JP2009097755A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2009097755A
JP2009097755A JP2007267923A JP2007267923A JP2009097755A JP 2009097755 A JP2009097755 A JP 2009097755A JP 2007267923 A JP2007267923 A JP 2007267923A JP 2007267923 A JP2007267923 A JP 2007267923A JP 2009097755 A JP2009097755 A JP 2009097755A
Authority
JP
Japan
Prior art keywords
wind direction
air
direction plate
angle
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007267923A
Other languages
Japanese (ja)
Other versions
JP4742321B2 (en
JP2009097755A5 (en
Inventor
Hidetomo Nakagawa
英知 中川
Yoshihiro Tanabe
義浩 田邉
Tatsuo Seki
辰夫 関
Daisuke Sugiyama
大輔 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007267923A priority Critical patent/JP4742321B2/en
Publication of JP2009097755A publication Critical patent/JP2009097755A/en
Publication of JP2009097755A5 publication Critical patent/JP2009097755A5/ja
Application granted granted Critical
Publication of JP4742321B2 publication Critical patent/JP4742321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of preventing generation of dew condensation on surfaces of wind direction plates disposed on a supply opening, and providing a user with a comfortable space. <P>SOLUTION: A temperature of the air passing through the supply opening 14 is detected or estimated by a supply air temperature detecting means 17, a lower limit of the supply air temperature free from dew condensation on the wind direction plates 1, 3 is set as a threshold value in advance, and a detection value by the supply air temperature detecting means 17 and the threshold value are compared by a wind direction plate control device 64, so that the wind direction plates 1, 3 are rotated to a position having a dew condensation safety angle θs as a small angle to the supply direction Fout when it is determined that dew condensation may generate on the wind direction plates 1, 3, and the wind direction plates 1, 3 can be rotated to a position having an angle larger than the frost formation safety angle θs to the supply direction Fout, when it is determined that the frost formation does not generate on the wind direction plates 1, 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、少なくとも室内の空気を冷やすことのできる空気調和機に関し、特に吹出口に設けられた上下及び左右の少なくとも一方の風向板を備えたものに関する。   The present invention relates to an air conditioner capable of cooling at least indoor air, and more particularly, to an air conditioner provided with at least one of upper and lower and right and left wind direction plates provided at an outlet.

従来、空気調和機の室内吹出口に具備された風向板の制御方法が開示されている(例えば、特許文献1参照)。この従来技術では、風向板の角度設定後に経過時間を計測するタイマーを設け、冷房運転時に風向調整装置の風向板の角度を、冷房範囲の水平領域以外の下吹出角度に設定されたとき、その下吹出角度の位置と、温度センサが検出した室内熱交換器の所定温度、および湿度センサが検出した室内の所定湿度に応じて、風向板の下吹出角度を所定時間経過後に冷房範囲の所定水平角度に戻すように制御するものである。これによって、風向板が長時間下吹出角度を継続された場合に発生する風向板の結露を防止するものであり、風向板の向きを、結露しない範囲でなるべく長く下吹出角度を保つように制御するものであった。   Conventionally, the control method of the wind direction board comprised in the indoor blower outlet of the air conditioner is disclosed (for example, refer patent document 1). In this prior art, a timer for measuring the elapsed time after setting the angle of the wind direction plate is provided, and when the angle of the wind direction plate of the wind direction adjusting device is set to a lower blowing angle other than the horizontal region of the cooling range during cooling operation, Depending on the position of the lower blowing angle, the predetermined temperature of the indoor heat exchanger detected by the temperature sensor, and the predetermined indoor humidity detected by the humidity sensor, the lower blowing angle of the wind direction plate is set to the predetermined horizontal in the cooling range after a predetermined time has elapsed. It controls to return to the angle. This prevents the wind direction plate from condensing when the wind direction plate continues at the lower blowing angle for a long time, and the direction of the wind direction plate is controlled to keep the lower blowing angle as long as possible within the range where condensation does not occur. It was something to do.

特開2003−185225号公報(第3〜4頁、図4)JP 2003-185225 A (pages 3 to 4, FIG. 4)

特許文献1に開示された従来の空気調和機では、結露の判断に湿度と熱交換器の配管温度を用いていた。さらに、従来の空気調和機の制御方法は、空気調和機の風に当たりたい使用者に対するものであり、気流を感じたくない使用者に対しての制御はなんらされていなかった。風に当たりたくない使用者にとって所定の水平位置に戻したとしても風向板の形状によっては、空気調和機から吹き出された冷気は下方方向に吹き出され、冷房時の気流を感じたくない使用者にとっては不快であるという問題点があった。   In the conventional air conditioner disclosed in Patent Document 1, humidity and the piping temperature of the heat exchanger are used to determine condensation. Furthermore, the control method of the conventional air conditioner is for the user who wants to hit the wind of the air conditioner, and no control is made for the user who does not want to feel the airflow. For users who do not want to hit the wind, even if it is returned to the predetermined horizontal position, depending on the shape of the wind direction plate, the cold air blown out from the air conditioner is blown downward, and for users who do not want to feel the airflow during cooling There was a problem of being uncomfortable.

本発明は、上記のような課題を解決するためになされたもので、結露の判断を比較的容易にして確実に結露を防止できると共に、使用者の要求する気流の向きをできるだけ満足させて、快適な空間を実現できる空気調和機を得ることを目的とする。
また、気流を感じたくない使用者に対しては空気調和機から吹き出された気流をできるだけ感じることなく、快適に過せる生活空間を提供できる空気調和機を得ることを目的とする。
The present invention has been made to solve the above-described problems, and it is relatively easy to determine the dew condensation and prevent the dew condensation, while satisfying the direction of the air flow required by the user as much as possible. The purpose is to obtain an air conditioner that can realize a comfortable space.
It is another object of the present invention to provide an air conditioner that can provide a comfortable living space without feeling as much as possible the air flow blown out of the air conditioner for users who do not want to feel the air flow.

本発明に係る空気調和機は、凝縮器、蒸発器、並びに前記凝縮器及び前記蒸発器内を流れる冷媒を圧縮する圧縮機を有する冷凍サイクルと、吸込口から吸い込んだ空気を前記蒸発器で熱交換した後に吹出口に送風する送風機と、前記吹出口に回動可能に設けられ、前記送風機によって前記吹出口から吹き出す空気の吹出方向に対して異なる方向に送風する風向板と、前記吹出口を通過する空気温度を検出または推定する吹出空気温度検出手段と、前記風向板で結露を生じないときの吹出空気温度の下限を閾値として予め設定し、前記吹出空気温度検出手段による検出値と前記閾値を比較し、前記風向板に結露を生じると判断した場合には前記風向板を前記吹出方向に対して小さな角度である露付き安全角度をなす位置に回動し、前記風向板に結露を生じないと判断した場合には前記風向板を前記吹出方向に対して前記露付き安全角度よりも大きな角度をなす位置に回動可能とする風向板制御装置と、を備えたことを特徴とする。   An air conditioner according to the present invention includes a condenser, an evaporator, a refrigeration cycle having a compressor that compresses the refrigerant flowing through the condenser and the evaporator, and heat that is sucked from the suction port by the evaporator. An air blower that blows air to the air outlet after replacement, a wind direction plate that is rotatably provided at the air outlet and that blows air in a direction different from the direction of air blown from the air outlet by the air blower, and the air outlet. Blowing air temperature detection means for detecting or estimating the passing air temperature, and a lower limit of the blowing air temperature when no condensation occurs on the wind direction plate is set in advance as a threshold value, and the detected value and the threshold value by the blowing air temperature detection means When it is determined that condensation occurs on the wind direction plate, the wind direction plate is rotated to a position that forms a safe angle with dew that is a small angle with respect to the blowing direction, and the wind direction plate is A wind direction plate control device that enables the wind direction plate to rotate to a position that forms an angle larger than the dew safety angle with respect to the blowing direction when it is determined that dew does not occur. And

本発明に係る空気調和機によれば、結露の判断を比較的容易にでき確実に結露を防止できると共に、使用者の要求する気流の向きをできるだけ満足させて、快適な空間を実現できる空気調和機を得ることができる。   According to the air conditioner according to the present invention, the determination of condensation can be made relatively easily and the condensation can be surely prevented, and the direction of the airflow required by the user can be satisfied as much as possible to realize a comfortable space. You can get a chance.

実施の形態1.
図1は本発明の実施の形態1に係る空気調和機の構成を模式的に示す冷媒回路図である。図1において、2つの熱交換器30a、30bと、熱交換器30a、30b内を流れる冷媒を圧縮させる圧縮機50と、空気を冷房、暖房の冷媒回路を切り換える四方弁51と、電子式膨張弁(以下、LEVと記す)52を有し、それぞれを図に示すように冷媒配管で接続して冷媒を循環させて冷凍サイクルを構成する。この冷媒回路全体を、室内機100aと室外機100bに分離して格納している。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram schematically showing a configuration of an air conditioner according to Embodiment 1 of the present invention. In FIG. 1, two heat exchangers 30a and 30b, a compressor 50 that compresses refrigerant flowing in the heat exchangers 30a and 30b, a four-way valve 51 that switches between a refrigerant circuit for cooling and heating air, and electronic expansion A refrigeration cycle is configured by having a valve (hereinafter referred to as LEV) 52 and connecting each with a refrigerant pipe as shown in the figure to circulate the refrigerant. The entire refrigerant circuit is stored separately in the indoor unit 100a and the outdoor unit 100b.

冷房運転では四方弁51内で実線に示すように冷媒配管が接続され、熱交換器30aを蒸発器、熱交換器30bを凝縮器として動作させる。この時、冷媒回路の内部を流れる低温低圧のガス冷媒は、圧縮機50で圧縮されて高温高圧のガス冷媒となる。その高温高圧となったガス冷媒は熱交換器30bで室外空気と熱交換して冷媒自身は凝縮して高圧低温の液冷媒になり、LEV52で断熱膨張して低圧低温の二相冷媒となる。そして、熱交換器30aで室内空気と熱交換して蒸発ガス化し、圧縮機50に戻る。この熱交換器30aを蒸発器として機能させて冷媒が蒸発することで、室内空気に冷熱を与えて室内が冷房される。また、四方弁51内で点線のように冷媒配管を接続し、室内側の熱交換器30aを凝縮器として機能させて冷媒が凝縮することで、室内空気に温熱を与えて室内が暖房される。また、図1には図示していないが、室内機100a、室外機100bはそれぞれ1つづつ、または共通に1つの制御装置を備え、圧縮機50の回転数、四方弁51の接続、LEV52の開度、熱交換器30a、30bの近傍に配置されている送風機の回転数などを制御する。ここで、圧縮機50は制御装置により少なくとも2段階以上の圧縮機運転回転数を有する。   In the cooling operation, a refrigerant pipe is connected in the four-way valve 51 as shown by a solid line, and the heat exchanger 30a is operated as an evaporator and the heat exchanger 30b is operated as a condenser. At this time, the low-temperature and low-pressure gas refrigerant flowing inside the refrigerant circuit is compressed by the compressor 50 to become a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant exchanges heat with outdoor air in the heat exchanger 30b, and the refrigerant itself condenses into a high-pressure and low-temperature liquid refrigerant, and adiabatic expansion in the LEV 52 becomes a low-pressure and low-temperature two-phase refrigerant. The heat exchanger 30 a exchanges heat with room air to evaporate and returns to the compressor 50. The heat exchanger 30a functions as an evaporator to evaporate the refrigerant, so that the indoor air is cooled and the room is cooled. In addition, refrigerant piping is connected within the four-way valve 51 as indicated by a dotted line, and the indoor heat exchanger 30a functions as a condenser to condense the refrigerant, thereby heating indoors by giving warm heat to the indoor air. . Although not shown in FIG. 1, the indoor unit 100 a and the outdoor unit 100 b are each provided with one or a common control device, and the number of revolutions of the compressor 50, the connection of the four-way valve 51, and the LEV 52 The opening degree, the number of rotations of the blower arranged in the vicinity of the heat exchangers 30a and 30b, and the like are controlled. Here, the compressor 50 has at least two stages of compressor operating rotational speeds by the control device.

なお、四方弁51で冷房運転と暖房運転とを切り換え可能なものを示しているが、これに限定するものではなく、少なくとも吸い込んだ空気に対し温度が低い冷気を室内に吹き出すような冷房運転や除湿運転を行う空気調和機に関する。   Although the four-way valve 51 is shown to be capable of switching between cooling operation and heating operation, the present invention is not limited to this, and at least a cooling operation in which cool air having a low temperature with respect to the sucked air is blown into the room or The present invention relates to an air conditioner that performs a dehumidifying operation.

図2は本実施の形態に係る空気調和機の室内機100aを模式的に示す縦断面図であり、中央部における断面を側面側から見た図を示す。図2において、室内機100aは、筐体10と、筐体10内に設置され、室内空気を吸込口11から吸い込むと共に吸い込んだ空気を吹出口14から吹き出すように送風する送風機20と、送風機20が形成する風路内に配置され、吸い込んだ空気を調和する熱交換器30aと、吸い込んだ空気に含まれる塵埃を捕捉するフィルタ40と、熱交換器30aで熱交換して調和された空気を吹き出す吹出口14と、調和された空気を上下方向に曲げる上下風向板1と、調和された空気を左右方向に曲げる左右風向板3とを有する。   FIG. 2 is a longitudinal sectional view schematically showing the indoor unit 100a of the air conditioner according to the present embodiment, and shows a view of a cross section in the central portion as viewed from the side. In FIG. 2, the indoor unit 100 a is installed in the housing 10, the blower 20 that blows the indoor air from the suction port 11 and blows out the sucked air from the blowout port 14, and the blower 20. A heat exchanger 30a that harmonizes the sucked air, a filter 40 that traps dust contained in the sucked air, and air that is harmonized by heat exchange in the heat exchanger 30a. It has the blower outlet 14, the up-and-down wind direction board 1 which bends the harmonized air to the up-down direction, and the left-right wind direction board 3 which bends the harmonized air to the left-right direction.

筐体10は、両端面(図示しない)が塞がれた筒状であって、天面(図中、上側)の一部が開口し、該開口部は空気を吸い込む吸込口11を構成する。また、地面(図中、下側)の一部が開口し、空気を吹き出す吹出口14を構成する。そして、前面(図中、左側)は開口し、該開口部を開閉する前面扉12が設置されている。なお、後面(図中、右側)は塞がれ、筐体10を壁等に取り付けるための壁取付部(図示せず)が形成されている。また、図中では天面部のみに吸込口11を設けた構成を示しているが、空気の流れを考慮して熱交換器30aの上流側に吸込口11が配設されていればよく、その位置は筐体10の上下左右、いかなる方向に吸込口11が設けられていてもよい。   The casing 10 has a cylindrical shape in which both end surfaces (not shown) are closed, and a part of the top surface (upper side in the figure) is opened, and the opening constitutes a suction port 11 for sucking air. . In addition, a part of the ground (lower side in the figure) is opened to constitute the air outlet 14 that blows out air. And the front surface (left side in the figure) is opened, and a front door 12 for opening and closing the opening is installed. In addition, the rear surface (right side in the drawing) is closed, and a wall attachment portion (not shown) for attaching the housing 10 to a wall or the like is formed. Moreover, although the structure which provided the suction inlet 11 only in the top surface part is shown in the figure, the suction inlet 11 should just be arrange | positioned in the upstream of the heat exchanger 30a in consideration of the flow of air, The suction port 11 may be provided at any position in the vertical and horizontal directions of the housing 10.

送風機20は、筐体10の縦断面では略中央部に配置され、吸込口11から吹出口14に至る風路を形成する。送風機20と吹出口14との間の吹出側風路は、ノズル13と後面ガイド板15とによって挟まれている。吹出口14を通過する空気温度を検出する吹出空気温度検出手段として、例えば吹出空気温度センサ17が吹出口14の付近に設けられており、ここでは、例えば後面ガイド板15にねじ止めなどによって固定されている。   The blower 20 is disposed in a substantially central portion in the longitudinal section of the housing 10 and forms an air path from the suction port 11 to the blower port 14. The blowing side air passage between the blower 20 and the blower outlet 14 is sandwiched between the nozzle 13 and the rear guide plate 15. As a blown air temperature detecting means for detecting the temperature of the air passing through the blower outlet 14, for example, a blown air temperature sensor 17 is provided in the vicinity of the blower outlet 14. Here, for example, the rear guide plate 15 is fixed by screwing or the like. Has been.

熱交換器30aは、吸込口11と送風機20との間に配置され、吸い込まれた空気を調和(冷却、加熱、加湿、除湿等)する。熱交換器30aは、伝熱管31と、伝熱管31に設置された放熱フィン32とを具備し、送風機20の天面側及び前面側を取り囲むように配置されている。また、フィルタ40は熱交換器30aの上流に設けられ、例えば網状体のフィルタ通気体と、フィルタ通気体が固定されるフィルタ枠体とから形成されている。熱交換器30aやフィルタ40の構成及び配置形態は図2に限るものではなくどのようなものでもよい。   The heat exchanger 30a is arranged between the suction port 11 and the blower 20, and harmonizes the sucked air (cooling, heating, humidification, dehumidification, etc.). The heat exchanger 30 a includes a heat transfer tube 31 and radiating fins 32 installed on the heat transfer tube 31, and is arranged so as to surround the top surface side and the front surface side of the blower 20. The filter 40 is provided upstream of the heat exchanger 30a, and is formed of, for example, a mesh-like filter vent and a filter frame to which the filter vent is fixed. The configuration and arrangement of the heat exchanger 30a and the filter 40 are not limited to those shown in FIG.

図中、送風機20によってノズル13と後面ガイド板15で形成された風路を通過して吹き出される空気の吹出方向を白抜きの矢印Foutで示す。この吹出方向Foutは風向板1、3を備えていない構成での風路を通って送風される方向である。また、吹出方向Foutの垂直方向成分をFout(v)とし、水平方向成分をFout(h)とする。図2では垂直方向成分Fout(v)が示されている。   In the drawing, the blowing direction of the air blown out through the air passage formed by the nozzle 13 and the rear guide plate 15 by the blower 20 is indicated by a white arrow Fout. This blowing direction Fout is a direction in which air is blown through an air passage in a configuration in which the wind direction plates 1 and 3 are not provided. Further, the vertical component of the blowing direction Fout is Fout (v), and the horizontal component is Fout (h). In FIG. 2, the vertical component Fout (v) is shown.

熱交換器30aで熱交換して調和された空気は、吹出口14から吹出方向Foutに吹き出されようとするが、水平方向に回動可能な上下風向板1が吹出口14に設けられている。このため、上下風向板1の回動角度に応じ、筐体10に対して上下方向に曲げられて、吹出方向Fout(v)とは異なる方向に送風され、室内に広く吹き出される。ここでは例えば2枚の上下風向板1a、1bを備え、1枚の風向板1は筐体10と同様の材質で形成され、図2では風向板1a、1bの断面を示すが、実際には筐体10の幅方向、即ち長手方向に細長い形状である。この上下風向板1a、1bは、例えばステッピングモータ(図示せず)などによって、軸2a、2bを中心に回動して複数の回動角度で固定可能に構成されている。ステッピングモータを上下風向板1a、1bにそれぞれ設けてもいいし、1つのステッピングモータで両方の上下風向板1a、1bを回動するように構成してもよい。   The air harmonized by heat exchange in the heat exchanger 30a is about to be blown out from the blowout port 14 in the blowout direction Fout. . For this reason, according to the rotation angle of the up-and-down air direction board 1, it is bent up and down with respect to the housing | casing 10, and it blows in the direction different from the blowing direction Fout (v), and blows off widely indoors. Here, for example, two up and down wind direction plates 1a and 1b are provided, and one wind direction plate 1 is formed of the same material as that of the housing 10, and FIG. 2 shows a cross section of the wind direction plates 1a and 1b. The casing 10 is elongated in the width direction, that is, the longitudinal direction. The up-and-down air direction plates 1a and 1b are configured to be rotatable around shafts 2a and 2b, for example, by a stepping motor (not shown) or the like and fixed at a plurality of rotation angles. Stepping motors may be provided on the upper and lower wind direction plates 1a and 1b, respectively, or both the upper and lower wind direction plates 1a and 1b may be rotated by one stepping motor.

さらに、吹出口14の上下風向板1よりも送風機20側に左右風向板3a、3bを有する。左右風向板3a、3bは水平方向に回動可能に構成され、熱交換器30aで熱交換して調和された空気は、筐体10に対して左右方向に曲げられて、吹出方向Fout(h)とは異なる方向に送風され、室内に広く吹き出される。   Furthermore, it has left and right wind direction plates 3a and 3b on the blower 20 side of the blower outlet 14 from the up and down wind direction plate 1. The left and right wind direction plates 3a and 3b are configured to be rotatable in the horizontal direction, and the air harmonized by heat exchange in the heat exchanger 30a is bent in the left and right direction with respect to the housing 10 and is blown out in the blowing direction Fout (h ) Is blown in a different direction and is widely blown into the room.

図2に示されている左右風向板3a、3bは側面が示されており、実際にはそれぞれの左右風向板3a、3bに対して筐体10の幅方向に2枚以上の複数枚並んで2列で設けられている。左右風向板3a、3bについても、例えばステッピングモータ(図示せず)などによって、軸4a、4bを中心に水平方向に回動して複数の回動角度で固定可能に構成されている。ここで、上下風向板1を2枚、左右風向板3を2列有する構成について示しているが、それぞれ枚数や列数に限定されるものではなく、どのような構成でもよい。
また、運転停止時に上下風向板1は閉じられて外装面になるため、前面扉12下端Aと吹出口14の下端Bを結ぶ線にほぼ沿った曲線形状になっている。
The side surfaces of the left and right wind direction plates 3a and 3b shown in FIG. 2 are shown. Actually, two or more sheets are arranged in the width direction of the housing 10 with respect to the left and right wind direction plates 3a and 3b. It is provided in two rows. The left and right wind direction plates 3a and 3b are also configured to be able to rotate horizontally around the shafts 4a and 4b by a stepping motor (not shown), for example, and to be fixed at a plurality of rotation angles. Here, a configuration having two vertical wind direction plates 1 and two rows of left and right wind direction plates 3 is shown, but the configuration is not limited to the number and the number of columns, and any configuration may be used.
Moreover, since the up-and-down wind direction board 1 is closed and becomes an exterior surface at the time of a stop of operation, it has a curved shape substantially along the line connecting the lower end A of the front door 12 and the lower end B of the outlet 14.

図3は本実施の形態に係る空気調和機の制御装置を概略的に示すブロック図である。ここでは室内機100aに室内機制御装置61を設け、室外機100bに室外機制御装置62を設けるものとする。制御装置61、62は例えばマイクロコンピュータで構成され、記憶部、制御部、タイマー66などを内蔵している。室内機制御装置61は、例えばリモートコントロールスイッチ63から使用者の操作内容、例えばオン/オフ、冷房や暖房などの運転モード指令を入力したり、吹出空気温度センサ17で検出した吹出空気温度を入力する。さらに複数の制御機能を有し、送風機20のモータ、例えばブラシレスモータなどを駆動して回転数を制御する送風機回転数制御装置65や、風向板1、3のモータを駆動してその回動角度を制御する風向板制御装置64としても機能する。また、室外機制御装置62は、圧縮機50の回転数を制御する圧縮機回転数制御装置67や、四方弁51の接続を切り換える四方弁制御装置68や、LEV52の開度を制御するLEV制御装置69として機能する。室内機制御装置61と室外機制御装置62の間では情報の交換が行われる。   FIG. 3 is a block diagram schematically showing a control device for an air conditioner according to the present embodiment. Here, the indoor unit control device 61 is provided in the indoor unit 100a, and the outdoor unit control device 62 is provided in the outdoor unit 100b. The control devices 61 and 62 are constituted by a microcomputer, for example, and incorporate a storage unit, a control unit, a timer 66, and the like. The indoor unit control device 61 inputs, for example, a user operation content such as on / off, cooling or heating operation mode commands from the remote control switch 63, or the blown air temperature detected by the blown air temperature sensor 17. To do. Furthermore, it has a plurality of control functions and drives the motor of the blower 20 such as a brushless motor to control the rotational speed, and the rotational angle of the blower rotational speed control device 65 and the wind direction plates 1 and 3 by driving the motor. It functions also as the wind direction board control apparatus 64 which controls. The outdoor unit control device 62 includes a compressor rotation number control device 67 that controls the rotation number of the compressor 50, a four-way valve control device 68 that switches connection of the four-way valve 51, and an LEV control that controls the opening degree of the LEV 52. It functions as the device 69. Information is exchanged between the indoor unit controller 61 and the outdoor unit controller 62.

以下、本実施の形態1に係る上下風向板1の形状及び回動位置について、図4に基づいて詳しく説明する。
図4(a)に示すように上下風向板1の回動角度を定義する。上下風向板1は断面が曲線形状であり、吹出空気の上流側1mから下流側1nに湾曲した形状である。そこで、両端部1m、1nを直線で結び、吹出方向Fout(v)を基準線Laとし、基準線Laと両端部1m、1nを結んだ直線との角度θを上下風向板1の回動角度とする。図中、水平方向をL0で示している。図3に示した風向板制御装置64によって上下風向板1のモータを駆動し、例えば図4(b)に示すように複数の位置(イ〜ヘ)に固定したり、位置イから位置ヘの範囲で連続して回動させることが可能である。送風機20から風路を通る空気の吹出方向Fout(v)が図4(b)に示すように、位置ハの方向とほぼ一致しているとすると、例えば、位置イはθイ=15度程度、位置ロはθロ=10度程度、位置ハはθハ=0度程度、位置ニはθニ=10度程度、位置ホはθホ=20度数度、位置ヘはθヘ=30度程度である。位置イ、ロは基準線Laから上方へ回動され、位置ニ、ホ、ヘは基準線Laから下方へ回動される。上下風向板1は図4(a)に示すような形状なので、位置イで固定した場合には、空気の吹出方向Fout(v)の空気は上下風向板1で曲げられ、吹出口14から水平方向L0よりも上向きになって流れる。また、位置ロで固定した場合には、吹出口14からほぼ水平方向L0に流れる。さらに、位置ハ、ニ、ホ、へのそれぞれで固定した場合には、その回動角度に応じて、吹出口14から下向きにそれぞれに応じた角度で送風される。
Hereinafter, the shape and rotation position of the vertical wind direction plate 1 according to the first embodiment will be described in detail with reference to FIG.
As shown in FIG. 4A, the rotation angle of the vertical wind direction plate 1 is defined. The vertical wind direction plate 1 has a curved cross section and is curved from the upstream side 1 m to the downstream side 1 n of the blown air. Therefore, both ends 1m and 1n are connected by a straight line, the blowing direction Fout (v) is a reference line La, and the angle θ between the reference line La and the straight line connecting both ends 1m and 1n is the rotation angle of the vertical wind direction plate 1. And In the figure, the horizontal direction is indicated by L0. The motor of the vertical wind direction plate 1 is driven by the wind direction plate control device 64 shown in FIG. 3, and fixed to a plurality of positions (A to F), for example, as shown in FIG. It is possible to rotate continuously in the range. If the blowing direction Fout (v) of the air passing through the air passage from the blower 20 substantially coincides with the direction of the position C as shown in FIG. 4B, for example, the position i is about θ b = 15 degrees. , Position b is about θ b = 10 degrees, position c is about θ h = 0 degrees, position d is about θ d = about 10 degrees, position ho is about θ e = 20 degrees, position f is about θ f = about 30 degrees. It is. The positions A and B are rotated upward from the reference line La, and the positions D, E and F are rotated downward from the reference line La. Since the up-and-down wind direction plate 1 has a shape as shown in FIG. 4A, the air in the air blowing direction Fout (v) is bent by the up-and-down wind direction plate 1 and is It flows upward in the direction L0. Moreover, when it fixes at position b, it flows in the horizontal direction L0 from the blower outlet 14. FIG. Furthermore, when it fixes to each position C, D, E, it blows in the angle according to each downward from the blower outlet 14 according to the rotation angle.

次に、上下風向板1の結露が生じる状況について図5に基づいて説明する。
上下風向板1の回動角度と空気の吹出方向Fout(v)が図5(a)、(b)のように大きく交差する位置、即ち回動角度が大きい場合、上下風向板1に剥離現象が発生する。例えば図5(a)のように、上下風向板1が基準線Laに対して上方に大きな角度θイをなす位置である場合、上下風向板1の下面に空気の剥離が発生する。上下風向板1の上面は蒸発器30aで調和された冷気が流れ、上下風向板1の下面は剥離現象による渦5が発生し、周囲の暖かい空気が渦5に巻き込まれて接触する。この場合、上面に流れる冷気により上下風向板1は冷やされ、上下風向板1下面に周囲の空気が接触し露点に達すると、上下風向板1下面に結露が発生する。これが長時間持続した場合、結露した水が水滴になり筐体10の下に落下するという不具合が生じる。また、図5(b)のように、上下風向板1が基準線Laに対して下方に大きな角度θホ、θヘをなす位置である場合には、上下風向板1の上面の上流側に空気の剥離が発生する。この空気の剥離によって結露が生じる現象は図5(a)の場合と同様である。
Next, the situation where dew condensation occurs on the vertical wind direction plate 1 will be described with reference to FIG.
When the rotation angle of the vertical wind direction plate 1 and the air blowing direction Fout (v) greatly intersect as shown in FIGS. 5A and 5B, that is, when the rotation angle is large, a peeling phenomenon occurs in the vertical wind direction plate 1. Occurs. For example, as shown in FIG. 5A, when the vertical wind direction plate 1 is at a position that makes a large angle θb upward with respect to the reference line La, air separation occurs on the lower surface of the vertical wind direction plate 1. Cold air conditioned by the evaporator 30a flows on the upper surface of the vertical wind direction plate 1, and the lower surface of the vertical wind direction plate 1 generates a vortex 5 due to a peeling phenomenon, and the surrounding warm air is caught in the vortex 5 and comes into contact therewith. In this case, the vertical wind direction plate 1 is cooled by the cold air flowing on the upper surface, and when ambient air contacts the lower surface of the vertical wind direction plate 1 and reaches the dew point, condensation occurs on the lower surface of the vertical wind direction plate 1. When this lasts for a long time, there is a problem that the condensed water becomes water droplets and falls below the housing 10. Further, as shown in FIG. 5B, when the vertical wind direction plate 1 is at a position that makes a large angle θ ho and θ to the lower side with respect to the reference line La, on the upstream side of the upper surface of the vertical wind direction plate 1. Air separation occurs. The phenomenon in which condensation occurs due to the separation of air is the same as in the case of FIG.

即ち、(1)吹出空気温度が低く上下風向板1が周囲の空気の露点温度以下まで冷される。(2)吹き出しの冷たい空気が上下風向板1を包み込むように流れずに剥離現象が発生し、剥離による渦で周囲の空気が上下風向板1に接触する。この2つの現象が同時に発生したときに上下風向板1に結露が発生する。室内温度や湿度などの環境状況によっても、結露の発生状態は異なり、室内温度と吹出空気温度との差が大きいとき及び湿度の高いときに結露しやすいということは言うまでもない。ここで、上下風向板1が直線であるとすると、送風機20から風路を通って送風されて曲線状に吹き出される空気は、更に風向板1の面上で剥離されやすくなるが、本実施の形態では上下風向板1は曲線状に湾曲した形状であり、気流が湾曲部に多少はりつくことで結露しにくいものとなっている。ただしこの上下風向板1の湾曲形状は、空気調和機の運転停止時に外観のラインに合うように設計されており、全ての角度において剥離現象をなくすことは困難である。   That is, (1) the blown air temperature is low and the up-and-down wind direction plate 1 is cooled to a temperature equal to or lower than the dew point temperature of the surrounding air. (2) The exfoliation phenomenon occurs without the blown cold air flowing so as to wrap around the up-and-down wind direction plate 1, and the surrounding air comes into contact with the up-and-down wind direction plate 1 due to the vortex caused by the separation. When these two phenomena occur at the same time, condensation occurs on the vertical wind direction plate 1. It goes without saying that the occurrence of condensation differs depending on the environmental conditions such as the room temperature and humidity, and that condensation tends to occur when the difference between the room temperature and the blown air temperature is large and when the humidity is high. Here, assuming that the up-and-down wind direction plate 1 is a straight line, the air blown from the blower 20 through the air path and blown out in a curved shape is more easily peeled off on the surface of the wind direction plate 1. In this form, the up-and-down wind direction plate 1 has a curved shape, and the air flow sticks to the curved portion to make it difficult to condense. However, the curved shape of the up-and-down wind direction plate 1 is designed to match the appearance line when the operation of the air conditioner is stopped, and it is difficult to eliminate the peeling phenomenon at all angles.

さらに、図6に示すように、複数の上下風向板1a、1bを有する場合で、特に上側の上下風向板1aの回動位置が上方を向いている場合、吹出口14の近傍で、ノズル13の上部に剥離現象が生じる。この場合も同様に、剥離現象による渦6で周囲の空気を引き寄せ、吹出口14の側面に結露が発生する。このため、上下風向板1、特に上側の上下風向板1aに対して、結露しやすい環境下では吹出口14の側面に結露しないような上限角度を設定することが望ましい。ここでは、θイ=15度程度を上方側の上限角度とし、θヘ=30度程度を下方側の上限角度としているが、この角度に限定されるものではない。   Further, as shown in FIG. 6, in the case of having a plurality of vertical wind direction plates 1 a and 1 b, especially when the upper vertical wind direction plate 1 a is turned upward, the nozzle 13 An exfoliation phenomenon occurs on the top of the substrate. In this case as well, the surrounding air is attracted by the vortex 6 due to the peeling phenomenon, and condensation occurs on the side surface of the air outlet 14. For this reason, it is desirable to set an upper limit angle with respect to the up-and-down wind direction plate 1, particularly the upper up-and-down wind direction plate 1 a so as not to condense on the side surface of the outlet 14 in an environment where condensation is likely to occur. Here, θ b = about 15 degrees is set as the upper limit angle on the upper side, and θ f = about 30 degrees is set as the upper limit angle on the lower side. However, the angle is not limited to this.

以上のことから、上下風向板1の回動角度において、図4(b)に示す吹出方向Fout(v)の近傍、即ち位置ロ、ハ、ニを剥離現象が生じにくい位置とし、露付き安全角度θsとする。一方、位置イ、ホ、ヘは、吹出方向Fout(v)に対して大きな角度をなし、環境条件によっては上下風向板1に結露が生じる可能性のある角度である。ここで、露付き安全角度θsは、冷房運転開始時の吹出空気温度が低いときでも剥離現象が発生しない、または剥離現象が発生しても結露しない最大の角度(位置ロ又は位置ニ)であり、例えば予め空気調和機が使用される環境条件下でテスト運転を行なうことで設定しておく。   From the above, in the rotation angle of the vertical wind direction plate 1, the vicinity of the blowing direction Fout (v) shown in FIG. The angle is θs. On the other hand, the positions a, e, and f make a large angle with respect to the blowing direction Fout (v), and are angles at which dew condensation may occur on the vertical wind direction plate 1 depending on environmental conditions. Here, the dew safety angle θs is the maximum angle (position b or position d) where no peeling phenomenon occurs even when the temperature of the blown air at the start of the cooling operation is low, or no condensation occurs even if the peeling phenomenon occurs. For example, it is set by performing a test operation in advance under environmental conditions in which the air conditioner is used.

次に、上下風向板1に結露が生じる環境と吹出空気の温度との関係について説明する。図7は冷房運転開始からの吹出空気温度の変化を示すグラフであり、横軸に時間、縦軸に吹出空気温度を示す。これは例えば吹出空気温度センサ17での計測値である。吹出空気温度は、室内目標温度や環境条件によっても異なるが、T1、例えば10℃程度から徐々に上昇し、大きな負荷の変化がない限り単調に上昇していく。一方、室内温度は徐々に低下して室内目標温度に近づいていく。本実施の形態では、予め、使用環境の中で考えられる厳しい環境下、例えば室内温度や室内湿度の厳しい環境条件下において、テスト運転を行い、上下風向板1に結露が生じないような吹出空気の温度の下限を検出して吹出空気温度閾値として予め設定しておく。運転中に吹出空気の温度がこの吹出空気温度閾値よりも高い場合には、上下風向板1の回動角度が位置イから位置ヘのどのようであったとしても、上下風向板1の面上、及び吹出口14の側面に結露することがない環境条件である。図7では吹出空気温度閾値をTaで表し、例えば15℃程度としている。   Next, the relationship between the environment in which dew condensation occurs on the vertical wind direction plate 1 and the temperature of the blown air will be described. FIG. 7 is a graph showing a change in the blown air temperature from the start of the cooling operation, where the horizontal axis represents time and the vertical axis represents the blown air temperature. This is, for example, a value measured by the blown air temperature sensor 17. The blown air temperature varies depending on the indoor target temperature and environmental conditions, but gradually increases from T1, for example, about 10 ° C., and increases monotonously unless there is a large load change. On the other hand, the room temperature gradually decreases and approaches the indoor target temperature. In the present embodiment, a test operation is performed in advance under a harsh environment that can be considered in the usage environment, for example, a harsh environmental condition such as a room temperature or a room humidity, and blown air that does not cause condensation on the vertical wind direction plate 1. The lower limit of the temperature is detected and preset as the blown air temperature threshold value. When the temperature of the blown air is higher than the blown air temperature threshold during operation, the upper and lower wind direction plates 1 are on the surface of the vertical wind direction plate 1 regardless of the rotation angle of the vertical wind direction plate 1 from position i to position. , And environmental conditions in which condensation does not occur on the side surface of the air outlet 14. In FIG. 7, the blown air temperature threshold value is represented by Ta, for example, about 15 ° C.

図8は、吹出空気温度に応じて上下風向板1の面上に結露しないように回動位置を制御する場合のフローチャートであり、例えば室内機制御装置61内の風向板制御装置64で処理する工程を示す。
リモートコントロールスイッチ63で冷房運転の運転開始を指示されると、室内目標温度に応じて、圧縮機回転数制御装置67で圧縮機50の回転数、LEV制御装置69でLEV52の開度、四方弁制御装置68で四方弁51の切り換えを設定する。さらに、送風機回転数制御装置65で送風機20の回転数を設定し、風向板制御装置64では上下風向板1の角度を設定する(ST1)。そして冷房運転を開始する。この時、リモートコントロールスイッチ63によって気流の向きを露付き安全角度θsの範囲よりも大きい角度になるように使用者が希望している場合には、上下風向板1を使用者の希望の向きに設定する。一方、使用者が気流の向きを特に希望していない場合には、上下風向板1の角度を露付き安全角度θsの範囲になるように制限を加える。
FIG. 8 is a flowchart in the case where the rotation position is controlled so as not to condense on the surface of the vertical wind direction plate 1 in accordance with the blown air temperature. For example, the processing is performed by the wind direction plate control device 64 in the indoor unit control device 61. A process is shown.
When the start of cooling operation is instructed by the remote control switch 63, the rotation speed of the compressor 50 is controlled by the compressor speed control device 67, the opening degree of the LEV 52 by the LEV control device 69, and the four-way valve according to the indoor target temperature. The control device 68 sets the switching of the four-way valve 51. Further, the rotational speed of the blower 20 is set by the blower rotational speed control device 65, and the angle of the vertical wind direction plate 1 is set by the wind direction plate control device 64 (ST1). Then, the cooling operation is started. At this time, if the user desires the direction of the air flow to be larger than the range of the dew safety angle θs by the remote control switch 63, the vertical wind direction plate 1 is set in the direction desired by the user. Set. On the other hand, when the user does not particularly desire the direction of the airflow, the angle of the vertical airflow direction plate 1 is limited so as to be within the range of the dew safety angle θs.

吹出空気温度センサ17によって吹出空気温度を検出する(ST2)。次に検出した吹出空気温度と吹出空気温度閾値(Ta)とを比較する(ST3)。この判断で、吹出空気温度<吹出空気温度閾値(Ta)の場合には、図7に示すグラフではまだ吹出空気温度が低く、室内目標温度との差も大きく上下風向板1に結露が生じる環境条件下である。このため、その時点で上下風向板1の回動角度が露付き安全角度θs内かどうか判断し(ST6)、露付き安全角度θs内の場合にはST2に戻る。ST6の判断で、上下風向板1の回動角度が露付き安全角度θsより大きい場合には、その回動角度の継続時間が結露しない所定時間内かどうか判断し(ST7)、所定時間内の場合にはST2に戻る。ST7の判断で、上下風向板1の角度を露付き安全角度θsより大きい角度に設定してから所定時間以上経過している場合には、ST8で上下風向板1の角度を露付き安全角度θsに回動してST2に戻る。ST6〜ST8の制御によって、使用者が気流の向きを露付き安全角度θsより大きい角度になるように希望している場合、結露が生じない所定時間の間、例えば30分〜60分程度、上下風向板1を希望の向きに設定し、所定時間経過後に露付き安全角度θsの範囲になるように制御を加える。この所定の継続時間は、上下風向板1が露付き安全角度θsよりも大きな角度であったとしても結露しないと確認された継続時間を予め設定すればよい。また、この所定の継続時間は上下風向板1の角度に応じて異なる時間を設定してもよい。   The blown air temperature is detected by the blown air temperature sensor 17 (ST2). Next, the detected blown air temperature is compared with the blown air temperature threshold (Ta) (ST3). In this determination, when the blown air temperature is smaller than the blown air temperature threshold (Ta), the blown air temperature is still low in the graph shown in FIG. 7, and the difference from the indoor target temperature is large. Condition. Therefore, at that time, it is determined whether or not the rotation angle of the up-and-down wind direction plate 1 is within the dew safety angle θs (ST6), and if it is within the dew safety angle θs, the process returns to ST2. If it is determined in ST6 that the rotation angle of the up-and-down wind direction plate 1 is larger than the dew safety angle θs, it is determined whether the duration of the rotation angle is within a predetermined time during which no condensation occurs (ST7). In that case, the process returns to ST2. If it is determined in ST7 that a predetermined time or more has elapsed since the angle of the vertical wind direction plate 1 is set to be larger than the dew safety angle θs, the angle of the vertical wind direction plate 1 is determined to be the dew safety angle θs in ST8. To return to ST2. When the user desires the airflow direction to be an angle larger than the dew safety angle θs by the control of ST6 to ST8, for a predetermined time during which no condensation occurs, for example, about 30 to 60 minutes The wind direction plate 1 is set in a desired direction, and control is performed so that the dew-safety angle θs is within a range after a predetermined time has elapsed. The predetermined duration may be set in advance to a duration that is confirmed to be non-condensing even if the up-and-down wind direction plate 1 has an angle larger than the dew safety angle θs. The predetermined duration may be set to a different time depending on the angle of the up / down wind direction plate 1.

ST3の比較で、吹出空気温度≧吹出空気温度の閾値(Ta)の場合には、吹出空気温度が上昇し、室内目標温度との差が小さくなり湿度が高くても上下風向板1に結露しない環境条件下である。このため、ST4で、上下風向板1の角度を露付き安全角度θsよりも大きな角度に回動可能とする。リモートコントロールスイッチ63によって使用者が位置イ、位置ホ、位置ヘになるように風向きを設定していた場合、この状態でその希望の方向に上下風向板1を回動する。また、例えば逐次風向きを変更するようなスイングモードが設定されている場合、今までは位置ロ〜位置ニの間で移動していた上下風向板1を位置イ〜位置ヘの間で移動することを可能とする。この後の処理はさらに吹出空気温度の検出(ST2)に戻る。   In the comparison of ST3, when the blown air temperature ≧ the threshold value (Ta) of the blown air temperature, the blown air temperature rises, and the difference from the indoor target temperature becomes small, and even if the humidity is high, there is no condensation on the vertical wind direction plate 1 Under environmental conditions. For this reason, in ST4, the angle of the up-and-down wind direction plate 1 can be rotated to an angle larger than the dew safety angle θs. If the user has set the wind direction so that the remote control switch 63 is positioned at position a, position e, and position, the vertical wind direction plate 1 is rotated in the desired direction in this state. For example, when a swing mode that sequentially changes the wind direction is set, the up-and-down wind direction plate 1 that has been moved from position b to position d until now is moved from position i to position d. Is possible. The subsequent processing further returns to the detection of the blown air temperature (ST2).

このような制御を行うことによって、上下風向板1に結露を生じない環境条件になったときに上下風向板1の角度を吹出方向Foutに対して大きな角度に回動可能としたので、確実に結露を防止することができ、室内に水滴が滴下するのを防ぐことができる。また、予め吹出空気温度の閾値を求めておくことによって、吹出空気温度の判断だけで結露を防止できるため、比較的簡単に上下風向板1の回動角度を制御できる。
また、上下風向板1の形状がどのようなものであったとしても、その上下風向板1でテスト運転を行って露付き安全角度及び吹出空気温度閾値を設定しておくことで、上下風向板1に結露を生じるのを防止できる。
もちろん左右風向板3についても同様であるが、詳しくは実施の形態2に記載する。
By performing such control, the angle of the vertical wind direction plate 1 can be rotated to a large angle with respect to the blowing direction Fout when the environmental condition in which condensation does not occur on the vertical wind direction plate 1 is ensured. Condensation can be prevented and water droplets can be prevented from dripping into the room. In addition, by obtaining a threshold value for the blown air temperature in advance, condensation can be prevented only by determining the blown air temperature, so that the rotation angle of the vertical airflow direction plate 1 can be controlled relatively easily.
Moreover, no matter what the shape of the vertical wind direction plate 1 is, by performing a test operation with the vertical wind direction plate 1 and setting the safe angle of dew and the air temperature threshold, the vertical direction plate 1 can prevent condensation.
Of course, the same applies to the right and left wind direction plates 3, but the details will be described in the second embodiment.

次に、空気調和機の冷房運転の自動運転モードについて記載する。本実施の形態に係る空気調和機は独自の自動運転モードを有する。この自動運転モードは、通常吹き出し空気の方向などにおいて使用者の強い希望がない場合に設定される通常運転であり、使用者にとって快適空間を実現するべく自動的に吹き出し空気の方向を設定している。もちろんこの場合にも結露を防止することが望まれる。ここで、使用者にとっての快適空間について記載する。
運転開始時、使用者は暑いと感じているため、10℃程度の吹出空気が多少下方になって、冷気流を感じてもそれほど不快には感じず、かえって涼しく快適に感じる。これとは逆に、部屋が室内目標温度に近づいてくると、吹出空気温度は上昇してくるが、やはり周囲温度に対しては低く、例えば15℃程度の空気が吹き出される。このため、上下風向板1が水平又は下方を向いていると、吹出空気は下方に垂れて流れるため、使用者に気流を感じさせることになる。即ち、室内目標温度に近づくと、運転開始時とは逆に使用者は気流を感じると寒いと感じ不快に思う。このため、室内目標温度に近づくと、上下風向板1を上方に向け、使用者は気流を感じないように上下風向板1を回動するのが好ましい。
Next, the automatic operation mode of the cooling operation of the air conditioner will be described. The air conditioner according to the present embodiment has a unique automatic operation mode. This automatic operation mode is a normal operation that is set when there is no strong desire of the user in the direction of the normal blown air, etc., and the direction of the blown air is automatically set to realize a comfortable space for the user. Yes. Of course, it is desirable to prevent condensation in this case as well. Here, a comfortable space for the user will be described.
At the start of operation, the user feels hot, so the air blown out at about 10 ° C. is somewhat downward, and even if a cold air current is felt, it does not feel uncomfortable, but rather feels cool and comfortable. On the contrary, when the room approaches the indoor target temperature, the blown air temperature rises, but it is still lower than the ambient temperature, for example, air of about 15 ° C. is blown out. For this reason, when the up-and-down airflow direction plate 1 is directed horizontally or downward, the blown air flows downward and causes the user to feel the airflow. That is, when approaching the indoor target temperature, the user feels cold and uncomfortable when he feels the airflow, contrary to when starting operation. For this reason, when approaching indoor target temperature, it is preferable to turn the up-and-down wind direction plate 1 upward so that the user does not feel the airflow.

蒸発器30aで冷された空気を使用者に当てないように、上下風向板1を水平方向、例えば図4(b)において位置ロに吹き出した場合、ほぼ水平方向に吹き出した空気は周囲温度よりも低いために下方向に流れ、気流を感じ不快に思う使用者が発生する。これを防止するために、上下風向板1をさらに上方に向けるように位置イになるように回動すればよい。しかし、送風機20によって風路を通って吹き出される方向が吹出方向Foutである場合、図5に示すように上下風向板1に剥離が発生し、上下風向板1の下面に結露する可能性がある。自動運転モードでは、上下風向板1の面上に剥離が発生して結露するのを防止し、さらに、冷風が使用者の方向である下方に極力送風されないように制御する。   In order to prevent the air cooled by the evaporator 30a from being applied to the user, when the up-and-down air direction plate 1 is blown out in the horizontal direction, for example, at position b in FIG. Therefore, the user flows downward and feels an air current and feels uncomfortable. In order to prevent this, the up-and-down wind direction plate 1 may be rotated so as to be in the position A so as to be directed further upward. However, when the direction blown out through the air path by the blower 20 is the blowing direction Fout, the vertical wind direction plate 1 may be peeled off as shown in FIG. is there. In the automatic operation mode, the surface of the up-and-down wind direction plate 1 is prevented from being separated and dew condensation is performed, and further, the cold air is controlled so as not to be blown as much as possible downward in the direction of the user.

冷房の自動運転モード時の上下風向板1の回動角度の制御について、図9に示すフローチャートに基づいて説明する。図9は、吹出空気温度に応じて上下風向板1の面上に結露しないように回動位置を制御する場合のフローチャートであり、例えば風向板制御装置64で処理する工程を示す。ここでは、タイマー66を用い、吹出空気温度が吹出空気温度閾値Taの前後でふらついている場合に上下風向板1が短時間で回動角度を変更してしまうというように、不安定にならないような制御も加えている。   Control of the rotation angle of the up-and-down air direction plate 1 in the automatic operation mode of cooling will be described based on the flowchart shown in FIG. FIG. 9 is a flowchart in the case of controlling the rotation position so as not to condense on the surface of the upper and lower wind direction plates 1 according to the blown air temperature, and shows, for example, a process performed by the wind direction plate control device 64. Here, the timer 66 is used so that when the blown air temperature fluctuates before and after the blown air temperature threshold Ta, the vertical wind direction plate 1 changes the rotation angle in a short time so as not to become unstable. It also adds control.

リモートコントロールスイッチ63で冷房運転の運転開始を指示されると、室内目標温度に応じて、圧縮機回転数制御装置67で圧縮機50の回転数、LEV制御装置69でLEV52の開度、四方弁制御装置68で四方弁51の切り換えを設定する。また、送風機回転数制御装置65で送風機20の回転数を設定し、風向板制御装置64で上下風向板1の角度を露付き安全角度θsの範囲に設定する(ST1)。そして冷房自動運転を開始する。   When the start of cooling operation is instructed by the remote control switch 63, the rotation speed of the compressor 50 is controlled by the compressor speed control device 67, the opening degree of the LEV 52 by the LEV control device 69, and the four-way valve according to the indoor target temperature. The control device 68 sets the switching of the four-way valve 51. Further, the rotational speed of the blower 20 is set by the blower rotational speed control device 65, and the angle of the vertical wind direction plate 1 is set by the wind direction plate control device 64 within the range of the dew safety angle θs (ST1). Then, the cooling automatic operation is started.

ST2では吹出空気温度センサ17によって吹出空気温度を検出した後、検出した吹出空気温度と吹出空気温度の閾値(Ta)とを比較する(ST3)。この判断で、吹出空気温度<吹出空気温度の閾値(Ta)の場合には、図7に示すグラフではまだ吹出空気温度が低く、室内目標温度との差も大きく上下風向板1に結露を生じると判断される環境条件下である。このため、タイマー66が設定されていたらタイマー66を解除して(ST13)ST1に戻り、上下風向板1の角度を露付き安全角度θsに保持する、又は戻す。   In ST2, after the blown air temperature is detected by the blown air temperature sensor 17, the detected blown air temperature is compared with the threshold (Ta) of the blown air temperature (ST3). In this determination, when the blown air temperature <the blown air temperature threshold (Ta), the blown air temperature is still low in the graph shown in FIG. 7, and the difference from the indoor target temperature is large, causing condensation on the vertical wind direction plate 1. It is the environmental condition judged to be. For this reason, if the timer 66 is set, the timer 66 is canceled (ST13) and the process returns to ST1, and the angle of the up-and-down wind direction plate 1 is held at or returned to the safe angle θs of dew.

ST3の判断で、吹出空気温度≧吹出空気温度の閾値(Ta)の場合には、吹出空気温度が上昇し、室内目標温度との差が小さくなり湿度が高くても上下風向板1に結露を生じないと判断される環境条件下である。そこで、ST11でタイマー66が解除されている時にタイマーを設定し、ST12でタイマー66が所定時間、ここでは10分以上経過しているかどうかを判断する。10分以上経過していない場合には、ST2に戻り、吹出空気温度を検出する。ST12の判断で吹出空気温度≧吹出空気温度の閾値(Ta)となってから10分以上経過している場合に、ST5を実行し、上下風向板1を上方に回動し、上下風向板1の角度を露付き安全角度θsよりも大きな角度に回動する。これにより、上下風向板1は位置イに固定され、一番上方に吹き出し空気が流れる。この後の処理はタイマー66を解除し、さらに吹出空気温度の検出(ST2)に戻る。   If it is determined in ST3 that the blown air temperature ≧ the blown air temperature threshold value (Ta), the blown air temperature rises, and even if the difference from the indoor target temperature is small and the humidity is high, dew condensation occurs on the vertical wind direction plate 1. It is an environmental condition judged not to occur. Therefore, a timer is set when the timer 66 is released in ST11, and it is determined in ST12 whether or not the timer 66 has passed a predetermined time, in this case, 10 minutes or more. If 10 minutes or more have not elapsed, the process returns to ST2 to detect the blown air temperature. When it is determined in ST12 that 10 minutes or more have elapsed since the blown air temperature ≧ the blown air temperature threshold value (Ta), ST5 is executed, the vertical wind direction plate 1 is rotated upward, and the vertical wind direction plate 1 is rotated. Is rotated to an angle larger than the dew safety angle θs. Thereby, the up-and-down wind direction board 1 is fixed to position a, and blowing air flows to the uppermost part. In the subsequent processing, the timer 66 is canceled, and the process returns to the detection of the blown air temperature (ST2).

上記の制御では、確実に上下風向板1に結露しない環境条件になったときに、上下風向板1の角度を一番上方に回動して吹出方向Foutから上方に大きく異なる方向に空気が流れる様にする。このため、使用者に対して冷気が直接当たることなく快適な空間を実現でき、確実に結露を防止することができ、室内に水滴が滴下するのを防ぐことができる。また、予め吹出空気温度の閾値を求めておくことによって、吹出空気温度の判断だけで露付きを防止できるため、比較的簡単に制御できる。さらに、結露しない状態になってからも所定時間、ここでは10分経過後に上下風向板1の角度を回動している。図7に示したグラフで、M1の時点で上下風向板1の角度を露付き安全角度より大きく回動するのではなく、M1から所定時間例えば10分経過したM2の時点で露付き安全角度より大きく回動する。M1の時点で上下風向板1を回動すると、吹出空気温度がTa付近でふらついて上下した場合に頻繁に上下風向板1を動かすことになってしまう。これに対し、10分程度の所定時間経過したM2で回動するように制御すると、吹出空気温度がTa以上で安定してから上下風向板1を回動するので、さらに確実に結露を防止できると共に、上下風向板1を安定して回動制御することができる。   In the above-described control, when the environmental condition in which dew condensation does not occur on the up-and-down wind direction plate 1 is surely established, the angle of the up-and-down wind direction plate 1 is rotated to the uppermost position so Like. For this reason, a comfortable space can be realized without directing cold air to the user, condensation can be reliably prevented, and water droplets can be prevented from dripping into the room. Further, by obtaining a threshold value of the blown air temperature in advance, it is possible to prevent dew condensation only by determining the blown air temperature, and therefore, it is possible to control it relatively easily. Furthermore, the angle of the up-and-down wind direction plate 1 is rotated after a lapse of a predetermined time, in this case, 10 minutes, even after the state where no condensation occurs. In the graph shown in FIG. 7, the angle of the up-and-down wind direction plate 1 is not rotated more than the dew safety angle at the time of M1, but the dew safety angle at the time of M2 after a predetermined time, for example, 10 minutes from M1. It rotates greatly. If the up-and-down wind direction plate 1 is rotated at the time of M1, the up-and-down wind direction plate 1 is frequently moved when the blown air temperature fluctuates up and down near Ta. On the other hand, if it is controlled to rotate at M2 after a predetermined time of about 10 minutes, the upper and lower wind direction plates 1 are rotated after the blown air temperature is stabilized at Ta or higher, so that condensation can be prevented more reliably. At the same time, the vertical wind direction plate 1 can be controlled to rotate stably.

また、自動運転におけるST5では、上下風向板1を露付き安全角度θsよりも大きな角度に回動する際、使用者のいない方向に上下風向板1を回動させるように制御する。このため、使用者に吹き出し空気の気流感を与えず、設定温度に近づいた後に気流が向いて寒く感じるなどの不快な思いをせずに、快適な空間を提供する空気調和機として広く利用することができる。さらに上下風向板1を回動すると共に左右風向板3においても同様に制御することでより、使用者に気流を感じさせることなく運転することができる。   Further, in ST5 in the automatic operation, when the vertical wind direction plate 1 is rotated to an angle larger than the dew safety angle θs, the vertical wind direction plate 1 is controlled to rotate in a direction where there is no user. For this reason, it is widely used as an air conditioner that provides a comfortable space without giving the user a feeling of airflow of the blown air and without feeling uncomfortable such as feeling cold when the airflow approaches the set temperature. be able to. Further, by rotating the up / down wind direction plate 1 and controlling the left / right wind direction plate 3 in the same manner, it is possible to operate without causing the user to feel the air flow.

本実施の形態では以上のように、凝縮器30b、蒸発器30a、並びに凝縮器30b及び蒸発器30a内を流れる冷媒を圧縮する圧縮機50を有する冷凍サイクルと、吸込口11から吸い込んだ空気を蒸発器30aで熱交換した後に吹出口14に送風する送風機20と、吹出口14に回動可能に設けられ、送風機20によって吹出口14から吹き出す空気の吹出方向Foutに対して異なる方向に送風する風向板1、3と、吹出口14を通過する空気温度を検出する吹出空気温度検出手段17と、風向板1、3で結露を生じないときの吹出空気温度の下限を閾値Taとして予め設定し、吹出空気温度検出手段17による検出値と閾値Taを比較し、風向板1、3に結露を生じると判断した場合には風向板1、3を吹出方向Foutに対して小さな角度である露付き安全角度θsをなす位置に回動し、風向板1、3に結露を生じないと判断した場合には風向板1、3を吹出方向Foutに対して露付き安全角度θsよりも大きな角度をなす位置に回動可能とする風向板制御装置64と、を備えたことにより、風向板1、3の形状に関係なく風向板1、3での結露の発生を確実に防止でき、かつ使用者の要求する風向を極力満足でき、快適な空間を実現できる効果がある。ここで、吹出空気温度検出手段17による検出値と閾値Taを比較して結露が生じる環境下にあると判断された場合でも、所定の継続時間の間だったら風向板1、3を吹出方向Foutに対して露付き安全角度θsよりも大きな角度をなす位置に設定してもよい。即ち、この所定の継続時間内では結露が生じないと判断できる。   In the present embodiment, as described above, the condenser 30b, the evaporator 30a, the refrigeration cycle having the compressor 50 that compresses the refrigerant flowing in the condenser 30b and the evaporator 30a, and the air sucked from the suction port 11 are used. The air blower 20 that blows air to the air outlet 14 after heat exchange in the evaporator 30a and the air outlet 14 are rotatably provided, and air is blown in a different direction with respect to the air blowing direction Fout blown from the air outlet 14 by the air blower 20. The lower limit of the blown air temperature when no condensation occurs in the wind direction plates 1 and 3, the blown air temperature detection means 17 for detecting the temperature of the air passing through the blowout port 14, and the wind direction plates 1 and 3 is preset as a threshold Ta. When the detected value by the blown air temperature detecting means 17 is compared with the threshold value Ta and it is determined that condensation occurs on the wind direction plates 1 and 3, the wind direction plates 1 and 3 are reduced with respect to the blow direction Fout. When it is determined that no dew condensation occurs on the wind direction plates 1 and 3, the dew safety angle θs with respect to the blowing direction Fout is determined. By providing the wind direction plate control device 64 that can be rotated to a position that makes a larger angle, it is possible to reliably prevent condensation on the wind direction plates 1 and 3 regardless of the shape of the wind direction plates 1 and 3. It is possible to satisfy the wind direction requested by the user as much as possible and to realize a comfortable space. Here, even if it is determined that the dew condensation occurs in the environment where the detection value by the blown air temperature detecting means 17 and the threshold value Ta are compared, the wind direction plates 1 and 3 are blown in the blowing direction Fout during a predetermined duration. May be set at a position that is larger than the dew safety angle θs. That is, it can be determined that condensation does not occur within this predetermined duration.

また、風向板は垂直方向に回動して吹出方向Fout(h)に対して垂直方向で異なる方向に送風する上下風向板1であり、風向板制御装置64で、風向板1に結露を生じないと判断した場合には、風向板1を露付き安全角度θsよりも水平方向に大きな角度をなす位置に回動可能とすることで、上下風向板1の回動制御を行う際、確実に上下風向板1の面上に結露するのを防止できる効果がある。 The wind direction plate is a vertical wind direction plate 1 that rotates in the vertical direction and blows air in different directions perpendicular to the blowing direction Fout (h). The wind direction plate control device 64 causes condensation on the wind direction plate 1. If it is determined that the airflow direction plate 1 is not rotated, the airflow direction plate 1 can be rotated to a position that is larger in the horizontal direction than the dew safety angle θs. There is an effect that it is possible to prevent condensation on the surface of the vertical wind direction plate 1.

また、吹出空気温度検出手段は、吹出口14に固定した吹出空気温度センサ17であり、吹出空気温度センサ17で吹出口14を通過する空気温度を検出することにより、風向板1、3への結露を比較的容易に制御できる効果がある。   The blown air temperature detection means is a blown air temperature sensor 17 fixed to the blower outlet 14, and the blown air temperature sensor 17 detects the temperature of the air passing through the blower outlet 14, whereby There is an effect that the condensation can be controlled relatively easily.

また、風向板1、3に結露を生じないと判断した場合に、風向板1、3を露付き安全角度θsよりも上方向に大きな角度をなす位置に回動することで、使用者に気流を感じさせない風向になるように風向板1、3を向けて吹出空気の気流感を与えることを低減し、快適な空間を実現することができる効果がある。
また、風向板1、3に結露を生じないと判断した後、所定時間経過するまで風向板1、3の回動角度を吹出方向Foutに対して露付き安全角度θsよりも大きな角度をなす位置に回動しないので、結露を確実に防止できると共に、風向板1、3を安定した動きで制御できる効果がある。
In addition, when it is determined that no condensation occurs on the wind direction plates 1 and 3, the air direction plates 1 and 3 are rotated to a position that is larger than the dew safety angle θs to make the air flow to the user. The wind direction plates 1 and 3 are directed toward the wind direction so as not to feel the airflow, and the airflow feeling of the blown air is reduced, and a comfortable space can be realized.
Further, after determining that no condensation occurs on the wind direction plates 1 and 3, a position where the rotation angle of the wind direction plates 1 and 3 is larger than the dew safety angle θs with respect to the blowing direction Fout until a predetermined time elapses. Therefore, it is possible to reliably prevent condensation and to control the wind direction plates 1 and 3 with stable movement.

実施の形態2.
実施の形態1では上下風向板1の回動角度の制御について詳しく記載したが、本実施の形態では左右風向板3の制御について記載する。基本的には左右風向板3の制御も実施の形態1で説明した上下風向板1の場合と同様である。
図10は本実施の形態に係る左右風向板3の回動角度を示す説明図であり、一列の左右風向板3の部分だけを上面から見た図である。左右風向板3は空気調和機の長手方向に伸びて形成されている吹出口14に沿って複数設けられ、水平方向に回動可能である。なお、空気調和機の他の各部の構成及び制御動作は実施の形態1と同様である。
Embodiment 2. FIG.
In the first embodiment, the control of the rotation angle of the vertical wind direction plate 1 is described in detail, but in the present embodiment, the control of the left and right wind direction plate 3 is described. Basically, the control of the left and right wind direction plates 3 is the same as that of the up and down wind direction plate 1 described in the first embodiment.
FIG. 10 is an explanatory diagram showing the rotation angle of the left and right wind direction plates 3 according to the present embodiment, and is a view of only a portion of the left and right wind direction plates 3 in a row as viewed from above. A plurality of right and left wind direction plates 3 are provided along the air outlet 14 formed to extend in the longitudinal direction of the air conditioner, and can be rotated in the horizontal direction. In addition, the structure and control operation | movement of each other part of an air conditioner are the same as that of Embodiment 1.

図10において、左右風向板3は横方向に例えば6枚設けられ、図10(a)は全て同じ方向に回動するものを示し、図10(b)は3枚ずつが同じ方向に回動し、左右で異なる方向に回動するものを示す。また、図11に詳しく示すように、吹出口14からの吹出方向Foutの水平方向成分Fout(h)を基準線Lbとし、その基準線Lbとのなす角度を回動角度とする。本実施の形態では水平方向成分Fout(h)は筐体10の端面に平行な方向と一致している。左右風向板3は、図10に示すように0〜θwの間で例えばステッピングモータ(図示せず)によって回動可能とし、0、θn、θwで固定するように制御する。もちろん、0〜θwの間で連続的に回動するように制御することもできる。   In FIG. 10, for example, six left and right wind direction plates 3 are provided in the horizontal direction, FIG. 10A shows all rotating in the same direction, and FIG. And what rotates in a different direction on right and left is shown. Further, as shown in detail in FIG. 11, a horizontal component Fout (h) of the blowing direction Fout from the blower outlet 14 is defined as a reference line Lb, and an angle formed with the reference line Lb is defined as a rotation angle. In the present embodiment, the horizontal component Fout (h) coincides with the direction parallel to the end face of the housing 10. As shown in FIG. 10, the left and right wind direction plates 3 are controlled to be rotatable between 0 and θw, for example, by a stepping motor (not shown), and fixed at 0, θn, and θw. Of course, it can also be controlled to continuously rotate between 0 and θw.

例えば送風機20として空気調和機の幅方向に伸びる回転軸を有する貫流送風機を用いる場合、吹出口14から吹き出される空気は、幅方向の風量にはそれほどバラツキはなく、ほぼ基準線Lbの方向に吹き出される。左右風向板3の回動角度がθwのように吹出方向Fout(h)と大きく交差する位置の場合に、左右風向板3の上流側に剥離現象が発生する。この剥離現象によって周囲の暖かい空気が渦に巻き込まれ、冷気で冷やされている左右風向板3に接触して表面に結露する可能性がある。そこで、上下風向板1と同様、剥離現象が発生しない、または剥離現象が発生しても結露しない最大の角度θnを例えば予めテスト運転などで設定しておく。ここで、左右とも0〜θnを露付き安全角度θsとし、これよりも大きな角度、例えばθwまで回動すると、環境条件によっては左右風向板3の上流側の面上で空気の剥離が発生する可能性がある。なお、本実施の形態ではθn=40度程度、θw=50度程度としているが、この数値に限定するものではない。   For example, when a cross-flow blower having a rotating shaft extending in the width direction of the air conditioner is used as the blower 20, the air blown from the blower outlet 14 does not vary so much in the width direction, and is substantially in the direction of the reference line Lb. Blown out. When the rotation angle of the left and right wind direction plates 3 is a position that greatly intersects the blowing direction Fout (h) as θw, a peeling phenomenon occurs on the upstream side of the left and right wind direction plates 3. Due to this peeling phenomenon, the surrounding warm air is entrained in the vortex, and there is a possibility that the left and right wind direction plates 3 cooled by the cold air will come into contact with the surface. Therefore, as in the case of the up-and-down wind direction plate 1, the maximum angle θn at which no peeling phenomenon occurs or no condensation occurs even if the peeling phenomenon occurs is set in advance by a test operation or the like. Here, when 0 to θn is set as the dew safe angle θs on both the left and right sides, and the rotation angle is larger than this, for example, θw, air separation occurs on the upstream surface of the left and right wind direction plates 3 depending on the environmental conditions. there is a possibility. In this embodiment, θn = about 40 degrees and θw = about 50 degrees, but the present invention is not limited to these values.

また、筐体10の端面において、端面の近傍にある左右風向板3の回動角度が大きすぎることで、筐体10の端面に剥離が発生し、これによって結露が発生する可能性がある。このため、結露しやすい環境下では左右風向板3の回動角度の上限を設定するのが好ましく、ここでは左右とも回動角度θwを上限値としている。   Further, when the rotation angle of the left and right wind direction plates 3 in the vicinity of the end surface is too large on the end surface of the housing 10, peeling occurs on the end surface of the housing 10, which may cause condensation. For this reason, it is preferable to set the upper limit of the rotation angle of the left and right wind direction plates 3 in an environment where condensation is likely to occur. Here, the rotation angle θw is set as the upper limit value for both the left and right sides.

左右風向板3に結露が生じる環境と吹出空気の温度との関係は、図7と同様の変化を示す。そこで、上下風向板1と同様、使用環境の中で考えられる厳しい環境下、例えば室内温度や室内湿度の厳しい環境条件下において、テスト運転を行い、左右風向板3に結露が生じないような吹出空気温度の下限値を検出して吹出空気温度閾値として設定しておく。運転中に吹出空気温度がこの吹出空気温度閾値よりも高い場合には左右風向板3の回動角度が0〜θwの範囲でどのようであったとしても、左右風向板3の面上、及び吹出口14の側面に結露することがない環境条件である。図7では吹出空気温度閾値Taで表し、例えば15℃程度としている。   The relationship between the environment in which condensation occurs on the left and right wind direction plates 3 and the temperature of the blown air shows the same change as in FIG. Therefore, as with the up-and-down wind direction plate 1, a test operation is performed under a severe environment that can be considered in the usage environment, for example, a severe environment condition such as indoor temperature and indoor humidity, so that no condensation occurs on the left and right wind direction plates 3. A lower limit value of the air temperature is detected and set as a blown air temperature threshold value. If the blown air temperature is higher than the blown air temperature threshold during operation, no matter what the rotation angle of the left and right wind direction plate 3 is in the range of 0 to θw, This is an environmental condition where no condensation occurs on the side surface of the air outlet 14. In FIG. 7, it represents with the blowing air temperature threshold value Ta, for example, is about 15 degreeC.

風向板制御装置64で行う制御動作は上下風向板1の場合と同様である。例えば、図8において、ST3の判断で、吹出空気温度≧吹出空気温度の閾値(Ta)となって湿度が高くても左右風向板3に結露しない環境条件下になった場合、ST4で露付き安全角度θsよりも大きな角度例えばθwに回動するのを可能とする。ST8では露付き安全角度θsである0〜θnの間に固定、又は連続移動するように回動する。   The control operation performed by the wind direction plate control device 64 is the same as that in the case of the vertical wind direction plate 1. For example, in FIG. 8, if it is determined in ST3 that the air temperature is equal to or greater than the threshold value (Ta) of the air temperature and the humidity is high, the left and right wind direction plates 3 are not condensed. It is possible to turn to an angle larger than the safety angle θs, for example, θw. In ST8, it rotates so as to be fixed or continuously moved between 0 to θn which is the dew safety angle θs.

検出した吹出空気温度が予め設定している吹出空気温度の閾値Taよりも低い場合で、リモートコントロールスイッチ63によって気流の向きを露付き安全角度θsの範囲よりも大きい角度になるように使用者が希望している場合には、ST6、ST7、ST8で所定時間経過後に露付き安全角度θsの範囲になるように制限を加える。この所定時間は、例えば30〜60分程度であり、左右風向板3が露付き安全角度θsよりも大きい角度であったとしてもこの所定時間内であれば結露しないと確認された時間を設定しておけばよい。そして、確実に左右風向板3に結露しない環境条件になったときに左右風向板3の角度を基準線Lbに対して大きな角度に回動可能とする。これによって、確実に左右風向板3に結露するのを防止することができ、室内に水滴が滴下するのを防ぐことができる。また、予め吹出空気温度の閾値を求めておくことによって、湿度センサも必要なく吹出空気温度の判断だけで露付きを防止できるため、制御が比較的簡単にできる。ここで、予め設定しておく吹出空気温度の閾値は、上下風向板1の閾値と同じ値を用いてもよいし、それぞれ別の閾値を設定して別々に制御するように構成してもよい。また、吹出空気温度と吹出空気温度の閾値の比較では結露が生じる状態で、左右風向板3を露付き安全角度θsよりも大きい角度とすることを許容する所定の継続時間は、左右風向板3の回動角度に応じて異なる所定時間を設定してもよい。   When the detected blown air temperature is lower than a preset blown air temperature threshold value Ta, the user controls the remote control switch 63 so that the direction of the airflow is larger than the dew-safe angle θs. If desired, in ST6, ST7, ST8, a restriction is added so that the dew-safety angle θs is within the range after a predetermined time has elapsed. The predetermined time is, for example, about 30 to 60 minutes, and even if the left and right wind direction plates 3 are at an angle larger than the dew safety angle θs, a time that is confirmed to be non-condensing is set within the predetermined time. Just keep it. And when the environmental condition which does not condense on the left-right wind direction board 3 reliably comes, the angle of the left-right wind direction board 3 can be rotated to a big angle with respect to the reference line Lb. As a result, it is possible to reliably prevent condensation on the left and right wind direction plates 3 and to prevent water droplets from dropping into the room. Further, by obtaining a threshold value of the blown air temperature in advance, it is possible to prevent dew condensation only by determining the blown air temperature without requiring a humidity sensor. Here, the preset threshold value of the blown air temperature may be the same value as the threshold value of the vertical wind direction plate 1, or may be configured to be controlled separately by setting different threshold values. . In addition, when the dew condensation occurs in the comparison between the blown air temperature and the blown air temperature threshold value, the predetermined duration for allowing the left and right wind direction plates 3 to be an angle larger than the dew safety angle θs is the left and right wind direction plates 3. Different predetermined times may be set according to the rotation angle.

また、図9に示した自動運転モードの場合も同様である。ST1では露付き安全角度θsである0〜θnの間に固定、又は連続移動するように回動する。そして、ST3、ST12の判断で、検出した吹出空気温度が吹出空気温度閾値として予め設定している温度Ta以上になり、その状態が10分以上継続されている場合、ST5で露付き安全角度θsよりも大きな角度例えばθwに回動する。   The same applies to the automatic operation mode shown in FIG. In ST1, it rotates so as to be fixed or continuously moved between 0 to θn which is the dew safety angle θs. If the detected blown air temperature becomes equal to or higher than the temperature Ta set in advance as the blown air temperature threshold and the state continues for 10 minutes or longer as determined in ST3 and ST12, the dew safety angle θs is determined in ST5. It turns to a larger angle, for example, θw.

このような自動運転を行うことで、確実に左右風向板3に結露しない環境条件になったときに左右風向板3の角度を基準線Lbに対して大きな角度に回動して、広角に吹き出す。このため、確実に結露を防止することができ、室内に水滴が滴下するのを防ぐことができると共に、左右風向板3を広角にすることで、室内に広く冷気を送風できるので、快適な空間を実現できる。
なお、室内機に例えば赤外線によって室内の使用者の位置を検出するセンサを備えている場合には、使用者の位置を避ける方向に冷気が流れるように、左右風向板3の回動角度を設定すればよい。これにより、結露を防止できると共に冷気が使用者の居る方向に流れるのを防止でき、快適な空間を実現できる。
By carrying out such automatic operation, when the environmental condition that does not condense on the right and left wind direction plates 3 is surely established, the angle of the left and right wind direction plates 3 is rotated to a large angle with respect to the reference line Lb and blown out to a wide angle. . For this reason, it is possible to surely prevent condensation, prevent water droplets from dropping into the room, and widen the left and right wind direction plates 3 to blow cool air into the room. Can be realized.
If the indoor unit is equipped with a sensor that detects the position of the user in the room using, for example, infrared rays, the rotation angle of the left and right wind direction plates 3 is set so that the cool air flows in a direction that avoids the position of the user. do it. Thereby, while being able to prevent dew condensation, it can prevent that cool air flows in the direction where a user exists, and can realize a comfortable space.

図10に示した左右風向板3は幅方向に一列に配設したものを示したが、これに限るものではない。例えば2列以上の複数列の左右風向板3を備えていてもよい。複数列有する場合、一列目の送風機20の近くに配設されている風向板が、2列目の風向板の間隔に配置されて一部が重なるような構成でもよい。左右風向板3を複数備えた場合、複数列の風向板によって長い風路を形成し、送風機20からの風の流れをスムーズに室内に導くことができる。このために、送風機20の近くに配設される風向板は、その外側に配設される風向板よりも小さい回動角度になるように制御する。従って、一番外側、即ち一番送風機20から遠くに配置される左右風向板3の回動角度を結露しないように制御すればよい。   Although the left and right wind direction plates 3 shown in FIG. 10 are arranged in a row in the width direction, the present invention is not limited to this. For example, two or more rows of left and right wind direction plates 3 may be provided. When there are a plurality of rows, a configuration in which the wind direction plates arranged near the blower 20 in the first row are arranged at intervals between the wind direction plates in the second row and partially overlap each other may be employed. When a plurality of left and right wind direction plates 3 are provided, a long air path can be formed by a plurality of rows of wind direction plates, and the flow of wind from the blower 20 can be smoothly guided into the room. For this reason, it controls so that the wind direction board arrange | positioned near the air blower 20 becomes a rotation angle smaller than the wind direction board arrange | positioned on the outer side. Therefore, the rotation angle of the left and right wind direction plates 3 arranged on the outermost side, that is, the farthest from the blower 20 may be controlled so as not to condense.

本実施の形態では以上のように、風向板は水平方向に回動して吹出方向Fout(v)に対して水平方向で異なる方向に送風する左右風向板3であり、風向板制御装置64で、風向板3に結露が生じないと判断した場合には、風向板3を露付き安全角度θsよりも水平方向に大きな角度をなす位置に回動可能とすることで、風向板3の回動制御を行う際、確実に上下風向板1の面上に結露するのを防止できると共に、使用者にとって快適な空間を実現できる効果がある。   In the present embodiment, as described above, the wind direction plates are the left and right wind direction plates 3 that rotate in the horizontal direction and blow in different directions in the horizontal direction with respect to the blowing direction Fout (v). When it is determined that condensation does not occur on the wind direction plate 3, the wind direction plate 3 can be rotated to a position that forms a larger angle in the horizontal direction than the dew safety angle θs. When performing the control, it is possible to reliably prevent condensation on the surface of the up-and-down wind direction plate 1 and to realize a space comfortable for the user.

また、風向板3に結露を生じないと判断した場合に、風向板3を露付き安全角度θsよりも水平方向に大きな角度をなす位置に回動することで、広く快適な空間を実現することができる効果がある。
ここでも、吹出空気温度検出手段17による検出値と閾値Taを比較して結露が生じる環境下にあると判断された場合でも、所定の継続時間の間だったら風向板3を吹出方向Foutに対して露付き安全角度θsよりも大きな角度をなす位置に設定してもよい。即ち、この所定の継続時間内では結露が生じないと判断できる。
Further, when it is determined that condensation does not occur on the wind direction plate 3, a wide and comfortable space is realized by rotating the wind direction plate 3 to a position that forms a larger angle in the horizontal direction than the dew safety angle θs. There is an effect that can.
Here, even if it is determined that the dew condensation occurs in the environment where the detection value by the blown air temperature detecting means 17 is compared with the threshold value Ta, the wind direction plate 3 is moved with respect to the blowing direction Fout during a predetermined duration. It may be set at a position that forms an angle larger than the dew safety angle θs. That is, it can be determined that condensation does not occur within this predetermined duration.

実施の形態3.
実施の形態1、2では、結露が発生する環境条件を吹出空気温度によって検出し、具体的には吹出口14に吹出空気温度センサ17を固定して、この温度センサ17の計測結果を用いる例を示したが、これに限るものではない。他の状態量によって吹出空気温度を推定し、この状態量の閾値を設定してもよい。そしてこの閾値に基づいて結露発生の可能性を検出し、上下風向板1や左右風向板3の回動角度を制御することもできる。本実施の形態では、圧縮機50の回転数によって吹出空気温度を推定する。なお、ここでは上下風向板1についての制御について説明するが、左右風向板3の場合も同様である。また、空気調和機の基本的な構成及び動作も実施の形態1と同様である。
Embodiment 3 FIG.
In the first and second embodiments, an environmental condition in which condensation occurs is detected based on the blown air temperature. Specifically, the blown air temperature sensor 17 is fixed to the blower outlet 14 and the measurement result of the temperature sensor 17 is used. However, the present invention is not limited to this. The blown air temperature may be estimated based on another state quantity, and a threshold value for this state quantity may be set. Based on this threshold value, the possibility of the occurrence of condensation can be detected, and the rotation angle of the up / down wind direction plate 1 and the left / right wind direction plate 3 can be controlled. In the present embodiment, the blown air temperature is estimated based on the rotation speed of the compressor 50. In addition, although control about the up-down wind direction board 1 is demonstrated here, the case of the left-right wind direction board 3 is also the same. The basic configuration and operation of the air conditioner are the same as those in the first embodiment.

圧縮機50として例えばインバータによって圧縮機回転数が可変であるものを用いて空気調和機の冷房能力を変化することができる。即ち、冷房運転の開始時には圧縮機50の回転数を上げて室内の温度を極力早く下げる。他方、室内温度が使用者の設定した室内目標温度に近づいてくると、圧縮機回転数を下げて室内温度を維持する運転を行う。運転開始時は素早く部屋を室内目標温度にするために、送風機20の回転数も大きくして吹き出し空気の量を多くし、圧縮機50の回転数も上げて運転を行う。   The cooling capacity of the air conditioner can be changed by using, for example, a compressor 50 whose compressor rotation speed is variable by an inverter. That is, at the start of the cooling operation, the rotational speed of the compressor 50 is increased to lower the indoor temperature as quickly as possible. On the other hand, when the room temperature approaches the indoor target temperature set by the user, an operation is performed to maintain the room temperature by reducing the compressor speed. In order to quickly bring the room to the indoor target temperature at the start of operation, the rotation speed of the blower 20 is increased to increase the amount of blown air, and the rotation speed of the compressor 50 is also increased.

図12は吹出空気温度の変化を示すグラフ(図12(a))と圧縮機回転数の変化を示すグラフ(図12(b))であり、圧縮機回転数と吹出空気温度との関係を表している。圧縮機回転数は圧縮機回転数制御装置67で吹出空気温度や室内目標温度などに基づいて制御しており、この圧縮機回転数から吹出空気温度を推定することができる。吹出空気温度は、T1から室内温度が室内目標温度に近づくまで徐々に上昇する。この変化に対応して圧縮機回転数は、一番能力の必要な高いH1から徐々に低下し、室内温度が室内目標温度を満足するくらい低下するとその温度を保持するために必要な能力を得るだけの低い圧縮機回転数で制御する。実施の形態1で詳しく述べたように、予め、使用環境の中で考えられる厳しい環境下、例えば室内温度や室内湿度の厳しい環境条件下において、テスト運転を行い、上下風向板1に結露が生じないような吹出空気温度の下限値として吹出空気温度閾値Taが検出されるとする。即ち、図12(a)で吹出空気温度閾値Ta、例えば15℃程度とした場合、この時の圧縮機回転数を圧縮機回転数閾値Haとして設定する。圧縮機回転数が大きいほど吹出空気温度は小さいので、圧縮機回転数閾値Haは上下風向板1に結露が生じないような圧縮機回転数の上限値である。例えば運転開始時の圧縮機回転数H1を100Hz程度とし、圧縮機回転数閾値Haを例えば30Hz程度とする。圧縮機回転数が圧縮機回転数閾値Ha以下で運転している場合、上下風向板1の回動角度が位置イ〜位置ヘの範囲でどの位置であったとしても、上下風向板1の面上、及び吹出口14の側面に結露することがない環境条件である。   FIG. 12 is a graph (FIG. 12 (a)) showing a change in the blown air temperature and a graph (FIG. 12 (b)) showing a change in the compressor rotational speed. The relationship between the compressor rotational speed and the blown air temperature is shown. Represents. The compressor speed is controlled by the compressor speed controller 67 based on the blown air temperature, the indoor target temperature, and the like, and the blown air temperature can be estimated from the compressor speed. The blown air temperature gradually increases from T1 until the room temperature approaches the room target temperature. Corresponding to this change, the compressor rotational speed gradually decreases from the highest H1 that requires the most capacity, and when the room temperature falls to an extent that satisfies the indoor target temperature, the capacity necessary to maintain the temperature is obtained. Control with only a low compressor speed. As described in detail in the first embodiment, the test operation is performed in advance under a severe environment considered in the use environment, for example, a severe environment condition such as indoor temperature and humidity, and condensation occurs on the vertical wind direction plate 1. It is assumed that the blown air temperature threshold value Ta is detected as the lower limit value of the blown air temperature. That is, in FIG. 12A, when the blown air temperature threshold Ta is set to about 15 ° C., for example, the compressor rotation speed at this time is set as the compressor rotation speed threshold Ha. Since the blown air temperature decreases as the compressor speed increases, the compressor speed threshold value Ha is an upper limit value of the compressor speed at which dew condensation does not occur in the upper and lower wind direction plates 1. For example, the compressor rotation speed H1 at the start of operation is set to about 100 Hz, and the compressor rotation speed threshold Ha is set to, for example, about 30 Hz. When the compressor rotational speed is operating at a compressor rotational speed threshold value Ha or less, the surface of the vertical wind direction plate 1 can be used regardless of the position of the rotation angle of the vertical wind direction plate 1 in the range from position A to position. This is an environmental condition where no condensation occurs on the top and the side surface of the air outlet 14.

図13は、圧縮機回転数に応じて上下風向板1の面上に結露しないように回動位置を制御する場合のフローチャートであり、例えば風向板制御装置64で処理する工程を示す。
リモートコントロールスイッチ63で冷房運転の運転開始を指示されると、室内目標温度に応じて、圧縮機回転数制御装置67で圧縮機50の回転数、LEV制御装置69でLEV52の開度、四方弁制御装置68で四方弁51の切り換えを設定する。さらに、送風機回転数制御装置65で送風機20の回転数を設定し、風向板制御装置64では上下風向板1の角度を設定する(ST1)。そして冷房運転を開始する。この時、リモートコントロールスイッチ63によって気流の向きを露付き安全角度θsの範囲よりも大きい角度になるように使用者が希望している場合には、上下風向板1を使用者の希望の向きに設定する。一方、使用者が気流の向きを特に希望していない場合には、上下風向板1の角度を露付き安全角度θsの範囲になるように制限を加える。
FIG. 13 is a flowchart in the case where the rotational position is controlled so as not to condense on the surface of the upper and lower wind direction plates 1 according to the rotational speed of the compressor. For example, the process performed by the wind direction plate control device 64 is shown.
When the start of cooling operation is instructed by the remote control switch 63, the rotation speed of the compressor 50 is controlled by the compressor speed control device 67, the opening degree of the LEV 52 by the LEV control device 69, and the four-way valve according to the indoor target temperature. The control device 68 sets the switching of the four-way valve 51. Further, the rotational speed of the blower 20 is set by the blower rotational speed control device 65, and the angle of the vertical wind direction plate 1 is set by the wind direction plate control device 64 (ST1). Then, the cooling operation is started. At this time, if the user desires the direction of the air flow to be larger than the range of the dew safety angle θs by the remote control switch 63, the vertical wind direction plate 1 is set in the direction desired by the user. Set. On the other hand, when the user does not particularly desire the direction of the airflow, the angle of the vertical airflow direction plate 1 is limited so as to be within the range of the dew safety angle θs.

風向板制御装置64は圧縮機回転数制御装置67で制御している圧縮機回転数を入力する(ST22)。次に入力した圧縮機回転数と圧縮機回転数閾値(Ha)を比較する(ST23)。この比較で、圧縮機回転数>圧縮機回転数閾値(Ha)の場合には、図12(b)に示すグラフではまだ圧縮機回転数が高く、室内目標温度との差も大きく上下風向板1に結露する環境条件下である。このため、ST6〜ST8の制御によって、使用者が気流の向きを露付き安全角度θsより大きい角度になるように希望している場合、結露が生じない所定時間の間、例えば30分〜60分程度、上下風向板1を希望の向きに設定し、所定時間経過後に露付き安全角度θsの範囲になるように制御を加える。上下風向板1が露付き安全角度θs内の場合には、その角度を保持し、ST22に戻る。   The wind direction plate controller 64 inputs the compressor speed controlled by the compressor speed controller 67 (ST22). Next, the input compressor speed is compared with the compressor speed threshold (Ha) (ST23). In this comparison, when the compressor rotational speed> the compressor rotational speed threshold value (Ha), in the graph shown in FIG. 12B, the compressor rotational speed is still high, and the difference from the indoor target temperature is large. 1 is an environmental condition where condensation occurs. For this reason, when the user desires the direction of the air flow to be an angle larger than the dew safety angle θs by the control of ST6 to ST8, for a predetermined time during which no condensation occurs, for example, 30 minutes to 60 minutes. The vertical wind direction plate 1 is set in a desired direction, and control is performed so that the dew safety angle θs is within the range after a predetermined time has elapsed. If the vertical wind direction plate 1 is within the dew safety angle θs, the angle is maintained and the process returns to ST22.

ST23の判断で、圧縮機回転数≦圧縮機回転数閾値(Ha)の場合には、圧縮機回転数が低く制御され、室内温度が室内目標温度に近づいて湿度が高くても上下風向板1に結露しない環境条件下である。このため、ST4で、上下風向板1の角度を露付き安全角度θsよりも大きな角度に回動可能とする。リモートコントロールスイッチ63によって使用者が位置イ、位置ホ、位置ヘになるように風向きを設定していた場合、この状態でその希望の方向に上下風向板1を回動する。また、例えば逐次風向きを変更するようなスイングモードが設定されている場合、今までは位置ロ〜位置ニの間で移動していた上下風向板1を位置イ〜位置ヘの間で移動することを可能とする。この後の処理はさらに圧縮機回転数の入力(ST22)に戻る。   If it is determined in ST23 that the compressor rotational speed ≦ the compressor rotational speed threshold (Ha), the compressor rotational speed is controlled to be low, and the up-and-down wind direction plate 1 is controlled even if the indoor temperature approaches the indoor target temperature and the humidity is high. It is an environmental condition where there is no condensation. For this reason, in ST4, the angle of the up-and-down wind direction plate 1 can be rotated to an angle larger than the dew safety angle θs. If the user has set the wind direction so that the remote control switch 63 is positioned at position a, position e, and position, the vertical wind direction plate 1 is rotated in the desired direction in this state. For example, when a swing mode that sequentially changes the wind direction is set, the up-and-down wind direction plate 1 that has been moved from position b to position d until now is moved from position i to position d. Is possible. The subsequent processing further returns to the input of the compressor speed (ST22).

このような制御を行うことによって、確実に上下風向板1に結露しない環境条件になったときに上下風向板1の角度を吹出空気Fout(v)の方向に対して大きな角度に回動可能としたので、確実に結露を防止することができ、室内に水滴が滴下するのを防ぐことができる。また、予め吹出空気温度を推定しうる圧縮機回転数閾値Haを設定しておくことによって、圧縮機回転数の判断だけで結露を防止できるため、比較的簡単に上下風向板1の回動角度を制御できる。   By performing such control, the angle of the vertical wind direction plate 1 can be rotated to a large angle with respect to the direction of the blown-out air Fout (v) when the environmental condition is surely not condensed on the vertical wind direction plate 1. Therefore, dew condensation can be surely prevented and water droplets can be prevented from dripping into the room. Further, by setting the compressor rotation speed threshold value Ha that can estimate the blown air temperature in advance, it is possible to prevent condensation only by determining the compressor rotation speed. Can be controlled.

ここでは、上下風向板1の回動角度を制御する場合について述べたが、左右風向板3の制御については実施の形態2と同様である。吹出空気温度を検出して吹出空気温度閾値に基づいて左右風向板3の回動角度を制御する代わりに、吹出空気温度を推定しうる圧縮機回転数を入力して圧縮機回転数閾値に基づいて左右風向板3の回動角度を制御すればよい。また、図9に示した空気調和機の自動運転モードについても同様であり、ST2及びST3で吹出空気温度及び吹出空気温度閾値Taで判断するのに代えて、圧縮機回転数閾値Haを用いれば同様の効果を奏する。   Here, the case where the rotation angle of the up-and-down wind direction plate 1 is controlled has been described, but the control of the left-right wind direction plate 3 is the same as in the second embodiment. Instead of detecting the blown air temperature and controlling the rotation angle of the left and right wind direction plates 3 based on the blown air temperature threshold value, the compressor rotational speed at which the blown air temperature can be estimated is input and based on the compressor rotational speed threshold value. Thus, the rotation angle of the left and right wind direction plates 3 may be controlled. The same applies to the automatic operation mode of the air conditioner shown in FIG. 9. If the compressor rotation speed threshold value Ha is used instead of the determination with the blown air temperature and the blown air temperature threshold value Ta in ST2 and ST3, The same effect is produced.

また、送風機20として例えばブラシレスモータなどによって回転数を数段階に設定して運転できるものを用いると、運転状況に応じて効率よく室内の空気調和を行うことができる。即ち、冷房運転開始時は素早く部屋を設定温度にするために、送風機20の回転数を高くして吹き出し空気の風量を多くし、圧縮機50の回転数も上げて冷房能力の高い運転を行う。そして室内温度が使用者の設定した室内目標温度に近づいてくると、圧縮機回転数を下げ、吹出空気の風量も少なくし、室内温度を維持する運転を行う。また、リモートコントロールスイッチ63を介して使用者の要求によって、風量は数段階に可変であり、設定された風量に応じて送風機20の回転数が決定される。送風機20の回転数に応じて吹出空気温度や上下風向板1の剥離状態が異なる。ここで、例えば吹出空気温度が同じとすると、風量が大きいときには圧縮機回転数は高く、風量が小さいときには圧縮機回転数が低い。即ち、図13に示した制御工程で、吹出空気温度の閾値Taを1つにしていたが、送風機20の回転数が変化すれば検出した圧縮機回転数がHa以下でも上下風向板1に結露することになる。例えば風量がFaとして結露しないことを確認して圧縮機回転数の閾値を設定しておいても、Faよりも小さな風量の場合には、上下風向板1で剥離しやすくなり、渦が発生して結露が生じやすくなる。そのため、圧縮機回転数の閾値を送風機20の回転数に応じて少なくとも2つ以上の複数持つことより、確実に風向板での結露を防止できると共に使用者が気流を感じる頻度を少なくし、快適性を向上することができる。   In addition, when an air blower 20 that can be operated by setting the number of rotations in several stages using, for example, a brushless motor or the like, indoor air conditioning can be efficiently performed in accordance with the operation state. That is, at the start of the cooling operation, in order to quickly bring the room to the set temperature, the rotation speed of the blower 20 is increased to increase the amount of blown air, and the rotation speed of the compressor 50 is also increased to perform an operation with high cooling capacity. . Then, when the room temperature approaches the indoor target temperature set by the user, an operation is performed to maintain the room temperature by decreasing the compressor rotation speed and reducing the amount of blown air. In addition, the air volume is variable in several stages according to the user's request via the remote control switch 63, and the rotation speed of the blower 20 is determined according to the set air volume. Depending on the number of rotations of the blower 20, the blown air temperature and the peeled state of the vertical wind direction plate 1 are different. Here, for example, if the blown air temperature is the same, the compressor speed is high when the air volume is large, and the compressor speed is low when the air volume is small. That is, in the control process shown in FIG. 13, the threshold Ta of the blown air temperature is set to one, but if the rotation speed of the blower 20 changes, even if the detected rotation speed of the compressor is less than Ha, dew condensation occurs on the vertical wind direction plate 1. Will do. For example, even if it is confirmed that the amount of air is not condensed as Fa, and the threshold value of the compressor speed is set, if the air amount is smaller than Fa, the upper and lower wind direction plates 1 are easily peeled off and vortices are generated. Condensation is likely to occur. Therefore, having at least two or more threshold values for the compressor rotation speed according to the rotation speed of the blower 20 can surely prevent condensation on the wind direction plate and reduce the frequency that the user feels the airflow. Can be improved.

図14は送風機20の回転数を3段階に変化させたときの圧縮機回転数の閾値の設定を説明するグラフである。ここでは、風量Fbの時の圧縮機回転数の閾値をHb、風量Fcの時の圧縮機回転数の閾値をHcとして、Fb>Fcの時、Hb>Hcとした異なる値を設定している。例えば、冷房運転を開始後、送風機20の回転数を3段階で段階的にへらすように制御する。これは図14の下側のグラフにおいて、横軸を時間、縦軸を風量として表している。図14の上側のグラフは横軸の時間に対して縦軸は圧縮機回転数を示す。風量がFbの時に圧縮機回転数がその風量での圧縮機回転数Hb以下になったので、時間Maで風向板1、3の回動角度を露付き安全角度θsよりも大きな角度に回動可能とする。その後、時間Mcで送風機20の回転数を下げて風量をFcで運転する場合、MCの時点では風量Fcに対する圧縮機回転数閾値Hcよりも圧縮機回転数が高いので、風向板1、3の回動角度を露付き安全角度θs以内に再び回動する。さらに時間が経て時間Mbで圧縮機回転数がその風量Fcでの圧縮機回転数閾値Hc以下になったときに、風向板1、3の回動角度を露付き安全角度θsよりも大きな角度に回動可能とする。   FIG. 14 is a graph illustrating the setting of the threshold value of the compressor rotational speed when the rotational speed of the blower 20 is changed in three stages. Here, the threshold value of the compressor speed at the time of the air volume Fb is Hb, the threshold value of the compressor speed at the time of the air volume Fc is Hc, and different values are set such that Hb> Hc when Fb> Fc. . For example, after the cooling operation is started, the rotational speed of the blower 20 is controlled to be reduced stepwise in three stages. In the lower graph of FIG. 14, the horizontal axis represents time, and the vertical axis represents air volume. In the upper graph of FIG. 14, the vertical axis represents the compressor rotation speed with respect to the time on the horizontal axis. When the air volume is Fb, the compressor rotation speed becomes less than the compressor rotation speed Hb at that air volume, so that the rotation angle of the wind direction plates 1 and 3 is rotated to an angle larger than the dew safety angle θs at time Ma. Make it possible. After that, when the rotational speed of the blower 20 is decreased at time Mc and the air volume is operated by Fc, the compressor rotational speed is higher than the compressor rotational speed threshold Hc for the air volume Fc at the time of MC. The rotation angle is again rotated within the dew safety angle θs. Further, when the compressor rotational speed becomes equal to or less than the compressor rotational speed threshold Hc at the air volume Fc at time Mb with time, the rotational angle of the wind direction plates 1 and 3 is set to an angle larger than the dew safety angle θs. Turnable.

このように制御すると、1つの圧縮機回転数閾値Hcで制御する場合と比較して、風向板1、3への結露を防止できると共にさらに快適な空間を実現することができる。例えば冷気にさらされたくない使用者の場合には、時間Maから時間Mcまでは上下風向板1を位置イのように上方に向けておくことができる。同様に、冷気を感じたい使用者の場合には、時間Maから時間Mcまでは上下風向板1を位置ホ、ヘのように下方に向けておくことができる。   When controlled in this way, it is possible to prevent condensation on the wind direction plates 1 and 3 and to realize a more comfortable space as compared with the case where control is performed with one compressor rotation speed threshold Hc. For example, in the case of a user who does not want to be exposed to the cold air, the up-and-down wind direction plate 1 can be directed upward as shown in the position a from time Ma to time Mc. Similarly, in the case of a user who wants to feel cool air, the up-and-down airflow direction plate 1 can be directed downwards from position Ma to time Mc like position e and h.

このように圧縮機回転数の閾値を送風機20の回転数に応じて少なくとも2つ以上の複数設定し、風量とその風量の圧縮機回転数閾値とに基づいて上下風向板1の回動角度を制御すれば、使用者の希望をできるだけ満足でき、快適な空間を提供できる。
ここでは2つの閾値を設定する例を記載しているが、これに限るものではなく、風量、即ち送風機20の回転数に応じてさらに多くの閾値を設けて細かく制御すれば、更に使用者の満足度を向上することができ、快適な空間が得られる。
As described above, at least two or more threshold values for the compressor rotation speed are set in accordance with the rotation speed of the blower 20, and the rotation angle of the vertical wind direction plate 1 is set based on the air volume and the compressor rotation speed threshold value for the air volume. If controlled, the user's wish can be satisfied as much as possible and a comfortable space can be provided.
Here, an example in which two threshold values are set is described, but the present invention is not limited to this. If more threshold values are provided according to the air volume, that is, the number of rotations of the blower 20, and further controlled, the user's Satisfaction can be improved and a comfortable space can be obtained.

本実施の形態では以上のように、吹出空気温度検出手段は、圧縮機50の回転数を検出する手段、ここでは圧縮機回転数制御装置67であり、これで検出した圧縮機50の回転数から吹出口14を通過する空気温度を推定することで、風向板1、3への結露防止を比較的容易に制御できる効果がある。   In the present embodiment, as described above, the blown air temperature detecting means is means for detecting the rotational speed of the compressor 50, here, the compressor rotational speed control device 67, and the rotational speed of the compressor 50 detected thereby. By estimating the air temperature passing through the air outlet 14 from the air outlet, there is an effect that it is possible to control the prevention of condensation on the wind direction plates 1 and 3 relatively easily.

また、凝縮器30b、蒸発器30a、並びに凝縮器30b及び蒸発器30a内を流れる冷媒を圧縮する圧縮機50を有する冷凍サイクルと、吸込口11から吸い込んだ空気を蒸発器30aで熱交換した後に吹出口14に送風する送風機20と、吹出口14に回動可能に設けられ、送風機20によって吹出口14から吹き出す空気の吹出方向Foutに対して異なる方向に送風する風向板1、3と、圧縮機50の回転数を制御する圧縮機回転数制御装置67と、風向板1、3で結露を生じないときの圧縮機回転数の上限を回転数閾値Haとして予め設定し、圧縮機50の回転数と回転数閾値Haに基づいて風向板1、3の回動を制御する風向板制御装置64と、を備え、圧縮機回転数が回転数閾値よりも高い場合には風向板1、3を吹出方向Foutに対して小さな角度である露付き安全角度θsをなす位置に回動し、回転数が回転数閾値Haよりも低い場合には風向板1、3を露付き安全角度θsよりも上下方向または左右方向に大きな角度をなす位置に回動する運転モードを備えたことにより、風向板1、3の形状に関係なく風向板1、3での結露の発生を確実に防止でき、かつ使用者は冷気を感じることなく、快適に過ごせる空間を実現できる効果がある。   In addition, after the refrigerant 30b, the evaporator 30a, and the refrigeration cycle having the compressor 50 that compresses the refrigerant flowing in the condenser 30b and the evaporator 30a, and the air sucked from the suction port 11 are heat-exchanged by the evaporator 30a. A blower 20 that blows air to the blower outlet 14, a wind direction plate 1, 3 that is rotatably provided at the blower outlet 14 and blows air in a direction different from the blowout direction Fout of air blown from the blower outlet 14 by the blower 20, and compression The compressor rotation speed control device 67 for controlling the rotation speed of the compressor 50 and the upper limit of the compressor rotation speed when no condensation occurs in the wind direction plates 1 and 3 are set in advance as the rotation speed threshold value Ha, and the rotation of the compressor 50 A wind direction plate control device 64 that controls the rotation of the wind direction plates 1 and 3 based on the number of rotations and the rotation speed threshold value Ha, and when the compressor rotation speed is higher than the rotation speed threshold value, the wind direction plates 1 and 3 are Blowing direction F When the rotation speed is lower than the rotation speed threshold value Ha, the wind direction plates 1 and 3 are moved vertically or below the dew safety angle θs. By providing an operation mode that rotates to a position that makes a large angle in the left-right direction, it is possible to reliably prevent the occurrence of condensation on the wind direction plates 1, 3 regardless of the shape of the wind direction plates 1, 3, and There is an effect that can realize a comfortable space without feeling cold.

また、送風機20は風量が可変であるものとし、風量に応じて少なくとも2以上の回転数閾値を設定することにより、さらに使用者に満足できる快適空間を提供できる空気調和機が得られる。   Moreover, the air blower 20 shall be variable in air volume, and the air conditioner which can provide the comfortable space which can satisfy a user further by setting the rotation speed threshold value of 2 or more according to an air volume is obtained.

実施の形態4.
本発明の実施の形態4では、熱交換器30aの配管温度によって吹出空気温度を推定し、熱交換器30aの配管温度の閾値に基づいて、結露発生の可能性を検出して、上下風向板1や左右風向板3の回動角度を制御する。なお、空気調和機の基本的な構成及び動作も実施の形態1と同様である。また、熱交換器30aを蒸発器、熱交換器30bを凝縮器として動作させる冷房運転や除湿運転の場合である。
Embodiment 4 FIG.
In the fourth embodiment of the present invention, the blown air temperature is estimated from the piping temperature of the heat exchanger 30a, the possibility of dew condensation is detected based on the piping temperature threshold value of the heat exchanger 30a, and the vertical wind direction plate 1 and the rotation angle of the left and right wind direction plates 3 are controlled. The basic configuration and operation of the air conditioner are the same as those in the first embodiment. Further, this is a case of a cooling operation or a dehumidifying operation in which the heat exchanger 30a is operated as an evaporator and the heat exchanger 30b is operated as a condenser.

図15は吹出空気温度の変化を示すグラフ(図15(a))と蒸発器30aの配管温度の変化を示すグラフ(図15(b))であり、蒸発器配管温度と吹出空気温度との関係を表している。圧縮機回転数や室内温度や室内目標温度や負荷などに応じて冷凍サイクルを運転した時に、蒸発器配管温度は蒸発器30a内を流れる冷媒の温度であり、吹出空気温度の変化に対して図15に示すように変化する。即ち、吹出空気温度が、T1、例えば10℃程度から室内温度が室内目標温度に近づくまで徐々に上昇し、この変化に対応して蒸発器配管温度はT2、例えば7℃程度から徐々に上昇する。実施の形態1で詳しく述べたように、予め、使用環境の中で考えられる厳しい環境下、例えば室内温度や室内湿度の厳しい環境条件下において、テスト運転を行い、上下風向板1に結露が生じないような吹出空気温度の下限を閾値Taとして検出しておく。吹出空気温度閾値Ta、例えば15℃程度とすると、この時M1の蒸発器配管温度、例えば10℃程度を蒸発器配管温度閾値Tbとして設定する。この蒸発器配管温度閾値Tbは、風向板1で結露が生じないときの蒸発器配管温度の下限値である。即ち、蒸発器配管温度が蒸発器配管温度閾値Tb以上で運転している場合、上下風向板1の回動角度がどのようであったとしても、上下風向板1の面上、及び吹出口14の側面に結露することがない環境条件である。   FIG. 15 is a graph (FIG. 15 (a)) showing the change in the blown air temperature and a graph (FIG. 15 (b)) showing the change in the piping temperature of the evaporator 30a. Represents a relationship. When the refrigeration cycle is operated according to the compressor rotational speed, the indoor temperature, the indoor target temperature, the load, etc., the evaporator piping temperature is the temperature of the refrigerant flowing in the evaporator 30a. As shown in FIG. That is, the blown air temperature gradually increases from T1, for example, about 10 ° C. until the room temperature approaches the indoor target temperature, and the evaporator piping temperature gradually increases from T2, for example, about 7 ° C. in response to this change. . As described in detail in the first embodiment, the test operation is performed in advance under a severe environment considered in the use environment, for example, a severe environment condition such as indoor temperature and humidity, and condensation occurs on the vertical wind direction plate 1. The lower limit of the blown air temperature is detected as the threshold value Ta. Assuming that the blown air temperature threshold Ta is, for example, about 15 ° C., the evaporator piping temperature M1, for example, about 10 ° C. at this time is set as the evaporator piping temperature threshold Tb. The evaporator pipe temperature threshold value Tb is a lower limit value of the evaporator pipe temperature when no condensation occurs on the wind direction plate 1. That is, when the evaporator pipe temperature is operating at the evaporator pipe temperature threshold Tb or more, no matter what the rotation angle of the vertical wind direction plate 1 is, on the surface of the vertical wind direction plate 1 and the outlet 14. It is an environmental condition where there is no condensation on the side of

図16は本実施の形態に係る室内機の側面断面構成図である。図において、18は蒸発器30aの例えばフィン31に固定した配管温度センサであり、蒸発器配管温度を計測する。通常、冷凍サイクルの熱交換器には冷媒状態を見るための配管温度センサが設けられている。これは、例えば熱交換器内の冷媒配管の下流部分にあり、その部分の配管温度を検出して冷媒の流量や圧縮機回転数などの制御に用いる。ここでは通常備わっている配管温度センサ18の検出値を利用すればよい。図16において、図2と同一符号は同一、又は相当部分を示し、ここではその説明を省略する。   FIG. 16 is a side cross-sectional configuration diagram of the indoor unit according to the present embodiment. In the figure, 18 is a pipe temperature sensor fixed to, for example, the fin 31 of the evaporator 30a, and measures the evaporator pipe temperature. Usually, the heat exchanger of the refrigeration cycle is provided with a pipe temperature sensor for viewing the refrigerant state. This is, for example, in the downstream part of the refrigerant pipe in the heat exchanger, and the pipe temperature in that part is detected and used for controlling the refrigerant flow rate, the compressor rotation speed, and the like. Here, the detection value of the pipe temperature sensor 18 provided normally may be used. 16, the same reference numerals as those in FIG. 2 denote the same or corresponding parts, and the description thereof is omitted here.

図17は、蒸発器30aの配管温度に応じて上下風向板1の面上に結露しないように回動位置を制御する場合のフローチャートであり、例えば風向板制御装置64で処理する工程を示す。
リモートコントロールスイッチ63で冷房運転の運転開始が指示されると、室内目標温度に応じて、圧縮機回転数制御装置67で圧縮機50の回転数、LEV制御装置69でLEV52の開度、四方弁制御装置68で四方弁51の切り換えを設定する。さらに、送風機回転数制御装置65で送風機20の回転数を設定し、風向板制御装置64では上下風向板1の角度を設定する(ST1)。そして冷房運転を開始する。この時、リモートコントロールスイッチ63によって気流の向きを露付き安全角度θsの範囲よりも大きい角度になるように使用者が希望している場合には、上下風向板1を使用者の希望の向きに設定する。一方、使用者が気流の向きを特に希望していない場合には、上下風向板1の角度を露付き安全角度θsの範囲になるように制限を加える。
FIG. 17 is a flowchart in the case where the rotational position is controlled so as not to condense on the surface of the vertical wind direction plate 1 according to the piping temperature of the evaporator 30a, and shows, for example, a process performed by the wind direction plate control device 64.
When the start of cooling operation is instructed by the remote control switch 63, the rotation speed of the compressor 50 is controlled by the compressor speed control device 67, the opening degree of the LEV 52 by the LEV control device 69, and the four-way valve according to the indoor target temperature. The control device 68 sets the switching of the four-way valve 51. Further, the rotational speed of the blower 20 is set by the blower rotational speed control device 65, and the angle of the vertical wind direction plate 1 is set by the wind direction plate control device 64 (ST1). Then, the cooling operation is started. At this time, if the user desires the direction of the air flow to be larger than the range of the dew safety angle θs by the remote control switch 63, the vertical wind direction plate 1 is set in the direction desired by the user. Set. On the other hand, when the user does not particularly desire the direction of the airflow, the angle of the vertical airflow direction plate 1 is limited so as to be within the range of the dew safety angle θs.

風向板制御装置64は配管温度センサ18で計測した蒸発器配管温度を検出する(ST32)。次に検出した蒸発器配管温度と蒸発器配管温度閾値(Tb)を比較する(ST33)。この比較で、蒸発器配管温度<蒸発器配管温度閾値(Ta)の場合には、図15(b)に示すグラフではまだ配管温度が低くて圧縮機回転数が高く、室内目標温度との差も大きく上下風向板1に結露する環境条件下である。このため、ST6〜ST8の制御によって、使用者が気流の向きを露付き安全角度θsより大きい角度になるように希望している場合、結露が生じない所定時間の間、例えば30分〜60分程度、上下風向板1を希望の向きに設定し、所定時間経過後に露付き安全角度θsの範囲になるように制御を加える。上下風向板1が露付き安全角度θs内の場合には、その角度を保持し、ST32に戻る。   The wind direction plate control device 64 detects the evaporator piping temperature measured by the piping temperature sensor 18 (ST32). Next, the detected evaporator piping temperature is compared with the evaporator piping temperature threshold (Tb) (ST33). In this comparison, when the evaporator piping temperature <the evaporator piping temperature threshold (Ta), in the graph shown in FIG. 15B, the piping temperature is still low and the compressor rotational speed is high, and the difference from the indoor target temperature. This is also an environmental condition in which condensation occurs on the up-and-down wind direction plate 1. For this reason, when the user desires the direction of the air flow to be an angle larger than the dew safety angle θs by the control of ST6 to ST8, for a predetermined time during which no condensation occurs, for example, 30 minutes to 60 minutes. The vertical wind direction plate 1 is set in a desired direction, and control is performed so that the dew safety angle θs is within the range after a predetermined time has elapsed. If the vertical wind direction plate 1 is within the dew safety angle θs, the angle is maintained and the process returns to ST32.

ST33の判断で、蒸発器配管温度≧蒸発器配管温度閾値(Tb)の場合には、圧縮機回転数が低く制御され、室内温度が室内目標温度に近づいて湿度が高くても上下風向板1に結露しない環境条件下である。このため、ST4で、上下風向板1の角度を露付き安全角度θsよりも大きな角度に回動可能とする。リモートコントロールスイッチ63によって使用者が図4に示した位置イ、位置ホ、位置ヘになるように風向きを設定していた場合、この状態でその希望の方向に上下風向板1を回動する。また、例えば逐次風向きを変更するようなスイングモードが設定されている場合、今までは位置ロ〜位置ニの間で移動していた上下風向板1を位置イ〜位置ヘの間で移動することを可能とする。この後の処理はさらに蒸発器配管温度の入力(ST32)に戻る。   If it is determined in ST33 that the evaporator pipe temperature ≧ the evaporator pipe temperature threshold value (Tb), the compressor rotational speed is controlled to be low, and the up / down wind direction plate 1 even if the room temperature approaches the indoor target temperature and the humidity is high. It is an environmental condition where there is no condensation. For this reason, in ST4, the angle of the up-and-down wind direction plate 1 can be rotated to an angle larger than the dew safety angle θs. When the user has set the wind direction so that the remote control switch 63 is positioned at the position A, position E, and position shown in FIG. 4, the vertical wind direction plate 1 is rotated in the desired direction in this state. For example, when a swing mode that sequentially changes the wind direction is set, the up-and-down wind direction plate 1 that has been moved from position b to position d until now is moved from position i to position d. Is possible. The subsequent processing further returns to the input of the evaporator pipe temperature (ST32).

このような制御を行うことによって、確実に上下風向板1に結露しない環境条件になったときに上下風向板1の角度を吹出空気方向Foutに対して大きな角度に回動可能としたので、確実に結露を防止することができ、室内に水滴が滴下するのを防ぐことができる。また、予め吹出空気温度を推定しうる蒸発器配管温度閾値を設定しておくことによって、蒸発器配管温度の判断だけで露付きを防止できるため、比較的簡単に上下風向板1の回動角度を制御できる。   By performing such a control, the angle of the vertical wind direction plate 1 can be rotated to a large angle with respect to the blown air direction Fout when the environmental condition in which the dew condensation does not occur reliably on the vertical wind direction plate 1 is ensured. Condensation can be prevented and water droplets can be prevented from dripping into the room. In addition, by setting an evaporator pipe temperature threshold that can estimate the blown air temperature in advance, dew condensation can be prevented only by determining the evaporator pipe temperature. Can be controlled.

ここでは、上下風向板1の回動角度を制御する場合について述べたが、左右風向板3の制御については実施の形態2と同様である。吹出空気温度を検出して吹出空気温度閾値に基づいて左右風向板3の回動角度を制御する代わりに、吹出空気温度を推定しうる蒸発器配管温度を検出して蒸発器配管温度閾値に基づいて左右風向板3の回動角度を制御すればよい。この蒸発器配管温度閾値は、上下風向板1と左右風向板3とで同じ値でもいいし、風向板の形状によってはそれぞれ異なる閾値を求めておいてもよい。また、図9に示した空気調和機の自動運転モードについても同様であり、ST2及びST3で吹出空気温度及び吹出空気温度閾値Taで判断するのに代えて、蒸発器配管温度及び蒸発器配管温度閾値Tbを用いれば同様の効果を奏する。   Here, the case where the rotation angle of the up-and-down wind direction plate 1 is controlled has been described, but the control of the left-right wind direction plate 3 is the same as in the second embodiment. Instead of detecting the blown air temperature and controlling the rotation angle of the left and right wind direction plates 3 based on the blown air temperature threshold, the evaporator pipe temperature that can estimate the blown air temperature is detected and based on the evaporator pipe temperature threshold. Thus, the rotation angle of the left and right wind direction plates 3 may be controlled. The evaporator pipe temperature threshold value may be the same value for the up-and-down wind direction plate 1 and the left and right wind direction plate 3, or different threshold values may be obtained depending on the shape of the wind direction plate. The same applies to the automatic operation mode of the air conditioner shown in FIG. 9. Instead of determining with the blown air temperature and the blown air temperature threshold Ta in ST2 and ST3, the evaporator pipe temperature and the evaporator pipe temperature are used. If the threshold value Tb is used, the same effect can be obtained.

本実施の形態では以上のように、吹出空気温度検出手段は、蒸発器30aに固定した配管温度センサ18であり、配管温度センサ18で検出する配管温度から吹出口14を通過する空気温度を推定することにより、風向板1、3への露付き防止を比較的容易に制御できる効果がある。ここでも、配管温度センサ18による検出値と閾値Tbを比較して結露が生じる環境下にあると判断された場合でも、所定の継続時間の間だったら風向板1、3を吹出方向Foutに対して露付き安全角度θsよりも大きな角度をなす位置に設定してもよい。即ち、この所定の継続時間内では結露が生じないと判断できる。   In the present embodiment, as described above, the blown air temperature detecting means is the pipe temperature sensor 18 fixed to the evaporator 30a, and the air temperature passing through the outlet 14 is estimated from the pipe temperature detected by the pipe temperature sensor 18. By doing so, it is possible to control the prevention of dew on the wind direction plates 1 and 3 relatively easily. Even in this case, even if it is determined that the dew condensation is caused by comparing the detection value by the pipe temperature sensor 18 with the threshold value Tb, the wind direction plates 1 and 3 are moved with respect to the blowing direction Fout during a predetermined duration. It may be set at a position that forms an angle larger than the dew safety angle θs. That is, it can be determined that condensation does not occur within this predetermined duration.

また、実施の形態1〜実施の形態4において、冷房運転について詳しく説明したが、冷房暖房運転機能を有する空気調和機や、除湿機能を有する空気調和機にも適用できる。また、室内機と室外機に分割されたセパレータタイプの空気調和機について説明したが、一体型、例えばウィンドウタイプの空気調和機にも適用できる。   In the first to fourth embodiments, the cooling operation has been described in detail. However, the present invention can be applied to an air conditioner having a cooling / heating function and an air conditioner having a dehumidifying function. Moreover, although the separator type air conditioner divided | segmented into the indoor unit and the outdoor unit was demonstrated, it is applicable also to an integral type, for example, a window type air conditioner.

また、閾値として、風向板1、3で結露が生じないときの吹出空気温度の下限や圧縮機回転数の上限を予め設定したが、風向板1、3で結露が生じる可能性のある吹出空気温度の上限や圧縮機回転数の下限を設定しても同様である。例えば風向板1、3で結露が生じる可能性のある吹出空気温度の上限を閾値とした場合、吹出空気温度が閾値よりも高くなったら風向板1、3に結露を生じないと判断し、風向板1、3の回動角度を露付き安全角度よりも大きな角度をなす位置に回動可能とすればよい。   Moreover, although the lower limit of the blowing air temperature and the upper limit of the compressor rotation speed when no condensation occurs on the wind direction plates 1 and 3 are set in advance as the threshold, the blowing air that may cause condensation on the wind direction plates 1 and 3 The same applies if the upper limit of the temperature or the lower limit of the compressor speed is set. For example, when the upper limit of the blown air temperature at which condensation may occur on the wind direction plates 1 and 3 is set as a threshold, it is determined that no condensation occurs on the wind direction plates 1 and 3 when the blown air temperature becomes higher than the threshold. What is necessary is just to make it possible to rotate the rotation angle of the board 1 and 3 to the position which makes an angle larger than a dew safety angle.

また、実施の形態1〜実施の形態4のそれぞれにおいて、閾値として数値を記載したが、これに限定するものではない。例えば蒸発器配管温度閾値などは、冷媒によって異なる値であり、風向板1、3の形状によっても異なる値となる。
また、上下風向板1と左右風向板3の両方を備えた空気調和機について記載したが、どちらか一方の風向板を有する空気調和機にも適用できる。
In each of Embodiments 1 to 4, numerical values are described as threshold values, but the present invention is not limited to this. For example, the evaporator pipe temperature threshold value varies depending on the refrigerant, and varies depending on the shape of the wind direction plates 1 and 3.
Moreover, although the air conditioner provided with both the upper and lower wind direction plates 1 and the left and right wind direction plates 3 has been described, the present invention can also be applied to an air conditioner having either one of the wind direction plates.

本発明の実施の形態1に係る空気調和機の構成を模式的に示す冷媒回路図である。It is a refrigerant circuit diagram which shows typically the structure of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の室内機を模式的に示す縦断面図であり、中央部における断面を側面側から見た図を示す。It is a longitudinal cross-sectional view which shows typically the indoor unit of the air conditioner which concerns on Embodiment 1 of this invention, and shows the figure which looked at the cross section in a center part from the side surface side. 本発明の実施の形態1に係る空気調和機の制御装置を概略的に示すブロック図である。It is a block diagram which shows roughly the control apparatus of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係り、上下風向板の回動角度を示す説明図である。It is explanatory drawing which concerns on Embodiment 1 of this invention and shows the rotation angle of an up-down wind direction board. 本発明の実施の形態1に係り、上下風向板の回動角度及び結露の関係を示す説明図である。It is explanatory drawing which concerns on Embodiment 1 of this invention and shows the relationship between the rotation angle of an up-and-down wind direction board, and dew condensation. 本発明の実施の形態1に係る空気調和機の室内機を模式的に示す縦断面図であり、上下風向板の回動角度が上方である場合を示す。It is a longitudinal cross-sectional view which shows typically the indoor unit of the air conditioner which concerns on Embodiment 1 of this invention, and shows the case where the rotation angle of an up-down wind direction board is upward. 本発明の実施の形態1に係り、冷房運転開始からの時間に対する吹出空気温度の変化を示すグラフである。FIG. 5 is a graph according to Embodiment 1 of the present invention and showing changes in the blown air temperature with respect to time from the start of the cooling operation. 本発明の実施の形態1に係り、吹出空気温度に応じて風向板の面上に結露しないように回動位置を制御する場合のフローチャートである。7 is a flowchart according to Embodiment 1 of the present invention in a case where the rotational position is controlled so as not to condense on the surface of the wind direction plate according to the blown air temperature. 本発明の実施の形態1に係り、冷気に当たりたくない使用者に対して上下風向板を上方に向け、かつ風向板の面上に結露しないように回動位置を制御する場合のフローチャートである。FIG. 6 is a flowchart according to Embodiment 1 of the present invention in the case where the rotational position is controlled so that the user does not want to hit the cold and the up-and-down wind direction plate faces upward and does not condense on the surface of the wind direction plate. 本発明の実施の形態2に係り、左右風向板を筐体の天面から見たときの構成を模式的に示す説明図である。It is explanatory drawing which concerns on Embodiment 2 of this invention, and shows a structure when a left-right wind direction board is seen from the top | upper surface of a housing | casing. 本発明の実施の形態2に係り、左右風向板の回動角度を示す説明図である。It is explanatory drawing which concerns on Embodiment 2 of this invention and shows the rotation angle of a left-right wind direction board. 本発明の実施の形態3に係り、吹出空気温度の変化を示すグラフ(図12(a))と圧縮機回転数の変化を示すグラフ(図12(b))であり、圧縮機回転数と吹出空気温度との関係を表す。It is a graph (Drawing 12 (a)) showing change of blown air temperature and a graph (Drawing 12 (b)) showing change of compressor rotation speed concerning Embodiment 3 of the present invention. It represents the relationship with the blown air temperature. 本発明の実施の形態3に係り、圧縮機回転数に応じて風向板の面上に結露しないように回動位置を制御する場合のフローチャートである。It is a flowchart in the case of controlling the rotation position according to Embodiment 3 of the present invention so as not to condense on the surface of the wind direction plate according to the compressor rotation speed. 本発明の実施の形態3に係り、送風機の回転数を3段階に変化させたときの圧縮機回転数の変化と風量の変化の関係を説明するグラフである。It is a graph which concerns on Embodiment 3 of this invention, and demonstrates the relationship between the change of a compressor rotation speed when changing the rotation speed of an air blower in three steps, and the change of an air volume. 本発明の実施の形態4に係り、吹出空気温度の変化を示すグラフ(図15(a))と蒸発器配管温度の変化を示すグラフ(図15(b))であり、熱交換器配管温度と吹出空気温度との関係を表す。It is a graph (Drawing 15 (a)) showing change of blowing air temperature and a graph (Drawing 15 (b)) showing change of evaporator piping temperature concerning Embodiment 4 of the present invention, and heat exchanger piping temperature. And the relationship between the blown air temperature. 本発明の実施の形態4に係る空気調和機の室内機を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the indoor unit of the air conditioner which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係り、熱交換器の配管温度に応じて風向板の面上に結露しないように回動位置を制御する場合のフローチャートである。It is a flowchart in the case of controlling the rotation position according to Embodiment 4 of the present invention so as not to condense on the surface of the wind direction plate according to the piping temperature of the heat exchanger.

符号の説明Explanation of symbols

1、1a、1b 上下風向板
3、3a、3b 左右風向板
5 剥離により発生した渦
6 剥離により発生した渦
10 筐体
11 吸込口
13 ノズル
14 吹出口
15 後面ガイド板
17 吹出空気温度センサ
18 蒸発器配管温度センサ
20 送風機
30a 蒸発器
30b 凝縮器
50 圧縮機
64 風向板制御装置
65 送風機回転数制御装置
67 圧縮機回転数制御装置
1, 1a, 1b Vertical wind direction plate 3, 3a, 3b Left / right wind direction plate 5 Vortex generated by peeling 6 Vortex generated by peeling 10 Housing 11 Suction port 13 Nozzle 14 Blowing port 15 Rear guide plate 17 Blowing air temperature sensor 18 Evaporation Pipe temperature sensor 20 Blower 30a Evaporator 30b Condenser 50 Compressor 64 Wind direction plate control device 65 Blower rotation speed control device 67 Compressor rotation speed control device

Claims (8)

凝縮器、蒸発器、並びに前記凝縮器及び前記蒸発器内を流れる冷媒を圧縮する圧縮機を有する冷凍サイクルと、吸込口から吸い込んだ空気を前記蒸発器で熱交換した後に吹出口に送風する送風機と、前記吹出口に回動可能に設けられ、前記送風機によって前記吹出口から吹き出す空気の吹出方向に対して異なる方向に送風する風向板と、前記吹出口を通過する空気温度を検出または推定する吹出空気温度検出手段と、前記風向板で結露を生じないときの吹出空気温度の下限を閾値として予め設定し、前記吹出空気温度検出手段による検出値と前記閾値を比較し、前記風向板に結露を生じると判断した場合には前記風向板を前記吹出方向に対して小さな角度である露付き安全角度をなす位置に回動し、前記風向板に結露を生じないと判断した場合には前記風向板を前記吹出方向に対して前記露付き安全角度よりも大きな角度をなす位置に回動可能とする風向板制御装置と、を備えたことを特徴とする空気調和機。 A condenser, an evaporator, a refrigeration cycle having a compressor that compresses the refrigerant flowing through the condenser and the evaporator, and a blower that blows air sucked from the suction port to the outlet after heat exchange with the evaporator And a wind direction plate that is rotatably provided at the air outlet and blows air in a direction different from the direction of air blown out from the air outlet by the blower, and detects or estimates an air temperature that passes through the air outlet. The lower limit of the blown air temperature when no dew condensation occurs on the blown air temperature detecting means and the wind direction plate is set as a threshold value in advance, the detection value by the blown air temperature detecting means is compared with the threshold value, and the dew condensation is formed on the wind direction plate. If the wind direction plate is rotated to a position that forms a dew safety angle that is a small angle with respect to the blowing direction, and it is determined that no condensation occurs on the wind direction plate. An air conditioner is characterized in that and a louver controlling device for rotatable to a position which forms a larger angle than the dew safety angle the wind direction plate to the delivery direction in the. 前記風向板は垂直方向に回動して前記吹出方向に対して垂直方向で異なる方向に送風する上下風向板であり、前記風向板制御装置で、前記風向板に結露を生じないと判断した場合には、前記風向板を前記露付き安全角度よりも垂直方向に大きな角度をなす位置に回動可能とすることを特徴とする請求項1記載の空気調和機。 The wind direction plate is a vertical wind direction plate that rotates in the vertical direction and blows air in a direction different from the direction perpendicular to the blowing direction, and the wind direction plate control device determines that no condensation occurs on the wind direction plate The air conditioner according to claim 1, wherein the wind direction plate is rotatable to a position that forms a larger angle in the vertical direction than the safe angle with dew. 前記風向板は水平方向に回動して前記吹出方向に対して水平方向で異なる方向に送風する左右風向板であり、前記風向板制御装置で、前記風向板に結露が生じないと判断した場合には、前記風向板を前記露付き安全角度よりも水平方向に大きな角度をなす位置に回動可能とすることを特徴とする請求項1または請求項2記載の空気調和機。 The wind direction plate is a left and right wind direction plate that rotates in a horizontal direction and blows air in different directions in the horizontal direction with respect to the blowing direction, and the wind direction plate control device determines that no condensation occurs on the wind direction plate The air conditioner according to claim 1 or 2, wherein the wind direction plate is rotatable to a position that forms a larger angle in the horizontal direction than the safe angle with dew. 前記吹出空気温度検出手段は、前記吹出口に固定した吹出空気温度センサであり、前記吹出空気温度センサで前記吹出口を通過する空気温度を検出することを特徴とする請求項1乃至請求項3のいずれか1項に記載の空気調和機。 The said blown air temperature detection means is a blown air temperature sensor fixed to the blower outlet, and detects the temperature of the air passing through the blower outlet by the blown air temperature sensor. The air conditioner according to any one of the above. 前記吹出空気温度検出手段は、前記蒸発器に固定した配管温度センサであり、前記配管温度センサで検出する配管温度から前記吹出口を通過する空気温度を推定することを特徴とする請求項1乃至請求項3のいずれか1項に記載の空気調和機。 The said blown air temperature detection means is a pipe temperature sensor fixed to the evaporator, and estimates an air temperature passing through the outlet from a pipe temperature detected by the pipe temperature sensor. The air conditioner according to claim 3. 前記吹出空気温度検出手段は、前記圧縮機の回転数を検出する手段であり、検出した前記圧縮機の回転数から前記吹出口を通過する空気温度を推定することを特徴とする請求項1乃至請求項3のいずれか1項に記載の空気調和機。 The said blown air temperature detection means is a means for detecting the rotational speed of the compressor, and estimates the temperature of air passing through the outlet from the detected rotational speed of the compressor. The air conditioner according to claim 3. 凝縮器、蒸発器、並びに前記凝縮器及び前記蒸発器内を流れる冷媒を圧縮する圧縮機を有する冷凍サイクルと、吸込口から吸い込んだ空気を前記蒸発器で熱交換した後に吹出口に送風する送風機と、前記吹出口に回動可能に設けられ、前記送風機によって前記吹出口から吹き出す空気の吹出方向に対して異なる方向に送風する風向板と、前記圧縮機の回転数を制御する圧縮機回転数制御装置と、前記風向板で結露を生じないときの圧縮機回転数の上限を回転数閾値として予め設定し、前記圧縮機の回転数と前記回転数閾値に基づいて前記風向板の回動を制御する風向板制御装置と、を備え、前記風向板制御装置によって、前記回転数が前記回転数閾値よりも高い場合には前記風向板を前記吹出方向に対して小さな角度である露付き安全角度をなす位置に回動し、前記回転数が前記回転数閾値よりも低い場合には前記風向板を前記露付き安全角度よりも水平方向または垂直方向に大きな角度をなす位置に回動する運転モードを備えたことを特徴とする空気調和機。 A condenser, an evaporator, a refrigeration cycle having a compressor that compresses the refrigerant flowing through the condenser and the evaporator, and a blower that blows air sucked from the suction port to the outlet after heat exchange with the evaporator A wind direction plate that is rotatably provided at the air outlet and that blows air in a direction different from the direction of air blown out from the air outlet by the blower, and a compressor speed that controls the speed of the compressor An upper limit of the compressor speed when no condensation occurs on the control device and the wind direction plate is set in advance as a rotation speed threshold value, and the rotation of the wind direction plate is made based on the rotation speed of the compressor and the rotation speed threshold value. A wind direction plate control device for controlling, and when the rotational speed is higher than the rotational speed threshold by the wind direction plate control device, the dew safety angle that is a small angle with respect to the blowing direction. The An operation mode in which the wind direction plate is rotated to a position that forms a larger angle in the horizontal or vertical direction than the dew safety angle when the rotational speed is lower than the rotational speed threshold. An air conditioner characterized by comprising. 前記送風機は風量が可変であるものとし、前記風量に応じて少なくとも2以上の前記回転数閾値を設定することを特徴とする請求項7記載の空気調和機。 The air conditioner according to claim 7, wherein the blower has a variable air volume, and the rotation speed threshold value is set to at least 2 according to the air volume.
JP2007267923A 2007-10-15 2007-10-15 Air conditioner Active JP4742321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267923A JP4742321B2 (en) 2007-10-15 2007-10-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267923A JP4742321B2 (en) 2007-10-15 2007-10-15 Air conditioner

Publications (3)

Publication Number Publication Date
JP2009097755A true JP2009097755A (en) 2009-05-07
JP2009097755A5 JP2009097755A5 (en) 2009-07-30
JP4742321B2 JP4742321B2 (en) 2011-08-10

Family

ID=40700931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267923A Active JP4742321B2 (en) 2007-10-15 2007-10-15 Air conditioner

Country Status (1)

Country Link
JP (1) JP4742321B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232014A (en) * 2010-04-30 2011-11-17 Daikin Industries Ltd Indoor unit of air conditioner
JP2012026650A (en) * 2010-07-23 2012-02-09 Sanyo Electric Co Ltd Air conditioner
JP2012102904A (en) * 2010-11-08 2012-05-31 Hitachi Appliances Inc Air conditioner
WO2013047126A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Air-conditioning indoor unit
WO2013065438A1 (en) * 2011-10-31 2013-05-10 ダイキン工業株式会社 Air-conditioning indoor unit
WO2013065437A1 (en) * 2011-10-31 2013-05-10 ダイキン工業株式会社 Air-conditioning indoor unit
WO2013065436A1 (en) * 2011-10-31 2013-05-10 ダイキン工業株式会社 Air-conditioning indoor unit
JP2013088074A (en) * 2011-10-20 2013-05-13 Panasonic Corp Air conditioner
WO2013099914A1 (en) * 2011-12-28 2013-07-04 ダイキン工業株式会社 Air-conditioning indoor unit
JP2013195032A (en) * 2012-03-22 2013-09-30 Daikin Industries Ltd Air conditioner
CN103673093A (en) * 2012-09-13 2014-03-26 大金工业株式会社 Indoor unit of air conditioner
CN104024750A (en) * 2011-10-31 2014-09-03 大金工业株式会社 Air-conditioning indoor unit
WO2017175406A1 (en) 2016-04-08 2017-10-12 三菱電機株式会社 Air-conditioner blowout temperature estimation device and program
WO2019065530A1 (en) 2017-09-27 2019-04-04 ダイキン工業株式会社 Air conditioner indoor unit
CN109724202A (en) * 2018-12-26 2019-05-07 青岛海尔空调器有限总公司 Air conditioner and its control method
CN110608470A (en) * 2019-09-26 2019-12-24 广东美的制冷设备有限公司 Control method and device of air conditioner and air conditioner
CN111964214A (en) * 2020-08-21 2020-11-20 宁波奥克斯电气股份有限公司 Control method and device for optimizing air conditioner condensation and air conditioner
CN112944652A (en) * 2021-04-24 2021-06-11 浙江科顿科技有限公司 Air guide door condensation preventing system and method for air conditioner
CN113531651A (en) * 2021-06-08 2021-10-22 青岛海信日立空调***有限公司 Air conditioner and control method of air deflector
CN114543346A (en) * 2022-01-21 2022-05-27 青岛海尔空调器有限总公司 Anti-condensation control method and control device for air conditioner and air conditioner
CN114719425A (en) * 2022-04-07 2022-07-08 青岛海尔空调器有限总公司 Method and device for adjusting air supply angle, air conditioner and storage medium
CN115342444A (en) * 2022-08-18 2022-11-15 珠海格力电器股份有限公司 Cabinet air conditioner and control method thereof
CN115823717A (en) * 2022-12-02 2023-03-21 珠海格力电器股份有限公司 Expansion plate control method and device, air conditioner and storage medium
WO2023173723A1 (en) * 2022-03-18 2023-09-21 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, and air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351654A (en) * 1989-07-19 1991-03-06 Hitachi Ltd Controlling method of air conditioner
JPH05322295A (en) * 1992-05-27 1993-12-07 Daikin Ind Ltd Condensation control device for air
JP2001289489A (en) * 2000-04-05 2001-10-19 Hitachi Ltd Air conditioner
JP2003185225A (en) * 2001-12-20 2003-07-03 Fujitsu General Ltd Air conditioner control method
JP2003240312A (en) * 2002-02-14 2003-08-27 Sharp Corp Air conditioner
JP2004101164A (en) * 2002-09-10 2004-04-02 Lg Electronics Inc Operating method of air conditioner, and device using the same
JP2006234326A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Air conditioning system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351654A (en) * 1989-07-19 1991-03-06 Hitachi Ltd Controlling method of air conditioner
JPH05322295A (en) * 1992-05-27 1993-12-07 Daikin Ind Ltd Condensation control device for air
JP2001289489A (en) * 2000-04-05 2001-10-19 Hitachi Ltd Air conditioner
JP2003185225A (en) * 2001-12-20 2003-07-03 Fujitsu General Ltd Air conditioner control method
JP2003240312A (en) * 2002-02-14 2003-08-27 Sharp Corp Air conditioner
JP2004101164A (en) * 2002-09-10 2004-04-02 Lg Electronics Inc Operating method of air conditioner, and device using the same
JP2006234326A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Air conditioning system

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232014A (en) * 2010-04-30 2011-11-17 Daikin Industries Ltd Indoor unit of air conditioner
JP2012026650A (en) * 2010-07-23 2012-02-09 Sanyo Electric Co Ltd Air conditioner
JP2012102904A (en) * 2010-11-08 2012-05-31 Hitachi Appliances Inc Air conditioner
US9234671B2 (en) 2011-09-30 2016-01-12 Daikin Industries, Ltd. Air conditioning indoor unit
WO2013047126A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Air-conditioning indoor unit
JP2013076530A (en) * 2011-09-30 2013-04-25 Daikin Industries Ltd Air-conditioning indoor unit
EP2762795A4 (en) * 2011-09-30 2014-08-06 Daikin Ind Ltd Air-conditioning indoor unit
EP2762795A1 (en) * 2011-09-30 2014-08-06 Daikin Industries, Ltd. Air-conditioning indoor unit
CN103827594A (en) * 2011-09-30 2014-05-28 大金工业株式会社 Air-conditioning indoor unit
AU2012318045B2 (en) * 2011-09-30 2015-09-10 Daikin Industries, Ltd. Air conditioning indoor unit
JP2013088074A (en) * 2011-10-20 2013-05-13 Panasonic Corp Air conditioner
JP2013096639A (en) * 2011-10-31 2013-05-20 Daikin Industries Ltd Air-conditioning indoor unit
US9644860B2 (en) 2011-10-31 2017-05-09 Daikin Industries, Ltd. Airflow direction control device of air-conditioning indoor unit
JP2013096638A (en) * 2011-10-31 2013-05-20 Daikin Industries Ltd Air-conditioning indoor unit
JP2013096637A (en) * 2011-10-31 2013-05-20 Daikin Industries Ltd Air-conditioning indoor unit
AU2012333901B2 (en) * 2011-10-31 2015-09-03 Daikin Industries, Ltd. Air-conditioning indoor unit
WO2013065436A1 (en) * 2011-10-31 2013-05-10 ダイキン工業株式会社 Air-conditioning indoor unit
CN103906981A (en) * 2011-10-31 2014-07-02 大金工业株式会社 Air-conditioning indoor unit
WO2013065437A1 (en) * 2011-10-31 2013-05-10 ダイキン工業株式会社 Air-conditioning indoor unit
WO2013065438A1 (en) * 2011-10-31 2013-05-10 ダイキン工業株式会社 Air-conditioning indoor unit
CN104024750A (en) * 2011-10-31 2014-09-03 大金工业株式会社 Air-conditioning indoor unit
CN104024751A (en) * 2011-10-31 2014-09-03 大金工业株式会社 Air-Conditioning Indoor Unit
CN103906981B (en) * 2011-10-31 2015-04-08 大金工业株式会社 Air-conditioning indoor unit
EP2799790A1 (en) * 2011-12-28 2014-11-05 Daikin Industries, Ltd. Air-conditioning indoor unit
JP2013137160A (en) * 2011-12-28 2013-07-11 Daikin Industries Ltd Indoor unit of air conditioner
EP2799790A4 (en) * 2011-12-28 2014-12-17 Daikin Ind Ltd Air-conditioning indoor unit
CN104024753A (en) * 2011-12-28 2014-09-03 大金工业株式会社 Air-conditioning indoor unit
AU2012361657B2 (en) * 2011-12-28 2015-08-27 Daikin Industries, Ltd. Air Conditioning Indoor Unit
KR101449910B1 (en) 2011-12-28 2014-10-14 다이킨 고교 가부시키가이샤 Air-conditioning indoor unit
WO2013099914A1 (en) * 2011-12-28 2013-07-04 ダイキン工業株式会社 Air-conditioning indoor unit
US9494329B2 (en) 2011-12-28 2016-11-15 Daikin Industries, Ltd. Air conditioning indoor unit
JP2013195032A (en) * 2012-03-22 2013-09-30 Daikin Industries Ltd Air conditioner
CN103673093A (en) * 2012-09-13 2014-03-26 大金工业株式会社 Indoor unit of air conditioner
US10746427B2 (en) 2016-04-08 2020-08-18 Mitsubishi Electric Corporation Air conditioner blowing temperature estimation apparatus and computer-readable recording medium
WO2017175406A1 (en) 2016-04-08 2017-10-12 三菱電機株式会社 Air-conditioner blowout temperature estimation device and program
CN108885022A (en) * 2016-04-08 2018-11-23 三菱电机株式会社 Air-conditioning blows out temperature estimation rneans and program
WO2019065530A1 (en) 2017-09-27 2019-04-04 ダイキン工業株式会社 Air conditioner indoor unit
CN109724202A (en) * 2018-12-26 2019-05-07 青岛海尔空调器有限总公司 Air conditioner and its control method
CN109724202B (en) * 2018-12-26 2021-04-20 青岛海尔空调器有限总公司 Air conditioner and control method thereof
CN110608470A (en) * 2019-09-26 2019-12-24 广东美的制冷设备有限公司 Control method and device of air conditioner and air conditioner
CN111964214A (en) * 2020-08-21 2020-11-20 宁波奥克斯电气股份有限公司 Control method and device for optimizing air conditioner condensation and air conditioner
CN112944652A (en) * 2021-04-24 2021-06-11 浙江科顿科技有限公司 Air guide door condensation preventing system and method for air conditioner
CN113531651A (en) * 2021-06-08 2021-10-22 青岛海信日立空调***有限公司 Air conditioner and control method of air deflector
CN114543346A (en) * 2022-01-21 2022-05-27 青岛海尔空调器有限总公司 Anti-condensation control method and control device for air conditioner and air conditioner
WO2023138091A1 (en) * 2022-01-21 2023-07-27 青岛海尔空调器有限总公司 Anti-condensation control method and control apparatus for air conditioner, and air conditioner
WO2023173723A1 (en) * 2022-03-18 2023-09-21 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, and air conditioner
CN114719425A (en) * 2022-04-07 2022-07-08 青岛海尔空调器有限总公司 Method and device for adjusting air supply angle, air conditioner and storage medium
CN115342444A (en) * 2022-08-18 2022-11-15 珠海格力电器股份有限公司 Cabinet air conditioner and control method thereof
CN115823717A (en) * 2022-12-02 2023-03-21 珠海格力电器股份有限公司 Expansion plate control method and device, air conditioner and storage medium

Also Published As

Publication number Publication date
JP4742321B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4742321B2 (en) Air conditioner
JP5281373B2 (en) Air conditioner and control method thereof
JP5585556B2 (en) Air conditioner
JP5611694B2 (en) Air conditioner
WO2013084426A1 (en) Air conditioner
JP5042205B2 (en) Air conditioner
JP2009097755A5 (en)
JP2008101894A (en) Air conditioner and control method therefor
AU2004286118B2 (en) Air conditioner and control method thereof
JP4434303B2 (en) Air conditioner
JP4107333B2 (en) Ceiling-mounted air conditioner
JP5963048B2 (en) Air conditioner
JP6429022B2 (en) Air conditioner
JP5171759B2 (en) Air conditioner
WO2005010443A1 (en) Multiple room-type air conditioner and method of controlling the same
JP5863619B2 (en) Air conditioner
JP5104230B2 (en) Air conditioner
JP4215035B2 (en) Air conditioner and control method thereof
JP4814067B2 (en) Air conditioner
JP2022170533A (en) Indoor unit of air conditioner
JP3170556B2 (en) Air conditioner
JP5195135B2 (en) Air conditioner
JP2011080647A (en) Air conditioner
JP4734104B2 (en) Air conditioner
JP2019173994A (en) Air conditioning device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4742321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250