JP2004225290A - Composite floor-slab girder - Google Patents

Composite floor-slab girder Download PDF

Info

Publication number
JP2004225290A
JP2004225290A JP2003012185A JP2003012185A JP2004225290A JP 2004225290 A JP2004225290 A JP 2004225290A JP 2003012185 A JP2003012185 A JP 2003012185A JP 2003012185 A JP2003012185 A JP 2003012185A JP 2004225290 A JP2004225290 A JP 2004225290A
Authority
JP
Japan
Prior art keywords
girder
steel skeleton
steel
slab
bridge axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003012185A
Other languages
Japanese (ja)
Other versions
JP4348601B2 (en
Inventor
Nauemon Uno
名右衛門 宇野
Kenji Matsuno
憲司 松野
Yuichi Watanabe
裕一 渡邉
Atsushi Fukui
敦史 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003012185A priority Critical patent/JP4348601B2/en
Publication of JP2004225290A publication Critical patent/JP2004225290A/en
Application granted granted Critical
Publication of JP4348601B2 publication Critical patent/JP4348601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rational and costless composite floor-slab girder, in which the space of cross beams is adopted between floor-slab supports and the increase of weight and the long terms of works are not required. <P>SOLUTION: A bridge 1 is constituted by supporting the section between the floor slab supports at the space of the cross beams by a girder framing 10 composed of main girders 11 and the cross beam 12 in a synthetic floor slab 20, in which a concrete layer 21 is formed integrally on the upper side of a steel skeleton 30. The skeleton 30 consists of a central-section steel skeleton 30A between the main girders 11 in the direction orthogonal to a bridge axis and a side-section steel skeleton 30B forming a projecting section on the side, a vertical reinforcing beam 32A parallel with the bridge axis is fixed onto the top face of a bottom steel plate 31A in the central-section steel skeleton 30A and the side-section steel skeleton 30B is constituted by fixing a horizontal reinforcing beam 32B orthogonal to the bridge axis on the top face of the bottom steel plate 32B. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼骨格にコンクリート層が一体化して強度合成された鋼コンクリート合成床版を、鋼桁によって支持して成る合成床版桁に関する。
【0002】
【従来の技術】
橋梁や高架道路の構造の一つに、鋼骨格とコンクリート層が一体化して強度合成された合成床版を鋼桁によって支持して成る合成床版桁が知られている。
【0003】
このような合成床版桁に用いる合成床版として、鋼板製の基板部材の上面に形鋼等による補強材をその延設方向と直交する方向に所定間隔で多数配設固定して成る鋼骨格の上側に、RCコンクリート層を一体に形成したものが提案されており、これによれば、基板部材がコンクリート層を形成するコンクリートを打設する際の型枠として機能するために下面の型枠が不要となると共に、高い剛性によって桁組上で形状を維持し得るために支保工を設ける必要がなく、施工が容易となる。
【0004】
ところで、主桁支間長が10m以上となる場合、非特許文献1に示されるように、床版断面を決定する床版支間に主桁間隔でなく横桁間隔を採用することにより、床版厚を薄くすることができる。つまり、横桁間隔を主桁間隔より狭く設定すると共にその横桁によって床版を支持し、横桁を介して荷重を主桁に伝達するように構成するものである。
【0005】
このように床版支間に横桁間隔を採用する場合、床版内の主筋は橋軸と平行に配設されなければならないため、前述のごとき鋼板製の基板部材の上面に形鋼等による補強材を配設固定して成る鋼骨格を用いる合成床版では、補強材はその長手方向を橋軸方向として配設されることとなる。
【0006】
【非特許文献1】
「第一回鋼橋床版シンポジウム講演論文集」
平成10年11月(Nov.1998)
(社)土木学会 鋼構造委員会 鋼橋床版の調査研究小委員会
P107〜112
【0007】
【発明が解決しようとする課題】
ところで、上述のごとく床版支間に横桁間隔を採用して補強材を橋軸方向に配設した鋼骨格の合成床版では、床版の主桁より側方の張り出し部の支持剛性を高める構造が必要となる。
【0008】
例えば、図6に概念的に示すように、床版60を、主桁61と横桁62とから成る桁組によって床版支間を横桁間隔として支持する場合、主桁61の外側にブラケット63を設け、このブラケット63で張り出し部を支持して張り出し部の荷重を主桁61に伝達するように構成される。また、非特許文献1に開示の構成では、張り出し部のみは主鉄筋を橋軸と直交する方向としたRC床版となっている。
【0009】
しかしながら、ブラケットによって張り出し部を支持する構成では死荷重の増加を招来し、また、張り出し部のみRC床版とする構成では施工時に支保工が必要となって工期が長くなり、何れにしても不合理でコストが高くなるという問題を有するものであった。
【0010】
本発明は、上記問題に鑑みてなされたものであって、床版支間に横桁間隔を採用し、重量増加や長い工期を要することのない合理的で低コストな合成床版桁を提供することを目的とする。
【0011】
【課題を解決する為の手段】
上記目的を達成する本発明の合成床版桁は、鋼骨格にコンクリート層が一体化して強度合成された鋼コンクリート合成床版を、鋼桁による桁組で支持して成る合成床版桁において、前記桁組は、橋軸直交方向の主桁と、該主桁の間に架設された横桁とによって前記床版を支持し、前記鋼骨格は、主桁径間には基板部材の上面に橋軸方向の縦補強部材が配設固定される一方、張り出し部には基板部材の上面に橋軸と直交する方向の横補強部材が配設固定され、該横補強部材が前記縦補強部材に結合されて構成されていることを特徴とする。
【0012】
これにより、主桁径間では橋軸方向に延設された縦補強部材が横桁に荷重を伝達することで床版支間を横桁間隔とすることができると共に、張り出し部では橋軸と直交する方向に延設された横補強部材によって橋軸直交方向に高い剛性を得ることができる。
【0013】
また、上記鋼骨格は、上記縦補強部材を備え上記主桁径間を構成する中央部鋼骨格と、上記横補強部材を備え上記張り出し部を構成する側部鋼骨格とから成り、前記横補強部材が前記縦補強部材に溶接固定された結合板に締着されて、前記中央部鋼骨格と前記側部鋼骨格が結合されて構成されていることを特徴とする。
【0014】
これにより、中央部鋼骨格と側部鋼骨格とを桁組上で容易且つ強固に結合することができる。
【0015】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態について説明する。
【0016】
図1は本発明に係る合成床版桁の一例を適用した橋梁の主桁部位の橋軸と直交する横断面図、図2は図1のA−A断面図,図3は図1のB−B断面図,図4は図1の平面図に相当する鋼骨格の平面図である。
【0017】
図示橋梁1は、鋼コンクリート合成床版である床版20を、鋼桁である主桁11と横桁12とから成る桁組10によって一体的に支持して構成されている。
【0018】
桁組10は、当該橋梁1の幅方向左右に配設された一対の主桁11(図2では一方のみ示す)の間に、横桁12が橋軸方向に所定間隔で架設配置されて構成されている。横桁12の配設間隔は主桁間隔より狭く設定されており、床版20はこの横桁間隔を床版支間として設計されている。
【0019】
主桁11及び横桁12は、それぞれ鋼板によって所定高さのI形断面形状に形成されており、横桁12はその端部で主桁11の腹板に結合されている。これら主桁11及び横桁12の上フランジ11A,12Aの上面には多数のスタッドジベル13が立設されており、このスタッドジベル13が床版20の後述するコンクリート層21に没入して主桁11(即ち桁組10)と床版20とを結合している。
【0020】
床版20は、鋼骨格30の上側に所定厚さのコンクリート層21が一体に形成されて構成されている。桁組10による被支持部位は他の部位より厚く、その両側は所定角度のハンチ部22となっている。尚、図中23は鉄筋である。
【0021】
鋼骨格30は、所定板厚の鋼板による基板部材としての底鋼板31の上面に、主筋として機能する補強ビーム32がその延設方向と直交する方向に所定間隔で配設固定されると共に、多数のスタッドジベル33が立設されている。
【0022】
底鋼板31は、桁組10による被支持部(主桁11及び横桁12の上フランジ11A,12Aと対応する部位)を除く床版20の下面全域を形成しており、ハンチ部22の下面を形成する傾斜部の先端縁部で、主桁11又は横桁12の上フランジ11A,12A上に載っている。
【0023】
補強ビーム32は、基板部32aの両側に側板部32bが立設されて成る断面形状U字状の溝形鋼であり、横倒しの状態でその一方の側板部32bで底鋼板31の上面に溶接固定されている。
【0024】
この鋼骨格30は、製作工場において輸送手段等を考慮した適宜大きさの単位ブロックに分割製作され、それらの単位ブロックが桁組10の上で結合されて一体に構築される。図示構成例では、橋軸と直交する方向には、主桁11の間の中央部鋼骨格30Aと、側方の張り出し部を形成する側部鋼骨格30Bとに分割されている。また、橋軸方向には、中央部鋼骨格30Aは横桁12の配設ピッチで、側部鋼骨格30Bは所定長さでそれぞれ分割されている。図3中50で示す部位は側部鋼骨格30Bの橋軸方向の結合部位であり、後述する締結機構40と同様の締結機構40′によって結合されているものである。尚、中央部鋼骨格30Aは橋梁1の幅に応じて橋軸直交方向に更に分割される。
【0025】
ここで、主桁11の間の中央部鋼骨格30Aと、側方の張り出し部を形成する側部鋼骨格30Bとでは、補強ビーム32の配設方向が異なっている。
【0026】
即ち、中央部鋼骨格30Aの補強ビーム32は橋軸と平行に配設固定されて縦補強部材としての縦補強ビーム32Aとなっており、一方、側部鋼骨格30Bの補強ビーム32は橋軸と直交して配設固定されて横補強部材としての横補強ビーム32Bとなっている。このように、中央部鋼骨格30Aでは主筋を横桁12と直交する橋軸方向の横補強ビーム32Aとすることで橋軸方向の剛性を確保して床版支間を横桁間隔とすることができ、一方、張り出し部を形成する側部鋼骨格30Bでは主筋を橋軸と直交する方向の横補強ビーム32Bとすることで桁組10による片持ち支持が可能な剛性を確保し得るものである。
【0027】
また、中央部鋼骨格30Aの横桁12による被支持部位、及び側部鋼骨格30Bの主桁11による被支持部位は、補強ビーム32(32A,32B)と、ハンチ部22の下面を形成する底鋼板31の部位とが結合支持板34によって連結されており、これによって底鋼板31のハンチ部22を形成する部位での当該鋼骨格30の桁組10上への載置が可能となっている。
【0028】
尚、中央部鋼骨格30Aと側部鋼骨格30Bの結合位置は、動荷重の変化の著しい当該橋梁1を通行する車両の車輪の直下となる位置は避け、更に、橋軸と直交する断面において死荷重の曲げモーメントが略零になる位置に設定することが好ましい。
【0029】
中央部鋼骨格30Aと側部鋼骨格30Bとは、図4のX部拡大図である図5(A),そのY−Y断面図である(B)及び(A)のZ−Z断面図である(C)に示すように、側部鋼骨格30Bの横補強ビーム32Bが中央部鋼骨格30Aの縦補強ビーム32Aに結合されると共に、中央部鋼骨格30Aの底鋼板31Aと側部鋼骨格30Bの底鋼板31Bとが接合線に沿って所定間隔で設けられた締結機構40によって結合されている。
【0030】
側部鋼骨格30Bの横補強ビーム32Bと中央部鋼骨格30Aの縦補強ビーム32Aとは、縦補強ビーム32Aにその板面を直交させて溶接固定された結合板35に、補強ビーム32Bの基板部32aがボルト・ナット36によって締結されることで結合されている。
【0031】
締結機構40は、所定高さ且つ所定幅の締結板部41Aの両縁から所定長さの支持リブ41Bが延設されて成る平面形状U字状の結合金具41が、底鋼板31A,32Bに締結板部41Aを対向させた状態でそれぞれ溶接固定され、これら結合金具41の締結板部41Aをボルト・ナット42によって締結するように構成されている。
【0032】
このような締結機構40が中央部鋼骨格30Aと側部鋼骨格30Bの底鋼板31A,32Bの結合線に沿って所定間隔で間欠的に設けられて成る結合構造では、結合線に沿って結合リブが立設しているものではないため、結合部におけるコンクリート層21の厚さ減少が少なく応力集中による亀裂の発生を抑えることができる。
【0033】
尚、上記構成例は分割形成された中央部鋼骨格30Aと側部鋼骨格30Bとを桁組上で結合する例であるが、本発明は中央部と側部の鋼骨格が一体に形成されたものに適用しても良いものである。また、基板部材に配設される補強部材は溝形鋼に限らず他の断面形状であっても良く、更に、中央部と側部で異なる断面形状としても良いものである。
【0034】
【発明の効果】
以上述べたように、本発明に係る合成床版桁によれば、桁組は、橋軸直交方向の主桁と、該主桁の間に架設された横桁とによって前記床版を支持し、鋼骨格は、主桁径間には基板部材の上面に橋軸方向の縦補強部材が配設固定される一方、張り出し部には基板部材の上面に橋軸と直交する方向の横補強部材が配設固定され、該横補強部材が縦補強部材に結合されて構成されていることにより、主桁径間では橋軸方向に延設された縦補強部材が横桁に荷重を伝達することで床版支間を横桁間隔とすることができると共に、張り出し部では橋軸と直交する方向に延設された横補強部材によって橋軸直交方向に高い剛性を得ることができる。その結果、張り出し部を支持するブラケット等の支持部材が不要となり、また、支保工を要することなく主桁径間と張り出し部を同一工法で施工することができ、床版支間に横桁間隔を採用し、且つ、重量増加や長い工期を要することのない合理的で低コストな合成床版桁と成し得るものである。
【0035】
また、上記鋼骨格は、上記縦補強部材を備え上記主桁径間を構成する中央部鋼骨格と、上記横補強部材を備え上記張り出し部を構成する側部鋼骨格とから成り、横補強部材が縦補強部材に溶接固定された結合板に締着されて、中央部鋼骨格と側部鋼骨格が結合されて構成されていることにより、中央部鋼骨格と側部鋼骨格とを桁組上で容易且つ強固に結合することができ、作業性の良い合理的な構成と成し得るものである。
【図面の簡単な説明】
【図1】本発明に係る合成床版桁の一例を適用した橋梁の主桁部位の橋軸と直交する横断面図である。
【図2】図1のA−A断面図である。
【図3】図1のB−B断面図である。
【図4】図1の平面図に相当する鋼骨格の平面図である。
【図5】(A)は図4のX部拡大図,(B)は(A)のY−Y断面図及び(C)は(A)のZ−Z断面図である。
【図6】従来例としての床版桁の断面図である。
【符号の説明】
1 橋梁
10 桁組
11 主桁
12 横桁
20 床版(鋼コンクリート合成床版)
21 コンクリート層
30 鋼骨格
30A 中央部鋼骨格
30B 側部鋼骨格
31(31A,31B) 底鋼板(基板部材)
32 補強ビーム(補強部材)
32A 縦補強ビーム(縦補強部材)
32B 横補強ビーム(横補強部材)
35 結合板
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a composite slab girder composed of a steel slab and a steel concrete composite slab in which a concrete layer is integrated with a steel skeleton and the strength is synthesized.
[0002]
[Prior art]
As one of the structures of bridges and elevated roads, there is known a composite slab slab in which a steel slab and a concrete layer are integrated and strength composited and supported by a steel girder.
[0003]
As a composite floor slab used for such a composite floor slab, a steel skeleton formed by arranging and fixing a large number of reinforcing members made of shaped steel or the like at predetermined intervals in a direction orthogonal to the extending direction on the upper surface of a steel plate substrate member. A structure in which an RC concrete layer is integrally formed on the upper side is proposed. According to this, a base member functions as a form when the concrete forming the concrete layer is cast. Is not required, and since the shape can be maintained on the girder set by the high rigidity, it is not necessary to provide a support, and the construction is facilitated.
[0004]
By the way, when the main girder span length is 10 m or more, as shown in Non-Patent Document 1, by adopting the horizontal girder spacing instead of the main girder spacing between the deck girder which determines the floor slab cross section, the thickness of the floor slab is increased. Can be made thinner. In other words, the horizontal girder spacing is set to be smaller than the main girder spacing, the floor girder is supported by the horizontal girder, and the load is transmitted to the main girder via the horizontal girder.
[0005]
In the case of adopting the horizontal girder spacing between the floor slabs, the main reinforcement in the floor slab must be disposed in parallel with the bridge axis, so that the upper surface of the steel plate base member as described above is reinforced by a shaped steel or the like. In a composite floor slab using a steel skeleton in which members are disposed and fixed, the reinforcing members are disposed with the longitudinal direction as the bridge axis direction.
[0006]
[Non-patent document 1]
"1st Steel Bridge Slab Symposium Proceedings"
November 1998 (Nov. 1998)
Japan Society of Civil Engineers Steel Structure Committee Steel Bridge Slab Investigation and Research Subcommittee P107-112
[0007]
[Problems to be solved by the invention]
By the way, in the composite slab of the steel skeleton in which the reinforcing members are arranged in the bridge axis direction by adopting the cross beams between the slab supports as described above, the support rigidity of the overhang portion on the side of the main slab of the slab is increased. A structure is required.
[0008]
For example, as shown conceptually in FIG. 6, when the floor slab 60 is supported by the girder set including the main girder 61 and the horizontal girder 62 at the horizontal girder spacing, brackets 63 are provided outside the main girder 61. The bracket 63 supports the overhanging portion and transmits the load of the overhanging portion to the main girder 61. Further, in the configuration disclosed in Non-Patent Document 1, only the overhanging portion is an RC slab in which the main reinforcing bar has a direction perpendicular to the bridge axis.
[0009]
However, the configuration in which the overhanging portion is supported by the bracket causes an increase in dead load, and the configuration in which only the overhanging portion is made of RC floor slabs requires support during construction, which increases the construction period. There was a problem that the cost was high and rational.
[0010]
The present invention has been made in view of the above problems, and provides a reasonable and low-cost composite slab girder that employs cross beams between floor slabs and does not require weight increase or a long construction period. The purpose is to:
[0011]
[Means for solving the problem]
The composite slab girder of the present invention that achieves the above object is a composite slab girder that supports a steel-concrete composite slab in which a concrete layer is integrated with a steel skeleton and strength-combined, and is supported by a girder combination of steel girders. The girder set supports the floor slab by a main girder in the direction orthogonal to the bridge axis and a horizontal girder bridged between the main girder, and the steel skeleton is provided on the upper surface of the substrate member between the main girder diameters. While a longitudinal reinforcing member in the bridge axis direction is arranged and fixed, a lateral reinforcing member in a direction orthogonal to the bridge axis is arranged and fixed on the upper surface of the substrate member at the overhang portion, and the lateral reinforcing member is attached to the longitudinal reinforcing member. It is characterized by being combined.
[0012]
This allows the vertical reinforcing members extending in the bridge axis direction to transmit the load to the horizontal girder in the span of the main girder, thereby making the floor slab span the horizontal girder spacing, and at the overhanging portion, perpendicular to the bridge axle. High rigidity can be obtained in the direction orthogonal to the bridge axis by the lateral reinforcing member extending in the direction in which the bridge extends.
[0013]
Further, the steel skeleton comprises a central steel skeleton provided with the vertical reinforcing member and constituting the main girder span, and a side steel skeleton provided with the lateral reinforcing member and constituting the overhang portion. A member is fastened to a connecting plate welded and fixed to the longitudinal reinforcing member, and the central steel skeleton and the side steel skeleton are connected to each other.
[0014]
Thereby, the center steel skeleton and the side steel skeleton can be easily and firmly joined on the girder set.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0016]
FIG. 1 is a cross-sectional view orthogonal to the bridge axis of a main girder portion of a bridge to which an example of a composite floor slab according to the present invention is applied, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and FIG. 4 is a plan view of the steel skeleton corresponding to the plan view of FIG.
[0017]
The illustrated bridge 1 is configured by integrally supporting a slab 20 which is a steel-concrete composite slab by a girder set 10 including a main girder 11 and a horizontal girder 12 which are steel girders.
[0018]
The girder set 10 has a configuration in which a horizontal girder 12 is erected at a predetermined interval in the bridge axis direction between a pair of main girder 11 (only one is shown in FIG. 2) arranged on the left and right in the width direction of the bridge 1. Have been. The arrangement interval of the cross beams 12 is set to be narrower than the main girder interval, and the floor slab 20 is designed such that the horizontal slab interval is a floor slab span.
[0019]
The main girder 11 and the cross girder 12 are each formed of a steel plate into an I-shaped cross-section having a predetermined height, and the cross girder 12 is connected to an abdominal plate of the main girder 11 at an end thereof. A large number of stud dowels 13 are erected on the upper surfaces of the upper flanges 11A and 12A of the main girder 11 and the horizontal girder 12. The stud dowels 13 are immersed in a concrete layer 21 of the floor slab 20, which will be described later. 11 (that is, the girder set 10) and the floor slab 20 are connected.
[0020]
The floor slab 20 is configured such that a concrete layer 21 having a predetermined thickness is integrally formed above a steel skeleton 30. The part to be supported by the girder set 10 is thicker than other parts, and both sides thereof are haunch parts 22 having a predetermined angle. In addition, 23 in a figure is a reinforcing bar.
[0021]
The steel skeleton 30 has a plurality of reinforcing beams 32 functioning as main reinforcing bars arranged and fixed at predetermined intervals in a direction orthogonal to the extending direction thereof on the upper surface of a bottom steel plate 31 as a substrate member made of a steel plate having a predetermined thickness. The stud dove 33 is provided upright.
[0022]
The bottom steel plate 31 forms the entire lower surface of the floor slab 20 except for the portion supported by the girder set 10 (the portion corresponding to the upper flanges 11A and 12A of the main girder 11 and the horizontal girder 12). Is mounted on the upper flanges 11A and 12A of the main girder 11 or the horizontal girder 12.
[0023]
The reinforcing beam 32 is a U-shaped channel steel having a side plate portion 32b erected on both sides of the substrate portion 32a, and is welded to the upper surface of the bottom steel plate 31 by one of the side plate portions 32b in a side-down state. Fixed.
[0024]
The steel skeleton 30 is divided and manufactured in a manufacturing factory into unit blocks of an appropriate size in consideration of transportation means and the like, and the unit blocks are combined on the girder set 10 to be integrally constructed. In the illustrated configuration example, in the direction orthogonal to the bridge axis, the central steel skeleton 30A between the main girders 11 and the side steel skeleton 30B forming a lateral overhang are divided. Further, in the bridge axis direction, the central steel skeleton 30A is divided by the arrangement pitch of the cross beams 12, and the lateral steel skeleton 30B is divided by a predetermined length. A portion indicated by 50 in FIG. 3 is a connecting portion in the bridge axis direction of the side steel skeleton 30B, and is connected by a fastening mechanism 40 'similar to a fastening mechanism 40 described later. The central steel frame 30A is further divided in the direction perpendicular to the bridge axis according to the width of the bridge 1.
[0025]
Here, the arrangement direction of the reinforcing beams 32 is different between the central steel skeleton 30A between the main girders 11 and the side steel skeleton 30B forming the lateral overhang.
[0026]
That is, the reinforcing beam 32 of the central steel skeleton 30A is disposed and fixed in parallel with the bridge axis to form a vertical reinforcing beam 32A as a vertical reinforcing member, while the reinforcing beam 32 of the side steel skeleton 30B is connected to the bridge axis. And a transverse reinforcing beam 32B as a transverse reinforcing member. As described above, in the central steel skeleton 30A, the main reinforcement is the bridge reinforcing beam 32A in the bridge axis direction orthogonal to the cross beam 12, so that the rigidity in the bridge axis direction is secured and the space between the floor slabs is set as the cross beam interval. On the other hand, in the side steel skeleton 30B forming the overhang portion, the main reinforcement is a lateral reinforcing beam 32B in a direction orthogonal to the bridge axis, so that rigidity that cantilever support by the girder set 10 can be secured. .
[0027]
Further, the portion supported by the cross beam 12 of the central steel skeleton 30A and the portion supported by the main girder 11 of the side steel skeleton 30B form the reinforcing beam 32 (32A, 32B) and the lower surface of the haunch portion 22. The portion of the bottom steel plate 31 is connected by a connecting support plate 34, whereby the steel frame 30 can be placed on the girder set 10 at the portion where the haunch portion 22 of the bottom steel plate 31 is formed. I have.
[0028]
In addition, the connecting position of the central steel skeleton 30A and the side steel skeleton 30B avoids a position directly below the wheels of the vehicle passing through the bridge 1 where the dynamic load changes significantly, and further, in a cross section orthogonal to the bridge axis. It is preferable that the bending moment of the dead load is set at a position where the bending moment becomes substantially zero.
[0029]
The central steel skeleton 30A and the side steel skeleton 30B are an enlarged view of an X part in FIG. 4, FIG. 5 (A), which is a YY sectional view thereof, and FIG. 5 (B) and a ZZ sectional view of FIG. As shown in (C), the lateral reinforcing beam 32B of the side steel skeleton 30B is coupled to the longitudinal reinforcing beam 32A of the central steel skeleton 30A, and the bottom steel plate 31A of the central steel skeleton 30A and the side steel 31B. The bottom steel plate 31B of the skeleton 30B is joined to the bottom steel plate 31B by a fastening mechanism 40 provided at a predetermined interval along the joining line.
[0030]
The horizontal reinforcing beam 32B of the side steel skeleton 30B and the vertical reinforcing beam 32A of the central steel skeleton 30A are connected to a connecting plate 35 welded and fixed to the vertical reinforcing beam 32A with its plate surface orthogonal to the base plate of the reinforcing beam 32B. The portions 32a are connected by being fastened by bolts and nuts 36.
[0031]
The fastening mechanism 40 includes a flat U-shaped coupling metal 41 formed by extending a supporting rib 41B having a predetermined length from both edges of a fastening plate portion 41A having a predetermined height and a predetermined width. The fastening plates 41A are welded and fixed in a state where they face each other, and the fastening plates 41A of the coupling fittings 41 are fastened by bolts and nuts 42.
[0032]
In a coupling structure in which such a fastening mechanism 40 is intermittently provided at predetermined intervals along a coupling line between the bottom steel plates 31A and 32B of the central steel skeleton 30A and the side steel skeletons 30B, coupling is performed along the coupling line. Since the ribs are not erected, the thickness of the concrete layer 21 at the joint is not reduced so much that cracks due to stress concentration can be suppressed.
[0033]
Note that the above configuration example is an example in which the divided central steel skeleton 30A and the side steel skeleton 30B are joined on a girder set. In the present invention, the central steel skeleton and the side steel skeleton are integrally formed. It is also possible to apply to those that have. Further, the reinforcing member provided on the substrate member is not limited to the channel steel, and may have another cross-sectional shape, and may have a different cross-sectional shape between the central portion and the side portion.
[0034]
【The invention's effect】
As described above, according to the composite slab girder according to the present invention, the girder set supports the slab by the main girder in the direction orthogonal to the bridge axis and the horizontal girder erected between the main girder. In the steel skeleton, a longitudinal reinforcing member in the bridge axis direction is disposed and fixed on the upper surface of the base member between the main girder diameters, while a lateral reinforcing member in a direction orthogonal to the bridge axis is provided on the upper surface of the base member on the overhang portion. Is arranged and fixed, and the horizontal reinforcing member is connected to the vertical reinforcing member, so that the vertical reinforcing member extending in the bridge axis direction between the main girder diameters transmits a load to the horizontal girder. In this manner, the space between the slab supports can be set to the horizontal girder spacing, and high rigidity in the direction perpendicular to the bridge axis can be obtained at the overhanging portion by the horizontal reinforcing member extending in the direction perpendicular to the bridge axis. As a result, a support member such as a bracket for supporting the overhang portion is not required, and the span of the main girder and the overhang portion can be constructed by the same method without the need for a support work. The present invention can provide a reasonable and low-cost synthetic floor slab without adopting a weight and without requiring a long construction period.
[0035]
The steel skeleton comprises a central steel skeleton provided with the vertical reinforcing member and constituting the main girder span, and a side steel skeleton provided with the lateral reinforcing member and constituting the overhang portion. Are fastened to a connecting plate welded and fixed to the longitudinal reinforcing member, and the central steel skeleton and the side steel skeleton are connected to each other, so that the central steel skeleton and the side steel skeleton The above structure can be easily and firmly connected, and can be a rational structure with good workability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view orthogonal to a bridge axis of a main girder portion of a bridge to which an example of a composite floor slab according to the present invention is applied.
FIG. 2 is a sectional view taken along line AA of FIG.
FIG. 3 is a sectional view taken along line BB of FIG. 1;
FIG. 4 is a plan view of a steel skeleton corresponding to the plan view of FIG. 1;
5A is an enlarged view of a portion X in FIG. 4, FIG. 5B is a cross-sectional view taken along the line YY of FIG. 4A, and FIG.
FIG. 6 is a cross-sectional view of a floor slab as a conventional example.
[Explanation of symbols]
1 bridge 10 girder set 11 main girder 12 horizontal girder 20 floor slab (steel concrete composite floor slab)
21 Concrete layer 30 Steel frame 30A Central steel frame 30B Side steel frame 31 (31A, 31B) Bottom steel plate (substrate member)
32 Reinforcement beam (reinforcement member)
32A vertical reinforcing beam (vertical reinforcing member)
32B Lateral reinforcement beam (lateral reinforcement member)
35 Coupling plate

Claims (2)

鋼骨格にコンクリート層が一体化して強度合成された鋼コンクリート合成床版を、鋼桁による桁組で支持して成る合成床版桁において、
前記桁組は、橋軸直交方向の主桁と、該主桁の間に架設された横桁とによって前記床版を支持し、
前記鋼骨格は、主桁径間には基板部材の上面に橋軸方向の縦補強部材が配設固定される一方、張り出し部には基板部材の上面に橋軸と直交する方向の横補強部材が配設固定され、該横補強部材が前記縦補強部材に結合されて構成されていることを特徴とする合成床版桁。
In a composite slab girder supported by a steel girder, a steel-concrete composite slab in which the concrete layer is integrated with the steel skeleton and the strength is synthesized,
The girder set supports the floor slab by a main girder in a direction orthogonal to the bridge axis and a horizontal girder bridged between the main girder,
In the steel frame, a longitudinal reinforcing member in the bridge axis direction is disposed and fixed on the upper surface of the substrate member between the main girder diameters, and a lateral reinforcing member in a direction orthogonal to the bridge axis on the upper surface of the substrate member on the overhang portion. Wherein the horizontal reinforcing member is connected to the vertical reinforcing member.
上記鋼骨格は、上記縦補強部材を備え上記主桁径間を構成する中央部鋼骨格と、上記横補強部材を備え上記張り出し部を構成する側部鋼骨格とから成り、前記横補強部材が前記縦補強部材に溶接固定された結合板に締着されて、前記中央部鋼骨格と前記側部鋼骨格が結合されて構成されていることを特徴とする請求項1に記載の合成床版桁。The steel skeleton includes a central steel skeleton that includes the longitudinal reinforcing member and configures the main girder span, and a side steel skeleton that includes the lateral reinforcing member and configures the overhang portion. The composite floor slab according to claim 1, wherein the central steel skeleton and the side steel skeleton are connected to each other by being fastened to a connecting plate welded and fixed to the vertical reinforcing member. digit.
JP2003012185A 2003-01-21 2003-01-21 Synthetic floor slab girder Expired - Fee Related JP4348601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012185A JP4348601B2 (en) 2003-01-21 2003-01-21 Synthetic floor slab girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012185A JP4348601B2 (en) 2003-01-21 2003-01-21 Synthetic floor slab girder

Publications (2)

Publication Number Publication Date
JP2004225290A true JP2004225290A (en) 2004-08-12
JP4348601B2 JP4348601B2 (en) 2009-10-21

Family

ID=32900876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012185A Expired - Fee Related JP4348601B2 (en) 2003-01-21 2003-01-21 Synthetic floor slab girder

Country Status (1)

Country Link
JP (1) JP4348601B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395410C (en) * 2006-01-19 2008-06-18 清华大学 Grooved steel-concrete combination beam
JP2008144380A (en) * 2006-12-06 2008-06-26 Mitsui Eng & Shipbuild Co Ltd Bridge using a small number of main girders
JP2008169572A (en) * 2007-01-10 2008-07-24 Mitsui Eng & Shipbuild Co Ltd Bridge with a small number of main girders
JP2008169573A (en) * 2007-01-10 2008-07-24 Mitsui Eng & Shipbuild Co Ltd Main beam bridge with small number of main beams
JP2008184846A (en) * 2007-01-31 2008-08-14 Mitsui Eng & Shipbuild Co Ltd Reinforced concrete slab bridge having small number of main girders
JP2008190256A (en) * 2007-02-06 2008-08-21 Mitsui Eng & Shipbuild Co Ltd Small number main girder bridge
JP2009228217A (en) * 2008-03-19 2009-10-08 Ihi Corp Steel skeleton structure of composite floor slab of steel concrete, and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395410C (en) * 2006-01-19 2008-06-18 清华大学 Grooved steel-concrete combination beam
JP2008144380A (en) * 2006-12-06 2008-06-26 Mitsui Eng & Shipbuild Co Ltd Bridge using a small number of main girders
JP2008169572A (en) * 2007-01-10 2008-07-24 Mitsui Eng & Shipbuild Co Ltd Bridge with a small number of main girders
JP2008169573A (en) * 2007-01-10 2008-07-24 Mitsui Eng & Shipbuild Co Ltd Main beam bridge with small number of main beams
JP2008184846A (en) * 2007-01-31 2008-08-14 Mitsui Eng & Shipbuild Co Ltd Reinforced concrete slab bridge having small number of main girders
JP2008190256A (en) * 2007-02-06 2008-08-21 Mitsui Eng & Shipbuild Co Ltd Small number main girder bridge
JP4733655B2 (en) * 2007-02-06 2011-07-27 三井造船株式会社 Minority main girder bridge
JP2009228217A (en) * 2008-03-19 2009-10-08 Ihi Corp Steel skeleton structure of composite floor slab of steel concrete, and manufacturing method therefor

Also Published As

Publication number Publication date
JP4348601B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
KR100864220B1 (en) Steel pipe girder used bridge
KR101186062B1 (en) Connection of concrete filled steel tube column and H-shaped steel beam and constructing method of the same
JP4897643B2 (en) Reinforced concrete composite steel slab girder bridge
KR20040006564A (en) Composite Deck having Frame and Concrete
JP2004270270A (en) Steel concrete composite floor slab bridge
JP4348601B2 (en) Synthetic floor slab girder
JP2002227133A (en) Replacement composite floor board steel girder bridge and constructing and installing method
JP2007126813A (en) Composite steel-concrete girder structure of bridge, and its construction method
JP4039139B2 (en) Steel framework structure of steel concrete composite slab
JP2963879B2 (en) Bridge girder
KR101545329B1 (en) Temporary bridge
KR101143056B1 (en) A Knockdown Bridge And Constructing Method of The Same
JP2002173911A (en) Re-covering execution method for steel floorslab and concrete floorslab
JP4039138B2 (en) Joint structure of steel concrete composite slab and its unit steel frame
JPH10131119A (en) Reinforcing structure of bridge
JP2004156343A (en) Composite truss bridge and its construction method
JP2002173912A (en) Steel floorslab reinforcing structure in steel road bridge
JP2000129625A (en) Deck truss bridge
JP5295332B2 (en) Girder bridge
JP3839648B2 (en) Composite floor slab and steel bridge
JP2000213094A (en) Sandwich composite floor slab
JPH1121815A (en) Bridge structure by composite steel floor board
JP2000129631A (en) Composite floor slab
JP6630776B2 (en) Construction method of slab structure
JP4040535B2 (en) Bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051220

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080724

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Effective date: 20080924

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090708

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees