JP2009102207A - Method and apparatus for manufacturing fine glass particle deposit - Google Patents

Method and apparatus for manufacturing fine glass particle deposit Download PDF

Info

Publication number
JP2009102207A
JP2009102207A JP2007277534A JP2007277534A JP2009102207A JP 2009102207 A JP2009102207 A JP 2009102207A JP 2007277534 A JP2007277534 A JP 2007277534A JP 2007277534 A JP2007277534 A JP 2007277534A JP 2009102207 A JP2009102207 A JP 2009102207A
Authority
JP
Japan
Prior art keywords
raw material
glass
source gas
burner
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007277534A
Other languages
Japanese (ja)
Inventor
Nobutaka Musa
宜孝 撫佐
Toshimi Habasaki
利巳 幅崎
Hisatsugu Kasai
久嗣 笠井
Mitsuru Takagi
充 高城
Tomoya Suzuki
智哉 鈴木
Masahito Konuki
雅人 小貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007277534A priority Critical patent/JP2009102207A/en
Publication of JP2009102207A publication Critical patent/JP2009102207A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize the shortening of a processing time and the saving of the consumed amount of a glass raw material gas, when a fine glass particle deposit is manufactured by an OVD method. <P>SOLUTION: An exhaust pressure adjusting mechanism 41 to adjust inner pressure by a purge gas is placed in a raw material gas exhausting path 25a which is blanched and connected between a gas flow rate controlling mechanism 14 and a burner 19. When the supplying of the raw material gas 13 to the burner 19 is temporarily stopped, the reverse flow of the gas from a burner 19 side is prevented by that the flow rate of the raw material gas 13 in a raw material gas supplying path 16b is controlled so as to be reduced gradually close to zero, pressure in the raw material gas exhausting path 25a is approximately coincided with that at the burner 19 side by the exhaust pressure adjusting mechanism 41 and the raw material gas 13 remaining in the raw material gas supplying path 16b at the gas flow rate controlling mechanism 14 side is stayed or continuously flown in small amounts. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、出発ガラスロッドに火炎加水分解反応によりガラス微粒子を堆積させるガラス微粒子堆積体の製造方法及び製造装置に関する。   The present invention relates to a method and apparatus for producing a glass fine particle deposit body in which glass fine particles are deposited on a starting glass rod by a flame hydrolysis reaction.

光ファイバ等の円柱状ガラス母材の製造方法として、OVD法(外付け気相蒸着法、以降OVD法と称す)が知られている。この方法は、例えば、反応容器内で出発ガラスロッドを軸方向に往復移動させるとともに回転させながらその外周に、SiCl4やGeCl4などのガラス原料ガスを、H2などの燃料ガスとO2などの助然ガスとともにバーナーから吹き付け、火炎加水分解反応によりガラス微粒子を生成して堆積させ、ガラス微粒子堆積体を作製する。
この後、ガラス微粒子堆積体は、焼結炉等により脱水加熱処理されて透明ガラス化される。
As a method for producing a cylindrical glass base material such as an optical fiber, an OVD method (external vapor deposition method, hereinafter referred to as OVD method) is known. In this method, for example, the starting glass rod is reciprocated in the axial direction in the reaction vessel and rotated while rotating the glass raw material gas such as SiCl 4 and GeCl 4 on the outer periphery thereof, the fuel gas such as H 2 , O 2 and the like. A glass fine particle deposit is produced by spraying from a burner together with the above gas and generating and depositing glass fine particles by a flame hydrolysis reaction.
Thereafter, the glass fine particle deposit is dehydrated and heated in a sintering furnace or the like to be converted into a transparent glass.

これまで、上記のOVD法に好適なガラス微粒子堆積体の製造装置として、図2に示す製造装置が開発されている。
ここに示したガラス微粒子堆積体の製造装置100は本願出願人が下記特許文献1に開示したものである。
この製造装置100では、原料貯留部11に貯留されているガラス原料ガス13はガス流量制御機構14を備えた原料ガス供給路16a,16b,16cから反応容器18内のバーナー19に供給して、バーナー19から吹き付けるガラス原料ガス13の火炎加水分解反応により生成したガラス微粒子を、反応容器18内に支持された出発ガラスロッド21の外周に堆積させることでガラス微粒子堆積体を製造する。
Up to now, a manufacturing apparatus shown in FIG. 2 has been developed as a manufacturing apparatus for a glass fine particle deposit suitable for the OVD method.
The apparatus 100 for producing a glass particulate deposit shown here is disclosed in the following Patent Document 1 by the applicant of the present application.
In this manufacturing apparatus 100, the glass raw material gas 13 stored in the raw material storage unit 11 is supplied to the burner 19 in the reaction vessel 18 from the raw material gas supply paths 16a, 16b, and 16c provided with the gas flow rate control mechanism 14, A glass particulate deposit is produced by depositing glass particulates generated by the flame hydrolysis reaction of the glass source gas 13 sprayed from the burner 19 on the outer periphery of the starting glass rod 21 supported in the reaction vessel 18.

出発ガラスロッド21は、OVD法による製造が可能なように、反応容器18内に、中心軸方向に往復移動可能に、且つ中心軸周りに回転可能に支持されている。   The starting glass rod 21 is supported in the reaction vessel 18 so as to be able to reciprocate in the direction of the central axis and to be rotatable about the central axis so that the production by the OVD method is possible.

この製造装置100では、出発ガラスロッド21の外周にガラス微粒子を堆積させる一方で、前記火炎加水分解反応により反応容器18内に発生した腐食性ガスは反応容器18内の浮遊ガラス微粒子と共に、反応容器18に接続された容器側排気路23に負圧吸引して排気する。
容器側排気路23には、流路を開閉する流路開閉バルブ24が装備されていて、該流路開閉バルブ24の制御により、反応容器18からの排気量を調整することができる。
In this manufacturing apparatus 100, while glass fine particles are deposited on the outer periphery of the starting glass rod 21, the corrosive gas generated in the reaction vessel 18 by the flame hydrolysis reaction is brought together with the floating glass fine particles in the reaction vessel 18 into the reaction vessel. The container-side exhaust passage 23 connected to 18 is suctioned with a negative pressure and exhausted.
The vessel side exhaust passage 23 is provided with a passage opening / closing valve 24 for opening and closing the passage, and the amount of exhaust from the reaction vessel 18 can be adjusted by controlling the passage opening / closing valve 24.

更に、この製造装置100では、ガス流量制御機構14とバーナー19との間で原料ガス供給路16bに原料ガス排気路25aが分岐接続され、この原料ガス排気路25aはその下流に連なる原料ガス排気路25bを経て、下流側で容器側排気路23と兼用の吸引排気手段27に接続されている。また、ガス流量制御機構14の上流側の原料ガス供給路16aには、パージガスを導入するパージガス供給路29が分岐接続されている。パージガスとしては、例えば、窒素ガス等の不活性ガスが使われる。   Further, in the manufacturing apparatus 100, a source gas exhaust passage 25a is branched and connected to the source gas supply passage 16b between the gas flow rate control mechanism 14 and the burner 19, and the source gas exhaust passage 25a is connected to the downstream of the source gas exhaust passage 25a. Via the passage 25b, it is connected to the suction exhaust means 27 that also serves as the container side exhaust passage 23 on the downstream side. A purge gas supply path 29 for introducing purge gas is branched and connected to the raw material gas supply path 16 a on the upstream side of the gas flow rate control mechanism 14. As the purge gas, for example, an inert gas such as nitrogen gas is used.

原料ガス供給路16bと原料ガス排気路25aの分岐接続部には、各流路を開閉する流路開閉バルブ31,32によって構成される流路切り替え機構36が装備されている。また、原料ガス供給路16aとパージガス供給路29との分岐接続部には、各流路を開閉する流路開閉バルブ33,34によって構成される流路切り替え機構37が装備されている。   A flow path switching mechanism 36 constituted by flow path opening / closing valves 31 and 32 for opening and closing each flow path is provided at a branch connection portion of the raw material gas supply path 16b and the raw material gas exhaust path 25a. In addition, the branch connection portion between the source gas supply path 16a and the purge gas supply path 29 is equipped with a flow path switching mechanism 37 constituted by flow path opening / closing valves 33 and 34 for opening and closing each flow path.

ガス流量制御機構14の下流の分岐接続部に装備された流路切り替え機構36は、各流路開閉バルブ31,32の開閉制御により、原料ガス供給路16bとの接続を、バーナー19又は原料ガス排気路25aに切り替える。
ガス流量制御機構14の上流の分岐接続部に装備された流路切り替え機構37は、各流路開閉バルブ33,34の開閉制御により、ガス流量制御機構14への接続を、原料貯留部11またはパージガス供給路29に切り替える。
The flow path switching mechanism 36 provided in the branch connection portion downstream of the gas flow rate control mechanism 14 connects the raw material gas supply path 16b to the burner 19 or the raw material gas by opening / closing control of the respective flow path opening / closing valves 31 and 32. Switch to the exhaust passage 25a.
The flow path switching mechanism 37 installed in the branch connection section upstream of the gas flow control mechanism 14 connects the gas flow control mechanism 14 to the raw material storage section 11 or the open / close control of the flow path opening / closing valves 33 and 34. Switch to the purge gas supply path 29.

この製造装置100では、ガラス微粒子の堆積終了時には、ガス流量制御機構14の下流側で、原料ガス供給路16bの接続先をバーナー19から、原料ガス排気路25aに切り替えると共に、ガス流量制御機構14の上流側で原料ガス供給路16bの接続先を原料貯留部11からパージガス供給路29に切り替えて、ガス流量制御機構14の上流の原料ガス供給路16bにパージガスを導入し、原料ガス排気路25aの分岐接続部よりも上流の原料ガス供給路16bに残留しているガラス原料ガス13をパージガスと一緒に原料ガス排気路25aに排気する。   In the manufacturing apparatus 100, at the end of the deposition of the glass particulates, the connection destination of the source gas supply path 16 b is switched from the burner 19 to the source gas exhaust path 25 a on the downstream side of the gas flow rate control mechanism 14 and the gas flow rate control mechanism 14. The source gas supply path 16b is connected to the purge gas supply path 29 from the raw material storage section 11 on the upstream side of the gas, and the purge gas is introduced into the source gas supply path 16b upstream of the gas flow rate control mechanism 14, thereby supplying the source gas exhaust path 25a. The glass raw material gas 13 remaining in the raw material gas supply passage 16b upstream from the branch connection portion is exhausted to the raw material gas exhaust passage 25a together with the purge gas.

更に、この製造装置100では、OVD法を実施した際、出発ガラスロッド21上のガラス微粒子の堆積層の両端部に到達して、バーナー19へのガラス原料ガス13の供給をガス流量制御機構14で徐々にゼロに近づけるよう調整するときには、ガラス原料ガス13の供給をゼロとする時点またはその近傍で、ガラス微粒子の堆積終了時と同様に、ガス流量制御機構14の下流側で原料ガス供給路16bの接続先をバーナー19から原料ガス排気路25aに切り替えると共に、ガス流量制御機構14の上流側で原料ガス供給路16bの接続先を原料貯留部11からパージガス供給路29側に切り替えして、パージガス圧によってガス流量制御機構14側をバーナー19側よりも高圧(陽圧)に維持することにより、バーナー19側からの腐食性ガス等の逆流を防止するようにしている。   Further, in the manufacturing apparatus 100, when the OVD method is performed, the gas flow rate control mechanism 14 supplies the glass raw material gas 13 to the burner 19 by reaching both end portions of the glass particulate deposition layer on the starting glass rod 21. When adjusting so as to gradually approach zero, the raw material gas supply path at the downstream side of the gas flow rate control mechanism 14 at or near the time when the supply of the glass raw material gas 13 is made zero. The connection destination of 16b is switched from the burner 19 to the source gas exhaust path 25a, and the connection destination of the source gas supply path 16b is switched from the source storage section 11 to the purge gas supply path 29 side on the upstream side of the gas flow rate control mechanism 14, By maintaining the gas flow rate control mechanism 14 side at a higher pressure (positive pressure) than the burner 19 side by the purge gas pressure, the decay from the burner 19 side is achieved. So as to prevent backflow of such sexual gas.

特開2003−212554号公報JP 2003-212554 A

ところが、上記のように、バーナー19へのガラス原料ガス13の供給を一時的にゼロに近づける際に、ガス流量制御機構14にパージガスを導入すると、ガス流量制御機構14内では、ガラス原料ガス13とパージガスが混合状態になってしまうため、次にバーナー19へのガラス原料ガス13の供給を開始する際には、ガス流量制御機構14内の混合ガスを原料ガス排気路25aに排出してガス流量制御機構14内がガラス原料ガス13で満たされるまで、置換処理を実施しなければならず、プロセス時間が長くなって、ガラス微粒子堆積体の製造効率が低下するという問題が生じた。
また、原料供給と停止を頻繁に繰り返す系の場合、ガラス原料ガスとバージガスとの混合ガスの排気処理により、ガラス原料ガス13の消費量が嵩むという問題も生じた。
However, as described above, when the supply of the glass raw material gas 13 to the burner 19 is temporarily brought close to zero, if the purge gas is introduced into the gas flow rate control mechanism 14, the glass raw material gas 13 in the gas flow rate control mechanism 14. When the supply of the glass raw material gas 13 to the burner 19 is started next, the mixed gas in the gas flow rate control mechanism 14 is discharged to the raw material gas exhaust passage 25a and gas is discharged. The replacement process must be performed until the flow rate control mechanism 14 is filled with the glass raw material gas 13, resulting in a problem that the process time becomes long and the production efficiency of the glass fine particle deposit decreases.
In the case of a system in which the supply and stop of the raw material are frequently repeated, there is a problem that the consumption of the glass raw material gas 13 is increased due to the exhaust treatment of the mixed gas of the glass raw material gas and the barge gas.

本発明の目的は上記課題を解消することに係り、例えばOVD法によりガラス微粒子堆積体を製造する際のプロセス時間を短縮することができ、更に、ガラス原料ガスの消費量を節約することもできるガラス微粒子堆積体の製造方法及び製造装置を提供することを目的とする。   The object of the present invention is to solve the above-mentioned problems. For example, it is possible to shorten the process time when producing a glass fine particle deposit by the OVD method, and it is possible to save the consumption of the glass raw material gas. It aims at providing the manufacturing method and manufacturing apparatus of a glass particulate deposit.

(1)上記した課題を解決するために、本発明によるガラス微粒子堆積体の製造方法は、反応容器内に設けられてガラス原料ガスを出発ガラスロッドに吹き付けるバーナーと、ガス流量制御機構を備えて前記バーナーにガラス原料ガスを供給する原料ガス供給路と、前記反応容器に接続されて前記反応容器内雰囲気を負圧吸引により外部に排気する容器側排気路と、前記原料ガス排気路の接続先を前記バーナーから切り替え可能に前記原料ガス供給路に分岐接続された原料ガス排気路と、を備え、
前記バーナーから吹き付ける前記ガラス原料ガスの火炎加水分解反応により生成したガラス微粒子を前記出発ガラスロッドの外周に堆積させることでガラス微粒子堆積体を製造する一方、前記ガラス微粒子の堆積終了時には、前記原料ガス供給路の接続先を前記バーナーから原料ガス排気路に切り替えて、前記原料ガス供給路に残留しているガラス原料ガスを前記原料ガス排気路に負圧吸引して排気するガラス微粒子堆積体の製造方法であって、
前記原料ガス排気路には、パージガスの供給により原料ガス排気路内の圧力を調整する排気圧調整機構を設け、
前記出発ガラスロッドへの前記ガラス微粒子の堆積調整のために、前記バーナーへの前記ガラス原料ガスの供給を一時的に停止するときには、前記原料ガス供給路のガス流量制御機構で原料ガスの流量を徐々にゼロに近づけるよう調整する一方、
前記排気圧調整機構により前記原料ガス排気路内の圧力を前記バーナー側の圧力に略一致させ、前記原料ガス流路を前記原料ガス排気路側に切り替えると共に、前記原料ガス排気路の分岐接続部より上流の前記原料ガス供給路に残留しているガラス原料ガスを滞留、若しくは微量流し続けることを特徴とする。
(1) In order to solve the above-described problems, a method for producing a glass particulate deposit according to the present invention includes a burner that is provided in a reaction vessel and blows a glass raw material gas onto a starting glass rod, and a gas flow rate control mechanism. A source gas supply path for supplying a glass source gas to the burner, a container side exhaust path connected to the reaction container and exhausting the atmosphere in the reaction container to the outside by negative pressure suction, and a connection destination of the source gas exhaust path A source gas exhaust path branched and connected to the source gas supply path so as to be switchable from the burner,
A glass fine particle deposit is produced by depositing glass fine particles generated by a flame hydrolysis reaction of the glass raw material gas sprayed from the burner on the outer periphery of the starting glass rod, while at the end of the deposition of the glass fine particles, the raw material gas Production of a glass particulate deposit body in which the connection destination of the supply path is switched from the burner to the source gas exhaust path, and the glass source gas remaining in the source gas supply path is sucked into the source gas exhaust path by negative pressure. A method,
The source gas exhaust path is provided with an exhaust pressure adjusting mechanism that adjusts the pressure in the source gas exhaust path by supplying purge gas,
When the supply of the glass raw material gas to the burner is temporarily stopped to adjust the deposition of the glass fine particles on the starting glass rod, the flow rate of the raw material gas is controlled by the gas flow rate control mechanism of the raw material gas supply path. While adjusting to gradually approach zero,
The exhaust pressure adjusting mechanism causes the pressure in the source gas exhaust path to substantially coincide with the pressure on the burner side, switches the source gas flow path to the source gas exhaust path side, and from a branch connection portion of the source gas exhaust path The glass raw material gas remaining in the upstream raw material gas supply path is retained or kept flowing in a small amount.

(2)また、上記した課題を解決するために、本発明によるガラス微粒子堆積体の製造装置は、反応容器内に設けられてガラス原料ガスを出発ガラスロッドに吹き付けるバーナーと、ガス流量制御機構を備えて前記バーナーにガラス原料ガスを供給する原料ガス供給路と、前記反応容器に接続されて前記反応容器内雰囲気を負圧吸引により外部に排気する容器側排気路と、前記原料ガス排気路の接続先を前記バーナーから切り替え可能に前記原料ガス供給路に分岐接続された原料ガス排気路と、を備え、
前記バーナーから吹き付ける前記ガラス原料ガスの火炎加水分解反応により生成したガラス微粒子を前記出発ガラスロッドの外周に堆積させることでガラス微粒子堆積体を製造する一方、前記ガラス微粒子の堆積終了時には、前記原料ガス供給路の接続先を前記バーナーから原料ガス排気路に切り替えて、前記原料ガス供給路に残留しているガラス原料ガスを前記原料ガス排気路に負圧吸引して排気するガラス微粒子堆積体の製造装置であって、
前記バーナー側の圧力を検知する第1の圧力検知手段と、前記原料ガス排気路内の圧力を検知する第2の圧力検知手段と、前記原料ガス排気路にパージガスを供給して前記原料ガス排気路内の圧力を調整する排気圧調整機構とを備え、
前記出発ガラスロッドへの前記ガラス微粒子の堆積調整のために、前記バーナーへのガラス原料ガスの供給を一時的に停止するときには、前記原料ガス供給路の前記ガス流量制御機構で原料ガスの流量を徐々にゼロに近づけるよう調整する一方、
前記第1及び第2の圧力検知手段に基づいて、前記排気圧調整機構により前記原料ガス排気路内の圧力を前記バーナー側の圧力に略一致させ、前記原料ガス流路を前記原料ガス排気路側に切り替えると共に、前記原料ガス供給路に残留しているガラス原料ガスを滞留、若しくは微量流し続けることを特徴とする。
(2) Further, in order to solve the above-described problems, the apparatus for producing a glass fine particle deposit according to the present invention comprises a burner provided in a reaction vessel for blowing a glass raw material gas onto a starting glass rod, and a gas flow rate control mechanism. A source gas supply path for supplying glass source gas to the burner, a container side exhaust path connected to the reaction container and exhausting the atmosphere in the reaction container to the outside by negative pressure suction, and a source gas exhaust path A source gas exhaust path branched and connected to the source gas supply path so that the connection destination can be switched from the burner,
A glass fine particle deposit is produced by depositing glass fine particles generated by a flame hydrolysis reaction of the glass raw material gas sprayed from the burner on the outer periphery of the starting glass rod, while at the end of the deposition of the glass fine particles, the raw material gas Production of a glass particulate deposit body in which the connection destination of the supply path is switched from the burner to the source gas exhaust path, and the glass source gas remaining in the source gas supply path is sucked into the source gas exhaust path by negative pressure. A device,
First pressure detection means for detecting the pressure on the burner side, second pressure detection means for detecting pressure in the source gas exhaust path, and supply of purge gas to the source gas exhaust path to supply the source gas exhaust An exhaust pressure adjustment mechanism for adjusting the pressure in the road,
When temporarily stopping the supply of the glass source gas to the burner to adjust the deposition of the glass fine particles on the starting glass rod, the flow rate of the source gas is controlled by the gas flow rate control mechanism of the source gas supply path. While adjusting to gradually approach zero,
Based on the first and second pressure detection means, the exhaust pressure adjusting mechanism causes the pressure in the source gas exhaust passage to substantially coincide with the pressure on the burner side, and the source gas passage is connected to the source gas exhaust passage side. And the glass raw material gas remaining in the raw material gas supply path is retained or kept flowing in a small amount.

本発明によるガラス微粒子堆積体の製造方法及び製造装置では、例えばOVD法によるガラス微粒子堆積体の製造工程において、出発ガラスロッドへのガラス微粒子の堆積調整のために、火炎加水分解反応によりガラス微粒子を生成するバーナーへのガラス原料ガスの供給を一時的にゼロに近づける際には、排気圧調整機構により原料ガス排気路内の圧力を、バーナー側の圧力に略一致させ、前記原料ガス流路を前記原料ガス排気路側に切り替えると共に、原料ガス排気路の分岐接続部より上流の原料ガス供給路に残留しているガラス原料ガスを滞留、若しくは微量流し続ける。
これにより、原料ガス排気路の分岐接続部より上流の原料ガス供給路は、バーナー側よりも圧力が高い状態に維持されるため、バーナーの上流の原料ガス供給路にパージガスの導入を行わずとも、バーナー側からのガスの逆流を防止できる。
In the method and apparatus for producing a glass particulate deposit according to the present invention, for example, in the production process of a glass particulate deposit by the OVD method, glass particulates are produced by a flame hydrolysis reaction in order to adjust the deposition of glass particulates on a starting glass rod. When the supply of the glass raw material gas to the burner to be generated is temporarily brought close to zero, the pressure in the raw material gas exhaust passage is substantially matched with the pressure on the burner side by the exhaust pressure adjusting mechanism, and the raw material gas passage is While switching to the raw material gas exhaust passage side, the glass raw material gas remaining in the raw material gas supply passage upstream of the branch connection portion of the raw material gas exhaust passage is retained or kept flowing in a small amount.
As a result, the source gas supply path upstream from the branch connection portion of the source gas exhaust path is maintained at a higher pressure than the burner side, so that purge gas is not introduced into the source gas supply path upstream of the burner. , The backflow of gas from the burner side can be prevented.

そして、バーナーの上流の原料ガス供給路にパージガスの導入を行っておらず、ガス流量制御機構を含む原料ガス供給路上には、供給停止前と同じ濃度のガラス原料ガスが残留しているため、バーナーへのガラス原料ガスの供給を再開する際には、原料ガス供給路内を正規の濃度のガラス原料ガスに置換するプロセスが不要で、バーナーへのガラス原料ガスの供給を速やかに再開することができる。従って、プロセス時間の短縮を図ることができる。   And, since the purge gas is not introduced into the source gas supply path upstream of the burner and the glass source gas having the same concentration as before the supply stop remains on the source gas supply path including the gas flow rate control mechanism, When resuming the supply of glass source gas to the burner, there is no need to replace the inside of the source gas supply channel with a glass source gas with a normal concentration, and the supply of glass source gas to the burner should be resumed promptly. Can do. Therefore, the process time can be shortened.

また、バーナーへのガラス原料ガスの供給を一時的に停止した後、再開する際に、原料ガス供給路内を正規の濃度のガラス原料ガスに置換するプロセスが不要になるため、原料供給と停止を頻繁に繰り返す系の場合、ガラス原料ガスとパージガスとの混合ガスの排気処分の頻度を低減して、ガラス原料ガスの消費量を節約することもできる。   In addition, when the supply of glass source gas to the burner is temporarily stopped and then restarted, the process of replacing the source gas supply path with the glass source gas of the normal concentration is not required, so the supply and stop of the source material In the case of a system that repeats frequently, the frequency of exhaust disposal of the mixed gas of the glass raw material gas and the purge gas can be reduced, and the consumption of the glass raw material gas can be saved.

以下、本発明に係るガラス微粒子堆積体の製造方法及び製造装置の好適な実施の形態について、図面を参照して詳細に説明する。
図1は、本発明に係るガラス微粒子堆積体の製造方法を実現する製造装置の一実施の形態の概略構成を示すブロック図である。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a method and apparatus for producing a glass particulate deposit according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a manufacturing apparatus that realizes the method for manufacturing a glass particulate deposit according to the present invention.

図1に示したガラス微粒子堆積体の製造装置1では、原料貯留部11に貯留されているガラス原料ガス13はガス流量制御機構14を備えた原料ガス供給路16a,16b,16cから反応容器18内のバーナー19に供給して、バーナー19から吹き付けるガラス原料ガス13の火炎加水分解反応により生成したガラス微粒子を、反応容器18内に支持された出発ガラスロッド21の外周に堆積させることでガラス微粒子堆積体を製造する。   In the glass particle deposit manufacturing apparatus 1 shown in FIG. 1, the glass source gas 13 stored in the source storage unit 11 is supplied from a source gas supply path 16 a, 16 b, 16 c provided with a gas flow rate control mechanism 14 to a reaction vessel 18. The glass particles generated by the flame hydrolysis reaction of the glass raw material gas 13 sprayed from the burner 19 by being supplied to the inner burner 19 are deposited on the outer periphery of the starting glass rod 21 supported in the reaction vessel 18. A deposit is produced.

ガス流量制御機構14は、原料ガス供給路16aの開度を調整して、該原料ガス供給路16aから原料ガス供給路16bに流れるガラス原料ガス13の流量を調整する。該ガス流量制御機構14における流路の開度調整は、バーナー19に供給すべきガラス原料ガス13の流量値に基づいて、不図示の制御装置により、自動制御される。   The gas flow rate control mechanism 14 adjusts the flow rate of the glass source gas 13 flowing from the source gas supply path 16a to the source gas supply path 16b by adjusting the opening of the source gas supply path 16a. The opening degree adjustment of the flow path in the gas flow rate control mechanism 14 is automatically controlled by a control device (not shown) based on the flow rate value of the glass raw material gas 13 to be supplied to the burner 19.

具体的には、ガス流量制御機構14は、例えば、OVD法によるガラス微粒子堆積体の製造工程で、出発ガラスロッド21上のガラス微粒子の堆積層の両端部に到達して、バーナー19へのガラス原料ガス13の供給を徐々にゼロに近づけるよう調整するときには、反応容器18内での出発ガラスロッド21の端部の移動に連動して、徐々に流路開度を絞って、ガラス原料ガス13の供給を徐々にゼロに近づけるよう調整する。   Specifically, the gas flow rate control mechanism 14 reaches the both ends of the deposition layer of the glass particulates on the starting glass rod 21 in the manufacturing process of the glass particulate deposition body by the OVD method, for example, and the glass to the burner 19. When the supply of the raw material gas 13 is adjusted so as to gradually approach zero, the flow path opening is gradually narrowed in conjunction with the movement of the end of the starting glass rod 21 in the reaction vessel 18, so that the glass raw material gas 13 Adjust the supply to gradually approach zero.

出発ガラスロッド21は、OVD法による製造が可能なように、反応容器18内に、中心軸方向に往復移動可能に、且つ中心軸周りに回転可能に支持されている。   The starting glass rod 21 is supported in the reaction vessel 18 so as to be able to reciprocate in the direction of the central axis and to be rotatable about the central axis so that the production by the OVD method is possible.

この製造装置1では、出発ガラスロッド21の外周にガラス微粒子を堆積させる一方で、前記火炎加水分解反応により反応容器18内に発生した腐食性ガスは反応容器18内の浮遊ガラス微粒子と共に、反応容器18に接続された容器側排気路23に負圧吸引して排気する。
容器側排気路23には、流路を開閉する流路開閉バルブ24が装備されていて、該流路開閉バルブ24の制御により、反応容器18からの排気量を調整することができる。
In this manufacturing apparatus 1, while the glass particles are deposited on the outer periphery of the starting glass rod 21, the corrosive gas generated in the reaction vessel 18 by the flame hydrolysis reaction is brought together with the floating glass particles in the reaction vessel 18 together with the reaction vessel. The container-side exhaust passage 23 connected to 18 is suctioned with a negative pressure and exhausted.
The vessel side exhaust passage 23 is provided with a passage opening / closing valve 24 for opening and closing the passage, and the amount of exhaust from the reaction vessel 18 can be adjusted by controlling the passage opening / closing valve 24.

更に、この製造装置1では、ガス流量制御機構14とバーナー19との間で原料ガス供給路16bに原料ガス排気路25aが分岐接続され、この原料ガス排気路25aはその下流に直列に連なる原料ガス排気路25b,25cを経て、下流側で容器側排気路23と兼用の吸引排気手段27に接続されている。また、ガス流量制御機構14の上流側の原料ガス供給路16bには、パージガスを導入するパージガス供給路29が分岐接続されている。パージガスとしては、例えば、窒素ガス等の不活性ガスが使われる。   Further, in this manufacturing apparatus 1, a raw material gas exhaust passage 25a is branched and connected to the raw material gas supply passage 16b between the gas flow rate control mechanism 14 and the burner 19, and the raw material gas exhaust passage 25a is connected to the downstream in series. The gas exhaust passages 25b and 25c are connected to the suction exhaust means 27 that also serves as the container exhaust passage 23 on the downstream side. Further, a purge gas supply path 29 for introducing purge gas is branchedly connected to the source gas supply path 16 b on the upstream side of the gas flow rate control mechanism 14. As the purge gas, for example, an inert gas such as nitrogen gas is used.

原料ガス供給路16bと原料ガス排気路25aとの分岐接続部には、各流路を開閉する流路開閉バルブ31,32によって構成される流路切り替え機構36が装備されている。また、原料ガス供給路16aとパージガス供給路29との分岐接続部には、各流路を開閉する流路開閉バルブ33,34によって構成される流路切り替え機構37が装備されている。   A branch connection portion between the source gas supply path 16b and the source gas exhaust path 25a is equipped with a channel switching mechanism 36 constituted by channel opening / closing valves 31 and 32 for opening and closing each channel. In addition, the branch connection portion between the source gas supply path 16a and the purge gas supply path 29 is equipped with a flow path switching mechanism 37 constituted by flow path opening / closing valves 33 and 34 for opening and closing each flow path.

ガス流量制御機構14の下流の分岐接続部に装備された流路切り替え機構36は、各流路開閉バルブ31,32の開閉制御により、原料ガス供給路16bとの接続を、バーナー19又は原料ガス排気路25aに切り替える。
ガス流量制御機構14の上流の分岐接続部に装備された流路切り替え機構37は、各流路開閉バルブ33,34の開閉制御により、ガス流量制御機構14への接続を、原料貯留部11またはパージガス供給路29に切り替える。
但し、本実施の形態の場合、流路開閉バルブ34は設備保全用の意味で装備しており、本発明では流路開閉バルブ34は使用しない。
The flow path switching mechanism 36 installed in the branch connection portion downstream of the gas flow rate control mechanism 14 connects the raw material gas supply path 16b to the burner 19 or the raw material gas by opening / closing control of the respective flow path opening / closing valves 31 and 32. Switch to the exhaust passage 25a.
The flow path switching mechanism 37 installed in the branch connection portion upstream of the gas flow rate control mechanism 14 is connected to the gas flow rate control mechanism 14 by opening / closing control of the respective flow path opening / closing valves 33, 34. Switch to the purge gas supply path 29.
However, in the case of this embodiment, the flow path opening / closing valve 34 is equipped for the purpose of equipment maintenance, and the flow path opening / closing valve 34 is not used in the present invention.

この製造装置1では、ガラス微粒子の堆積終了時には、ガス流量制御機構14の下流側に配置した流路切り替え機構36によって、原料ガス供給路16bの接続先をバーナー19から、原料ガス排気路25aに切り替えると共に、ガス流量制御機構14の上流側に配置した流路切り替え機構37によって、原料ガス供給路16aの接続先を原料貯留部11からパージガス供給路29に切り替えて、ガス流量制御機構14の上流の原料ガス供給路16bにパージガスを導入し、原料ガス排気路25aの分岐接続部よりも上流の原料ガス供給路16bに残留しているガラス原料ガス13をパージガスと一緒に原料ガス排気路25aに負圧吸引して排気する。   In the manufacturing apparatus 1, at the end of the deposition of the glass particulates, the connection destination of the source gas supply path 16 b is changed from the burner 19 to the source gas exhaust path 25 a by the channel switching mechanism 36 disposed on the downstream side of the gas flow rate control mechanism 14. At the same time, the flow path switching mechanism 37 arranged on the upstream side of the gas flow rate control mechanism 14 switches the connection destination of the raw material gas supply path 16a from the raw material reservoir 11 to the purge gas supply path 29, and the upstream side of the gas flow rate control mechanism 14 A purge gas is introduced into the raw material gas supply passage 16b, and the glass raw material gas 13 remaining in the raw material gas supply passage 16b upstream of the branch connection portion of the raw material gas exhaust passage 25a is introduced into the raw material gas exhaust passage 25a together with the purge gas. Exhaust with negative pressure.

本実施の形態の場合、原料ガス供給路16bの分岐接続部よりも下流のバーナー19側の圧力を検知する第1の圧力検知手段P1と、原料ガス排気路25aの下流に連通した原料ガス排気路25b内の圧力を検知する第2の圧力検知手段P2と、原料ガス排気路25aの分岐接続部とガス流量制御機構14との間の原料ガス供給路16b内の圧力を検知する第3の圧力検知手段P3と、パージガス供給路29から原料ガス排気路25bにパージガスを供給して原料ガス排気路25a,25b内の圧力を調整する排気圧調整機構41と、第2の圧力検知手段P2の装備位置よりも下流の原料ガス排気路25b上に装備されて該原料ガス排気路25b内のガス流量を制御することで排気圧調整機構41による圧力調整を補助する補助調整機構42とを備えている。   In the case of the present embodiment, the first pressure detection means P1 for detecting the pressure on the burner 19 side downstream of the branch connection portion of the source gas supply path 16b and the source gas exhaust communicated downstream of the source gas exhaust path 25a. Second pressure detecting means P2 for detecting the pressure in the passage 25b, and third pressure for detecting the pressure in the source gas supply passage 16b between the branch connection portion of the source gas exhaust passage 25a and the gas flow rate control mechanism 14. A pressure detecting means P3, an exhaust pressure adjusting mechanism 41 for adjusting the pressure in the source gas exhaust paths 25a, 25b by supplying purge gas from the purge gas supply path 29 to the source gas exhaust path 25b, and a second pressure detecting means P2. An auxiliary adjustment mechanism 42 that is equipped on the source gas exhaust passage 25b downstream from the equipment position and assists pressure adjustment by the exhaust pressure adjustment mechanism 41 by controlling the gas flow rate in the source gas exhaust passage 25b. It is equipped with a.

第1の圧力検知手段P1及び第2の圧力検知手段P2及び第3の圧力検知手段P3は、いずれも、所謂圧力計である。
第1の圧力検知手段P1は、本実施の形態の場合、反応容器18内に装備されていて、バーナー19側の圧力として、反応容器18内の圧力を検知する。
第1の圧力検知手段P1と取付位置としては、上記の他に、バーナー19と流路開閉バルブ31との間の流路を選択することも可能である。
The first pressure detection means P1, the second pressure detection means P2, and the third pressure detection means P3 are all so-called pressure gauges.
In the case of the present embodiment, the first pressure detection means P1 is provided in the reaction vessel 18, and detects the pressure in the reaction vessel 18 as the pressure on the burner 19 side.
In addition to the above, the flow path between the burner 19 and the flow path opening / closing valve 31 can be selected as the first pressure detection means P1 and the mounting position.

第2の圧力検知手段P2は、本実施の形態の場合、原料ガス排気路25a,25b間で該流路を開閉する流路開閉バルブ32と、その下流に配置された補助調整機構42との間の流路に装備されている。   In the case of the present embodiment, the second pressure detection means P2 includes a flow path opening / closing valve 32 that opens and closes the flow path between the source gas exhaust paths 25a and 25b, and an auxiliary adjustment mechanism 42 disposed downstream thereof. Equipped with a channel between.

排気圧調整機構41は、パージガス供給路29と原料ガス排気路25bとを連通させた流路44に装備されていて、該流路44の開度を調整して、該流路44内を流れるパージガスの流量を調整する。該排気圧調整機構41における流路の開度調整は、原料ガス排気路25a,25b,25cによる排気処理が適正に維持されるように、前述の各圧力検知手段P1,P2,P3の検出値を監視する不図示の制御装置により、自動制御される。   The exhaust pressure adjusting mechanism 41 is provided in a flow path 44 in which the purge gas supply path 29 and the source gas exhaust path 25 b are communicated, and the opening of the flow path 44 is adjusted to flow through the flow path 44. Adjust the purge gas flow rate. The opening degree adjustment of the flow path in the exhaust pressure adjusting mechanism 41 is performed by detecting the detected values of the pressure detecting means P1, P2, and P3 so that the exhaust processing by the source gas exhaust paths 25a, 25b, and 25c is properly maintained. It is automatically controlled by a control device (not shown) for monitoring the above.

具体的には、排気圧調整機構41は、例えば、OVD法によるガラス微粒子堆積体の製造工程で、出発ガラスロッド21上のガラス微粒子の堆積層の両端部に到達して、出発ガラスロッド21へのガラス微粒子の堆積調整のために、バーナー19へのガラス原料ガス13の供給を徐々にゼロに近づけるよう調整するとき、あるいは、バーナー19へのガラス原料ガス13の供給を一時的に停止するときには、第3の圧力検知手段P3の検出値p3と第2の圧力検知手段P2の検出値p2との間に、p3≧p2の関係が維持されるように、且つ、第1の圧力検知手段P1の検出値p1と第2の圧力検知手段P2の検出値p2との間にp1≒p2若しくはp2>p1の関係が維持されるように、原料ガス排気路25a,25b,25cへのパージガスの導入量を制御する。   Specifically, the exhaust pressure adjusting mechanism 41 reaches the both ends of the deposited layer of the glass particulates on the starting glass rod 21 and moves to the starting glass rod 21 in the manufacturing process of the glass particulate deposit by the OVD method, for example. When adjusting the supply of the glass source gas 13 to the burner 19 to gradually approach zero for the purpose of adjusting the deposition of the glass fine particles, or when temporarily stopping the supply of the glass source gas 13 to the burner 19 The relationship between p3 ≧ p2 is maintained between the detection value p3 of the third pressure detection means P3 and the detection value p2 of the second pressure detection means P2, and the first pressure detection means P1. Is purged to the source gas exhaust passages 25a, 25b, and 25c so that the relationship of p1≈p2 or p2> p1 is maintained between the detected value p1 of the second pressure detecting means P2 and the detected value p2 of the second pressure detecting means P2. To control the introduction amount of the scan.

前記排気圧調整機構41の例としては、MFCや、一般的な流量調整弁を使用することができる。   As an example of the exhaust pressure adjusting mechanism 41, an MFC or a general flow rate adjusting valve can be used.

補助調整機構42は、原料ガス排気路25cの下流に合流する容器側排気路23による排気性能が損なわれないように、原料ガス排気路25cの下流の圧力を容器側排気路23よりも小さく修正するもので、例えば、MFCでも良いし、流路に一定の圧損を付与する簡単な構造のものでよい。   The auxiliary adjustment mechanism 42 corrects the pressure downstream of the source gas exhaust path 25c to be smaller than that of the container side exhaust path 23 so that the exhaust performance of the container side exhaust path 23 that merges downstream of the source gas exhaust path 25c is not impaired. For example, an MFC or a simple structure that gives a certain pressure loss to the flow path may be used.

以上の製造装置1では、例えば、OVD法によるガラス微粒子堆積体の製造工程で、出発ガラスロッド21上のガラス微粒子の堆積層の両端部に到達して、出発ガラスロッド21へのガラス微粒子の堆積調整のために、バーナー19へのガラス原料ガス13の供給を徐々にゼロに近づけるよう調整するとき、あるいは、バーナー19へのガラス原料ガス13の供給を一時的に停止するときには、原料ガス供給路16bのガス流量制御機構14でガラス原料ガス13の流量を徐々にゼロに近づけるよう調整する一方、第1及び第2の圧力検知手段P1,P2の検出値が略一致するように、排気圧調整機構41により原料ガス排気路25bへのパージガスの導入量を調整して、原料ガス排気路25aの分岐接続部より上流の原料ガス供給路16bに残留しているガラス原料ガス13を滞留、若しくは微量流に調整する。
このガラス原料ガス13の滞留、若しくは微量流に調整することにより、ガス流量制御機構14側をバーナー19側よりも高圧(陽圧)に維持することにより、バーナー19側からの腐食性ガス等の逆流を防止する。
In the manufacturing apparatus 1 described above, for example, in the manufacturing process of the glass particle deposit by the OVD method, the both ends of the glass particle deposition layer on the starting glass rod 21 are reached and the glass particles are deposited on the starting glass rod 21. For adjustment, when adjusting the supply of the glass raw material gas 13 to the burner 19 to gradually approach zero, or when temporarily stopping the supply of the glass raw material gas 13 to the burner 19, the raw material gas supply path The gas flow rate control mechanism 14b adjusts the flow rate of the glass raw material gas 13 to gradually approach zero while adjusting the exhaust pressure so that the detection values of the first and second pressure detection means P1 and P2 substantially coincide. The amount of purge gas introduced into the source gas exhaust passage 25b is adjusted by the mechanism 41, and the source gas supply passage 16b upstream from the branch connection portion of the source gas exhaust passage 25a. Residue to dwell a glass raw material gas 13, or to adjust the trace stream.
By adjusting the glass raw material gas 13 to stay or a minute flow, the gas flow rate control mechanism 14 side is maintained at a higher pressure (positive pressure) than the burner 19 side, so that corrosive gas or the like from the burner 19 side is maintained. Prevent backflow.

以上に説明したガラス微粒子堆積体の製造装置1では、例えばOVD法によるガラス微粒子堆積体の製造工程において、出発ガラスロッド21へのガラス微粒子の堆積調整のために、火炎加水分解反応によりガラス微粒子を生成するバーナー19へのガラス原料ガス13の供給を一時的にゼロ又はゼロに近づける際には、排気圧調整機構41により原料ガス排気路25a内の圧力を、バーナー19側の圧力に略一致させ、前記原料ガス流路を前記原料ガス排気路側に切り替えると共に、原料ガス排気路25aの分岐接続部より上流の原料ガス供給路16bに残留しているガラス原料ガス13を滞留、若しくは微量流し続ける。
これにより、原料ガス排気路25aの分岐接続部より上流の原料ガス供給路16bは、バーナー19側よりも圧力が高い状態に維持されるため、バーナー19の上流の原料ガス供給路16bにパージガスの導入を行わずとも、バーナー19側からのガスの逆流を防止できる。
In the glass particle deposit manufacturing apparatus 1 described above, for example, in the glass particle deposit manufacturing process by the OVD method, glass particles are deposited by a flame hydrolysis reaction in order to adjust the deposition of the glass particles on the starting glass rod 21. When the supply of the glass raw material gas 13 to the burner 19 to be generated is temporarily set to zero or close to zero, the pressure in the raw material gas exhaust passage 25a is made substantially equal to the pressure on the burner 19 side by the exhaust pressure adjusting mechanism 41. The source gas flow path is switched to the source gas exhaust path side, and the glass source gas 13 remaining in the source gas supply path 16b upstream from the branch connection portion of the source gas exhaust path 25a is retained or kept flowing in a small amount.
As a result, the source gas supply path 16b upstream from the branch connection portion of the source gas exhaust path 25a is maintained at a higher pressure than the burner 19 side, so that the purge gas is supplied to the source gas supply path 16b upstream of the burner 19. Even if introduction is not performed, the backflow of gas from the burner 19 side can be prevented.

そして、バーナー19の上流の原料ガス供給路16b,16cにパージガスの導入を行っておらず、ガス流量制御機構14を含む原料ガス供給路16b上には、供給停止前と同じ濃度のガラス原料ガス13が残留しているため、バーナー19へのガラス原料ガス13の供給を再開する際には、原料ガス供給路16b内を正規の濃度のガラス原料ガス13に置換するプロセスが不要で、バーナー19へのガラス原料ガス13の供給を速やかに再開することができる。従って、プロセス時間の短縮を図ることができる。   The purge gas is not introduced into the source gas supply passages 16b and 16c upstream of the burner 19, and the glass source gas having the same concentration as that before the supply stop is provided on the source gas supply passage 16b including the gas flow rate control mechanism 14. 13 remains, when the supply of the glass source gas 13 to the burner 19 is resumed, a process for replacing the inside of the source gas supply path 16b with the glass source gas 13 having a normal concentration is unnecessary. The supply of the glass raw material gas 13 can be promptly restarted. Therefore, the process time can be shortened.

また、バーナー19へのガラス原料ガス13の供給を一時的に停止した後、再開する際に、原料ガス供給路16b,16c内を正規の濃度のガラス原料ガス13に置換するプロセスが不要になるため、原料供給と停止を頻繁に繰り返す系の場合、ガラス原料ガス13とパージガスとの混合ガスの排気処分の頻度を低減して、ガラス原料ガス13の消費量を節約することもできる。   Further, when the supply of the glass raw material gas 13 to the burner 19 is temporarily stopped and then restarted, a process of replacing the raw material gas supply paths 16b and 16c with the glass raw material gas 13 having a normal concentration becomes unnecessary. Therefore, in the case of a system that frequently repeats the supply and stop of the raw material, the frequency of exhaust gas disposal of the mixed gas of the glass raw material gas 13 and the purge gas can be reduced, and the consumption of the glass raw material gas 13 can be saved.

なお、本発明に係るガラス微粒子堆積体の製造方法及び製造装置は、上記のように、OVD法によるガラス微粒子堆積体の製造工程において極めて有用である。しかし、OVD法以外の製造方法でガラス微粒子堆積体を製造する場合でも、ガラス微粒子を生成するバーナーへのガラス原料ガスの供給を一時的にゼロ又はゼロに近づける工程を含む場合には、同様の作用・効果を得ることができる。   In addition, the manufacturing method and manufacturing apparatus of the glass particulate deposit according to the present invention are extremely useful in the manufacturing process of the glass particulate deposit by the OVD method as described above. However, even when a glass particulate deposit is produced by a production method other than the OVD method, if the method includes temporarily bringing the glass source gas supply to the burner that produces the glass particulates to zero or close to zero, Actions and effects can be obtained.

本発明に係るガラス微粒子堆積体の製造方法を実現する製造装置の一実施の形態の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of one Embodiment of the manufacturing apparatus which implement | achieves the manufacturing method of the glass fine particle deposit body which concerns on this invention. 従来のガラス微粒子堆積体の製造装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the manufacturing apparatus of the conventional glass particle deposit body.

符号の説明Explanation of symbols

1 ガラス微粒子堆積体の製造装置
11 原料貯留部
13 ガラス原料ガス
14 ガス流量制御機構
16a,16b,16c 原料ガス供給路
18 反応容器
19 バーナー
21 出発ガラスロッド
23 容器側排気路
24 流路開閉バルブ
25a,25b,25c 原料ガス排気路
27 吸引排気手段
29 パージガス供給路
31〜34 流路開閉バルブ
36 流路切り替え機構
37 流路切り替え機構
41 排気圧調整機構
42 補助調整機構
P1 第1の圧力検知手段
P2 第2の圧力検知手段
P3 第3の圧力検知手段
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of glass particulate deposit 11 Raw material storage part 13 Glass raw material gas 14 Gas flow rate control mechanism 16a, 16b, 16c Raw material gas supply path 18 Reaction container 19 Burner 21 Starting glass rod 23 Container side exhaust path 24 Flow path opening / closing valve 25a , 25b, 25c Source gas exhaust path 27 Suction exhaust means 29 Purge gas supply path 31-34 Channel open / close valve 36 Channel switching mechanism 37 Channel switching mechanism 41 Exhaust pressure adjustment mechanism 42 Auxiliary adjustment mechanism P1 First pressure detection means P2 Second pressure detection means P3 Third pressure detection means

Claims (2)

反応容器内に設けられてガラス原料ガスを出発ガラスロッドに吹き付けるバーナーと、ガス流量制御機構を備えて前記バーナーにガラス原料ガスを供給する原料ガス供給路と、前記反応容器に接続されて前記反応容器内雰囲気を負圧吸引により外部に排気する容器側排気路と、前記原料ガス排気路の接続先を前記バーナーから切り替え可能に前記原料ガス供給路に分岐接続された原料ガス排気路と、を備え、
前記バーナーから吹き付ける前記ガラス原料ガスの火炎加水分解反応により生成したガラス微粒子を前記出発ガラスロッドの外周に堆積させることでガラス微粒子堆積体を製造する一方、前記ガラス微粒子の堆積終了時には、前記原料ガス供給路の接続先を前記バーナーから原料ガス排気路に切り替えて、前記原料ガス供給路に残留しているガラス原料ガスを前記原料ガス排気路に負圧吸引して排気するガラス微粒子堆積体の製造方法であって、
前記原料ガス排気路には、パージガスの供給により原料ガス排気路内の圧力を調整する排気圧調整機構を設け、
前記出発ガラスロッドへの前記ガラス微粒子の堆積調整のために、前記バーナーへの前記ガラス原料ガスの供給を一時的に停止するときには、前記原料ガス供給路のガス流量制御機構で原料ガスの流量を徐々にゼロに近づけるよう調整する一方、
前記排気圧調整機構により前記原料ガス排気路内の圧力を前記バーナー側の圧力に略一致させ、前記原料ガス流路を前記原料ガス排気路側に切り替えると共に、前記原料ガス排気路の分岐接続部より上流の前記原料ガス供給路に残留しているガラス原料ガスを滞留、若しくは微量流し続けることを特徴とするガラス微粒子堆積体の製造方法。
A burner that is provided in the reaction vessel and blows the glass raw material gas onto the starting glass rod, a raw material gas supply path that supplies a glass raw material gas to the burner with a gas flow rate control mechanism, and is connected to the reaction vessel to react the reaction A container side exhaust path for exhausting the atmosphere in the container to the outside by negative pressure suction; and a source gas exhaust path branched and connected to the source gas supply path so that the connection destination of the source gas exhaust path can be switched from the burner. Prepared,
A glass fine particle deposit is produced by depositing glass fine particles generated by a flame hydrolysis reaction of the glass raw material gas sprayed from the burner on the outer periphery of the starting glass rod, while at the end of the deposition of the glass fine particles, the raw material gas Production of a glass particulate deposit body in which the connection destination of the supply path is switched from the burner to the source gas exhaust path, and the glass source gas remaining in the source gas supply path is sucked into the source gas exhaust path by negative pressure. A method,
The source gas exhaust path is provided with an exhaust pressure adjusting mechanism that adjusts the pressure in the source gas exhaust path by supplying purge gas,
When the supply of the glass raw material gas to the burner is temporarily stopped to adjust the deposition of the glass fine particles on the starting glass rod, the flow rate of the raw material gas is controlled by the gas flow rate control mechanism of the raw material gas supply path. While adjusting to gradually approach zero,
The exhaust pressure adjusting mechanism causes the pressure in the source gas exhaust path to substantially coincide with the pressure on the burner side, switches the source gas flow path to the source gas exhaust path side, and from a branch connection portion of the source gas exhaust path A method for producing a glass fine particle deposit, characterized in that a glass raw material gas remaining in an upstream raw material gas supply path is retained or kept flowing in a small amount.
反応容器内に設けられてガラス原料ガスを出発ガラスロッドに吹き付けるバーナーと、ガス流量制御機構を備えて前記バーナーにガラス原料ガスを供給する原料ガス供給路と、前記反応容器に接続されて前記反応容器内雰囲気を負圧吸引により外部に排気する容器側排気路と、前記原料ガス排気路の接続先を前記バーナーから切り替え可能に前記原料ガス供給路に分岐接続された原料ガス排気路と、を備え、
前記バーナーから吹き付ける前記ガラス原料ガスの火炎加水分解反応により生成したガラス微粒子を前記出発ガラスロッドの外周に堆積させることでガラス微粒子堆積体を製造する一方、前記ガラス微粒子の堆積終了時には、前記原料ガス供給路の接続先を前記バーナーから原料ガス排気路に切り替えて、前記原料ガス供給路に残留しているガラス原料ガスを前記原料ガス排気路に負圧吸引して排気するガラス微粒子堆積体の製造装置であって、
前記バーナー側の圧力を検知する第1の圧力検知手段と、前記原料ガス排気路内の圧力を検知する第2の圧力検知手段と、前記原料ガス排気路にパージガスを供給して前記原料ガス排気路内の圧力を調整する排気圧調整機構とを備え、
前記出発ガラスロッドへの前記ガラス微粒子の堆積調整のために、前記バーナーへのガラス原料ガスの供給を一時的に停止するときには、前記原料ガス供給路の前記ガス流量制御機構で原料ガスの流量を徐々にゼロに近づけるよう調整する一方、
前記第1及び第2の圧力検知手段に基づいて、前記排気圧調整機構により前記原料ガス排気路内の圧力を前記バーナー側の圧力に略一致させ、前記原料ガス流路を前記原料ガス排気路側に切り替えると共に、前記原料ガス供給路に残留しているガラス原料ガスを滞留、若しくは微量流し続けることを特徴とするガラス微粒子堆積体の製造装置。
A burner that is provided in the reaction vessel and blows the glass raw material gas onto the starting glass rod, a raw material gas supply path that supplies a glass raw material gas to the burner with a gas flow rate control mechanism, and is connected to the reaction vessel to react the reaction A container side exhaust path for exhausting the atmosphere in the container to the outside by negative pressure suction; and a source gas exhaust path branched and connected to the source gas supply path so that the connection destination of the source gas exhaust path can be switched from the burner. Prepared,
A glass fine particle deposit is produced by depositing glass fine particles generated by a flame hydrolysis reaction of the glass raw material gas sprayed from the burner on the outer periphery of the starting glass rod, while at the end of the deposition of the glass fine particles, the raw material gas Production of a glass particulate deposit body in which the connection destination of the supply path is switched from the burner to the source gas exhaust path, and the glass source gas remaining in the source gas supply path is sucked into the source gas exhaust path by negative pressure. A device,
First pressure detection means for detecting the pressure on the burner side, second pressure detection means for detecting pressure in the source gas exhaust path, and supply of purge gas to the source gas exhaust path to supply the source gas exhaust An exhaust pressure adjustment mechanism for adjusting the pressure in the road,
When temporarily stopping the supply of the glass source gas to the burner to adjust the deposition of the glass fine particles on the starting glass rod, the flow rate of the source gas is controlled by the gas flow rate control mechanism of the source gas supply path. While adjusting to gradually approach zero,
Based on the first and second pressure detection means, the exhaust pressure adjusting mechanism causes the pressure in the source gas exhaust passage to substantially coincide with the pressure on the burner side, and the source gas passage is connected to the source gas exhaust passage side. And the glass raw material gas remaining in the raw material gas supply passage is retained or kept flowing in a small amount.
JP2007277534A 2007-10-25 2007-10-25 Method and apparatus for manufacturing fine glass particle deposit Withdrawn JP2009102207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277534A JP2009102207A (en) 2007-10-25 2007-10-25 Method and apparatus for manufacturing fine glass particle deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277534A JP2009102207A (en) 2007-10-25 2007-10-25 Method and apparatus for manufacturing fine glass particle deposit

Publications (1)

Publication Number Publication Date
JP2009102207A true JP2009102207A (en) 2009-05-14

Family

ID=40704374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277534A Withdrawn JP2009102207A (en) 2007-10-25 2007-10-25 Method and apparatus for manufacturing fine glass particle deposit

Country Status (1)

Country Link
JP (1) JP2009102207A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095604A (en) * 2011-10-28 2013-05-20 Sumitomo Electric Ind Ltd Apparatus and method for producing glass preform for optical fiber
JP2014131946A (en) * 2013-01-04 2014-07-17 Sumitomo Electric Ind Ltd Fluid supply apparatus for synthesizing glass
JP2018039679A (en) * 2016-09-05 2018-03-15 住友電気工業株式会社 Fluid supply apparatus for glass synthesis
JP2018145065A (en) * 2017-03-08 2018-09-20 住友電気工業株式会社 Method and apparatus for manufacturing glass fine particle deposit
WO2018216331A1 (en) * 2017-05-26 2018-11-29 三浦工業株式会社 Hydrogen combustion boiler
WO2019240232A1 (en) * 2018-06-15 2019-12-19 住友電気工業株式会社 Method for producing glass particulate deposit
CN113307486A (en) * 2020-02-26 2021-08-27 住友电气工业株式会社 Glass base material manufacturing device
US11230489B2 (en) 2018-02-05 2022-01-25 Fujikura Ltd. Method for manufacturing porous glass fine particle body, manufacturing apparatus for porous glass fine particle body, and method for manufacturing glass preform

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095604A (en) * 2011-10-28 2013-05-20 Sumitomo Electric Ind Ltd Apparatus and method for producing glass preform for optical fiber
JP2014131946A (en) * 2013-01-04 2014-07-17 Sumitomo Electric Ind Ltd Fluid supply apparatus for synthesizing glass
JP2018039679A (en) * 2016-09-05 2018-03-15 住友電気工業株式会社 Fluid supply apparatus for glass synthesis
JP2018145065A (en) * 2017-03-08 2018-09-20 住友電気工業株式会社 Method and apparatus for manufacturing glass fine particle deposit
WO2018216331A1 (en) * 2017-05-26 2018-11-29 三浦工業株式会社 Hydrogen combustion boiler
US11230489B2 (en) 2018-02-05 2022-01-25 Fujikura Ltd. Method for manufacturing porous glass fine particle body, manufacturing apparatus for porous glass fine particle body, and method for manufacturing glass preform
WO2019240232A1 (en) * 2018-06-15 2019-12-19 住友電気工業株式会社 Method for producing glass particulate deposit
JPWO2019240232A1 (en) * 2018-06-15 2021-06-24 住友電気工業株式会社 Method for manufacturing glass fine particle deposits
JP7276335B2 (en) 2018-06-15 2023-05-18 住友電気工業株式会社 Manufacturing method of glass fine particle deposit
CN113307486A (en) * 2020-02-26 2021-08-27 住友电气工业株式会社 Glass base material manufacturing device

Similar Documents

Publication Publication Date Title
JP2009102207A (en) Method and apparatus for manufacturing fine glass particle deposit
KR101299841B1 (en) Treatment device
CN102046543B (en) Method and apparatus for producing a crucible of quartz glass
JP6123851B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
US11230489B2 (en) Method for manufacturing porous glass fine particle body, manufacturing apparatus for porous glass fine particle body, and method for manufacturing glass preform
JP2010118652A (en) Target supply device of extreme ultraviolet light source device and method of manufacturing the same
JP2010118652A5 (en)
US20230257880A1 (en) Method for producing a gallium oxide semiconductor film and a film forming apparatus
JP2014182919A (en) Ion implanter, and method for cleaning ion implanter
JP4806615B2 (en) Exhaust device and exhaust method
KR100928596B1 (en) Fluid treatment apparatus and fluid treatment method
JP4460062B2 (en) Optical fiber preform manufacturing method
JP2008103388A (en) Semiconductor manufacturing system
US20080292999A1 (en) Method for Heating an Industrial Furnace, and Apparatus Suitable for Carrying Out the Method
TWI808244B (en) Film forming method
JP3681908B2 (en) Mechanism for introducing a trace gas into an ultra-high vacuum chamber
JP6643395B2 (en) Method and apparatus for producing porous glass microparticles
JP2017088458A (en) Dehydration sintering device for porous glass preform, and dehydration sintering method
JP2004063902A (en) Substrate processing apparatus
JP2009091194A (en) Method for producing glass particle deposit
KR100621799B1 (en) Pressure control system for semiconductor processing chamber
JP4052506B2 (en) Substrate processing equipment
JP2006124784A (en) Vacuum system and method for exhausting vacuum chamber
JP2024078941A (en) Optical fiber manufacturing apparatus and method
JP3958165B2 (en) Cleaning method in plasma CVD apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101014

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120214