JP2009099781A - Conductive paste material - Google Patents

Conductive paste material Download PDF

Info

Publication number
JP2009099781A
JP2009099781A JP2007270154A JP2007270154A JP2009099781A JP 2009099781 A JP2009099781 A JP 2009099781A JP 2007270154 A JP2007270154 A JP 2007270154A JP 2007270154 A JP2007270154 A JP 2007270154A JP 2009099781 A JP2009099781 A JP 2009099781A
Authority
JP
Japan
Prior art keywords
conductive paste
glass
mass
pbo
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007270154A
Other languages
Japanese (ja)
Other versions
JP5272373B2 (en
Inventor
Jun Hamada
潤 濱田
Naoya Hayakawa
直也 早川
Kazutoshi Nakaya
和敏 中屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2007270154A priority Critical patent/JP5272373B2/en
Publication of JP2009099781A publication Critical patent/JP2009099781A/en
Application granted granted Critical
Publication of JP5272373B2 publication Critical patent/JP5272373B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive paste material which has favorable ohmic contact in order to obtain high current collecting efficiency, in the conductive paste for a poly-crystal Si solar battery. <P>SOLUTION: The conductive paste material contains SiO<SB>2</SB>-B<SB>2</SB>O<SB>3</SB>-Al<SB>2</SB>O<SB>3</SB>-PbO-based low-melting point glass whose composition contains SiO<SB>2</SB>of 1-10 mass%, B<SB>2</SB>O<SB>3</SB>of 5-15 mass%, Al<SB>2</SB>O<SB>3</SB>of 1-15 mass%, PbO of 68-89 mass%, CuO of 0-10 mass%, and TiO<SB>2</SB>of 0-10 mass%. Further, the low-melting point glass has a thermal expansion coefficient of (80-110)×10<SP>-7</SP>/°C at 30°C-300°C, and has a softening point not lower than 350°C and not higher than 500°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、特に多結晶Si太陽電池に形成される受光面電極において、良好なオーミック接触が得られる導電性ペースト材料に関する。   The present invention relates to a conductive paste material capable of obtaining good ohmic contact, particularly in a light-receiving surface electrode formed in a polycrystalline Si solar cell.

従来、多結晶Si太陽電池はp型シリコン基板の一方の面にn型シリコン基板層を設けた構造となっており、そのn型シリコン層側を受光面とし、受光面側表面に受光効率をあげるための窒化珪素膜などの反射防止膜を設け、さらにその反射防止膜側に半導体と接続した表面電極と、その裏面に裏面電極を設けることで受光により半導体のpn接合に生じた電力を取り出していた。   Conventionally, a polycrystalline Si solar cell has a structure in which an n-type silicon substrate layer is provided on one surface of a p-type silicon substrate. The n-type silicon layer side is used as a light-receiving surface, and light-receiving efficiency is provided on the surface of the light-receiving surface. An antireflection film, such as a silicon nitride film, is provided, and a surface electrode connected to the semiconductor is provided on the antireflection film side, and a back electrode is provided on the back surface, thereby taking out the power generated in the pn junction of the semiconductor by light reception It was.

このとき、表面電極を形成する場合、受光効率をあげるために形成された窒化珪素膜などの反射防止膜が比較的高い電気抵抗値を持つことから、これら反射防止膜をあらかじめエッチングし、そこへ導電性ペーストなどの電極材料を印刷・焼成することで半導体と電極とを接続していた。   At this time, when the surface electrode is formed, the antireflection film such as a silicon nitride film formed for increasing the light receiving efficiency has a relatively high electric resistance value. The semiconductor and the electrode are connected by printing and baking an electrode material such as a conductive paste.

しかしこのようなエッチングによる方法は工程増によるコストアップなどの理由から、このようなエッチングは行わず、電極材料を直接反射防止膜上に印刷・焼成することで同時に反射防止膜を熔融・除去し電極と半導体とを接続する方法がとられるようになってきた。このとき、表面電極材料の導電性ペーストにリン等の周期表第V族に属する元素を含有したり(特許文献1参照)、Ti、Bi、Co、Zn、Zr、Fe、Cr成分を含有したり(特許文献2参照)、様々な添加剤を種々配合し高いオーミック接触を得ようとする方法が提案されている。
特開昭62−49676号公報 特開2001−313400号公報
However, such an etching method does not perform such etching due to cost increase due to an increase in the number of processes, and the antireflection film is simultaneously melted and removed by printing and baking the electrode material directly on the antireflection film. A method of connecting an electrode and a semiconductor has come to be used. At this time, the conductive paste of the surface electrode material contains an element belonging to Group V of the periodic table such as phosphorus (see Patent Document 1), or contains Ti, Bi, Co, Zn, Zr, Fe, and Cr components. (See Patent Document 2), a method has been proposed in which various additives are blended in various ways to obtain high ohmic contact.
JP 62-49676 A JP 2001-313400 A

しかしながら、上記のように表面電極材料に種々金属を含有する添加剤を配合して焼成した場合、半導体と表面電極の間に安定したオーミック接触をえることができなかった。   However, when an additive containing various metals is blended in the surface electrode material as described above, stable ohmic contact cannot be obtained between the semiconductor and the surface electrode.

そこで本発明は、上述の問題点を解決すべくなされたもので、反射防止膜をファイアースルーして半導体基板と表面電極との良好なオーミック接触をえることのできる導電性ペーストを提供することにある。   Accordingly, the present invention has been made to solve the above-described problems, and provides a conductive paste that can fire through the antireflection film to obtain a good ohmic contact between the semiconductor substrate and the surface electrode. is there.

本発明は、多結晶Si太陽電池用の導電性ペーストにおいて、該ペーストに含まれる低融点ガラスの組成が、質量%で
SiO 1〜10、B 5〜15、Al 1〜15、PbO 68〜89、CuO 0〜10、TiO 0〜10含むSiO−B−Al−PbO系低融点ガラスであることを特徴とする導電性ペーストである。
In the conductive paste for a polycrystalline Si solar cell according to the present invention, the composition of the low melting point glass contained in the paste is SiO 2 1-10, B 2 O 3 5-15, Al 2 O 3 1 in mass%. ~15, PbO 68~89, CuO 0~10, a conductive paste, which is a SiO 2 -B 2 O 3 -Al 2 O 3 -PbO based low-melting glass containing TiO 2 0.

また、前記低融点ガラスの30℃〜300℃における熱膨張係数が(80〜110)×10−7/℃、軟化点が350℃以上500℃以下であることを特徴とする上記の導電性ペーストである。 In addition, the low-melting glass has a thermal expansion coefficient of 30 to 300 ° C. at (80 to 110) × 10 −7 / ° C. and a softening point of 350 to 500 ° C. It is.

さらに、上記の導電性ペーストを使用することを特徴とする電子材料用基板である。   Furthermore, it is an electronic material substrate characterized by using the above conductive paste.

本発明は、多結晶Si太陽電池用の導電性ペーストにおいて、該ペーストに含まれる低融点ガラスの組成が、質量%でSiOを1〜10、Bを5〜15、Alを1〜15、PbOを68〜89、CuOを0〜10、TiOを0〜10含むSiO−B−Al−PbO系低融点ガラスであることを特徴とする導電性ペーストである。 The present invention provides a conductive paste for the polycrystalline Si solar cell, the composition of the low-melting glass contained in the paste, the SiO 2 1 to 10 mass%, B 2 O 3 of 5 to 15, Al 2 O It is a SiO 2 —B 2 O 3 —Al 2 O 3 —PbO-based low-melting glass containing 3 to 1 to 3 , PbO to 68 to 89, CuO to 0 to 10, and TiO 2 to 0 to 10. It is a conductive paste.

また、前記低融点ガラスの30℃〜300℃における熱膨張係数が(80〜110)×10−7/℃、軟化点が350℃以上500℃以下であることを特徴とする上記の導電性ペーストである。 In addition, the low-melting glass has a thermal expansion coefficient of 30 to 300 ° C. at (80 to 110) × 10 −7 / ° C. and a softening point of 350 to 500 ° C. It is.

さらに、上記の導電性ペーストを使用することを特徴とする電子材料用基板である。   Furthermore, it is an electronic material substrate characterized by using the above conductive paste.

SiOはガラス形成成分であり、別のガラス形成成分であるBと共存させることにより、安定したガラスを形成することができるもので、質量%で1〜10%の範囲で含有させる。10%を越えると、ガラスの軟化点が上昇し、成形性、作業性が困難となる。より好ましくは、4〜7%の範囲である。 SiO 2 is a glass forming component, and can coexist with B 2 O 3 which is another glass forming component to form a stable glass, and is contained in a range of 1 to 10% by mass%. . If it exceeds 10%, the softening point of the glass will increase, making the formability and workability difficult. More preferably, it is 4 to 7% of range.

はガラス形成成分であり、ガラス溶融を容易とし、ガラスの熱膨張係数において過度の上昇を抑え、かつ、焼付け時にガラスに適度の流動性を与え、ガラスの誘電率を低下させるものである。ガラス中に5〜15%(質量%、以下においても同様である)の範囲で含有させるのが好ましい。2%未満ではガラスの流動性が不充分となり、焼結性が損なわれる。他方15%を越えるとガラスの安定性を低下させる。より好ましくは8〜12%の範囲である。 B 2 O 3 is a glass-forming component, facilitates glass melting, suppresses an excessive increase in the coefficient of thermal expansion of glass, gives moderate fluidity to glass during baking, and lowers the dielectric constant of glass It is. It is preferable to make it contain in 5 to 15% (mass%, it is the same also in the following) in glass. If it is less than 2%, the fluidity of the glass becomes insufficient, and the sinterability is impaired. On the other hand, if it exceeds 15%, the stability of the glass is lowered. More preferably, it is 8 to 12% of range.

Alはガラスを安定化させ、またその導入により半導体と表面電極とのオーミック接触を上げる効果を持つ。ガラス中に1〜15%の範囲で含有させることが好ましい。1未満では上記作用を発揮しえず、15%を超えるとガラスが不安定となる。より好ましくは3〜10%の範囲である。 Al 2 O 3 has the effect of stabilizing the glass and increasing the ohmic contact between the semiconductor and the surface electrode. It is preferable to make it contain in 1 to 15% of range in glass. If it is less than 1, the above action cannot be exhibited, and if it exceeds 15%, the glass becomes unstable. More preferably, it is 3 to 10% of range.

PbOはガラスを低融点化し、流動性を与え、反射防止膜をファイアースルーし半導体と表面電極との接触面を大きくする効果を持つ成分である。ガラス中に68〜89%で含有させるのが好ましい。68%未満ではその作用を発揮し得ず、他方89%を超えると熱膨張係数が過大となる。より好ましくは75〜85%である。   PbO is a component that has the effect of lowering the melting point of glass, imparting fluidity, fire-through the antireflection film, and increasing the contact surface between the semiconductor and the surface electrode. It is preferable to make it contain at 68 to 89% in glass. If it is less than 68%, the effect cannot be exhibited. On the other hand, if it exceeds 89%, the thermal expansion coefficient becomes excessive. More preferably, it is 75 to 85%.

CuOはその導入により半導体と表面電極とのオーミック接触を上げる効果があり、0〜10%の範囲で含有させるのが好ましい。10%を超えると熔融時においてガラスが結晶化しやすくなる。より好ましくは0〜5%である。   CuO has the effect of increasing the ohmic contact between the semiconductor and the surface electrode by its introduction, and is preferably contained in the range of 0 to 10%. If it exceeds 10%, the glass tends to crystallize during melting. More preferably, it is 0 to 5%.

TiOはその導入により半導体と表面電極とのオーミック接触を上げる効果があり、0〜10%の範囲で含有させるのが好ましい。10%を超えると熔融時においてガラスが結晶化しやすくなる。より好ましくは0〜5%である。 The introduction of TiO 2 has the effect of increasing the ohmic contact between the semiconductor and the surface electrode, and it is preferably contained in the range of 0 to 10%. If it exceeds 10%, the glass tends to crystallize during melting. More preferably, it is 0 to 5%.

この他にも、一般的な酸化物で表すRO(MgO、CaO、SrO、BaO)、RO(LiO、NaO、KO)、In、Bi、SnO、TeOなどを加えてもよい。 In addition to this, RO represented by general oxides (MgO, CaO, SrO, BaO ), R 2 O (Li 2 O, Na 2 O, K 2 O), In 2 O 3, Bi 2 O 3, SnO 2 , TeO 2 or the like may be added.

30℃〜300℃における熱膨張係数が(80〜110)×10−7/℃、軟化点が350℃以上500℃以下である上記の無鉛低融点ガラスである。熱膨張係数が(80〜110)×10−7/℃を外れると表面電極形成時に剥離、基板の反り等の問題が発生する。好ましくは、(85〜110)×10−7/℃の範囲である。また、軟化点が500℃を越えると基板の軟化変形などの問題が発生する。好ましくは、360℃以上490℃以下である。 The lead-free low-melting glass having a thermal expansion coefficient at 30 to 300 ° C. of (80 to 110) × 10 −7 / ° C. and a softening point of 350 to 500 ° C. When the thermal expansion coefficient is outside (80 to 110) × 10 −7 / ° C., problems such as peeling and warping of the substrate occur when the surface electrode is formed. Preferably, it is in the range of (85 to 110) × 10 −7 / ° C. If the softening point exceeds 500 ° C., problems such as softening deformation of the substrate occur. Preferably, they are 360 degreeC or more and 490 degrees C or less.

以下、実施例に基づき、説明する。   Hereinafter, a description will be given based on examples.

(導電性ペースト材料)
まず、ガラス粉末は、実施例に記載した所定組成となるように各種無機原料を秤量、混合して原料バッチを作製する。この原料バッチを白金ルツボに投入し、電気加熱炉内で1000〜1300℃、1〜2時間で加熱溶融して表1の実施例1〜5、表2の比較例1〜4に示す組成のガラスを得た。
(Conductive paste material)
First, various inorganic raw materials are weighed and mixed so that the glass powder has a predetermined composition described in the examples to prepare a raw material batch. The raw material batch was put into a platinum crucible and heated and melted in an electric heating furnace at 1000 to 1300 ° C. for 1 to 2 hours. The compositions shown in Examples 1 to 5 in Table 1 and Comparative Examples 1 to 4 in Table 2 were used. Glass was obtained.

Figure 2009099781
Figure 2009099781

Figure 2009099781
Figure 2009099781

ガラスの一部は型に流し込み、ブロック状にして熱物性(熱膨張係数、軟化点)測定用に供した。残余のガラスは急冷双ロール成形機にてフレーク状とし、粉砕装置で平均粒径1〜4μm、最大粒径10μm未満の粉末状に整粒した。   A part of the glass was poured into a mold, made into a block shape, and used for measurement of thermal properties (thermal expansion coefficient, softening point). The remaining glass was made into flakes with a rapid cooling twin roll molding machine, and sized with a pulverizer into a powder having an average particle size of 1 to 4 μm and a maximum particle size of less than 10 μm.

次いで、αテルピネオールとブチルカルビトールアセテートからなるペーストオイルにバインダーとしてのエチルセルロースと上記ガラス粉、また導電性粉末として銀粉末を所定比で混合し、粘度、500±50ポイズ程度の導電性ペーストを調製した。   Next, paste oil composed of α-terpineol and butyl carbitol acetate is mixed with ethyl cellulose as binder and the above glass powder, and silver powder as conductive powder at a predetermined ratio to prepare a conductive paste having a viscosity of about 500 ± 50 poise. did.

なお、軟化点は、リトルトン粘度計を用い、粘度係数η=107.6 に達したときの温度とした。また、熱膨張係数は、熱膨張計を用い、5℃/分で昇温したときの30〜300℃での伸び量から求めた。 The softening point was the temperature when the viscosity coefficient η = 10 7.6 was reached using a Littleton viscometer. Moreover, the thermal expansion coefficient was calculated | required from the amount of elongation at 30-300 degreeC when it heated up at 5 degree-C / min using the thermal dilatometer.

次に、表面に窒化珪素層、また裏面にアルミ電極層が形成された1辺30mmの多結晶シリコンを準備し、その窒化珪素層上部に上記で作製した導電性ペーストをスクリーン印刷した。これらの試験片を、140℃のオーブンで10分間乾燥させ、次に電気炉で800℃条件下で焼成し、サンプルを得た。   Next, polycrystalline silicon having a side of 30 mm with a silicon nitride layer formed on the front surface and an aluminum electrode layer formed on the back surface was prepared, and the conductive paste prepared above was screen-printed on the silicon nitride layer. These test pieces were dried in an oven at 140 ° C. for 10 minutes and then baked in an electric furnace at 800 ° C. to obtain a sample.

このようにして得られたデバイスについて、太陽電池としての集電効率(0〜1.0)を測定し、その効率が0.7以上のものを○、0.7未満のものを×とした。   About the device obtained in this way, the current collection efficiency (0-1.0) as a solar cell was measured, the thing whose efficiency is 0.7 or more was made into (circle), and the thing less than 0.7 was made into x. .

(結果)
低融点ガラス組成および、各種試験結果を表に示す。
(result)
The low melting point glass composition and various test results are shown in the table.

表1における実施例1〜5に示すように、本発明の組成範囲内においては、軟化点が350℃〜500℃であり、好適な熱膨張係数(80〜110)×10−7/℃を有しており、更には、集電効率が0.7以上と良好であり、多結晶Si太陽電池用の導電性ペーストとして好適である。 As shown in Examples 1 to 5 in Table 1, within the composition range of the present invention, the softening point is 350 ° C. to 500 ° C., and a suitable thermal expansion coefficient (80 to 110) × 10 −7 / ° C. Furthermore, the current collection efficiency is as good as 0.7 or more, and it is suitable as a conductive paste for polycrystalline Si solar cells.

他方、本発明の組成範囲を外れる表2における比較例1〜4は、良好な集電特性が得られない、または熔融時に結晶化するなど、多結晶Si太陽電池用の導電性ペーストとしては適用し得ない。   On the other hand, Comparative Examples 1 to 4 in Table 2 outside the compositional range of the present invention are applicable as conductive pastes for polycrystalline Si solar cells, such as when good current collection characteristics are not obtained or crystallization occurs during melting. I can't.

Claims (3)

多結晶Si太陽電池用の導電性ペーストにおいて、該ペーストに含まれる低融点ガラスの組成が、質量%で
SiO 1〜10、
5〜15、
Al 1〜15、
PbO 68〜89、
CuO 0〜10、
TiO 0〜10
含むSiO−B−Al−PbO系低融点ガラスであることを特徴とする導電性ペースト。
In the conductive paste for polycrystalline Si solar cells, the composition of the low melting point glass contained in the paste is SiO 2 1-10 by mass%,
B 2 O 3 5-15,
Al 2 O 3 1-15,
PbO 68-89,
CuO 0-10,
TiO 2 0-10
A conductive paste comprising SiO 2 —B 2 O 3 —Al 2 O 3 —PbO-based low-melting glass.
前記低融点ガラスは30℃〜300℃における熱膨張係数が(80〜110)×10−7/℃、軟化点が350℃以上500℃以下であることを特徴とする請求項1に記載の導電性ペースト。 2. The conductive material according to claim 1, wherein the low-melting glass has a coefficient of thermal expansion at 30 ° C. to 300 ° C. of (80 to 110) × 10 −7 / ° C. and a softening point of 350 ° C. or more and 500 ° C. or less. Sex paste. 請求項1または請求項2のいずれか1項に記載の導電性ペーストを使用することを特徴とする電子材料用基板。
A substrate for electronic materials, wherein the conductive paste according to claim 1 or 2 is used.
JP2007270154A 2007-10-17 2007-10-17 Polycrystalline Si solar cell Expired - Fee Related JP5272373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270154A JP5272373B2 (en) 2007-10-17 2007-10-17 Polycrystalline Si solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270154A JP5272373B2 (en) 2007-10-17 2007-10-17 Polycrystalline Si solar cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013090284A Division JP2013189372A (en) 2013-04-23 2013-04-23 Conductive paste material

Publications (2)

Publication Number Publication Date
JP2009099781A true JP2009099781A (en) 2009-05-07
JP5272373B2 JP5272373B2 (en) 2013-08-28

Family

ID=40702498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270154A Expired - Fee Related JP5272373B2 (en) 2007-10-17 2007-10-17 Polycrystalline Si solar cell

Country Status (1)

Country Link
JP (1) JP5272373B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016186A1 (en) * 2008-08-07 2010-02-11 京都エレックス株式会社 Conductive paste for formation of a solar cell element electrode, solar cell element, and manufacturing method for said solar cell element
JP2011035035A (en) * 2009-07-30 2011-02-17 Noritake Co Ltd Conductive composition for solar cell electrode
WO2012002182A1 (en) * 2010-07-02 2012-01-05 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar cell
EP2566824A1 (en) 2010-05-04 2013-03-13 E.I. Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
WO2013085112A1 (en) * 2011-12-08 2013-06-13 제일모직 주식회사 Paste composition for solar cell electrode and electrode produced therefrom
US8465794B2 (en) 2009-03-19 2013-06-18 E I Du Pont De Nemours And Company Glass compositions used in conductors for photovoltaic cells
JP2013189372A (en) * 2013-04-23 2013-09-26 Central Glass Co Ltd Conductive paste material
JP2014005162A (en) * 2012-06-22 2014-01-16 Nippon Electric Glass Co Ltd Glass for electrode formation and electrode formation material using the same
JP2014038829A (en) * 2012-04-17 2014-02-27 Heraeus Precious Metals North America Conshohocken Llc Conductive thick film paste for solar battery contact
US8889039B2 (en) 2009-09-18 2014-11-18 Noritake Co., Limited Paste composition for solar battery electrode
CN109411111A (en) * 2018-09-30 2019-03-01 镇江华智睿安物联科技有限公司 A kind of mass spectrum ionization component high-conductivity electrodes plate and preparation method thereof
US10658528B2 (en) 2017-04-18 2020-05-19 Dupont Electronics, Inc. Conductive paste composition and semiconductor devices made therewith
KR20200094289A (en) * 2019-01-30 2020-08-07 한국광기술원 Sealing Material for Joining Panel and Method for Making the Same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092224A (en) * 1996-05-15 1998-04-10 Asahi Glass Co Ltd Conductive paste
JPH11258793A (en) * 1998-03-13 1999-09-24 Taiyo Ink Mfg Ltd Alkali-developable photosetting composition and baked material pattern obtained using same
JP2001180967A (en) * 1999-12-21 2001-07-03 Central Glass Co Ltd Manufacturing method of glass composition
JP2001313400A (en) * 2000-04-28 2001-11-09 Kyocera Corp Method for forming solar battery element
JP2002176186A (en) * 2000-12-05 2002-06-21 Mitsubishi Electric Corp Solar cell and solar cell module
JP2002274883A (en) * 2001-03-13 2002-09-25 Central Glass Co Ltd Low melting point glass
JP2004207493A (en) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp Semiconductor device, its manufacturing method, and solar cell
WO2006055126A2 (en) * 2004-11-12 2006-05-26 Ferro Corporation Method of making solar cell contacts
JP2006302890A (en) * 2005-04-14 2006-11-02 E I Du Pont De Nemours & Co Manufacturing method for semiconductor device and conductive composition used in it
JP2007001782A (en) * 2005-06-21 2007-01-11 Central Glass Co Ltd Low melting point glass
JP2007012371A (en) * 2005-06-29 2007-01-18 E I Du Pont De Nemours & Co Method for manufacturing conductive composition and rear substrate of plasma display
WO2007102287A1 (en) * 2006-03-07 2007-09-13 Murata Manufacturing Co., Ltd. Conductive paste and solar cell

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092224A (en) * 1996-05-15 1998-04-10 Asahi Glass Co Ltd Conductive paste
JPH11258793A (en) * 1998-03-13 1999-09-24 Taiyo Ink Mfg Ltd Alkali-developable photosetting composition and baked material pattern obtained using same
JP2001180967A (en) * 1999-12-21 2001-07-03 Central Glass Co Ltd Manufacturing method of glass composition
JP2001313400A (en) * 2000-04-28 2001-11-09 Kyocera Corp Method for forming solar battery element
JP2002176186A (en) * 2000-12-05 2002-06-21 Mitsubishi Electric Corp Solar cell and solar cell module
JP2002274883A (en) * 2001-03-13 2002-09-25 Central Glass Co Ltd Low melting point glass
JP2004207493A (en) * 2002-12-25 2004-07-22 Mitsubishi Electric Corp Semiconductor device, its manufacturing method, and solar cell
WO2006055126A2 (en) * 2004-11-12 2006-05-26 Ferro Corporation Method of making solar cell contacts
JP2006302890A (en) * 2005-04-14 2006-11-02 E I Du Pont De Nemours & Co Manufacturing method for semiconductor device and conductive composition used in it
JP2007001782A (en) * 2005-06-21 2007-01-11 Central Glass Co Ltd Low melting point glass
JP2007012371A (en) * 2005-06-29 2007-01-18 E I Du Pont De Nemours & Co Method for manufacturing conductive composition and rear substrate of plasma display
WO2007102287A1 (en) * 2006-03-07 2007-09-13 Murata Manufacturing Co., Ltd. Conductive paste and solar cell

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461188B2 (en) 2008-08-07 2016-10-04 Kyoto Elex Co., Ltd. Electro-conductive paste for forming an electrode of a solar cell device, a solar cell device and method for producing the solar cell device
WO2010016186A1 (en) * 2008-08-07 2010-02-11 京都エレックス株式会社 Conductive paste for formation of a solar cell element electrode, solar cell element, and manufacturing method for said solar cell element
US8852465B2 (en) 2008-08-07 2014-10-07 Kyoto Elex Co., Ltd. Electro-conductive paste for forming an electrode of a solar cell device, a solar cell device and method for producing the solar cell device
US8465794B2 (en) 2009-03-19 2013-06-18 E I Du Pont De Nemours And Company Glass compositions used in conductors for photovoltaic cells
JP2011035035A (en) * 2009-07-30 2011-02-17 Noritake Co Ltd Conductive composition for solar cell electrode
US8889039B2 (en) 2009-09-18 2014-11-18 Noritake Co., Limited Paste composition for solar battery electrode
US8889979B2 (en) 2010-05-04 2014-11-18 E I Du Pont De Nemours And Company Thick-film pastes containing lead—tellurium—lithium—titanium—oxides, and their use in the manufacture of semiconductor devices
US10559703B2 (en) 2010-05-04 2020-02-11 Dupont Electronics, Inc. Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices
US8497420B2 (en) 2010-05-04 2013-07-30 E I Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
JP2013531863A (en) * 2010-05-04 2013-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thick film pastes containing lead-tellurium-lithium-oxides and their use in the manufacture of semiconductor devices
JP2013533188A (en) * 2010-05-04 2013-08-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thick film pastes containing lead and tellurium oxides and their use in the manufacture of semiconductor devices
JP2013533187A (en) * 2010-05-04 2013-08-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thick film pastes containing lead-tellurium-lithium-titanium-oxides and their use in the manufacture of semiconductor devices
US11158746B2 (en) * 2010-05-04 2021-10-26 Solar Paste, Llc Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices
US20130255768A1 (en) * 2010-05-04 2013-10-03 E I Du Pont De Nemours And Company Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices
US11043605B2 (en) 2010-05-04 2021-06-22 E I Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
US9722100B2 (en) 2010-05-04 2017-08-01 E I Du Pont De Nemours And Company Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices
US20200013910A1 (en) * 2010-05-04 2020-01-09 Dupont Electronics, Inc. Thick-film pastes containing lead-tellurium-lithium- oxides, and their use in the manufacture of semiconductor devices
CN102971268A (en) * 2010-05-04 2013-03-13 E·I·内穆尔杜邦公司 Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices
EP2566824A1 (en) 2010-05-04 2013-03-13 E.I. Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
US8889980B2 (en) 2010-05-04 2014-11-18 E I Du Pont De Nemours And Company Thick-film pastes containing lead—tellurium—lithium—oxides, and their use in the manufacture of semiconductor devices
US10468542B2 (en) 2010-05-04 2019-11-05 Dupont Electronics, Inc. Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices
US10069020B2 (en) 2010-05-04 2018-09-04 E I Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
US8895843B2 (en) 2010-05-04 2014-11-25 E I Du Pont De Nemours And Company Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices
US8889040B2 (en) 2010-07-02 2014-11-18 Noritake Co., Limited Conductive paste composition for solar cell
WO2012002182A1 (en) * 2010-07-02 2012-01-05 株式会社ノリタケカンパニーリミテド Conductive paste composition for solar cell
JP2012015409A (en) * 2010-07-02 2012-01-19 Noritake Co Ltd Conductive paste composition for solar batteries
WO2013085112A1 (en) * 2011-12-08 2013-06-13 제일모직 주식회사 Paste composition for solar cell electrode and electrode produced therefrom
CN103959393A (en) * 2011-12-08 2014-07-30 第一毛织株式会社 Paste composition for solar cell electrode and electrode produced therefrom
JP2014038829A (en) * 2012-04-17 2014-02-27 Heraeus Precious Metals North America Conshohocken Llc Conductive thick film paste for solar battery contact
US10014418B2 (en) 2012-04-17 2018-07-03 Heraeus Precious Metals North America Conshohocken Llc Conductive thick film paste for solar cell contacts
JP2014005162A (en) * 2012-06-22 2014-01-16 Nippon Electric Glass Co Ltd Glass for electrode formation and electrode formation material using the same
JP2013189372A (en) * 2013-04-23 2013-09-26 Central Glass Co Ltd Conductive paste material
US10658528B2 (en) 2017-04-18 2020-05-19 Dupont Electronics, Inc. Conductive paste composition and semiconductor devices made therewith
CN109411111A (en) * 2018-09-30 2019-03-01 镇江华智睿安物联科技有限公司 A kind of mass spectrum ionization component high-conductivity electrodes plate and preparation method thereof
CN109411111B (en) * 2018-09-30 2021-08-06 苏州澋宬精密仪器科技有限公司 High-conductivity electrode plate for mass spectrum ion source and preparation method thereof
KR20200094289A (en) * 2019-01-30 2020-08-07 한국광기술원 Sealing Material for Joining Panel and Method for Making the Same
KR102564922B1 (en) * 2019-01-30 2023-08-08 한국광기술원 Sealing Material for Joining Panel and Method for Making the Same

Also Published As

Publication number Publication date
JP5272373B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5272373B2 (en) Polycrystalline Si solar cell
JP5888493B2 (en) Conductive paste and solar cell element using the conductive paste
JP5609319B2 (en) Low melting point glass composition and conductive paste material using the same
JP2016150883A (en) Bi2O3-TeO2-SiO2-WO3-BASED GLASS
JPWO2009041182A1 (en) Ag electrode paste, solar battery cell and manufacturing method thereof
JP2010222238A (en) Glass composition for electrode formation and electrode-forming material
US20130161569A1 (en) Glass for use in forming electrodes, and electrode-forming material using same
JP5569094B2 (en) Low melting point glass composition and conductive paste material using the same
JP6142756B2 (en) Glass powder material
KR101474677B1 (en) Conductive paste and solar battery cell using said conductive paste
WO2012111478A1 (en) Conductive paste and solar cell
TW201332926A (en) Glass for forming electrode and electrode forming material using the same
JP2013189372A (en) Conductive paste material
JP5796281B2 (en) Electrode forming material
JP2010251138A (en) Glass composition for electrode formation, and electrode forming material
JP2013018666A (en) Electrode formation glass and electrode formation material
JP2014105153A (en) Bismuth-based glass composition and electrode formation material using the same
JP2014028713A (en) Glass for electrode formation and electrode formation material using the same
JP2013212949A (en) Glass for electrode formation and electrode forming material using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5272373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees