摺動式継手部20の作動角の合計となり、図1に示すように固定式継手部10の作動角が0°での球対偶40の球面中心Oから固定式継手部10の継手中心O10までの距離L1と、摺動式継手部20の作動角が0°での球対偶40の球面中心Oから摺動式継手部20の継手中心O20までの距離L2との関係によって決定される。 FIG. 2 shows a state where the shaft 11 of the fixed joint portion 10 and the shaft 21 of the sliding joint portion 20 take a limit operating angle θ (maximum operating angle). This limit operating angle θ is the sum of the operating angle of the fixed joint portion 10 and the operating angle of the sliding joint portion 20, and as shown in FIG. 1, the ball pair even when the operating angle of the fixed joint portion 10 is 0 °. The distance L 1 from the spherical center O of 40 to the joint center O 10 of the fixed joint 10 and the sliding joint 20 from the spherical center O of the ball pair 40 when the operating angle of the sliding joint 20 is 0 °. It is determined by the relationship with the distance L 2 to 20 joint centers O 20 .

なお、図2に示すように固定式継手部10と摺動式継手部20が限界作動角θをとった時に、凸球面部25の基部に形成された縊れ部25aが凹球面部15との干渉を回避している。また、固定式継手部10では、外輪30から飛び出そうとする位相にあるボール14が凹球面部15の外周面と干渉することを回避するために、その凹球面部15の外周面に環状の凹部15aが形成されている。   As shown in FIG. 2, when the fixed joint portion 10 and the sliding joint portion 20 take the limit operating angle θ, the bend portion 25 a formed at the base of the convex spherical portion 25 is the concave spherical portion 15. To avoid interference. Further, in the fixed joint portion 10, in order to avoid the ball 14 in a phase about to jump out of the outer ring 30 from interfering with the outer peripheral surface of the concave spherical portion 15, an annular surface is provided on the outer peripheral surface of the concave spherical portion 15. A recess 15a is formed.

通常、固定式継手部10(限界作動角50°)が摺動式継手部20(限界作動角30°)よりも構造上大きな作動角をとることができることから、球対偶40の球面中心Oから固定式継手部10の継手中心O10までの距離L1と、球対偶40の球面中心Oから摺動式継手部20の継手中心O20までの距離L2については、L1<L2の条件を満足するように設定すればよい。このように設定することにより、固定式継手部10に摺動式継手部20よりも大きな作動角を分担させることになり(固定式継手部10の作動角>摺動式継手部20の作動角)、例えば、固定式継手部10の作動角を35°、摺動式継手部20の作動角を25°とすることで、固定式等速自在継手としては、より大きな作動角(θ=60°)が得られる。 In general, the fixed joint 10 (limit operating angle 50 °) can have a larger operating angle than the sliding joint 20 (limit operating angle 30 °) in structure. a distance L 1 to the joint center O 10 of the fixed joint 10, the distance L 2 from the spherical center O of the sphere even number 40 to the joint center O 20 of sliding joint 20, L 1 <the L 2 What is necessary is just to set so that conditions may be satisfied. By setting in this way, the fixed joint 10 is assigned a larger operating angle than the sliding joint 20 (the operating angle of the fixed joint 10> the operating angle of the sliding joint 20). ) For example, by setting the operating angle of the fixed joint portion 10 to 35 ° and the operating angle of the sliding joint portion 20 to 25 °, the fixed type constant velocity universal joint has a larger operating angle (θ = 60). °) is obtained.

このように、限界作動角θは、固定式継手部10と摺動式継手部20に分配されることから、それぞれの作動角が限界作動角よりも小さくて済むため、ボールトラック端部に余裕ができ、また、荷重が各ボールトラックに均一に付与されることから強度の向上が図れる。また、固定式継手部10と摺動式継手部20の各作動角が限界作動角θよりも小さくて済むことから、固定式継手部10および摺動式継手部20の構成部材間の相対変位が小さくなるため、耐久性の向上も図れる。これは、車両の常用角(直進状態での作動角)が大きい場合に特にその効果が顕著である。   As described above, since the limit operating angle θ is distributed to the fixed joint portion 10 and the sliding joint portion 20, each of the operating angles can be smaller than the limit operating angle. In addition, since the load is uniformly applied to each ball track, the strength can be improved. Further, since each operating angle of the fixed joint portion 10 and the sliding joint portion 20 may be smaller than the limit operating angle θ, the relative displacement between the constituent members of the fixed joint portion 10 and the sliding joint portion 20 is sufficient. Therefore, durability can be improved. This is particularly effective when the vehicle has a large common angle (an operating angle in a straight traveling state).

なお、ボール14,24が8個の場合には、6個ボールタイプに比べて内輪12,22のシャフトスペースを広く確保することができるので、固定式継手部10と摺動式継手部20のシャフト11,21間に位置する球対偶40(凹球面部15および凸球面部25)を形成し易くなる。   When the number of balls 14 and 24 is eight, the shaft space of the inner rings 12 and 22 can be secured wider than that of the six-ball type, so the fixed joint portion 10 and the sliding joint portion 20 can be secured. It becomes easy to form the ball pair 40 (concave spherical portion 15 and convex spherical portion 25) located between the shafts 11 and 21.

この固定式等速自在継手では、凹球面部15の開口径よりも小さい外径を有し、かつ、固定式継手部10のシャフト11と摺動式継手部20のシャフト21とが所定の作動角をとった状態で凹球面部15に挿入可能とする組込み部25bを凸球面部25の外球面に形成し、この組込み部25bからの挿入により凸球面部25を凹球面部15に球面嵌合させて球対偶40を形成している。   In this fixed type constant velocity universal joint, the outer diameter is smaller than the opening diameter of the concave spherical surface portion 15, and the shaft 11 of the fixed type joint portion 10 and the shaft 21 of the sliding type joint portion 20 have predetermined operations. A built-in portion 25b that can be inserted into the concave spherical surface portion 15 in a state of taking a corner is formed on the outer spherical surface of the convex spherical portion 25, and the convex spherical portion 25 is fitted into the concave spherical surface portion 15 by insertion from the built-in portion 25b Together, a ball pair 40 is formed.

これにより、凹球面部15は複数の切り欠きが形成されていない単純な内球面とすることができると共に、凸球面部25は一つの組込み部25bが形成された外球面であることから、球対偶40における凸球面部25と凹球面部15の球面保持面積を確保することが容易となり、等速自在継手が作動角をとったとしても、その球面保持面積が減少することはなく、球面保持力の向上が図れると共に凹球面部15の強度向上も図れる。   Thereby, the concave spherical surface portion 15 can be a simple inner spherical surface in which a plurality of notches are not formed, and the convex spherical surface portion 25 is an outer spherical surface formed with one built-in portion 25b. It becomes easy to secure the spherical holding areas of the convex spherical portion 25 and the concave spherical portion 15 in the pair 40, and even if the constant velocity universal joint takes an operating angle, the spherical holding area does not decrease, and the spherical holding The force can be improved and the strength of the concave spherical portion 15 can be improved.

図1および図2に示す実施形態での組込み部25bは、凸球面部25の外球面中心と一致した中心周りで凸球面部25の外球面の全周に亘って形成された凹状をなし、その断面形状は円形となっている。なお、この組込み部25bの断面形状は円形以外の楕円形などや円筒側面も可能で任意に設定すればよい。また、組込み部25bは、凸球面部25の外球面の全周に亘って形成されることから、その外球面の全周に沿う帯状となっている。   The built-in portion 25b in the embodiment shown in FIGS. 1 and 2 has a concave shape formed around the entire circumference of the outer spherical surface of the convex spherical portion 25 around the center coinciding with the outer spherical center of the convex spherical portion 25. The cross-sectional shape is circular. Note that the cross-sectional shape of the built-in portion 25b can be arbitrarily set such as an ellipse other than a circle or a cylindrical side surface. In addition, since the built-in portion 25b is formed over the entire circumference of the outer spherical surface of the convex spherical surface portion 25, the built-in portion 25b has a strip shape along the entire circumference of the outer spherical surface.

固定式等速自在継手の製造時、凹球面部15に凸球面部25を組み付けるに際しては、図3に示すように固定式継手部10のシャフト11と摺動式継手部20のシャフト21とを所定の作動角θ1をとった状態に設定する。凹球面部15はその内球面の径D1がプラス公差を有するのに対して、凸球面部25はその外球面の径D1がマイナス公差を有する。 When assembling the convex spherical surface portion 25 to the concave spherical surface portion 15 during manufacture of the fixed type constant velocity universal joint, the shaft 11 of the fixed joint portion 10 and the shaft 21 of the sliding joint portion 20 are connected as shown in FIG. A state in which a predetermined operating angle θ 1 is taken is set. The concave spherical surface portion 15 has a positive tolerance on the inner spherical diameter D 1 , while the convex spherical portion 25 has a negative tolerance on the outer spherical diameter D 1 .

凸球面部25には、凹球面部15の開口径D2よりも小さい外径D3(D3<D2)を有する組込み部25bが、組込み部25bが凸球面部25の外球面中心と一致した中心周りでその外球面の全周に亘って形成されていることから、所定の作動角θ1をとると共に凹球面部15の内球面中心に対して凸球面部25の外球面中心を一致させた状態で、凹球面部15に凸球面部25が挿入可能となっている。この組込み部25bからの挿入により凸球面部25を凹球面部15に球面嵌合させることになる。 The convex spherical portion 25 includes an embedded portion 25 b having an outer diameter D 3 (D 3 <D 2 ) smaller than the opening diameter D 2 of the concave spherical portion 15, and the embedded portion 25 b is connected to the outer spherical center of the convex spherical portion 25. Since it is formed over the entire circumference of the outer spherical surface around the coincidence center, the outer spherical surface center of the convex spherical surface portion 25 is taken with respect to the inner spherical surface center of the concave spherical surface portion 15 while taking a predetermined operating angle θ 1. The convex spherical surface portion 25 can be inserted into the concave spherical surface portion 15 in the matched state. The convex spherical portion 25 is spherically fitted to the concave spherical portion 15 by the insertion from the built-in portion 25b.

この凹球面部15への凸球面部25の組み付け時、固定式継手部10のシャフト11と摺動式継手部20のシャフト21とがなす所定の作動角θ1を限界作動角θ(最大作動角)よりも大きく設定している(θ1>θ)。このように、所定の作動角θ1を限界作動角θよりも大きく設定しておけば、固定式等速自在継手の作動時、つまり、固定式継手部10と摺動式継手部20とが限界作動角θ以下の範囲内で角度変位する場合に、球対偶40の凹球面部15から凸球面部25が抜脱することはない。 When the convex spherical portion 25 is assembled to the concave spherical portion 15, the predetermined operating angle θ 1 formed by the shaft 11 of the fixed joint portion 10 and the shaft 21 of the sliding joint portion 20 is set as a limit operating angle θ (maximum operating angle). It is set larger than (angle) (θ 1 > θ). Thus, if the predetermined operating angle θ 1 is set larger than the limit operating angle θ, the fixed type constant velocity universal joint is operated, that is, the fixed type joint part 10 and the sliding type joint part 20 are When the angle is displaced within the range of the limit operating angle θ or less, the convex spherical portion 25 does not come out of the concave spherical portion 15 of the ball pair 40.

以上の実施形態では、凹球面部15への凸球面部25の組み付け時、固定式継手部10のシャフト11と摺動式継手部20のシャフト21とがなす所定の作動角θ1を限界作動角θ(最大作動角)よりも大きく設定した場合について説明したが、図6に示すように、固定式継手部10のシャフト11と摺動式継手部20のシャフト21とがなす所定の作動角θ2を限界作動角θ以下とすることも可能である(θ2≦θ)。 In the above embodiment, when the convex spherical portion 25 is assembled to the concave spherical portion 15, the predetermined operating angle θ 1 formed by the shaft 11 of the fixed joint portion 10 and the shaft 21 of the sliding joint portion 20 is limited. The case where the angle θ (maximum operating angle) is set has been described, but as shown in FIG. 6, a predetermined operating angle formed by the shaft 11 of the fixed joint 10 and the shaft 21 of the sliding joint 20. it is also possible to theta 2 and less critical operating angle θ (θ 2 ≦ θ).

このように凹球面部15への凸球面部25の組み付け時に二つのシャフト11,21がなす所定の作動角θ2を限界作動角θ以下に設定した場合の実施形態における固定式等速自在継手を図4および図5に示す。図4は作動角が0°の場合、図5は所定の作動角θ2をとった状態を示す。なお、図4および図5に示す実施形態において、図1および図2と同一部分には同一参照符号を付して重複説明は省略する。 Thus, the fixed constant velocity universal joint in the embodiment in the case where the predetermined operating angle θ 2 formed by the two shafts 11 and 21 is set to be equal to or less than the limit operating angle θ when the convex spherical portion 25 is assembled to the concave spherical portion 15. Is shown in FIG. 4 and FIG. 4 shows a state where the operating angle is 0 °, and FIG. 5 shows a state where the predetermined operating angle θ 2 is taken. In the embodiment shown in FIGS. 4 and 5, the same parts as those in FIGS.

この実施形態では、組込み部25bが凸球面部25の外球面中心と一致した中心周りでその外球面に形成され、凸球面部25の組み付け時、凹球面部15の内球面中心に対して凸球面部25の外球面中心を一致させた状態で凹球面部15に組込み部25bを挿入するようにしている。そのため、凸球面部25の組み付け時において二つのシャフト11,21がなす所定の作動角θ2を限界作動角θ以下とすると、固定式継手部10と摺動式継手部20とが限界作動角θ以下の範囲内で角度変位する時に、所定の作動角θ2で凹球面部15から凸球面部25が抜脱する可能性がある。 In this embodiment, the built-in portion 25b is formed on the outer spherical surface around the center coincident with the outer spherical center of the convex spherical portion 25, and is convex with respect to the inner spherical center of the concave spherical portion 15 when the convex spherical portion 25 is assembled. The built-in portion 25b is inserted into the concave spherical portion 15 with the outer spherical center of the spherical portion 25 being coincident. Therefore, when the predetermined operating angle θ 2 formed by the two shafts 11 and 21 when the convex spherical portion 25 is assembled is set to be equal to or smaller than the limit operating angle θ, the fixed joint portion 10 and the sliding joint portion 20 are limited to each other. When the angle is displaced within the range of θ or less, there is a possibility that the convex spherical portion 25 is detached from the concave spherical portion 15 at a predetermined operating angle θ 2 .

そこで、図4および図5に示すように、凹球面部15と球面嵌合した状態にある凸球面部25の外球面と接触して支持する抜け止め機構50を外輪30の内径に設ける必要がある。この抜け止め機構50は、固定式継手部10のシャフト11と摺動式継手部20のシャフト21とが所定の作動角θ2をとった時に凸球面部25の外球面と接触する受け面52が形成された円筒状の抜け止め部材54を、外輪30の内径に嵌合させて固定している(図5参照)。この抜け止め部材54の受け面52は、凸球面部25の外球面と接触するように軸方向に沿う凹円弧状に形成されている。 Therefore, as shown in FIGS. 4 and 5, it is necessary to provide a retaining mechanism 50 on the inner diameter of the outer ring 30 that contacts and supports the outer spherical surface of the convex spherical portion 25 that is in a spherical fitting state with the concave spherical portion 15. is there. The retaining mechanism 50 includes a receiving surface 52 that contacts the outer spherical surface of the convex spherical portion 25 when the shaft 11 of the fixed joint portion 10 and the shaft 21 of the sliding joint portion 20 take a predetermined operating angle θ 2. A cylindrical retaining member 54 formed with is fitted and fixed to the inner diameter of the outer ring 30 (see FIG. 5). The receiving surface 52 of the retaining member 54 is formed in a concave arc shape along the axial direction so as to contact the outer spherical surface of the convex spherical portion 25.

このように、外輪30の内径に抜け止め部材54を設ければ、凹球面部15への凸球面部25の組み付け時において二つのシャフト11,21がなす所定の作動角θ2を限界作動角θ以下とした場合であっても、固定式継手部10と摺動式継手部20とが限界作動角θ以下の範囲内で角度変位した時に、所定の作動角θ2で凸球面部25の外球面を抜け止め部材54の受け面52で支持することから、凹球面部15から凸球面部25が抜脱することはない。 As described above, when the retaining member 54 is provided on the inner diameter of the outer ring 30, the predetermined operating angle θ 2 formed by the two shafts 11 and 21 when the convex spherical portion 25 is assembled to the concave spherical portion 15 is set as the limit operating angle. Even when θ is less than or equal to θ, when the fixed joint portion 10 and the sliding joint portion 20 are angularly displaced within a range that is less than or equal to the limit operating angle θ, the convex spherical portion 25 has a predetermined operating angle θ 2 . Since the outer spherical surface is supported by the receiving surface 52 of the retaining member 54, the convex spherical surface portion 25 is not detached from the concave spherical surface portion 15.

以上の二つの実施形態における固定式等速自在継手では、固定式継手部10と摺動式継手部20とで共通にした単一の外輪30を使用した場合について説明したが、外輪30を固定式継手部10と摺動式継手部20のそれぞれで二部材により分割構成し、両部材を同軸的に突き合わせて接合一体化した構成とすることも可能である。   In the fixed type constant velocity universal joints in the above two embodiments, the case where the single outer ring 30 common to the fixed type joint part 10 and the sliding type joint part 20 is used has been described, but the outer ring 30 is fixed. It is also possible to divide and constitute each of the type joint part 10 and the sliding type joint part 20 by two members and coaxially abut both members so as to be joined and integrated.

図7および図8は、図1および図2の実施形態の変形例として、外輪30を固定式継手部側に位置する第一の円筒状部材30aと摺動式継手部側に位置する第二の円筒状部材30bにより分割構成した実施形態を示す。図7は作動角が0°の場合、図8は限界作動角θ(最大作動角)をとった状態を示す。なお、図7および図8に示す実施形態において、図1および図2と同一部分には同一参照符号を付して重複説明は省略する。   FIGS. 7 and 8 show, as a modification of the embodiment of FIGS. 1 and 2, a first cylindrical member 30a positioned on the fixed joint portion side and a second cylindrical member positioned on the sliding joint portion side. The embodiment divided and comprised by the cylindrical member 30b of this is shown. 7 shows a state where the operating angle is 0 °, and FIG. 8 shows a state where the limit operating angle θ (maximum operating angle) is taken. In the embodiment shown in FIGS. 7 and 8, the same parts as those in FIGS.

図7および図8に示す実施形態では、第一の円筒状部材30aと第二の円筒状部材30bとを同軸的に突き合わせ、その突き合わせ端部同士を例えば溶接(図中の溶接部A)により接合一体化することにより外輪30を構成している。   In the embodiment shown in FIGS. 7 and 8, the first cylindrical member 30a and the second cylindrical member 30b are coaxially butted, and the butted ends are welded, for example, by welding (welded portion A in the drawing). The outer ring 30 is configured by joining and integrating.

また、外輪30を固定式継手部10と摺動式継手部20のそれぞれで二部材30a,30bにより分割構成する場合、それら二部材30a,30b間に、凹球面部15と球面嵌合した状態にある凸球面部25の外球面と接触して位置規制する抜け止め機構が内径に設けられた中間部材を介在させて各部材を同軸的に突き合わせて接合一体化した構成とすることも可能である。   Further, when the outer ring 30 is divided into the fixed joint portion 10 and the sliding joint portion 20 by two members 30a and 30b, the concave spherical portion 15 and the spherical surface 15 are fitted between the two members 30a and 30b. It is also possible to adopt a configuration in which each member is coaxially abutted and joined together by interposing an intermediate member provided on the inner diameter with a retaining mechanism for restricting the position by contacting with the outer spherical surface of the convex spherical surface portion 25. is there.

図9および図10は、図4および図5の実施形態の変形例として、外輪30を固定式継手部側に位置する第一の円筒状部材30aと摺動式継手部側に位置する第二の円筒状部材30bにより分割構成し、その第一の円筒状部材30aと第二の円筒状部材30bとの間に中間部材30cを介在させた実施形態を示す。図9は作動角が0°の場合、図10は所定の作動角θ2をとった状態を示す。なお、図9および図10に示す実施形態において、図4および図5と同一部分には同一参照符号を付して重複説明は省略する。 9 and 10 show a modification of the embodiment of FIGS. 4 and 5, in which the outer ring 30 is positioned on the fixed joint portion side, and the second cylindrical member 30a is positioned on the sliding joint portion side. An embodiment is shown in which an intermediate member 30c is interposed between the first cylindrical member 30a and the second cylindrical member 30b. 9 shows a state where the operating angle is 0 °, and FIG. 10 shows a state where the predetermined operating angle θ 2 is taken. In the embodiment shown in FIGS. 9 and 10, the same parts as those in FIGS.

この中間部材30cは、凸球面部25の抜け止め機構50として、固定式継手部10のシャフト11と摺動式継手部20のシャフト21とが所定の作動角θ2をとった時に凸球面部25の外球面と接触する受け面52が形成された円筒状の抜け止め部材54を兼ねている。第一の円筒状部材30aと第二の円筒状部材30bとをその間に中間部材30cを介在させた状態でこれら三部材30a〜30cを同軸的に突き合わせ、その突き合わせ端部同士を例えば溶接(図中の溶接部B,C)により接合一体化することにより外輪30を構成している。 This intermediate member 30c is a convex spherical surface portion when the shaft 11 of the fixed joint portion 10 and the shaft 21 of the sliding joint portion 20 take a predetermined operating angle θ 2 as the retaining mechanism 50 of the convex spherical portion 25. It also serves as a cylindrical retaining member 54 on which a receiving surface 52 that contacts the outer spherical surface 25 is formed. The three cylindrical members 30a to 30c are coaxially butted between the first cylindrical member 30a and the second cylindrical member 30b with the intermediate member 30c interposed therebetween, and the butted ends are welded, for example (see FIG. The outer ring 30 is configured by joining and integrating the welded portions B and C).

以上の実施形態における組込み部25bは、凸球面部25の外球面中心と一致した中心周りで凸球面部25の外球面の全周に亘って形成された円筒側面状をなし、凹球面部15への凸球面部25の組み付け時、凹球面部15の内球面中心に対して凸球面部25の外球面中心を一致させた状態で凹球面部15に組込み部25bを挿入可能とした場合について説明したが、この組込み部は、凸球面部25の外球面中心からずれた中心周りで凸球面部25の外球面の一部に形成された円筒側面状をなす構造とすることも可能である。   The built-in portion 25b in the above embodiment has a cylindrical side surface formed around the entire center of the outer spherical surface of the convex spherical portion 25 around the center coinciding with the outer spherical center of the convex spherical portion 25. When the convex spherical portion 25 is assembled to the concave spherical portion 15 in a state where the outer spherical center of the convex spherical portion 25 is aligned with the inner spherical center of the concave spherical portion 15. As described above, the built-in portion may have a cylindrical side surface shape formed on a part of the outer spherical surface of the convex spherical portion 25 around the center shifted from the outer spherical center of the convex spherical portion 25. .

図11および図12は、図1および図2の実施形態と異なる他の実施形態として、組込み部25cを、凸球面部25の外球面中心からずれた中心周りで凸球面部25の外球面の一部に形成された円筒側面状をなす構造を例示する。図11は作動角が0°の場合、図12は限界作動角θ(最大作動角)をとった状態を示す。なお、図11および図12に示す実施形態において、図1および図2と同一部分には同一参照符号を付して重複説明は省略する。   11 and 12 show another embodiment different from the embodiment shown in FIGS. 1 and 2, in which the built-in portion 25 c is arranged around the center of the convex spherical portion 25 that is displaced from the outer spherical center of the convex spherical portion 25. The structure which makes the cylindrical side surface shape formed in part is illustrated. 11 shows a state where the operating angle is 0 °, and FIG. 12 shows a state where the limit operating angle θ (maximum operating angle) is taken. In the embodiment shown in FIG. 11 and FIG. 12, the same parts as those in FIG. 1 and FIG.

この実施形態における組込み部25cは、凸球面部25の外球面中心からずれた中心周りで凸球面部25の外球面の一部に形成された円筒側面状をなす。図1および図2に示す実施形態における組込み部25bは、凸球面部25の外球面中心と一致した中心周りで凸球面部25の外球面の全周に亘って帯状に形成されているのに対して、図11および図12に示す実施形態における組込み部25cは、凸球面部25の外球面中心からずらした中心周りでその外球面に形成されることから、凸球面部25の外球面の一部に円筒側面状に形成される。   The built-in portion 25 c in this embodiment has a cylindrical side surface formed on a part of the outer spherical surface of the convex spherical portion 25 around the center shifted from the outer spherical center of the convex spherical portion 25. In the embodiment shown in FIGS. 1 and 2, the built-in portion 25 b is formed in a band shape around the entire circumference of the outer spherical surface of the convex spherical portion 25 around the center coincident with the outer spherical center of the convex spherical portion 25. On the other hand, the built-in portion 25c in the embodiment shown in FIGS. 11 and 12 is formed on the outer spherical surface around the center shifted from the outer spherical center of the convex spherical portion 25. A part is formed in a cylindrical side surface shape.

この実施形態では、凹球面部15に凸球面部25を組み付けるに際しては、図13に示すように固定式継手部10のシャフト11と摺動式継手部20のシャフト21とを、例えば限界作動角θよりも大きく設定した所定の作動角θ1をとった状態に設定する。凸球面部25には、凹球面部15の開口径D2よりも小さい外径D3(D3<D2)を有する組込み部25cが、凸球面部25の外球面中心からずれた中心周りでその外球面の一部に形成されていることから、所定の作動角θ1をとると共に凹球面部15の内球面中心に対して凸球面部25の外球面中心をずらした状態で、凹球面部15に凸球面部25が挿入可能となっている。この組込み部25cからの挿入により凸球面部25を凹球面部15に球面嵌合させることになる。なお、この凹球面部15の内球面中心Xに対する凸球面部25の外球面中心Yのずらし量t(図13参照)は、組込み部25cを凸球面部25の外球面中心Yに対して中心回りで形成する際のずれ量と一致する。 In this embodiment, when the convex spherical surface portion 25 is assembled to the concave spherical surface portion 15, the shaft 11 of the fixed joint portion 10 and the shaft 21 of the sliding joint portion 20 are connected, for example, as shown in FIG. It is set to a state where a predetermined operating angle θ 1 set larger than θ is taken. The convex spherical portion 25 has a built-in portion 25 c having an outer diameter D 3 (D 3 <D 2 ) smaller than the opening diameter D 2 of the concave spherical portion 15 around the center of the convex spherical portion 25 shifted from the center of the outer spherical surface. In this state, the concave spherical surface 25 is displaced with respect to the inner spherical center of the concave spherical portion 15 while taking a predetermined operating angle θ 1. A convex spherical surface 25 can be inserted into the spherical surface portion 15. The convex spherical portion 25 is spherically fitted to the concave spherical portion 15 by insertion from the built-in portion 25c. The shift amount t (see FIG. 13) of the outer spherical surface center Y of the convex spherical surface portion 25 with respect to the inner spherical surface center X of the concave spherical surface portion 15 is the center of the built-in portion 25c with respect to the outer spherical surface center Y of the convex spherical surface portion 25. It corresponds to the amount of deviation when forming around.

この実施形態の場合、凹球面部15への凸球面部25の組み付け時に、固定式継手部10のシャフト11と摺動式継手部20のシャフト21とがなす所定の作動角θ2(図6参照)を限界作動角θ以下としても(θ2≦θ)、凹球面部15の内球面中心に対して凸球面部25の外球面中心をずらした状態で凹球面部15に組込み部25cを挿入することから、固定式等速自在継手の作動時には凹球面部15の内球面中心に対して凸球面部25の外球面中心が一致しているので、固定式継手部10と摺動式継手部20とが限界作動角θ以下の範囲内で角度変位しても、凹球面部15から凸球面部25が抜脱することはない。従って、この実施形態の場合、凹球面部15と球面嵌合した状態にある凸球面部25の外球面と接触して支持する抜け止め機構50(図4および図5参照)を外輪30の内径に設ける必要はない。 In the case of this embodiment, when the convex spherical portion 25 is assembled to the concave spherical portion 15, a predetermined operating angle θ 2 formed by the shaft 11 of the fixed joint portion 10 and the shaft 21 of the sliding joint portion 20 (FIG. 6). (See 2) is equal to or smaller than the limit operating angle θ (θ 2 ≦ θ), the embedded portion 25c is inserted into the concave spherical portion 15 with the outer spherical center of the convex spherical portion 25 shifted from the inner spherical center of the concave spherical portion 15. Therefore, when the fixed type constant velocity universal joint is operated, the center of the outer spherical surface of the convex spherical portion 25 coincides with the center of the inner spherical surface of the concave spherical portion 15, so that the fixed joint portion 10 and the sliding joint are aligned. Even if the portion 20 is angularly displaced within the range of the limit operating angle θ or less, the convex spherical portion 25 does not come out of the concave spherical portion 15. Accordingly, in the case of this embodiment, the retaining mechanism 50 (see FIGS. 4 and 5) that contacts and supports the outer spherical surface of the convex spherical portion 25 that is in a spherical fitting state with the concave spherical portion 15, has an inner diameter of the outer ring 30. There is no need to provide it.

この実施形態では、固定式継手部10と摺動式継手部20とで共通にした単一の外輪30を使用した場合について説明したが、外輪30を固定式継手部10と摺動式継手部20のそれぞれで二部材により分割構成し、両部材を同軸的に突き合わせて接合一体化した構成とすることも可能である。   In this embodiment, the case where a single outer ring 30 common to the fixed joint portion 10 and the sliding joint portion 20 is used has been described. However, the outer ring 30 is fixed to the fixed joint portion 10 and the sliding joint portion. Each of the members 20 may be divided into two members, and both members may be coaxially butted and joined together.

図14および図15は、図11および図12の実施形態の変形例として、外輪30を固定式継手部側に位置する第一の円筒状部材30aと摺動式継手部側に位置する第二の円筒状部材30bにより分割構成した実施形態を示す。図14は作動角が0°の場合、図15は限界作動角θ(最大作動角)をとった状態を示す。なお、図14および図15に示す実施形態において、図11および図12と同一部分には同一参照符号を付して重複説明は省略する。   FIGS. 14 and 15 show a modification of the embodiment of FIGS. 11 and 12 in which the outer ring 30 is positioned on the fixed joint portion side and the second cylindrical member 30a is positioned on the sliding joint portion side. The embodiment divided and comprised by the cylindrical member 30b of this is shown. FIG. 14 shows a state where the operating angle is 0 °, and FIG. 15 shows a state where the limit operating angle θ (maximum operating angle) is taken. In the embodiment shown in FIG. 14 and FIG. 15, the same parts as those in FIG. 11 and FIG.

図14および図15に示す実施形態では、第一の円筒状部材30aと第二の円筒状部材30bとを同軸的に突き合わせ、その突き合わせ端部同士を例えば溶接(図中の溶接部A)により接合一体化することにより外輪30を構成している。   In the embodiment shown in FIGS. 14 and 15, the first cylindrical member 30a and the second cylindrical member 30b are coaxially butted, and the butted ends are welded, for example, by welding (welded portion A in the drawing). The outer ring 30 is configured by joining and integrating.

なお、以上で説明した全ての実施形態では、凸球面部25の外球面に形成された組込み部25b,25cは円筒側面状をなすことから、凹球面部15の内球面との間に隙間を形成することが容易となり、その隙間にグリース等の潤滑材が入り込むことで、球対偶40における凸球面部25と凹球面部15との相対運動がスムーズになって作動性の向上が図れる。   In all the embodiments described above, since the built-in portions 25b and 25c formed on the outer spherical surface of the convex spherical portion 25 have a cylindrical side surface shape, a gap is formed between the concave spherical portion 15 and the inner spherical surface. It becomes easy to form, and when a lubricant such as grease enters the gap, the relative motion between the convex spherical surface portion 25 and the concave spherical surface portion 15 in the ball pair 40 becomes smooth, and the operability can be improved.

また、以上で説明した全ての実施形態では、外輪30における摺動式継手部20のトラック溝31は、固定式継手部10のトラック溝31と共通して形成されているが、固定式継手部10と摺動式継手部20とで個別に形成することも可能である。さらに、凹球面部15および凸球面部25は、固定式継手部10および摺動式継手部20の内輪12,22にスプライン嵌合されたシャフト11,21の先端部に一体的に設けた場合について説明したが、内輪12,22の端部に一体的に設けることも可能である。   In all the embodiments described above, the track groove 31 of the sliding joint portion 20 in the outer ring 30 is formed in common with the track groove 31 of the fixed joint portion 10. 10 and the sliding joint 20 can be formed separately. Further, when the concave spherical surface portion 15 and the convex spherical surface portion 25 are integrally provided at the tip end portions of the shafts 11 and 21 that are spline-fitted to the inner rings 12 and 22 of the fixed joint portion 10 and the sliding joint portion 20. However, it is also possible to provide them integrally at the end portions of the inner rings 12 and 22.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

本発明の実施形態で、固定式等速自在継手の全体構成を示す縦断面図である。It is a longitudinal section showing the whole fixed type constant velocity universal joint composition in the embodiment of the present invention. 図1の固定式等速自在継手が限度作動角θをとった状態を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing a state where the fixed type constant velocity universal joint of FIG. 1 takes a limit operating angle θ. 図1の固定式等速自在継手において、凹球面部に対して凸球面部を組み付ける状態を示す説明図である。FIG. 2 is an explanatory view showing a state in which a convex spherical portion is assembled to a concave spherical portion in the fixed type constant velocity universal joint of FIG. 1. 本発明の他の実施形態で、凸球面部の抜け止め機構を設けた固定式等速自在継手の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the fixed type constant velocity universal joint which provided the retaining mechanism of the convex spherical surface part by other embodiment of this invention. 図4の固定式等速自在継手が所定の作動角θ2をとった状態を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a state where the fixed type constant velocity universal joint of FIG. 4 takes a predetermined operating angle θ 2 . 図4の固定式等速自在継手において、凹球面部に対して凸球面部を組み付ける状態を示す説明図である。FIG. 5 is an explanatory view showing a state in which the convex spherical portion is assembled to the concave spherical portion in the fixed type constant velocity universal joint of FIG. 4. 本発明の他の実施形態で、外輪を二部材で分割構成した固定式等速自在継手の全体構成を示す縦断面図である。In other embodiment of this invention, it is a longitudinal cross-sectional view which shows the whole structure of the fixed type constant velocity universal joint which divided and comprised the outer ring | wheel with two members. 図7の固定式等速自在継手が限度作動角をとった状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which the fixed type constant velocity universal joint of FIG. 7 took the limit operating angle. 本発明の他の実施形態で、外輪を二部材で分割構成し、凸球面部の抜け止め機構を設けた固定式等速自在継手の全体構成を示す縦断面図である。In other embodiment of this invention, it is a longitudinal cross-sectional view which shows the whole structure of the fixed-type constant velocity universal joint which divided | segmented the outer ring | wheel with two members and provided the prevention mechanism of the convex spherical surface part. 図9の固定式等速自在継手が所定の作動角θ2をとった状態を示す縦断面図である。FIG. 10 is a longitudinal sectional view showing a state where the fixed type constant velocity universal joint of FIG. 9 takes a predetermined operating angle θ 2 . 本発明の他の実施形態で、固定式等速自在継手の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of a fixed type constant velocity universal joint in other embodiment of this invention. 図11の固定式等速自在継手が限度作動角θをとった状態を示す縦断面図である。FIG. 12 is a longitudinal sectional view showing a state where the fixed type constant velocity universal joint of FIG. 11 takes a limit operating angle θ. 図11の固定式等速自在継手において、凹球面部に対して凸球面部を組み付ける状態を示す説明図である。FIG. 12 is an explanatory view showing a state in which the convex spherical portion is assembled to the concave spherical portion in the fixed type constant velocity universal joint of FIG. 11. 本発明の他の実施形態で、外輪を二部材で分割構成した固定式等速自在継手の全体構成を示す縦断面図である。In other embodiment of this invention, it is a longitudinal cross-sectional view which shows the whole structure of the fixed type constant velocity universal joint which divided and comprised the outer ring | wheel with two members. 図14の固定式等速自在継手が限度作動角をとった状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which the fixed type constant velocity universal joint of FIG. 14 took the limit operating angle. 本発明の前提となる固定式等速自在継手の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the fixed type constant velocity universal joint used as the premise of this invention. (a)は図16の固定式継手部において、凹球面部を設けたシャフトを示す部分断面を含む正面図、(b)は(a)の右側面図である。(A) is a front view including a partial cross section showing a shaft provided with a concave spherical surface portion in the fixed joint portion of FIG. 16, and (b) is a right side view of (a). (a)は図16の摺動式継手部において、凸球面部を設けたシャフトを示す正面図、(b)は(a)の左側面図である。(A) is a front view which shows the shaft which provided the convex spherical surface part in the sliding joint part of FIG. 16, (b) is a left view of (a).

符号の説明Explanation of symbols

10 固定式継手部(UJ)
11 固定式継手部の内方部材(シャフト)
12 固定式継手部の内方部材(内輪)
15 凹球面部
20 摺動式継手部(DOJ)
21 摺動式継手部の内方部材(シャフト)
22 摺動式継手部の内方部材(内輪)
25 凸球面部
25b,25c 組込み部
30 外方部材(外輪)
30a,30b 二部材
40 球対偶
50 抜け止め機構
2 凹球面部の開口径
3 組込み部の外径
θ 限界作動角
θ1,θ2 所定の作動角
10 Fixed joint (UJ)
11 Inner member (shaft) of fixed joint
12 Inner member of fixed joint (inner ring)
15 Concave spherical surface 20 Sliding joint (DOJ)
21 Sliding joint inner member (shaft)
22 Sliding joint inner member (inner ring)
25 Convex spherical surface portion 25b, 25c Built-in portion 30 Outer member (outer ring)
30a, 30b Two members 40 Ball pair 50 Retaining mechanism D 2 Opening diameter of concave spherical portion D 3 Outer diameter of built-in portion θ Limit operating angle θ 1 , θ 2 Predetermined operating angle

Claims (7)

円筒状外方部材を共通にしてその一端側に固定式継手部を配設すると共に他端側に摺動式継手部を配設し、前記固定式継手部の内方部材あるいは前記摺動式継手部の内方部材のいずれか一方の対向端部に凸球面部を設けると共に他方の対向端部に凹球面部を設け、前記凹球面部と凸球面部からなる球対偶を介して固定式継手部の内方部材と摺動式継手部の内方部材とを連結した固定式等速自在継手であって、
前記凹球面部の開口径よりも小さい外径を有し、かつ、固定式継手部の内方部材と摺動式継手部の内方部材とが所定の作動角をとった状態で凹球面部に挿入可能とする円筒側面状の組込み部を前記凸球面部の外球面に形成し、前記組込み部からの挿入により凸球面部を凹球面部に球面嵌合させたことを特徴とする固定式等速自在継手。
A cylindrical outer member is used in common, and a fixed joint portion is disposed on one end side thereof, and a sliding joint portion is disposed on the other end side, and the inner member of the fixed joint portion or the sliding type joint portion is disposed. A convex spherical surface is provided at one opposing end of the inner member of the joint, and a concave spherical surface is provided at the other opposing end, and is fixed via a ball pair composed of the concave spherical portion and the convex spherical portion. A fixed type constant velocity universal joint in which an inner member of a joint part and an inner member of a sliding joint part are connected,
The concave spherical surface portion has an outer diameter smaller than the opening diameter of the concave spherical surface portion, and the inner member of the fixed joint portion and the inner member of the sliding joint portion have a predetermined operating angle. A cylindrical side surface built-in part that can be inserted into the outer spherical surface of the convex spherical part is formed, and the convex spherical part is spherically fitted to the concave spherical part by insertion from the built-in part. Constant velocity universal joint.
前記組込み部は、凸球面部の外球面中心と一致した中心周りで前記凸球面部の外球面の全周に亘って形成された円筒側面状をなし、前記凹球面部の内球面中心に対して凸球面部の外球面中心を一致させた状態で凹球面部に前記組込み部を挿入可能とした請求項1に記載の固定式等速自在継手。   The built-in portion has a cylindrical side surface formed around the entire center of the outer spherical surface of the convex spherical portion around the center that coincides with the outer spherical center of the convex spherical portion, and with respect to the inner spherical center of the concave spherical portion. The fixed type constant velocity universal joint according to claim 1, wherein the built-in portion can be inserted into the concave spherical surface portion with the center of the outer spherical surface of the convex spherical portion aligned. 前記組込み部は、凸球面部の外球面中心からずれた中心周りで前記凸球面部の外球面の一部に形成された円筒側面状をなし、前記凹球面部の内球面中心に対して凸球面部の外球面中心をずらした状態で凹球面部に前記組込み部を挿入可能とした請求項1に記載の固定式等速自在継手。   The built-in part has a cylindrical side surface formed on a part of the outer spherical surface of the convex spherical part around the center shifted from the outer spherical center of the convex spherical part, and is convex with respect to the inner spherical center of the concave spherical part. The fixed type constant velocity universal joint according to claim 1, wherein the built-in portion can be inserted into the concave spherical surface portion while the outer spherical surface center of the spherical surface portion is shifted. 前記所定の作動角を限界作動角よりも大きく設定した請求項1〜3のいずれか一項に記載の固定式等速自在継手。   The fixed constant velocity universal joint according to any one of claims 1 to 3, wherein the predetermined operating angle is set larger than a limit operating angle. 前記凸球面部の円筒側面状の組込み部は凹溝状に形成されている請求項1〜3のいずれか一項に記載の固定式等速自在継手。   The fixed type constant velocity universal joint according to any one of claims 1 to 3, wherein the cylindrical side surface-like built-in portion of the convex spherical portion is formed in a concave groove shape. 前記外方部材は、固定式継手部と摺動式継手部とで共通した単一の部材で構成した請求項1〜4のいずれか一項に記載の固定式等速自在継手。   The fixed outer constant velocity universal joint according to any one of claims 1 to 4, wherein the outer member is a single member common to the fixed joint portion and the sliding joint portion. 前記外方部材は、固定式継手部と摺動式継手部のそれぞれで二部材により分割構成し、両部材を同軸的に突き合わせて接合一体化した請求項1〜4のいずれか一項に記載の固定式等速自在継手。   The said outer member is divided and comprised by two members in each of a fixed joint part and a sliding joint part, and both members were coaxially butted and joined and integrated. Fixed constant velocity universal joint.
JP2007308743A 2007-10-22 2007-11-29 Fixed constant velocity universal joint Withdrawn JP2009121661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308743A JP2009121661A (en) 2007-10-22 2007-11-29 Fixed constant velocity universal joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007274110 2007-10-22
JP2007308743A JP2009121661A (en) 2007-10-22 2007-11-29 Fixed constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2009121661A true JP2009121661A (en) 2009-06-04

Family

ID=40814008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308743A Withdrawn JP2009121661A (en) 2007-10-22 2007-11-29 Fixed constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2009121661A (en)

Similar Documents

Publication Publication Date Title
CN102575720B (en) Fixed type constant velocity universal joint
JP5634777B2 (en) Fixed constant velocity universal joint
JP2012017809A5 (en)
JP2007100797A (en) Slide type constant velocity universal joint
JP4579112B2 (en) Sliding type constant velocity universal joint and manufacturing method thereof
JP2008256180A (en) Fixed type constant velocity universal joint and its assembling method
US20080064509A1 (en) Fixed Type Constant Velocity Universal Joint
JP4941351B2 (en) Tripod type constant velocity universal joint
JP2009079684A (en) Fixed type constant velocity universal joint
JP2009121667A (en) Sliding type constant velocity universal joint
JP2008196591A (en) Fixed type constant velocity universal joint and its manufacturing method
US11927226B2 (en) Fixed type constant velocity universal joint
JP2009121661A (en) Fixed constant velocity universal joint
JP4588591B2 (en) Fixed type constant velocity universal joint and manufacturing method thereof
JP2008019961A (en) Fixed constant velocity universal joint
JP2010127311A (en) Fixed type constant velocity universal joint and wheel bearing device using the same
WO2017141731A1 (en) Stationary constant-velocity universal joint
JP2010025207A (en) Constant velocity universal joint
JP2008002666A (en) Drive shaft
JP2010249295A (en) Fixed constant velocity universal joint and method of manufacturing the same
JP4637723B2 (en) Sliding constant velocity universal joint
JP2011069404A (en) Fixed type constant velocity universal joint
JP2010127312A (en) Fixed type constant velocity universal joint and wheel drive device using the same
JP2008175362A (en) Stationary constant velocity universal joint
JP2008261390A (en) Fixed constant velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201