JP2009091194A - Method for producing glass particle deposit - Google Patents

Method for producing glass particle deposit Download PDF

Info

Publication number
JP2009091194A
JP2009091194A JP2007263252A JP2007263252A JP2009091194A JP 2009091194 A JP2009091194 A JP 2009091194A JP 2007263252 A JP2007263252 A JP 2007263252A JP 2007263252 A JP2007263252 A JP 2007263252A JP 2009091194 A JP2009091194 A JP 2009091194A
Authority
JP
Japan
Prior art keywords
glass
air
reaction vessel
deposition
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007263252A
Other languages
Japanese (ja)
Inventor
Shinji Hasegawa
慎治 長谷川
Tadanori Sekiguchi
忠紀 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007263252A priority Critical patent/JP2009091194A/en
Publication of JP2009091194A publication Critical patent/JP2009091194A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a glass particle deposit by which cracks of glass particles caused by rapid cooling after the completion of deposition can be prevented. <P>SOLUTION: In the method for producing a glass particle deposit 14, by which glass particles produced by a burner 12 in a reaction vessel 11 are deposited, the reaction vessel 11 comprises: an exhaust part 20 exhausting a gas inside the reaction vessel 11; and a feed port 23 serving as an air feed part feeding air to the inside of the reaction vessel 11. The exhaust part 20 comprises a regulation valve 22 serving as an air incorporation part 20 to be incorporated with air outside the reaction vessel 11 for regulating the quantity of the gas exhausted from the inside of the reaction vessel 11, and, upon the completion of the deposition of the glass particles, reduces the feed quantity Q1 of the air from the feed port 23 as compared with the range of the fine regulation of the glass particles upon the deposition. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、反応容器内においてバーナによりガラス微粒子を発生させて堆積させ、ガラス微粒子堆積体を製造するガラス微粒子堆積体の製造方法に関する。   The present invention relates to a method for producing a glass fine particle deposit, in which glass fine particles are generated and deposited by a burner in a reaction vessel to produce a glass fine particle deposit.

ガラス微粒子堆積体を製造する方法として、反応容器内において、バーナに供給したガラス原料ガスを酸水素火炎により加熱してガラス微粒子を発生させ、このガラス微粒子を堆積させ、ガラス微粒子堆積体を製造するVAD法やOVD法等が知られている(例えば特許文献1,2参照)。   As a method for producing a glass fine particle deposit, a glass raw material gas supplied to a burner is heated by an oxyhydrogen flame in a reaction vessel to generate glass fine particles, and the glass fine particles are deposited to produce a glass fine particle deposit. A VAD method, an OVD method, and the like are known (see, for example, Patent Documents 1 and 2).

特許文献1に記載の製造方法では、反応容器内部において、酸水素火炎を発生させるバーナからガラス原料ガスを噴出させて、それにより生成するガラス微粒子を棒状に堆積させて多孔質の光ファイバ母材(ガラス微粒子堆積体)を製造する。この際に、ガラス微粒子堆積体に堆積しなかった非堆積ガラス微粒子を、反応容器内から排出するダクト内の排気ガスを、一定の流速以上にするようにしている。また、排気ダクトに外気を導入するようにして、反応容器の排気の際に、反応容器内の圧力の変動を小さくすることが行われている。   In the manufacturing method described in Patent Document 1, a porous optical fiber preform is formed by ejecting glass raw material gas from a burner that generates an oxyhydrogen flame inside a reaction vessel and depositing glass fine particles generated thereby in a rod shape. (Glass fine particle deposit) is manufactured. At this time, the exhaust gas in the duct for discharging the non-deposited glass fine particles not deposited on the glass fine particle deposit body from the reaction vessel is set to have a certain flow rate or higher. In addition, outside air is introduced into the exhaust duct to reduce the fluctuation of the pressure in the reaction container when the reaction container is exhausted.

また、特許文献2に記載の光ファイバ母材の製造方法では、反応容器内にガラス微粒子生成用のバーナを有し、回転する出発ロッドに沿ってバーナを移動させながら出発ロッドの外周にガラス微粒子を堆積させる。反応容器内には、出発ロッドに沿って複数の排気口が連続して設けられており、移動するバーナに合わせて各排気口の排気量を順次変化するようにしている。   In addition, in the method of manufacturing an optical fiber preform described in Patent Document 2, a glass particle generating burner is provided in a reaction vessel, and the glass particles are formed on the outer periphery of the starting rod while moving the burner along the rotating starting rod. To deposit. In the reaction vessel, a plurality of exhaust ports are continuously provided along the starting rod, and the exhaust amount of each exhaust port is sequentially changed according to the moving burner.

特許2803510号公報Japanese Patent No. 2803510 特開平7−330367号公報JP 7-330367 A

前述したようなガラス母材の製造方法においては、反応容器内の腐食性ガスが外部に漏れないように、反応容器内の圧力を負圧にする必要がある。また、堆積しないガラス微粒子を効率よく排出するために、反応容器内部の気体を排気口に向かって流れるようにすることが望まれている。   In the glass base material manufacturing method as described above, the pressure in the reaction vessel needs to be negative so that the corrosive gas in the reaction vessel does not leak to the outside. In addition, in order to efficiently discharge the fine glass particles that are not deposited, it is desired that the gas inside the reaction vessel flows toward the exhaust port.

しかしながら、ガラス微粒子堆積終了後にも前述したような空気の流れを継続すると、反応容器内部に流入した外気は排気口に向かって流れる。このとき、ガラス微粒子堆積終了のタイミングで加熱源であるバーナは停止するため、ガラス微粒子堆積体に外気が当たってガラス微粒子堆積体の表面温度が例えば500℃程度から室温付近まで低下し、ガラス微粒子堆積体が急冷されるとともに表面の温度むらが生じて、割れが生じる場合があった。   However, if the air flow as described above is continued even after the deposition of the fine glass particles, the outside air flowing into the reaction vessel flows toward the exhaust port. At this time, since the burner as the heating source stops at the timing of the completion of the glass fine particle deposition, the outside temperature hits the glass fine particle deposit and the surface temperature of the glass fine particle deposit decreases from about 500 ° C. to around room temperature, for example. In some cases, the deposit was rapidly cooled and the surface temperature was uneven, resulting in cracks.

そこで、本発明の目的は、ガラス微粒子堆積終了後の急冷による割れを防止することができるガラス微粒子堆積体の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a method for producing a glass fine particle deposit capable of preventing cracking due to rapid cooling after the completion of the glass fine particle deposition.

上記課題を解決することのできる本発明に係るガラス微粒子堆積体の製造方法は、反応容器内においてバーナにより発生させたガラス微粒子を堆積させるガラス微粒子堆積体の製造方法であって、
前記反応容器は、前記反応容器内部の気体を排気する排気部と、前記反応容器内部に空気を供給する空気供給部とを有し、
前記排気部は、前記反応容器内部から排気する気体の量を調整するために前記反応容器の外部の空気を取り入れる空気取り込み部を有し、
ガラス微粒子の堆積終了時に、ガラス微粒子の堆積時の微調整の範囲と比較して前記空気供給部からの空気供給量を減少させることを特徴とする。
A method for producing a glass fine particle deposit according to the present invention that can solve the above-mentioned problems is a method for producing a glass fine particle deposit in which glass fine particles generated by a burner are deposited in a reaction vessel,
The reaction container has an exhaust part for exhausting the gas inside the reaction container, and an air supply part for supplying air into the reaction container,
The exhaust part has an air intake part that takes in air outside the reaction container in order to adjust the amount of gas exhausted from the reaction container.
At the end of the deposition of the glass fine particles, the amount of air supplied from the air supply unit is reduced as compared with the range of fine adjustment during the deposition of the glass fine particles.

また、前記ガラス微粒子の堆積終了時に、前記ガラス微粒子の堆積時より前記空気取り込み部からの空気取り込み量を増加することにより前記空気供給部からの空気供給量を減少させることが好ましい。   Further, it is preferable that the air supply amount from the air supply unit is decreased by increasing the air intake amount from the air intake unit at the end of the deposition of the glass fine particles from the time of deposition of the glass fine particles.

また、前記ガラス微粒子の堆積終了時に、前記空気供給部による空気供給量よりも前記空気取り込み部による空気取り込み量を多くすることが好ましい。   Further, it is preferable that the amount of air taken in by the air take-in unit is larger than the amount of air supplied by the air supply unit at the end of the deposition of the glass fine particles.

また、前記ガラス微粒子の堆積終了時に、前記ガラス微粒子堆積体を前記空気供給部近傍の空間から退避させることが好ましい。   Further, it is preferable that the glass particulate deposit is retracted from the space near the air supply unit at the end of the deposition of the glass particulates.

本発明によれば、ガラス微粒子を発生させるバーナが停止されるガラス微粒子の堆積終了時に、ガラス微粒子の堆積時の微調整の範囲と比較して空気供給部によって反応容器外部から反応容器内部へ供給される空気供給量を減少させる。これにより、反応容器外部から反応容器内部に供給される空気量が減少するため、反応容器内部における空気の流れを抑えることができ、ガラス微粒子堆積体を急冷することを防止して、ガラス微粒子堆積体に割れが生じることを防止することができる。   According to the present invention, at the end of the deposition of the glass particulates when the burner for generating the glass particulates is stopped, the air supply unit supplies the reaction vessel from the outside to the inside of the reaction vessel as compared with the fine adjustment range when the glass particulates are deposited. Reduce the amount of air supplied. As a result, the amount of air supplied from the outside of the reaction vessel to the inside of the reaction vessel is reduced, so that the flow of air inside the reaction vessel can be suppressed, and the glass fine particle deposit is prevented from being rapidly cooled. It is possible to prevent the body from cracking.

以下、本発明に係るガラス微粒子堆積体の製造方法の実施形態の例を、図面を参照しつつ説明する。
図1は本実施形態のガラス微粒子堆積体の製造方法を実施するガラス微粒子堆積体製造装置の一例を示す構成図であり、図2はガラス微粒子堆積時における空気取り込み部の制御状態を示すタイムチャートであり、図3はガラス微粒子の堆積時及びガラス微粒子の堆積終了時における総排気量に占める供給口から供給される外気の量と、調整弁から取り込まれる外気取り込み量との割合を示すタイムチャートである。
Hereinafter, an example of an embodiment of a method for producing a glass particulate deposit according to the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing an example of a glass particulate deposit body manufacturing apparatus for carrying out the glass particulate deposit body manufacturing method of the present embodiment, and FIG. 2 is a time chart showing a control state of an air intake section during glass particulate deposition. FIG. 3 is a time chart showing the ratio between the amount of outside air supplied from the supply port and the amount of outside air taken in from the regulating valve in the total exhaust amount at the time of deposition of glass particulates and at the end of deposition of glass particulates. It is.

図1に示すように、このガラス微粒子堆積体の製造装置10では、反応容器11の内部にガラス微粒子生成用のバーナ12が設けられており、噴出されるガラス原料ガス(SiCl等)と水素ガス及び酸素ガスの燃焼によってガラス微粒子を発生する。また、反応容器11内部には、反応容器11に対する挿通箇所の気密状態を概ね保持して支持棒13が回転可能かつ上下移動可能に吊下げられており、支持棒13の下端には連結部18を介して出発棒19が接続されている。この出発棒19の外周及び下方に、バーナ12から噴出したガラス微粒子が堆積していき、ガラス微粒子堆積体14を形成する。反応容器11には、堆積しなかったガラス微粒子等を排出するための排気口15が設けられており、この排気口15には排気部20が設けられている。 As shown in FIG. 1, in this glass particle deposit manufacturing apparatus 10, a burner 12 for generating glass particles is provided inside a reaction vessel 11, and a glass raw material gas (such as SiCl 4 ) to be ejected and hydrogen Glass particles are generated by the combustion of gas and oxygen gas. Further, inside the reaction vessel 11, the support rod 13 is suspended so as to be able to rotate and move up and down while maintaining the airtight state of the insertion portion with respect to the reaction vessel 11. A departure rod 19 is connected via Glass particulates ejected from the burner 12 are deposited on the outer periphery and below the starting bar 19 to form a glass particulate deposit 14. The reaction vessel 11 is provided with an exhaust port 15 for discharging glass particles and the like that have not been deposited, and the exhaust port 15 is provided with an exhaust unit 20.

排気部20は排気口15に取り付けられている排気ダクト21を有しており、排気ダクト21の下流側には、排気ファン(図示省略)が設けられている。また、排気ダクト21の途中位置には、排気ダクト21に取り込む外気の量を調整するために、空気取り込み部としての調整弁22が設けられている。調整弁22の開度を調整することにより、排気ダクト21に取り込む反応容器11の外部の空気の量を調整できるようになっている。また、反応容器11における排気口15と反対側の壁には、反応容器11の外部の空気を反応容器11内部に供給するための空気供給部としての供給口23が設けられている。供給口23は、単に開口を設けるようにしても良いが、ファンを設けたり、開閉弁を設けたりすることもできる。また、ダクトを取り付けるようにしても良い。   The exhaust unit 20 has an exhaust duct 21 attached to the exhaust port 15, and an exhaust fan (not shown) is provided on the downstream side of the exhaust duct 21. Further, an adjustment valve 22 as an air intake portion is provided at a midway position of the exhaust duct 21 in order to adjust the amount of outside air taken into the exhaust duct 21. The amount of air outside the reaction vessel 11 taken into the exhaust duct 21 can be adjusted by adjusting the opening of the adjusting valve 22. Further, a supply port 23 as an air supply unit for supplying air outside the reaction vessel 11 to the inside of the reaction vessel 11 is provided on the wall of the reaction vessel 11 opposite to the exhaust port 15. The supply port 23 may be simply provided with an opening, but may be provided with a fan or an on-off valve. A duct may be attached.

なお、反応容器11内部に圧力計16を設けて気圧を測定し、この測定結果を制御部17へ送信して、反応容器11内部の圧力が一定になるように制御部17により調整弁22の開度が制御される。例えば、排気部20による総排気量Qを一定としておき、図2に示すように、ガラス微粒子の堆積時における反応容器11内部の圧力が一定となるように、調整弁22の開度を微調整する。すなわち、測定された反応容器11内部の圧力が基準値より低い場合には、調整弁22の開度を上げて調整弁22からの外気の取り込み量Q2を多くすることで、反応容器11からの排気量Q1を少なくして、反応容器11内部の圧力を上げる。また、測定された圧力が基準値より高い場合には、調整弁22の開度を下げて調整弁22からの外気の取り込み量Q2を少なくし、反応容器11からの排気量Q1を多くして反応容器11内部の圧力を下げるようにする。   The pressure gauge 16 is provided inside the reaction vessel 11 to measure the atmospheric pressure, and the measurement result is transmitted to the control unit 17 so that the pressure inside the reaction vessel 11 is kept constant by the control unit 17 so that the pressure inside the reaction vessel 11 becomes constant. The opening is controlled. For example, the total exhaust amount Q by the exhaust unit 20 is kept constant, and as shown in FIG. 2, the opening of the adjustment valve 22 is finely adjusted so that the pressure inside the reaction vessel 11 at the time of deposition of glass particulates becomes constant. To do. That is, when the measured internal pressure of the reaction vessel 11 is lower than the reference value, the opening degree of the adjustment valve 22 is increased to increase the intake amount Q2 of the outside air from the adjustment valve 22, thereby The displacement Q1 is reduced and the pressure inside the reaction vessel 11 is increased. Further, when the measured pressure is higher than the reference value, the opening degree of the regulating valve 22 is decreased to reduce the intake amount Q2 of outside air from the regulating valve 22, and the exhaust amount Q1 from the reaction vessel 11 is increased. The pressure inside the reaction vessel 11 is lowered.

次に、本実施形態のガラス微粒子堆積体の製造方法について説明する。なお、図1に示したガラス微粒子堆積体製造装置10を用いた場合を一例として説明する。
反応容器11内においてバーナ12に供給したガラス原料ガス(SiCl等)をバーナ12の酸水素火炎により加熱してガラス微粒子を発生させ、出発棒19の外周及び下方に堆積させてガラス微粒子堆積体14を形成する。このとき、出発棒19をその中心軸回りに回転させるとともに、ガラス微粒子の堆積に応じて上昇させる。例えば、ガラス微粒子堆積体のガラス微粒子堆積箇所にレーザ光を通過させ、その受光強度が一定となるように出発棒19を引き上げればよい。
Next, the manufacturing method of the glass particulate deposit body of this embodiment is demonstrated. In addition, the case where the glass fine particle deposit body manufacturing apparatus 10 shown in FIG. 1 is used will be described as an example.
A glass raw material gas (SiCl 4 or the like) supplied to the burner 12 in the reaction vessel 11 is heated by an oxyhydrogen flame of the burner 12 to generate glass fine particles, which are deposited on the outer periphery and the lower side of the starting rod 19 to form a glass fine particle deposit. 14 is formed. At this time, the starting bar 19 is rotated around its central axis and raised according to the deposition of the glass particles. For example, the laser beam is allowed to pass through the glass fine particle deposition portion of the glass fine particle deposit, and the starting bar 19 may be pulled up so that the received light intensity is constant.

排気部20では常に一定の総排気量Qで排気しており、総排気量Qは、反応容器11から排気ダクト21への排気量Q1と、排気ダクト21に取り込む外部の空気の取り込み量Q2との和となる。すなわち、Q=Q1+Q2である。なお、反応容器11は供給口23及び排気口15以外では略気密であるため、供給口23から供給される外部の空気の量は、反応容器11から排気ダクト21に排気される排気量Q1と同じになる。   The exhaust part 20 always exhausts at a constant total exhaust amount Q. The total exhaust amount Q includes an exhaust amount Q1 from the reaction vessel 11 to the exhaust duct 21 and an external air intake amount Q2 to be taken into the exhaust duct 21. The sum of That is, Q = Q1 + Q2. Since the reaction vessel 11 is substantially airtight except for the supply port 23 and the exhaust port 15, the amount of external air supplied from the supply port 23 is the amount of exhaust Q 1 exhausted from the reaction vessel 11 to the exhaust duct 21. Be the same.

バーナ12からガラス微粒子を発生させて堆積させているガラス微粒子の堆積時においては、反応容器11内部の圧力が一定になるように調整弁22の開度(調整弁の全開時面積を100とした開口の面積)を微調整する(図2参照)ことにより、排気ダクト21に取り込む外気の取り込み量Q2を微調整する。それに伴って、ガラス微粒子の堆積時における反応容器11内部からの排気量Q1は、取り込み量Q2の微調整範囲内で略一定に保たれる。   When depositing glass particles generated by depositing glass particles from the burner 12, the opening of the regulating valve 22 (the area when the regulating valve is fully opened is 100 so that the pressure inside the reaction vessel 11 is constant). By finely adjusting (the area of the opening) (see FIG. 2), the intake amount Q2 of the outside air taken into the exhaust duct 21 is finely adjusted. Along with this, the exhaust amount Q1 from the inside of the reaction vessel 11 during the deposition of the glass fine particles is kept substantially constant within the fine adjustment range of the intake amount Q2.

そして、ガラス微粒子堆積体14が所定の大きさまで成長して、バーナ12によるガラス微粒子生成を停止させるガラス微粒子堆積の終了時には、供給口23から反応容器11内部へ供給する空気供給量Q1を、ガラス微粒子の堆積時の微調整の範囲と比較して減少させる。空気供給量Q1を減少させる手段として、排気部20による総排気量Qを一定として、調整弁22の開度を調整して調整弁22を介する取り込み量Q2を増加させることにより行うと良い。   Then, at the end of the glass fine particle deposition in which the glass fine particle deposit 14 grows to a predetermined size and stops the generation of the glass fine particles by the burner 12, the air supply amount Q1 supplied from the supply port 23 to the inside of the reaction vessel 11 is changed to glass. Compared to the range of fine adjustment when depositing fine particles, it is reduced. As a means for reducing the air supply amount Q1, it is preferable to increase the intake amount Q2 through the adjusting valve 22 by adjusting the opening of the adjusting valve 22 while keeping the total exhaust amount Q by the exhaust unit 20 constant.

本実施形態においては、図3に示すように、ガラス微粒子の堆積時には調整弁22の開度を低くして調整弁22を介する取り込み量Q2を少なくすることにより、反応容器11からの排気量Q1を増加させる。一方、ガラス微粒子の堆積終了時には、調整弁22の開度を上げて調整弁22からの外気の取り込み量Q2を増加させることにより、反応容器11内部からの排気量Q1を減少させる。これにより、供給口23から供給される外気の供給量Q1を容易に減少させることができる。そのため、反応容器11内部における供給口23から排気口15へ向かう空気の流量を抑えることができ、ガラス微粒子堆積体14が外気により急冷されることを防止して、ガラス微粒子堆積体14に割れが生じることを防止することができる。このように、本実施形態の方法では、調整弁22の開度を調整するだけで、空気供給量Q1を効果的に減少させることができる。   In the present embodiment, as shown in FIG. 3, the amount of exhaust Q1 from the reaction vessel 11 is reduced by lowering the opening of the regulating valve 22 and reducing the intake amount Q2 through the regulating valve 22 when glass particles are deposited. Increase. On the other hand, at the end of the deposition of the fine glass particles, the opening amount of the regulating valve 22 is increased to increase the intake amount Q2 of outside air from the regulating valve 22, thereby reducing the exhaust amount Q1 from the inside of the reaction vessel 11. Thereby, the supply amount Q1 of the outside air supplied from the supply port 23 can be easily reduced. Therefore, the flow rate of air from the supply port 23 to the exhaust port 15 in the reaction vessel 11 can be suppressed, and the glass fine particle deposit 14 is prevented from being rapidly cooled by outside air, and the glass fine particle deposit 14 is not cracked. It can be prevented from occurring. Thus, in the method of the present embodiment, the air supply amount Q1 can be effectively reduced simply by adjusting the opening degree of the regulating valve 22.

また、ガラス微粒子の堆積終了時に、供給口23を介して供給される空気供給量Q1よりも、調整弁22を介して取り込まれる空気取り込み量Q2を多くすることで、供給口23から反応容器11内部へ供給する空気供給量Q1を大幅に減少させて、ガラス微粒子堆積体14の急冷をより確実に防ぐことができる。   Further, at the end of the deposition of the glass fine particles, the air intake amount Q2 taken in through the adjustment valve 22 is made larger than the air supply amount Q1 supplied through the supply port 23, whereby the reaction vessel 11 is supplied from the supply port 23. The air supply amount Q1 supplied to the inside can be greatly reduced, and the rapid cooling of the glass particulate deposit 14 can be prevented more reliably.

このように、本実施形態では、排気部20において、ガラス微粒子の堆積時には反応容器11内部の排気(Q1)を主とするが、ガラス微粒子の堆積終了時には調整弁22から取り込まれる外気(Q2)を主とするようにする。ガラス微粒子の堆積時には反応容器11内の排気を積極的に行なって、ガラス微粒子堆積体に堆積せず反応容器11内に浮遊する非堆積ガラス微粒子を、反応容器内から効果的に排出することができるとともに、ガラス微粒子の堆積終了時には、調整弁22の開度を上げて調整弁22から取り込まれた外気の排気(Q2)を主とすることにより、反応容器11内部からの排気量Q1を減少させて、ガラス微粒子堆積体14の急冷を防ぐことができる。   As described above, in the present embodiment, the exhaust unit 20 mainly uses the exhaust (Q1) inside the reaction vessel 11 when the glass particulates are deposited, but the outside air (Q2) taken in from the regulating valve 22 when the glass particulates are deposited. To be the main. During the deposition of the glass particulates, the reaction container 11 is actively evacuated so that the non-deposited glass particulates that are not deposited on the glass particulate deposits but float in the reaction container 11 can be effectively discharged from the reaction container. In addition, at the end of the deposition of the glass particulates, the amount of exhaust Q1 from the inside of the reaction vessel 11 is reduced by increasing the opening of the regulating valve 22 and mainly exhausting the outside air (Q2) taken in from the regulating valve 22. Thus, rapid cooling of the glass particulate deposit 14 can be prevented.

また、ガラス微粒子の堆積終了時には、ガラス微粒子堆積体14を空気供給部である供給口23の近傍から退避させると良い。本実施形態では、出発棒19を徐々に引き上げながらガラス微粒子堆積体14を軸方向に成長させるVAD法を採用しており、この場合は出発棒19を大きく引き上げることで、供給口23から排気ダクト21への気体の流速が比較的速い領域からの退避を行なって、ガラス微粒子堆積体14の急冷を効果的に防ぐことができる。また、出発棒19とバーナ12とを相対的に上下に移動させながら出発棒19の径方向にガラス微粒子堆積体14を成長させるOVD法を採用した場合であれば、上下方向の何れかに出発棒19を大きく移動させることで、ガラス微粒子堆積体14の急冷を効果的に防ぐことができる。   Further, at the end of the deposition of the glass fine particles, the glass fine particle deposit 14 is preferably retracted from the vicinity of the supply port 23 which is an air supply unit. In the present embodiment, a VAD method is used in which the glass particulate deposit 14 is grown in the axial direction while gradually pulling up the starting bar 19. In this case, the exhaust duct is exhausted from the supply port 23 by largely pulling up the starting bar 19. By retreating from the region where the gas flow velocity to 21 is relatively fast, rapid cooling of the glass particulate deposit 14 can be effectively prevented. Further, if the OVD method is employed in which the glass particulate deposit 14 is grown in the radial direction of the starting bar 19 while moving the starting bar 19 and the burner 12 relatively up and down, the starting bar 19 starts in either of the vertical directions. By rapidly moving the rod 19, rapid cooling of the glass particulate deposit 14 can be effectively prevented.

なお、上記実施形態においては、ガラス微粒子の堆積終了時には、バーナ12の火炎を停止するようにしたが、バーナ12の火炎を急に停止させずに、徐冷期間を設けるようにしても良い。この場合には、ガラス微粒子の堆積終了直後にはバーナ12の酸水素火炎は継続して発生させたまま、バーナ12へ供給するガラス原料ガスの供給を停止してガラス微粒子の発生を停止させ、徐々にバーナ12の酸水素火炎を小さくして消すと良い。これにより、ガラス微粒子の堆積終了時にガラス微粒子の発生は停止させつつ、反応容器11内部における空気の流れを減少させながら、バーナ12の火炎を小さくしていき、反応容器11内の温度変化を緩やかにすることができる。   In the above embodiment, the flame of the burner 12 is stopped at the end of the deposition of the fine glass particles. However, a slow cooling period may be provided without suddenly stopping the flame of the burner 12. In this case, while the oxyhydrogen flame of the burner 12 is continuously generated immediately after the deposition of the glass fine particles, the supply of the glass raw material gas supplied to the burner 12 is stopped to stop the generation of the glass fine particles, The oxyhydrogen flame of the burner 12 should be gradually reduced and extinguished. As a result, the generation of the glass fine particles is stopped at the end of the deposition of the glass fine particles, and the flame of the burner 12 is reduced while the air flow in the reaction vessel 11 is reduced, so that the temperature change in the reaction vessel 11 is moderated. Can be.

また、前述した実施形態においては、排気部20による総排気量Qを一定として、調整弁22の開度を調整することにより供給口23から供給される外気の量Q1を減少させたが、排気部20の排気ダクト21に弁を設け、この弁の開度を調整することにより総排気量Qを減少させて、供給口23から供給される外気の量Q1を減少させることも可能である。
また、供給口23に弁を設けて、供給口23から供給される外気の量Q1を調整することも可能である。
Further, in the above-described embodiment, the amount Q1 of the outside air supplied from the supply port 23 is reduced by adjusting the opening degree of the regulating valve 22 while keeping the total exhaust amount Q by the exhaust unit 20 constant. It is also possible to reduce the total amount Q of exhaust air supplied from the supply port 23 by reducing the total exhaust amount Q by providing a valve in the exhaust duct 21 of the section 20 and adjusting the opening of the valve.
It is also possible to provide a valve at the supply port 23 to adjust the amount Q1 of outside air supplied from the supply port 23.

本発明に係るガラス微粒子堆積体の製造方法を実施する製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the manufacturing apparatus which enforces the manufacturing method of the glass fine particle deposit body concerning this invention. 図1に示した調整弁の制御を示すタイムチャートである。It is a time chart which shows control of the regulating valve shown in FIG. ガラス微粒子の堆積時及びガラス微粒子の堆積終了時の総排気量に占める供給口から供給される外気の量と、調整弁から取り込まれる外気取り込み量との割合を示すタイムチャートである。It is a time chart which shows the ratio of the quantity of the external air supplied from the supply port which occupies the total exhaust_gas | exhaustion at the time of deposition of glass particulates, and the completion | finish of glass particulates, and the amount of external air taken in from a regulating valve.

符号の説明Explanation of symbols

10 ガラス微粒子堆積体の製造装置
11 反応容器
12 バーナ
14 ガラス微粒子堆積体
15 排気口
16 圧力計
17 制御部
20 排気部
22 調整弁(空気取り込み部)
23 供給口(空気供給部)
DESCRIPTION OF SYMBOLS 10 Manufacturing apparatus of glass particulate deposit 11 Reaction container 12 Burner 14 Glass particulate deposit 15 Exhaust port 16 Pressure gauge 17 Control part 20 Exhaust part 22 Control valve (air intake part)
23 Supply port (air supply part)

Claims (4)

反応容器内においてバーナにより発生させたガラス微粒子を堆積させるガラス微粒子堆積体の製造方法であって、
前記反応容器は、前記反応容器内部の気体を排気する排気部と、前記反応容器内部に空気を供給する空気供給部とを有し、
前記排気部は、前記反応容器内部から排気する気体の量を調整するために前記反応容器の外部の空気を取り入れる空気取り込み部を有し、
ガラス微粒子の堆積終了時に、ガラス微粒子の堆積時の微調整の範囲と比較して前記空気供給部からの空気供給量を減少させることを特徴とするガラス微粒子堆積体の製造方法。
A method for producing a glass particulate deposit that deposits glass particulates generated by a burner in a reaction vessel,
The reaction container has an exhaust part for exhausting the gas inside the reaction container, and an air supply part for supplying air into the reaction container,
The exhaust part has an air intake part that takes in air outside the reaction container in order to adjust the amount of gas exhausted from the reaction container.
A method for producing a glass particulate deposit, characterized in that, at the end of the deposition of glass particulates, the amount of air supplied from the air supply section is reduced as compared with the range of fine adjustment during the deposition of glass particulates.
前記ガラス微粒子の堆積終了時に、前記ガラス微粒子の堆積時より前記空気取り込み部からの空気取り込み量を増加することにより前記空気供給部からの空気供給量を減少させることを特徴とする請求項1に記載のガラス微粒子堆積体の製造方法。   The air supply amount from the air supply unit is decreased by increasing the air intake amount from the air intake unit at the end of the deposition of the glass fine particles than at the time of deposition of the glass fine particles. A method for producing the glass fine particle deposit as described. 前記ガラス微粒子の堆積終了時に、前記空気供給部による空気供給量よりも前記空気取り込み部による空気取り込み量を多くすることを特徴とする請求項1または2に記載のガラス微粒子堆積体の製造方法。   3. The method for producing a glass particulate deposit according to claim 1, wherein at the end of the deposition of the glass particulates, an air intake amount by the air intake portion is made larger than an air supply amount by the air supply portion. 前記ガラス微粒子の堆積終了時に、前記ガラス微粒子堆積体を前記空気供給部近傍の空間から退避させることを特徴とする請求項1から3の何れか一項に記載のガラス微粒子堆積体の製造方法。   The method for producing a glass particulate deposit according to any one of claims 1 to 3, wherein the glass particulate deposit is retracted from a space near the air supply unit when the deposition of the glass particulate is completed.
JP2007263252A 2007-10-09 2007-10-09 Method for producing glass particle deposit Pending JP2009091194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007263252A JP2009091194A (en) 2007-10-09 2007-10-09 Method for producing glass particle deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007263252A JP2009091194A (en) 2007-10-09 2007-10-09 Method for producing glass particle deposit

Publications (1)

Publication Number Publication Date
JP2009091194A true JP2009091194A (en) 2009-04-30

Family

ID=40663548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007263252A Pending JP2009091194A (en) 2007-10-09 2007-10-09 Method for producing glass particle deposit

Country Status (1)

Country Link
JP (1) JP2009091194A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089985A (en) * 2008-10-07 2010-04-22 Sumitomo Electric Ind Ltd Method for manufacturing porous glass preform
CN110950528A (en) * 2019-12-12 2020-04-03 烽火通信科技股份有限公司 Device and method for preparing loose body of optical fiber preform rod by VAD
CN113307486A (en) * 2020-02-26 2021-08-27 住友电气工业株式会社 Glass base material manufacturing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128226A (en) * 1983-01-11 1984-07-24 Showa Electric Wire & Cable Co Ltd Controlling method of exhaust pressure of vad reaction vessel
JPS63195550A (en) * 1987-02-10 1988-08-12 Ube Ind Ltd Method for quantitative determination of end group or comonomer content of oxymethylene polymer
JPH05116977A (en) * 1991-02-25 1993-05-14 Furukawa Electric Co Ltd:The Production of optical fiber base material
JP2001048567A (en) * 1999-07-30 2001-02-20 Shin Etsu Chem Co Ltd Production of porous preform
JP2005008499A (en) * 2003-06-20 2005-01-13 Sumitomo Electric Ind Ltd Method for manufacturing porous glass preform
JP2007022871A (en) * 2005-07-19 2007-02-01 Sumitomo Electric Ind Ltd Method for producing glass microparticle deposit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128226A (en) * 1983-01-11 1984-07-24 Showa Electric Wire & Cable Co Ltd Controlling method of exhaust pressure of vad reaction vessel
JPS63195550A (en) * 1987-02-10 1988-08-12 Ube Ind Ltd Method for quantitative determination of end group or comonomer content of oxymethylene polymer
JPH05116977A (en) * 1991-02-25 1993-05-14 Furukawa Electric Co Ltd:The Production of optical fiber base material
JP2001048567A (en) * 1999-07-30 2001-02-20 Shin Etsu Chem Co Ltd Production of porous preform
JP2005008499A (en) * 2003-06-20 2005-01-13 Sumitomo Electric Ind Ltd Method for manufacturing porous glass preform
JP2007022871A (en) * 2005-07-19 2007-02-01 Sumitomo Electric Ind Ltd Method for producing glass microparticle deposit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089985A (en) * 2008-10-07 2010-04-22 Sumitomo Electric Ind Ltd Method for manufacturing porous glass preform
CN110950528A (en) * 2019-12-12 2020-04-03 烽火通信科技股份有限公司 Device and method for preparing loose body of optical fiber preform rod by VAD
CN113307486A (en) * 2020-02-26 2021-08-27 住友电气工业株式会社 Glass base material manufacturing device

Similar Documents

Publication Publication Date Title
US10501362B2 (en) Fabrication method and fabrication apparatus for porous glass base material for optical fiber
JPH10114535A (en) Production of optical fiber base material
JP2005528318A (en) Method and apparatus for manufacturing optical fiber preform using external vapor deposition method
JP4424232B2 (en) Method for producing porous glass base material
JP2009091194A (en) Method for producing glass particle deposit
WO2016008287A1 (en) Heat lamp, deposition device, and method for improving density of optical fiber preform loose body
JP2011102232A (en) Method for producing quartz glass preform
JP4460062B2 (en) Optical fiber preform manufacturing method
JP2005075682A (en) Method of manufacturing porous glass preform
US11518704B2 (en) Fabrication method for porous glass base material for optical fiber
JP2006269117A (en) Plasma generating device, manufacturing method for base material for optical fiber and method for heating glass body
JP5655418B2 (en) Method and apparatus for producing porous glass base material
KR102569042B1 (en) Method for manufacturing glass fine particle deposit, method for manufacturing glass base material, and glass fine particle deposit
JP5598872B2 (en) Optical fiber preform manufacturing method
JP2012006791A (en) Method for producing optical fiber preform
JP5168772B2 (en) Method for producing glass particulate deposit
JP6839558B2 (en) Manufacturing method and manufacturing equipment for optical fiber porous base material
JP2012041227A (en) Method for producing porous glass preform
JP2005281025A (en) Apparatus for manufacturing porous glass preform
JP7128172B2 (en) Burner for synthesizing silica glass and apparatus for manufacturing synthetic silica glass using this burner
JPH0222137A (en) Production of synthetic quartz preform
JP6916023B2 (en) Manufacturing equipment and manufacturing method for optical fiber porous base material
JP2006240926A (en) Apparatus for manufacturing synthetic quartz glass and synthetic quartz glass ingot
JP2005139042A (en) Method of manufacturing porous glass preform
JP2004231465A (en) Method and apparatus for manufacturing porous glass fine particle deposit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Effective date: 20120228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120626

Free format text: JAPANESE INTERMEDIATE CODE: A02