JP2009102826A - Girder bridge with reinforced concrete composite steel floor slab - Google Patents

Girder bridge with reinforced concrete composite steel floor slab Download PDF

Info

Publication number
JP2009102826A
JP2009102826A JP2007273591A JP2007273591A JP2009102826A JP 2009102826 A JP2009102826 A JP 2009102826A JP 2007273591 A JP2007273591 A JP 2007273591A JP 2007273591 A JP2007273591 A JP 2007273591A JP 2009102826 A JP2009102826 A JP 2009102826A
Authority
JP
Japan
Prior art keywords
reinforced concrete
girder
concrete composite
bridge
composite steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007273591A
Other languages
Japanese (ja)
Other versions
JP4897643B2 (en
Inventor
Ryuichi Kaida
龍一 皆田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2007273591A priority Critical patent/JP4897643B2/en
Publication of JP2009102826A publication Critical patent/JP2009102826A/en
Application granted granted Critical
Publication of JP4897643B2 publication Critical patent/JP4897643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a girder bridge with a reinforced concrete composite steel floor slab, which can reduce the height of a girder and minimize noise and vibration of the bridge caused by vehicle transportation. <P>SOLUTION: In construction of the girder bridge with the reinforced concrete composite steel floor slab, a steel floor slab 13 is formed by welding and fixing longitudinal ribs 12 to an upper surface of a deck plate 11 in a bridge axial direction, and a box girder 14 extending in the bridge axial direction is welded and fixed to a lower surface of the deck plate 11. After arrangement of reinforcements in a direction intersecting the longitudinal ribs, concrete 30 is placed on the steel floor slab 13, to thereby form an upper reinforced concrete composite steel floor slab 17. On the other hand, longitudinal ribs 16, 18 are welded and fixed to an upper surface of a lower flange 15 of the box girder 14 in the bridge axial direction, and after arrangement of the reinforcements in predetermined ranges on both sides of an intermediate fulcrum O of the box girder 14 borne by a pier 3, in a direction intersecting the longitudinal ribs 18, the concrete 30 is placed on the lower flange 15 of the box girder 14, to thereby form a lower reinforced concrete composite steel floor slab 19. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉄筋コンクリート合成鋼床版桁橋に関する。   The present invention relates to a reinforced concrete composite steel slab girder bridge.

従来、鋼橋の橋梁形式として、床版を鋼板で形成し、死荷重の低減および桁高の低減を図った鋼床版桁がある。しかしながら、近年の交通量の増加や過積載車などの影響により溶接部に疲労亀裂が発生する問題がある。   Conventionally, as a steel bridge type, there is a steel slab girder in which a floor slab is formed of a steel plate to reduce dead load and girder height. However, there is a problem that fatigue cracks occur in the weld due to an increase in traffic volume in recent years and the influence of overloaded vehicles.

また、鋼床版桁を用いた鋼床版桁橋は、桁高制限を受ける都市内高架橋や地盤条件の悪い個所で採用されることが多い。都市内高架橋において、桁高制限のある個所で鋼床版桁橋を採用した場合、経済的な桁断面よりも更に桁断面が低くなるので、鋼重が増加してコストがアップする。また、断面剛性が低いことから、完成後の車両通行による騒音や振動が問題となる。   In addition, steel slab girder bridges using steel slab girder are often used in urban viaducts where girder height restrictions are imposed or in places with poor ground conditions. In a city viaduct, when a steel deck slab bridge is used at a place where the girder height is restricted, the girder section becomes lower than the economical girder section, which increases steel weight and costs. In addition, since the cross-sectional rigidity is low, noise and vibration due to vehicle traffic after completion become a problem.

そこで、本発明者等は、鋼床版にコンクリートを合成させて疲労亀裂の発生を抑制する一方、縦リブと横リブの交差部を無くして施工性の向上が可能である合成鋼床版桁を開発中である。   Therefore, the present inventors have synthesized a steel floor slab to suppress the occurrence of fatigue cracks, and on the other hand, a synthetic steel slab girder that can improve workability by eliminating the intersection of vertical and horizontal ribs. Is under development.

他方、I桁鋼桁をコンクリートと合成させた橋梁形式の出願がある。この出願は、少数主桁I桁橋の中間支点付近の下フランジ間に型枠を兼ねる鋼板を設けるとともに、この鋼板上にコンクリートを打ち込んで下部コンクリート床版を形成することにより、中間支点周辺部の剛性を高めて少数主桁I桁橋の長支間化を図っている(例えば、特許文献1参照。)。   On the other hand, there is a bridge-type application in which an I-girder steel girder is combined with concrete. In this application, a steel plate also serving as a mold is provided between the lower flanges near the intermediate fulcrum of the minor main girder I girder bridge, and concrete is driven onto the steel plate to form a lower concrete floor slab. To increase the span of the small main girder I girder bridge (see, for example, Patent Document 1).

しかしながら、特許文献1の橋梁は、I型に形成した一対の主桁を橋脚上に設置する作業、一対の主桁の上フランジ上に上コンクリート床版を設置する作業以外に、主桁の下側フランジ同士間にわたって鋼板を架着する作業、および鋼板を型枠として鋼板上面にコンクリートを打ち込んで下コンクリート床版を形成する作業などが現場作業になるため、現場作業の割合が高くなるばかりでなく、天候に左右され易くなることから、工期が長期化し易くなる。また、主桁がI断面のために桁高が高く、桁高制限のある都市内高架橋などでは適用できない問題がある。
特開2006−283414号公報
However, the bridge of Patent Document 1 is not limited to the work of installing a pair of main girders formed in an I shape on the pier, and the work of installing the upper concrete slab on the upper flange of the pair of main girders. The work of installing steel sheets between the side flanges and the work of forming concrete on the upper surface of the steel sheet using the steel sheet as a formwork to form a lower concrete floor slab are field work, which only increases the ratio of field work. However, it is easy to be influenced by the weather, so the construction period is likely to be prolonged. In addition, since the main girder has an I cross section, the girder is high and cannot be applied to an urban viaduct with a girder limit.
JP 2006-283414 A

本発明は、このような問題を解消するためになされたものであり、その目的とするところは、桁高の低減、車両通行による橋の騒音や振動の低減が図れる鉄筋コンクリート合成鋼床版桁橋を提供することにある。   The present invention has been made to solve such problems, and the object of the present invention is to provide a reinforced concrete composite steel slab girder bridge that can reduce girder height and noise and vibration of the bridge due to vehicle traffic. Is to provide.

請求項1に記載の発明に係る鉄筋コンクリート合成鋼床版桁橋は、鋼板からなるデッキプレートの上面に橋軸方向の多数の縦リブを溶接固着して鋼床版を形成すると共に、デッキプレートの下面に鋼板で形成された橋軸方向の箱桁を溶接固着し、更に、前記縦リブと交差する方向に多数の鉄筋を配筋すると共に前記鋼床版上にコンクリートを打ち込んで上部鉄筋コンクリート合成鋼床版を形成し、かつ、前記箱桁の下フランジの上面に橋軸方向の多数の縦リブを溶接固着し、更に、橋脚によって支持されている箱桁の中間支点の両側の一定範囲にわたって前記縦リブと交差する方向に多数の鉄筋を配筋すると共に前記箱桁の下フランジ上にコンクリートを打ち込んで下部鉄筋コンクリート合成鋼床版を形成することを特徴とする。   In the reinforced concrete composite steel slab girder bridge according to the first aspect of the present invention, a steel slab is formed by welding and fixing a number of longitudinal ribs in the bridge axis direction to the upper surface of a deck plate made of a steel plate. A box girder in the direction of the bridge axis formed of a steel plate is welded and fixed to the lower surface, and a large number of reinforcing bars are arranged in a direction intersecting with the longitudinal ribs, and concrete is driven onto the steel slab, and an upper reinforced concrete synthetic steel A floor slab is formed, and a number of longitudinal ribs in the direction of the bridge axis are welded and fixed to the upper surface of the lower flange of the box girder, and further over a certain range on both sides of the intermediate fulcrum of the box girder supported by the pier. A plurality of reinforcing bars are arranged in a direction intersecting with the longitudinal ribs, and concrete is driven onto the lower flange of the box girder to form a lower reinforced concrete composite steel slab.

請求項2に記載の発明に係る鉄筋コンクリート合成鋼床版桁橋は、請求項1において、下部鉄筋コンクリート合成鋼床版の設置範囲L’を、橋脚の設置間隔Lnに対して0.15Ln〜0.2Ln(但し、nは1,2,3,〜)の範囲とすることを特徴とする。   A reinforced concrete composite steel slab girder bridge according to a second aspect of the present invention is the reinforced concrete composite steel slab girder bridge according to the first aspect, wherein the installation range L ′ of the lower reinforced concrete composite steel slab is set to 0.15 Ln to. The range is 2Ln (where n is 1, 2, 3, to).

請求項3に記載の発明に係る鉄筋コンクリート合成鋼床版桁橋は、請求項1において、下部鉄筋コンクリート合成鋼床版形成用の型枠として、箱桁内のダイアフラム及び横リブを有効利用することを特徴とする。   The reinforced concrete composite steel slab girder bridge according to the invention described in claim 3 is the effective use of the diaphragm and the lateral rib in the box girder as the form for forming the lower reinforced concrete composite steel slab in claim 1. Features.

請求項4に記載の発明に係る鉄筋コンクリート合成鋼床版桁橋は、請求項1において、デッキプレートの上面に溶接固着した縦リブとして孔あき鋼板を用い、他方、箱桁の底板上に溶接固着した縦リブとしては、箱桁の中間支点の両側の一定範囲にわたる区域に孔あき鋼板を用い、それ以外の区域には孔なし鋼板を用いたことを特徴とする。   A reinforced concrete composite steel slab girder bridge according to a fourth aspect of the present invention is the reinforced concrete composite slab girder bridge according to the first aspect, wherein a perforated steel plate is used as the vertical rib welded and fixed to the upper surface of the deck plate, and on the other hand, welding is fixed to the bottom plate of the box girder The vertical rib is characterized in that a perforated steel plate is used in an area over a certain range on both sides of the intermediate fulcrum of the box girder, and a steel plate without holes is used in the other areas.

請求項1に係る発明は、鋼板からなるデッキプレートの上面に橋軸方向の多数の縦リブを溶接固着して鋼床版を形成すると共に、デッキプレートの下面に鋼板で形成された橋軸方向の箱桁を溶接固着し、更に、前記縦リブと交差する方向に多数の鉄筋を配筋すると共に前記鋼床版上にコンクリートを打ち込んで上部鉄筋コンクリート合成鋼床版を形成し、かつ、前記箱桁の下フランジの上面に橋軸方向の多数の縦リブを溶接固着し、更に、橋脚によって支持されている箱桁の中間支点の両側の一定範囲にわたって前記縦リブと交差する方向に多数の鉄筋を配筋すると共に前記箱桁の下フランジ上にコンクリートを打ち込んで下部鉄筋コンクリート合成鋼床版を形成するため、鋼重を増加させることなく、桁高の低減が可能となり、従来の鋼床版桁橋や鉄筋コンクリート合成鋼床版桁橋よりも断面剛性が高くなるため、車両通行による橋の騒音や振動の低減が可能である。   In the invention according to claim 1, a steel floor slab is formed by welding and fixing a number of longitudinal ribs in the bridge axis direction on the upper surface of a deck plate made of a steel plate, and the bridge axis direction formed of a steel plate on the lower surface of the deck plate The box girders are welded and fixed, and a number of reinforcing bars are arranged in a direction crossing the longitudinal ribs, and concrete is driven onto the steel deck to form an upper reinforced concrete composite steel deck, and the box A large number of longitudinal ribs in the direction of the bridge axis are welded and fixed to the upper surface of the lower flange of the girder, and a large number of reinforcing bars are crossed in a direction intersecting the longitudinal ribs over a certain range on both sides of the intermediate fulcrum of the box girder supported by the pier. As the lower reinforced concrete composite steel slab is formed by placing concrete on the lower flange of the box girder, the girder height can be reduced without increasing the steel weight. Since sectional rigidity is higher than the girder bridge and reinforced concrete synthetic steel slab girder bridges, it is possible to reduce the noise and vibration of the bridge by the vehicle traffic.

請求項2に係る発明は、下部鉄筋コンクリート合成鋼床版の設置範囲L’を、橋脚の設置間隔Lnに対して0.15Ln〜0.2Ln(但し、nは1,2,3,〜)の範囲とすることで、正曲げモーメント区間で引張力が作用する範囲で下フランジ側にコンクリートを打ち込むことなく、また、不必要に自重を増加させることなく合成断面を確保し、工費の縮減が可能な鉄筋コンクリート合成鋼床版橋を施工することができる。   In the invention according to claim 2, the installation range L ′ of the lower reinforced concrete composite steel slab is 0.15 Ln to 0.2 Ln (where n is 1, 2, 3, to) with respect to the installation interval Ln of the piers. By setting the range, it is possible to reduce the construction cost by securing a composite cross section without driving concrete into the lower flange side within the range where the tensile force acts in the positive bending moment section, and without unnecessarily increasing the weight. A reinforced concrete composite steel slab bridge can be constructed.

請求項3に係る発明は、下部鉄筋コンクリート合成鋼床版形成用の型枠として、箱桁内のダイアフラム及び横リブを有効利用するため、下部鉄筋コンクリート合成鋼床版形成用の型枠を現場で構築する必要がなく、現場作業の低減を図ることができた。   The invention according to claim 3 constructs a formwork for forming a lower reinforced concrete composite steel slab on-site in order to effectively use a diaphragm and a lateral rib in a box girder as a formwork for forming a lower reinforced concrete composite steel slab. There was no need to do this, and the work at the site could be reduced.

請求項4に係る発明は、デッキプレートの上面に溶接固着した縦リブとして孔あき鋼板を用い、他方、箱桁の底板上に溶接固着した縦リブとしては、箱桁の中間支点の両側の一定範囲にわたる区域に孔あき鋼板を用い、それ以外の区域には孔なし鋼板を用いたため、鋼とコンクリートの合成を確保するために、スタッドなどの新たなずれ止め部材が不要であり、鋼桁の製作コストを大幅に増加させることなく、鉄筋コンクリート合成鋼床版桁橋を施工することができる。   The invention according to claim 4 uses a perforated steel plate as the vertical rib welded and fixed to the upper surface of the deck plate, while the vertical rib welded and fixed to the bottom plate of the box girder is fixed on both sides of the intermediate fulcrum of the box girder. Since perforated steel sheets were used in the area over the range, and non-hole steel sheets were used in the other areas, a new detent member such as a stud was not required to ensure the synthesis of steel and concrete. Reinforced concrete composite steel slab girder bridges can be constructed without significantly increasing production costs.

以下、本発明に係る実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示すように、この発明に係る鉄筋コンクリート合成鋼床版桁橋1は、鉄筋コンクリート合成鋼床版桁2を多数の橋脚3によって支持する構造になっている。鉄筋コンクリート合成鋼床版桁2は、橋脚3の上端に固定されている負曲げモーメント区間(「二重剛性区間」とも云う。)Aと、負曲げモーメント区間Aに隣接している正曲げモーメント区間Bとを有している。   As shown in FIG. 1, a reinforced concrete composite steel slab girder bridge 1 according to the present invention has a structure in which a reinforced concrete composite steel slab girder 2 is supported by a number of bridge piers 3. The reinforced concrete composite steel deck girder 2 includes a negative bending moment section (also referred to as a “double-rigid section”) A fixed to the upper end of the pier 3 and a positive bending moment section adjacent to the negative bending moment section A. B.

図2(a)に示すように、正曲げモーメント区間用の合成鋼床版桁ケースXは、鋼板からなるデッキプレート11の上面に橋軸方向の多数の第1縦リブ12を溶接固着して鋼床版13を形成すると共に、デッキプレート11の下面に鋼板で形成された橋軸方向の一つの箱桁14を溶接固着し、更に、箱桁14の底板15の上面に橋軸方向の多数の第2縦リブ16を溶接固着することにより形成されている。   As shown in FIG. 2 (a), the composite steel deck slab case X for the positive bending moment section has a large number of first vertical ribs 12 in the bridge axis direction welded and fixed to the upper surface of the deck plate 11 made of a steel plate. The steel deck 13 is formed, and one box girder 14 in the bridge axis direction formed of a steel plate is welded and fixed to the lower surface of the deck plate 11, and a large number in the bridge axis direction is further formed on the upper surface of the bottom plate 15 of the box girder 14. The second vertical rib 16 is fixed by welding.

正曲げモーメント区間用の合成鋼床版桁ケースXは、第1縦リブ12の上に多数の鉄筋(図示せず)を橋軸と交差する方向に配筋した後、鋼床版13上にコンクリート30を打ち込んで上部鉄筋コンクリート合成鋼床版17を形成している(図2(b)参照。)。   The composite steel slab girder case X for the positive bending moment section is arranged on the steel slab 13 after arranging a number of reinforcing bars (not shown) on the first vertical ribs 12 in a direction intersecting the bridge axis. Concrete 30 is driven in to form an upper reinforced concrete composite steel slab 17 (see FIG. 2B).

図3(a)に示すように、負曲げモーメント区間用の合成鋼床版桁ケースYは、鋼板からなるデッキプレート11の上面に橋軸方向の多数の第1縦リブ12を溶接固着して鋼床版13を形成すると共に、デッキプレート11の下面に鋼板で形成された橋軸方向の一つの箱桁14を溶接固着し、更に、箱桁14の底板15の上面に橋軸方向の多数の第3縦リブ18を溶接固着することにより形成されている。   As shown in FIG. 3 (a), the composite steel deck slab case Y for the negative bending moment section has a large number of first vertical ribs 12 in the bridge axis direction welded and fixed to the upper surface of the deck plate 11 made of steel plate. The steel deck 13 is formed, and one box girder 14 in the bridge axis direction formed of a steel plate is welded and fixed to the lower surface of the deck plate 11, and a large number in the bridge axis direction is further formed on the upper surface of the bottom plate 15 of the box girder 14. The third vertical rib 18 is formed by welding and fixing.

負曲げモーメント区間用の合成鋼床版桁ケースYは、第1縦リブ12の上に多数の鉄筋(図示せず)を橋軸と交差する方向に配筋した後、鋼床版13上にコンクリート30を打ち込んで上部鉄筋コンクリート合成鋼床版17を形成し(図3(b)参照。)、更に、第3縦リブ18の上に多数の鉄筋(図示せず)を橋軸と交差する方向に配筋した後、箱桁14の底板15上にコンクリート30を打ち込んで下部鉄筋コンクリート合成鋼床版19を形成している(図3(b)参照。)。   The composite steel slab girder case Y for the negative bending moment section is arranged on the steel slab 13 after arranging a number of reinforcing bars (not shown) on the first vertical ribs 12 in a direction intersecting the bridge axis. The concrete 30 is driven to form the upper reinforced concrete composite steel slab 17 (see FIG. 3B), and a number of reinforcing bars (not shown) cross the bridge axis on the third vertical ribs 18. Then, concrete 30 is driven on the bottom plate 15 of the box girder 14 to form a lower reinforced concrete composite steel slab 19 (see FIG. 3B).

すなわち、下部鉄筋コンクリート合成鋼床版19は、図4に示すように、橋脚3によって支持されている箱桁14の中間支点Oの両側の一定範囲L’にわたって箱桁14の下フランジ15上にコンクリート30を打ち込んでことによって形成されている。   That is, as shown in FIG. 4, the lower reinforced concrete composite steel slab 19 is concreted on the lower flange 15 of the box girder 14 over a certain range L ′ on both sides of the intermediate fulcrum O of the box girder 14 supported by the pier 3. It is formed by driving 30.

ここで、下部鉄筋コンクリート合成鋼床版19の設置範囲L’は、橋脚3の設置間隔Lnに対して0.15Ln〜0.2Ln(但し、nは1,2,3,〜)の範囲とすることが望ましい。   Here, the installation range L ′ of the lower reinforced concrete composite steel slab 19 is set to a range of 0.15 Ln to 0.2 Ln (where n is 1, 2, 3, to) with respect to the installation interval Ln of the pier 3. It is desirable.

下部鉄筋コンクリート合成鋼床版19の設置範囲L’が0.15Ln未満の場合は、鉄筋コンクリート合成鋼床版桁2の剛性が不足し、鉄筋コンクリート合成鋼床版桁2の桁高を低くすることやスパンを大きく取ることが難しくなる。他方、下部鉄筋コンクリート合成鋼床版19の設置範囲L’が0.2Lnを越えると、下部鉄筋コンクリート合成鋼床版には引張力が作用し、下部コンクリートは断面二次モーメントに寄与しないため、0.2Ln以下の場合と比較して不経済である。   When the installation range L ′ of the lower reinforced concrete composite steel slab 19 is less than 0.15 Ln, the rigidity of the reinforced concrete composite steel slab girder 2 is insufficient, and the reinforced concrete composite steel slab girder 2 has a lower girder height or span. It becomes difficult to take large. On the other hand, if the installation range L ′ of the lower reinforced concrete composite steel slab 19 exceeds 0.2 Ln, a tensile force acts on the lower reinforced concrete composite steel slab, and the lower concrete does not contribute to the cross-sectional secondary moment. It is uneconomical compared with the case of 2Ln or less.

デッキプレート11の上面に設けた第1縦リブ12および負曲げモーメント区間Aに適用する第3縦リブ18としては、帯状又は短冊状の鋼板に所定間隔で孔21を設けた孔あき鋼板22が好ましい。他方、正曲げモーメント区間Bに適用する第2縦リブ16としては、帯状又は短冊状の孔なし鋼板23が好ましい。   As the 1st vertical rib 12 provided in the upper surface of the deck plate 11, and the 3rd vertical rib 18 applied to the negative bending moment area A, the perforated steel plate 22 which provided the hole 21 in the strip | belt-shaped or strip-shaped steel plate at predetermined intervals is used. preferable. On the other hand, as the second vertical rib 16 applied to the positive bending moment section B, a strip-shaped or strip-shaped steel plate 23 without holes is preferable.

また、図4に示すように、下部コンクリート合成鋼床版形成用の横枠としては、箱桁8内のダイアフラム24および横リブ25を有効利用することにより経費節減を図ることができる。ダイアフラム24は、その孔周辺部分に補強リブ26を有している。   Further, as shown in FIG. 4, as a horizontal frame for forming the lower concrete synthetic steel slab, cost can be reduced by effectively using the diaphragm 24 and the horizontal rib 25 in the box girder 8. The diaphragm 24 has reinforcing ribs 26 around the hole.

次に、鉄筋コンクリート合成鋼床版橋の建設方法について説明する。   Next, the construction method of a reinforced concrete composite steel slab bridge will be described.

長さ0.15Ln〜0.2Lnの負曲げモーメント区間用の合成鋼床版桁ケースYと、所定長の正曲げモーメント区間用の合成鋼床版桁ケースXとを含む桁ブロックは、工場で製造され、その後、重量物運搬車両によって鉄筋コンクリート合成鋼床版橋建設現場に搬送される。   Girder block including synthetic steel deck slab case Y for negative bending moment section of length 0.15Ln to 0.2Ln and synthetic steel deck slab case X for positive bending moment section of predetermined length After being manufactured, it is transported to a reinforced concrete composite steel deck bridge construction site by a heavy goods transport vehicle.

各桁ブロックは、輸送長を考慮して事前に桁長が検討されており、合成鋼床版ケースXのみの場合、合成鋼床版ケースYのみの場合、合成鋼床版ケースXと合成鋼床版ケースYの両方を含む場合がある。これらの各桁ブロックは、所定の位置で現場溶接若しくはボルトで接合され、所定長の合成鋼床版ユニットUとなる(図5参照。)。この合成鋼床版桁ユニットUは、図示しないクレーンを用いて複数の橋脚3上に設置される(図5参照。)。   For each girder block, the girder length is examined in advance in consideration of the transport length. In the case of only the synthetic steel deck slab case X, in the case of only the synthetic steel deck slab case Y, the synthetic steel deck slab case X and the synthetic steel The floor slab case Y may be included. These girder blocks are joined at a predetermined position by field welding or bolts to form a synthetic steel deck slab unit U having a predetermined length (see FIG. 5). The synthetic steel slab girder unit U is installed on a plurality of piers 3 using a crane (not shown) (see FIG. 5).

そして、箱桁14の第3縦リブ18上に鉄筋(図示せず)を横手方向に配筋した後、箱桁14の底板15上にコンクリート30を打ち込み、下部鉄筋コンクリート合成鋼床版19を形成する(図3(b)参照。)。次に、鋼床版13の第1縦リブ12上に鉄筋(図示せず)を横手方向に配筋した後、鋼床版13上にコンクリート30を打ち込んで上部鉄筋コンクリート合成鋼床版17を形成する(図2(b)及び図3(b)参照。)。   Then, after reinforcing bars (not shown) are arranged in the transverse direction on the third vertical ribs 18 of the box girder 14, the concrete 30 is driven on the bottom plate 15 of the box girder 14 to form the lower reinforced concrete composite steel slab 19 (See FIG. 3B.) Next, after reinforcing bars (not shown) are arranged in the transverse direction on the first vertical ribs 12 of the steel deck 13, concrete 30 is driven on the steel deck 13 to form the upper reinforced concrete composite steel deck 17. (See FIG. 2 (b) and FIG. 3 (b)).

上記の説明では、箱桁が単独の場合について説明したが、本発明は、図6(a)及び(b)に示すように、箱桁が複数の場合も包含するものである。なお、図6(a)は負曲げモーメント区間の断面図、図6(b)は正曲げモーメント区間の断面図である。   In the above description, the case of a single box girder has been described. However, the present invention includes a plurality of box girders as shown in FIGS. 6 (a) and 6 (b). 6A is a cross-sectional view of the negative bending moment section, and FIG. 6B is a cross-sectional view of the positive bending moment section.

本発明に係る鉄筋コンクリート合成鋼床版橋の一実施形態を示す側面図である。It is a side view showing one embodiment of a reinforced concrete synthetic steel floor slab bridge according to the present invention. (a)正曲げモーメント区間用の合成鋼床版桁ケースの斜視図、(b)正曲げモーメント区間の鉄筋コンクリート合成鋼床版桁の斜視図である。(A) A perspective view of a synthetic steel deck slab case for a positive bending moment section, (b) A perspective view of a reinforced concrete synthetic steel deck spar of a positive bending moment section. (a)負曲げモーメント区間用の合成鋼床版桁ケースの斜視図、(b)負曲げモーメント区間の鉄筋コンクリート合成鋼床版桁の斜視図である。(A) Perspective view of synthetic steel slab girder case for negative bending moment section, (b) Perspective view of reinforced concrete synthetic steel slab girder of negative bending moment section. 負曲げモーメント区間の鉄筋コンクリート合成鋼床版桁の拡大断面である。It is an expanded sectional view of the reinforced concrete synthetic steel deck girder of the negative bending moment section. 合成鋼床版桁ユニットの拡大断面図兼合成鋼床版桁ユニット設置説明図である。It is an expanded sectional view of a synthetic steel floor slab girder unit and a synthetic steel floor slab girder unit installation explanatory drawing. 本発明に係る鉄筋コンクリート合成鋼床版橋の他の実施形態を示す断面図であり、(a)は負曲げモーメント区間の断面図、(b)正曲げモーメント区間の断面図である。It is sectional drawing which shows other embodiment of the reinforced concrete synthetic steel floor slab bridge concerning this invention, (a) is sectional drawing of a negative bending moment area, (b) It is sectional drawing of a positive bending moment area.

符号の説明Explanation of symbols

11 デッキプレート
12,16,18 縦リブ
13 鋼床版
14 箱桁
15 箱桁の下フランジ
17 上部鉄筋コンクリート合成鋼床版
19 下部鉄筋コンクリート合成鋼床版
30 コンクリート
11 Deck plate 12, 16, 18 Vertical rib 13 Steel deck 14 Box girder 15 Lower flange of box girder 17 Upper reinforced concrete synthetic steel slab 19 Lower reinforced concrete synthetic steel slab 30 Concrete

Claims (4)

鋼板からなるデッキプレートの上面に橋軸方向の多数の縦リブを溶接固着して鋼床版を形成すると共に、デッキプレートの下面に鋼板で形成された橋軸方向の箱桁を溶接固着し、更に、前記縦リブと交差する方向に多数の鉄筋を配筋すると共に前記鋼床版上にコンクリートを打ち込んで上部鉄筋コンクリート合成鋼床版を形成し、かつ、前記箱桁の下フランジの上面に橋軸方向の多数の縦リブを溶接固着し、更に、橋脚によって支持されている箱桁の中間支点の両側の一定範囲にわたって前記縦リブと交差する方向に多数の鉄筋を配筋すると共に前記箱桁の下フランジ上にコンクリートを打ち込んで下部鉄筋コンクリート合成鋼床版を形成することを特徴とする鉄筋コンクリート合成鋼床版桁橋。   A steel floor slab is formed by welding and fixing a number of longitudinal ribs in the bridge axis direction on the upper surface of the deck plate made of steel plate, and a box girder in the bridge axis direction formed of steel plate is welded and fixed to the lower surface of the deck plate, Furthermore, a large number of reinforcing bars are arranged in a direction intersecting with the longitudinal ribs, and concrete is driven on the steel slab to form an upper reinforced concrete composite steel slab, and a bridge is formed on the upper surface of the lower flange of the box girder. A number of longitudinal ribs in the axial direction are welded and fixed, and further, a number of reinforcing bars are arranged in a direction intersecting the longitudinal ribs over a certain range on both sides of the intermediate fulcrum of the box girder supported by the bridge pier and the box girder. Reinforced concrete composite steel slab girder bridge, characterized in that concrete is driven onto the lower flange of the bottom to form a lower reinforced concrete composite steel slab. 下部鉄筋コンクリート合成鋼床版の設置範囲L’を、橋脚の設置間隔Lnに対して0.15Ln〜0.2Ln(但し、nは1,2,3,〜)の範囲とすることを特徴とする請求項1記載の鉄筋コンクリート合成鋼床版桁橋。   The installation range L ′ of the lower reinforced concrete composite steel slab is set to a range of 0.15 Ln to 0.2 Ln (where n is 1, 2, 3, to) with respect to the installation interval Ln of the piers. The reinforced concrete composite steel slab girder bridge according to claim 1. 下部鉄筋コンクリート合成鋼床版形成用の型枠として、箱桁内のダイアフラム及び横リブを有効利用することを特徴とする請求項1記載の鉄筋コンクリート合成鋼床版桁橋。   The reinforced concrete composite steel slab girder bridge according to claim 1, wherein a diaphragm and a lateral rib in the box girder are effectively used as a form for forming the lower reinforced concrete composite steel slab. デッキプレートの上面に溶接固着した縦リブとして孔あき鋼板を用い、他方、箱桁の底板上に溶接固着した縦リブとしては、箱桁の中間支点の両側の一定範囲にわたる区域に孔あき鋼板を用い、それ以外の区域には孔なし鋼板を用いたことを特徴とする請求項1記載の鉄筋コンクリート合成鋼床版桁橋。   Perforated steel plates are used as vertical ribs welded and fixed to the top surface of the deck plate.On the other hand, vertical ribs welded and fixed to the bottom plate of the box girder are perforated steel plates in areas over a certain range on both sides of the intermediate fulcrum of the box girder. 2. The reinforced concrete composite steel slab girder bridge according to claim 1, wherein a non-hole steel plate is used in other areas.
JP2007273591A 2007-10-22 2007-10-22 Reinforced concrete composite steel slab girder bridge Expired - Fee Related JP4897643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273591A JP4897643B2 (en) 2007-10-22 2007-10-22 Reinforced concrete composite steel slab girder bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273591A JP4897643B2 (en) 2007-10-22 2007-10-22 Reinforced concrete composite steel slab girder bridge

Publications (2)

Publication Number Publication Date
JP2009102826A true JP2009102826A (en) 2009-05-14
JP4897643B2 JP4897643B2 (en) 2012-03-14

Family

ID=40704783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273591A Expired - Fee Related JP4897643B2 (en) 2007-10-22 2007-10-22 Reinforced concrete composite steel slab girder bridge

Country Status (1)

Country Link
JP (1) JP4897643B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034337B1 (en) 2010-01-13 2011-05-16 산이건설 주식회사 Steel box bridge of hardness radation
KR101634313B1 (en) * 2015-04-14 2016-06-30 승화프랜트산업 (주) Steel box girder with reinforced rigidity and resisting power of moment, and method for constructing bridge thereof
CN107869113A (en) * 2017-10-31 2018-04-03 南京林业大学 A kind of box beam that strengthens is encorbelmented the method for flange structural rigidity
WO2019215939A1 (en) * 2018-05-08 2019-11-14 日鉄エンジニアリング株式会社 Composite panel structure
CN114592440A (en) * 2022-03-21 2022-06-07 武汉市规划设计有限公司 Fabricated steel-concrete composite bridge superstructure and construction process thereof
CN114960395A (en) * 2022-07-11 2022-08-30 山西省交通规划勘察设计院有限公司 Transverse long cantilever closed steel box combined beam bridge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480849A (en) * 2014-12-16 2015-04-01 中南大学 Rail transit noise reduction box type bridge and external bonding noise reduction method of rail transit box type bridge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140824A (en) * 1997-11-13 1999-05-25 Sakurada Co Ltd Assembly method for box girder
JPH11148110A (en) * 1997-11-14 1999-06-02 Ishikawajima Harima Heavy Ind Co Ltd Continuous girder bridge
JP2001248113A (en) * 2000-03-06 2001-09-14 Shimizu Corp Steel/concrete composite floor board
JP2004176344A (en) * 2002-11-26 2004-06-24 Topy Ind Ltd Box girder bridge
JP2005336723A (en) * 2004-05-24 2005-12-08 Kawasaki Heavy Ind Ltd Continuous composite girder for bridge
JP2006104788A (en) * 2004-10-06 2006-04-20 Nippon Steel Corp Bridge girder structure using section steel
JP2007113208A (en) * 2005-10-18 2007-05-10 Metropolitan Expressway Co Ltd Longitudinal rib composite floor slab

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140824A (en) * 1997-11-13 1999-05-25 Sakurada Co Ltd Assembly method for box girder
JPH11148110A (en) * 1997-11-14 1999-06-02 Ishikawajima Harima Heavy Ind Co Ltd Continuous girder bridge
JP2001248113A (en) * 2000-03-06 2001-09-14 Shimizu Corp Steel/concrete composite floor board
JP2004176344A (en) * 2002-11-26 2004-06-24 Topy Ind Ltd Box girder bridge
JP2005336723A (en) * 2004-05-24 2005-12-08 Kawasaki Heavy Ind Ltd Continuous composite girder for bridge
JP2006104788A (en) * 2004-10-06 2006-04-20 Nippon Steel Corp Bridge girder structure using section steel
JP2007113208A (en) * 2005-10-18 2007-05-10 Metropolitan Expressway Co Ltd Longitudinal rib composite floor slab

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034337B1 (en) 2010-01-13 2011-05-16 산이건설 주식회사 Steel box bridge of hardness radation
KR101634313B1 (en) * 2015-04-14 2016-06-30 승화프랜트산업 (주) Steel box girder with reinforced rigidity and resisting power of moment, and method for constructing bridge thereof
CN107869113A (en) * 2017-10-31 2018-04-03 南京林业大学 A kind of box beam that strengthens is encorbelmented the method for flange structural rigidity
WO2019215939A1 (en) * 2018-05-08 2019-11-14 日鉄エンジニアリング株式会社 Composite panel structure
JP2019196599A (en) * 2018-05-08 2019-11-14 日鉄エンジニアリング株式会社 Synthetic panel structure
JP7206060B2 (en) 2018-05-08 2023-01-17 日鉄エンジニアリング株式会社 Composite panel construction
CN114592440A (en) * 2022-03-21 2022-06-07 武汉市规划设计有限公司 Fabricated steel-concrete composite bridge superstructure and construction process thereof
CN114592440B (en) * 2022-03-21 2024-03-19 武汉市规划设计有限公司 Upper structure of assembled steel-concrete combined bridge and construction process thereof
CN114960395A (en) * 2022-07-11 2022-08-30 山西省交通规划勘察设计院有限公司 Transverse long cantilever closed steel box combined beam bridge
CN114960395B (en) * 2022-07-11 2023-08-25 山西省交通规划勘察设计院有限公司 Transverse long cantilever arm closed steel box combined beam bridge

Also Published As

Publication number Publication date
JP4897643B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
KR100555244B1 (en) The bridge construction method of having used i beam for structure reinforcement and this to which rigidity increased
JP4897643B2 (en) Reinforced concrete composite steel slab girder bridge
JP5406563B2 (en) Composite beam, building, and composite beam construction method
JP2007023714A (en) Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method
JP2008063803A (en) Composite floor slab formed of shape steel with inner rib, composite floor slab bridge, or composite girder bridge
KR100722809B1 (en) Reinforced beam for stiffness, the construction structure and bridge construction method using the same
KR100758994B1 (en) Reinforced beam with vertical h-steel or i-steel for stiffness, the construction structure and bridge construction method using the same
KR101962788B1 (en) Temporary bridge construction method using steel girder and composite deck-plate and temporary bridge therewith
KR101129502B1 (en) Synthetic girder of i type
KR101049963B1 (en) Steel plate structure and construction method of wall-slab joint structure using same
KR100621928B1 (en) Construction method of double composite plate girder railway bridge with precast concrete panels
JP4650255B2 (en) Steel slab reinforcement structure and existing steel slab reinforcement method
JP4033871B2 (en) How to build a bridge girder
JP4585614B1 (en) Method for constructing synthetic steel slab bridge, ribbed steel slab, and synthetic steel slab bridge
KR101464349B1 (en) Steel beam having exposed upper flange for parking building
JP2008231688A (en) Bridge structure using composite floor slab, its construction method, and form for composite floor slab
JP5047060B2 (en) Synthetic floor slab and its reinforcement method
JP5157433B2 (en) Composite hollow structure of bridge column head or girder end
JP2006336231A (en) Composite floor slab
JP4437064B2 (en) Construction method and formwork structure of concrete floor slab for composite floor slab bridge
JP2004225290A (en) Composite floor-slab girder
KR20080004752U (en) Composite bridge
JP3950747B2 (en) Bridge girder
JP2001172916A (en) Corrugated synthetic floor slab
KR100959008B1 (en) Double composite plate girder railway bridge with precast concrete panels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4897643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees