JP2009091223A - Production method for granulated sodium iodide - Google Patents

Production method for granulated sodium iodide Download PDF

Info

Publication number
JP2009091223A
JP2009091223A JP2007265776A JP2007265776A JP2009091223A JP 2009091223 A JP2009091223 A JP 2009091223A JP 2007265776 A JP2007265776 A JP 2007265776A JP 2007265776 A JP2007265776 A JP 2007265776A JP 2009091223 A JP2009091223 A JP 2009091223A
Authority
JP
Japan
Prior art keywords
sodium iodide
aqueous solution
granulation
granular
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007265776A
Other languages
Japanese (ja)
Other versions
JP5260019B2 (en
Inventor
Haruo Ezawa
晴雄 江澤
Jiro Suzuki
二郎 鈴木
Yasuhiko Otani
康彦 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GODO SHIGEN SANGYO CO Ltd
GODO SHIGEN SANGYO KK
Original Assignee
GODO SHIGEN SANGYO CO Ltd
GODO SHIGEN SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GODO SHIGEN SANGYO CO Ltd, GODO SHIGEN SANGYO KK filed Critical GODO SHIGEN SANGYO CO Ltd
Priority to JP2007265776A priority Critical patent/JP5260019B2/en
Publication of JP2009091223A publication Critical patent/JP2009091223A/en
Application granted granted Critical
Publication of JP5260019B2 publication Critical patent/JP5260019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably and continuously producing granulated sodium iodide, in focusing on sodium iodide among metal iodides, in particular. <P>SOLUTION: The production method for granulated sodium iodide involves processes of drying and granulating sodium iodide by feeding a sodium iodide aqueous solution with 45-60 mass% concentration under the atmosphere at 151-200°C; and accumulating further the solution onto the surfaces of the resultant dried sodium iodide powders one by one. Where, more suitably, the aqueous solution is fed under the atmosphere at 170-180°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、粒状ヨウ化ナトリウムの製造方法に関し、より詳細には、特定条件で粒状物を形成させる粒状ヨウ化ナトリウムの製造方法に関する。   The present invention relates to a method for producing granular sodium iodide, and more particularly to a method for producing granular sodium iodide in which a granular material is formed under specific conditions.

金属ヨウ化物は、種々の化学反応や分析などに供せられる試薬として有用であり、去炎剤、利尿剤、変質剤としての医薬、写真用乳剤、シンチレーションカウンター用単結晶レンズなどの素材ともなり、最近では、ナイロン繊維添加剤、液晶ディスプレー(LCD)、偏光フィルム素材としての用途例など、その需要は増大している。   Metal iodide is useful as a reagent for various chemical reactions and analyses, and is also a material for antiphlogistics, diuretics, pharmaceuticals as alteration agents, photographic emulsions, single crystal lenses for scintillation counters, etc. Recently, the demand for nylon fiber additives, liquid crystal displays (LCDs), and application examples as polarizing film materials has been increasing.

金属ヨウ化物の水溶液を製造する方法としては、ヨウ素を鉄粉で処理する鉄還元法や、ギ酸、シュウ酸などの有機酸またはその金属塩による還元法、水加ヒドラジンによる還元法、ヨウ素を金属水酸化物と反応させ、副生するヨウ素酸の金属塩を除去する方法、ヨウ化水素酸水溶液と金属水酸化物との中和反応法など種々の方法があり、これらいずれかの方法により供された金属ヨウ化物の水溶液を適当な方法で濃縮し、一部の金属ヨウ化物を析出させ、濾別、乾燥、粉砕または全量乾固、粉砕して粉末の金属ヨウ化物が製造されている。   Methods for producing an aqueous solution of metal iodide include iron reduction methods in which iodine is treated with iron powder, reduction methods using organic acids such as formic acid and oxalic acid, or metal salts thereof, reduction methods using hydrazine hydrate, and iodine as a metal. There are various methods, such as a method of reacting with a hydroxide to remove the metal salt of iodic acid produced as a by-product, and a neutralization reaction method between a hydroiodic acid aqueous solution and a metal hydroxide. The metal iodide solution thus prepared is concentrated by an appropriate method to precipitate a part of the metal iodide, which is filtered, dried, pulverized, or completely dried and pulverized to produce a powdered metal iodide.

このような金属ヨウ化物のうち、特にヨウ化ナトリウムは、ヨード欠乏症の治療や予防にも使用され、さらにこのヨウ化ナトリウムの結晶は放射線の検出に利用される。   Among such metal iodides, sodium iodide is particularly used for the treatment and prevention of iodine deficiency, and the crystals of sodium iodide are used for detection of radiation.

従来において、粒状金属ヨウ化物を安定かつ連続的に製造し得る造粒金属ヨウ化物の製造方法として、例えば特許文献1に示す開示技術が提案されている。   Conventionally, for example, a disclosed technique disclosed in Patent Document 1 has been proposed as a method for producing a granulated metal iodide capable of stably and continuously producing a granular metal iodide.

この特許文献1に示す開示技術では、金属ヨウ化物を造粒する際に、温度80〜95℃の雰囲気下に、平均粒子径50〜250μmの金属ヨウ化物と濃度45〜55質量%の金属ヨウ化物水溶液とを供給し、前記種結晶の表面に金属ヨウ化物を被覆する工程を有することを特徴としている。   In the disclosed technique shown in Patent Document 1, when metal iodide is granulated, a metal iodide having an average particle diameter of 50 to 250 μm and a metal iodide having a concentration of 45 to 55% by mass in an atmosphere having a temperature of 80 to 95 ° C. And a step of supplying a metal aqueous solution to the surface of the seed crystal.

しかしながら、上記特許文献1の開示技術では、ヨウ化ナトリウムに限定することなく、その上位概念としての金属ヨウ化物を製造する点に着目している。また、この開示技術では、上記ヨウ化ナトリウム水溶液及び種結晶を供給する際の雰囲気を80〜95℃に限定している。   However, the technique disclosed in Patent Document 1 focuses on the production of metal iodide as a superordinate concept without limiting to sodium iodide. In this disclosed technique, the atmosphere in supplying the sodium iodide aqueous solution and the seed crystal is limited to 80 to 95 ° C.

また特許文献2においても、金属ヨウ化物の造粒方法が開示されているものの、ヨウ化ナトリウムの製造方法について着目した場合に、その詳細な条件は開示されていない。
特開2005−47764号公報 特開平09−156920号公報
Also in Patent Document 2, although a method for granulating metal iodide is disclosed, when attention is paid to a method for producing sodium iodide, the detailed conditions are not disclosed.
JP 2005-47764 A JP 09-156920 A

前記の公知の方法で製造されたヨウ化ナトリウム製品を貯蔵しておくと、ヨウ化ナトリウムの潮解性により固結現象(ケーキング、ブロッキング)が起き、使用時における包装容器からの取り出し等の作業性や取り扱い性に劣るため、固結を起こさない性状が望まれている。そのため、特許文献1、2において粒径250μm以上の顆粒状の金属ヨウ化物を製造する方法について述べているが、ヨウ化ナトリウムに関しては65℃以下では結晶水を保有する2水塩を生成し、潮解性も高く、80〜95℃の雰囲気下での乾燥造粒条件では製品規格の水分値0.5%以下にすることができない。   When the sodium iodide product produced by the above-mentioned known method is stored, caking phenomenon (caking, blocking) occurs due to the deliquescence of sodium iodide, and workability such as removal from the packaging container at the time of use. In addition, since it is inferior in handleability, a property that does not cause caking is desired. Therefore, Patent Documents 1 and 2 describe a method for producing a granular metal iodide having a particle size of 250 μm or more, but for sodium iodide, a dihydrate containing crystal water is produced at 65 ° C. or lower. The deliquescence is also high, and the moisture value of the product standard cannot be reduced to 0.5% or less under dry granulation conditions in an atmosphere of 80 to 95 ° C.

また、特許文献1、2においては種結晶として微粉末や塊状製品の一部を粉砕して使用しており、造粒工程が煩雑になっていると共に、粉砕工程での微粉末の閉塞、粉砕設備からの異物が混入してしまうおそれがある。   In Patent Documents 1 and 2, a part of a fine powder or a lump product is used as a seed crystal, and the granulation process is complicated, and the fine powder is blocked and pulverized in the pulverization process. There is a risk that foreign matter from the equipment will be mixed.

そこで本発明は、上述した問題点に鑑みて案出されたものであり、金属ヨウ化物のうち、特にヨウ化ナトリウムに着目し、安定かつ連続的に製造し、固結を起こさない粒状ヨウ化ナトリウムの製造方法を提供することを目的とする。   Therefore, the present invention has been devised in view of the above-mentioned problems, focusing on sodium iodide among metal iodides, and is produced stably and continuously, and granular iodide that does not cause consolidation. It aims at providing the manufacturing method of sodium.

本発明者らは、上記の目的を達成するために鋭意研究した結果、種結晶を使用しない流動層噴霧造粒乾燥機を用いて、乾燥造粒温度を151〜200℃にすることにより、水分値0.1%以下で、粒径200〜300μmの顆粒状で、常温で1年間保管しても固結現象を起こさないヨウ化ナトリウムの製造方法を見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above object, the inventors of the present invention have used a fluidized bed spray granulation dryer that does not use a seed crystal to adjust the dry granulation temperature to 151 to 200 ° C. A method for producing sodium iodide which has a value of 0.1% or less and has a particle size of 200 to 300 μm and does not cause a caking phenomenon even when stored at room temperature for 1 year has been found, and the present invention has been completed.

即ち、本願請求項1に係る発明は、温度151〜200℃の雰囲気下で、濃度45〜60質量%のヨウ化ナトリウム水溶液を供給することによりヨウ化ナトリウム粉末を乾燥造粒することを特徴とする。   That is, the invention according to claim 1 of the present application is characterized by dry granulating sodium iodide powder by supplying a sodium iodide aqueous solution having a concentration of 45 to 60% by mass in an atmosphere at a temperature of 151 to 200 ° C. To do.

また、本願請求項2に係る発明は、請求項1記載の発明において、前記ヨウ化ナトリウム水溶液を上方に向け噴霧し、これに熱風を吹き付けることにより、前記乾燥させたヨウ化ナトリウム粉末の表面に順次積層させることを特徴とする。   The invention according to claim 2 of the present application is the invention according to claim 1, wherein the sodium iodide aqueous solution is sprayed upward and sprayed with hot air on the surface of the dried sodium iodide powder. It is characterized by laminating sequentially.

また、本願請求項3に係る発明は、請求項1記載の発明において、粒子径50〜250μmのヨウ化ナトリウムの種結晶を更に供給し、前記種結晶の表面に前記ヨウ化ナトリウム水溶液を順次積層させることを特徴とする。   The invention according to claim 3 of the present application is the invention according to claim 1, further comprising supplying a seed crystal of sodium iodide having a particle diameter of 50 to 250 μm, and sequentially laminating the aqueous sodium iodide solution on the surface of the seed crystal. It is characterized by making it.

上述した構成からなる本発明では、乾燥造粒温度を高くすることにより、作業工程も少なく、固結現象を起こさない顆粒状のヨウ化ナトリウムを効率良く製造することが可能である。特に請求項2に係る発明では種結晶を使用する必要もなくなることから、製造プロセスの効率化をより促進させることが可能となる。   In the present invention having the above-described configuration, it is possible to efficiently produce granular sodium iodide that does not cause a caking phenomenon by increasing the drying granulation temperature. In particular, in the invention according to claim 2, since it is not necessary to use a seed crystal, the efficiency of the manufacturing process can be further promoted.

以下、本発明を適用した粒状ヨウ化ナトリウムの製造方法について図面を参照しながら詳細に説明をする。   Hereinafter, the manufacturing method of the granular sodium iodide to which this invention is applied is demonstrated in detail, referring drawings.

本発明は、ヨウ化ナトリウムを造粒する際に、温度151〜200℃の雰囲気下に、濃度45〜60質量%のヨウ化ナトリウム水溶液を供給することにより、ヨウ化ナトリウムを乾燥造粒する。本発明では、濃度45〜60質量%のヨウ化ナトリウム水溶液を供給し、かつ、造粒温度、すなわち粒状ヨウ化ナトリウムの乾燥熱風温度を151〜200℃に調整して含まれる水分を除去することで、粒度分布が均一な粒状ヨウ化ナトリウムを製造するものである。造粒工程を上記条件下で行うと、水分が造粒装置内の雰囲気によって除去され、乾燥させたヨウ化ナトリウム粉末の表面に順次積層させることができる。この積層を繰り返すことにより粒子径の大きい粒状のヨウ化ナトリウムを製造することができる。   In the present invention, when sodium iodide is granulated, sodium iodide is dried and granulated by supplying a sodium iodide aqueous solution having a concentration of 45 to 60% by mass in an atmosphere at a temperature of 151 to 200 ° C. In the present invention, a sodium iodide aqueous solution having a concentration of 45 to 60% by mass is supplied, and the granulation temperature, that is, the dry hot air temperature of granular sodium iodide is adjusted to 151 to 200 ° C. to remove contained moisture. Thus, granular sodium iodide having a uniform particle size distribution is produced. When the granulation step is performed under the above-mentioned conditions, moisture is removed by the atmosphere in the granulator and can be sequentially laminated on the surface of the dried sodium iodide powder. By repeating this lamination, granular sodium iodide having a large particle diameter can be produced.

本発明の粒状ヨウ化ナトリウムの製造に使用できる造粒装置としては特に制限はなく、従来公知の流動層噴霧造粒乾燥機を使用することができる。   There is no restriction | limiting in particular as a granulation apparatus which can be used for manufacture of the granular sodium iodide of this invention, A conventionally well-known fluidized bed spray granulation dryer can be used.

以下に、本発明の粒状ヨウ化ナトリウムの製造に好適な装置を模式的に示す図1を参照して説明する。この装置は、図1に示すように、造粒装置1と、温風67と、温風導入口69と、目皿板15と、ヨウ化ナトリウム水溶液用ノズル4と、噴霧ヨウ化ナトリウム水溶液53と、ヨウ化ナトリウム水溶液タンク16と、高圧空気14と、排気ガス6と、排気口11と、高圧空気12と、粒状ヨウ化ナトリウム7と、造粒室8と、製品出口33と、流動層25とにより、所期の動作を実現するものである。   Below, it demonstrates with reference to FIG. 1 which shows typically the apparatus suitable for manufacture of the granular sodium iodide of this invention. As shown in FIG. 1, this apparatus includes a granulating apparatus 1, a warm air 67, a warm air introduction port 69, a countersink plate 15, a sodium iodide aqueous solution nozzle 4, and a sprayed sodium iodide aqueous solution 53. Sodium iodide aqueous solution tank 16, high pressure air 14, exhaust gas 6, exhaust port 11, high pressure air 12, granular sodium iodide 7, granulation chamber 8, product outlet 33, fluidized bed 25, the expected operation is realized.

まず、温風導入口69から温風67を導入する。次にヨウ化ナトリウム水溶液タンク16に貯蔵されたヨウ化ナトリウム水溶液を、ノズル4から圧縮空気14によって供給して噴霧ヨウ化ナトリウム水溶液53を発生させる。   First, hot air 67 is introduced from the hot air inlet 69. Next, the sodium iodide aqueous solution stored in the sodium iodide aqueous solution tank 16 is supplied from the nozzle 4 by the compressed air 14 to generate the sprayed sodium iodide aqueous solution 53.

造粒室内8で噴霧ヨウ化ナトリウム水溶液53の乾燥と付着を繰り返し、粉末表面にヨウ化ナトリウムを積層して、漸次粒子径の大きなヨウ化ナトリウムに造粒され、温風67の風圧で浮遊出来ない大きな粒子が降下する。降下した粒子が流動層25を形成し、温風67により撹拌されながら更に乾燥、造粒が繰り返され、平均粒子径が予め所定範囲となった粒子が製品出口33から排出される。高圧空気12は、造粒室内8上部に微粉末ヨウ化ナトリウム集塵のためのバッグフィルター18が設けられており、そのフィルター目詰まり防止のために、逆方向から間欠的に吹き付けることにより微粉末を落下させるためのものである。   Repeated drying and adhesion of the sprayed sodium iodide aqueous solution 53 in the granulation chamber 8, laminating sodium iodide on the powder surface, granulating into sodium iodide with gradually increasing particle diameter, and floating with the wind pressure of hot air 67 No big particles fall. The descended particles form a fluidized bed 25 and are further dried and granulated while being stirred by the warm air 67, and the particles whose average particle diameter is in a predetermined range are discharged from the product outlet 33. The high-pressure air 12 is provided with a bag filter 18 for collecting fine powder sodium iodide at the upper part of the granulation chamber 8, and in order to prevent clogging of the filter, the fine powder is sprayed intermittently from the reverse direction. It is for dropping.

なお、造粒室内8に導入された温風67を供給する際に導入された高温空気、噴霧ヨウ化ナトリウム水溶液53を供給する際に導入された高圧空気14は、排気ガス6として排気口11から装置外に排出される。なお、本発明では、造粒室内の温度を151〜200℃に調整でき、かつ濃度45〜60質量%のヨウ化ナトリウム水溶液を供給できる。より詳細に流動層床面積0.1〜0.3mの造粒室内8を有する装置を用いて造粒する場合で説明する。 The high-temperature air introduced when supplying the hot air 67 introduced into the granulation chamber 8 and the high-pressure air 14 introduced when supplying the sprayed sodium iodide aqueous solution 53 are used as the exhaust gas 6. Discharged from the device. In the present invention, the temperature in the granulation chamber can be adjusted to 151 to 200 ° C., and a sodium iodide aqueous solution having a concentration of 45 to 60% by mass can be supplied. The case where granulation is performed using a device having a granulation chamber 8 having a fluidized bed area of 0.1 to 0.3 m 2 will be described in more detail.

温風導入口69の温風温度は171〜220℃、より好ましくは180〜210℃、特に好ましくは190〜200℃の乾燥した温風67を導入し、造粒室内8の温度を151〜200℃に調整する。該造粒温度が151℃未満の場合には、造粒室内での造粒乾燥に長時間を要し、ヨウ化ナトリウム水溶液の噴霧速度も低く抑える必要があるなどコストアップにつながるため好ましくなく、また、得られる粒状ヨウ化ナトリウム中の水分が多くなってしまうという問題点もある。   The hot air temperature of the hot air inlet 69 is 171 to 220 ° C., more preferably 180 to 210 ° C., and particularly preferably 190 to 200 ° C. Adjust to ° C. If the granulation temperature is less than 151 ° C., it takes a long time for granulation drying in the granulation chamber, and it is not preferable because it leads to cost increase such as the need to keep the spray rate of the sodium iodide aqueous solution low, There is also a problem that the water content in the obtained granular sodium iodide is increased.

また200℃を超える場合には、噴霧するヨウ化ナトリウム水溶液の液滴の大きさによっては、造粒が起こらず微粉末粒子として流動層上部に設けたバッグフィルター18の目詰まりを起こす恐れがあるなど好ましくない。また、200℃を超える場合には、粒子径が小さくなってしまうという問題が生じる。   When the temperature exceeds 200 ° C., depending on the size of the droplet of the sodium iodide aqueous solution to be sprayed, granulation does not occur and the bag filter 18 provided on the upper part of the fluidized bed as fine powder particles may be clogged. It is not preferable. Moreover, when it exceeds 200 degreeC, the problem that a particle diameter will become small arises.

ヨウ化ナトリウム水溶液の濃度は45〜60質量%、より好ましくは48〜55質量%、特に好ましくは48〜50質量%のヨウ化ナトリウム水溶液をノズル4から造粒室内8の上方に向けて供給する。該濃度は、造粒温度や造粒室内静圧、流動層差圧などと相まって、粒度分布や平均粒子径に関与する粒状ヨウ化ナトリウム製造時の重要な要素である。特に、45質量%を下回ると含まれる水分の除去が困難となるため、造粒時間が過大に延長され生産性が低下し、造粒時間の延長は造粒物の物理的な破損にもつながり、品質を低下させる場合がある。一方、60質量%を上回ると粒子径の大きな粒状ヨウ化ナトリウムが製造され、平均粒子径が揃った粒状ヨウ化ナトリウムの製造が困難となる場合がある。   The concentration of the sodium iodide aqueous solution is 45 to 60% by mass, more preferably 48 to 55% by mass, and particularly preferably 48 to 50% by mass, and an aqueous sodium iodide solution of 48 to 50% by mass is supplied from the nozzle 4 upward to the granulation chamber 8. . The concentration is an important factor in the production of granular sodium iodide, which is related to the particle size distribution and the average particle size in combination with the granulation temperature, the static pressure in the granulation chamber, and the fluidized bed differential pressure. In particular, if it is less than 45% by mass, it becomes difficult to remove the contained water, so the granulation time is excessively extended and the productivity is lowered, and the extension of the granulation time leads to physical breakage of the granulated product. , May reduce the quality. On the other hand, if it exceeds 60% by mass, granular sodium iodide having a large particle diameter is produced, and it may be difficult to produce granular sodium iodide having a uniform average particle diameter.

なお、ヨウ化ナトリウムの水溶液を製造するには、ヨウ素を鉄粉で処理する鉄還元法、ギ酸、シュウ酸などの有機酸またはその金属塩による還元、水加ヒドラジンによる還元、ヨウ素を金属水酸化物と反応させ、副生するヨウ素酸の金属塩を除去する方法、ヨウ化水素酸水溶液と金属水酸化物との中和反応法などいずれの方法で製造されたものも用いることができる。   In order to produce an aqueous solution of sodium iodide, an iron reduction method in which iodine is treated with iron powder, reduction with an organic acid such as formic acid or oxalic acid or a metal salt thereof, reduction with hydrazine hydrate, or metal hydroxide of iodine. A product produced by any method such as a method of removing a metal salt of iodic acid produced as a by-product and a neutralization reaction between a hydroiodic acid aqueous solution and a metal hydroxide can be used.

該水溶液を貯蔵するヨウ化ナトリウム水溶液タンク16は、ノズル4の上方に配置し、自然落下によって造粒室内8に供給してもよい。また、ヨウ化ナトリウム水溶液タンク16がノズル4より下方に配置される場合には、ポンプを使用して該水溶液をくみ上げ、造粒室内に供給してもよい。供給されたヨウ化ナトリウム水溶液は高圧空気14を用いてノズル4から噴霧する。該水溶液の噴霧は、噴霧空気圧0.1〜0.3MPaG、好ましくは0.15〜0.25MPaG、3本のスプレーノズルを使用した場合に、ノズルの一本当たりの噴霧空気量3.5〜7.0Nm3/hで噴霧することが好ましい。一本当たりのノズルの噴霧空気量が3.0Nm3/h未満の場合には噴霧ヨウ化ナトリウム水溶液53で噴霧されず、乾燥、造粒が出来なかったり、ノズルの目詰まりを生じる場合がある。一方、7.0Nm3/hを超える場合には噴霧粒子径が小さくなり、造粒に長時間を要する場合があり不利である。また、噴霧空気圧が0.25MPaGを超える場合には、噴霧液の到達距離が延びて排気口11前に取り付けてあるバッグファイルター18にあたり、バッグフィルター18の目詰まりを起こし、乾燥、造粒が出来ない場合がある。 The sodium iodide aqueous solution tank 16 for storing the aqueous solution may be disposed above the nozzle 4 and supplied to the granulation chamber 8 by natural fall. When the sodium iodide aqueous solution tank 16 is disposed below the nozzle 4, the aqueous solution may be pumped up and supplied into the granulation chamber. The supplied sodium iodide aqueous solution is sprayed from the nozzle 4 using high-pressure air 14. The spraying of the aqueous solution is performed using a spray air pressure of 0.1 to 0.3 MPaG, preferably 0.15 to 0.25 MPaG, and when three spray nozzles are used, the amount of spray air per nozzle is 3.5 to It is preferable to spray at 7.0 Nm 3 / h. When the amount of sprayed air per nozzle is less than 3.0 Nm 3 / h, it is not sprayed with the sprayed sodium iodide aqueous solution 53, and drying or granulation may not be possible, or the nozzle may be clogged. . On the other hand, if it exceeds 7.0 Nm 3 / h, the spray particle size becomes small, and granulation may take a long time, which is disadvantageous. Further, when the spray air pressure exceeds 0.25 MPaG, the reach distance of the spray liquid is extended and hits the bag filter 18 attached in front of the exhaust port 11, causing the bag filter 18 to be clogged, and drying and granulation It may not be possible.

噴霧ヨウ化ナトリウム水溶液53の平均粒子径は、10〜50μm、好ましくは20〜40μmとすることが好ましい。該液滴の大きさが10μm未満の場合には、ヨウ化ナトリウム水溶液が微粉末となり装置内に滞留し、または排気フィルターの目詰まりの原因になったりする場合がある。   The average particle diameter of the sprayed sodium iodide aqueous solution 53 is 10 to 50 μm, preferably 20 to 40 μm. When the size of the droplet is less than 10 μm, the sodium iodide aqueous solution may become fine powder and stay in the apparatus, or the exhaust filter may be clogged.

本発明では、好ましくは噴霧空気圧0.15〜0.25MPaG、3本のスプレーノズルを使用し、各ノズルの一本当たりのノズルの噴霧空気量3.5〜7.0Nm3/hで噴霧する。一本当たりの噴霧空気量が3.5Nm3/h未満の場合には、ヨウ化ナトリウム水溶液が噴霧されず、乾燥、造粒が出来ない。 In the present invention, preferably, a spraying air pressure of 0.15 to 0.25 MPaG and three spray nozzles are used, and spraying is performed at a spraying air amount of 3.5 to 7.0 Nm 3 / h per nozzle. . When the amount of sprayed air per bottle is less than 3.5 Nm 3 / h, the sodium iodide aqueous solution is not sprayed, and drying and granulation cannot be performed.

粒状ヨウ化ナトリウムが連続的に生産される場合には、造粒後の粒状ヨウ化ナトリウム7が流動層25に堆積し、かつ所定量の製品が製品出口33から排出され、流動層25は常に変動している。本発明では、流動層25における結晶滞留量(以下、流動層差圧とも称する。)は、1.5〜3.0kPaG、より好ましくは2.0〜2.3kPaGである。この流動層差圧は、目皿板15に向けて供給する温風67の圧力と、流動層25上の温風67の圧力との差で示すことができる。造粒によって所定粒子径に成長した粒状ヨウ化ナトリウムは、流動層25上の温風67の圧力を超える降下圧力を有する場合に流動層25に落下し流動層25と混合する。このため、流動層差圧は、この落下を調整するものとなり、ひいては粒子径を特定する要素となる。流動層差圧が3kPaGを超えると流動層25から粉塵が発生しやすく、製品の平均粒子径を大きくすることができない。なお、流動層25を形成することによって、原料を供給して製品製造を開始してから製造終了までの間、連続的に均一な品質の粒状ヨウ化ナトリウムを製造することができる。   When granular sodium iodide is continuously produced, the granular sodium iodide 7 after granulation is deposited on the fluidized bed 25, and a predetermined amount of product is discharged from the product outlet 33. It has fluctuated. In the present invention, the crystal retention amount in the fluidized bed 25 (hereinafter also referred to as fluidized bed differential pressure) is 1.5 to 3.0 kPaG, more preferably 2.0 to 2.3 kPaG. This fluidized bed differential pressure can be indicated by the difference between the pressure of the warm air 67 supplied toward the countersink plate 15 and the pressure of the warm air 67 on the fluidized bed 25. The granular sodium iodide grown to a predetermined particle diameter by granulation falls to the fluidized bed 25 and mixes with the fluidized bed 25 when it has a pressure drop that exceeds the pressure of the hot air 67 on the fluidized bed 25. For this reason, the fluidized bed differential pressure adjusts this drop, and by extension, becomes an element for specifying the particle diameter. When the fluidized bed differential pressure exceeds 3 kPaG, dust is easily generated from the fluidized bed 25, and the average particle size of the product cannot be increased. By forming the fluidized bed 25, it is possible to produce granular sodium iodide of uniform quality continuously from the supply of raw materials to the start of product manufacture until the end of manufacture.

加えて本発明では、造粒室内8に供給される温風67の装置断面積当たりの圧力と排気口から排出されるガスの装置断面積当たりの圧力との差(以下、造粒室内静圧とも称する。)が、0〜−0.2kPaG、より好ましくは0〜−0.1kPaGとする。ヨウ化ナトリウム水溶液の乾燥と付着によって粒状ヨウ化ナトリウムが形成されるが、粒状物形成効率や目皿板15近傍に落下する粒状ヨウ化ナトリウムの平均粒子径、水分や滞留量は上記流動層差圧によって変動する。造粒室内流動層差圧が上記範囲内に制限されると、特に乾燥効率に優れる結果、粒度分布の均一性に優れ、かつ平均粒子径が大きい粒状ヨウ化ナトリウムが得られる。造粒室内静圧は、造粒室内8に導入される気体量と、流動層の滞留量との差圧によって決定されるため、該差圧を0〜−0.2kPaGに制御するには、例えば造粒室内8から製品出口33に層内顆粒体の排出量の調整機構を設ければよい。流動層25の流動速度は、通常1.4〜1.8m/s、好ましくは1.5〜1.6m/sの範囲の流動速度とする。1.4m/s未満の場合には、粒子自重などから流動層を形成し制御することが困難となり、層内全体を利用した造粒操作が不十分となる場合がある。また、該流動速度が1.8m/sを越える場合には、層内で層流が渦巻いたりするなどにより顆粒同志が激しく衝突したり顆粒が層内壁に激しく衝突し成長した顆粒の一部が欠けたりするなど好ましくない。該流動速度は温風67の風量を変更することで調整することができる。   In addition, in the present invention, the difference between the pressure per unit cross-sectional area of the hot air 67 supplied to the granulation chamber 8 and the pressure per unit cross-sectional area of the gas discharged from the exhaust port (hereinafter referred to as the static pressure in the granulation chamber). Also referred to as 0) to -0.2 kPaG, more preferably 0 to -0.1 kPaG. The granular sodium iodide is formed by drying and adhesion of the aqueous sodium iodide solution. The granular material formation efficiency, the average particle diameter of the granular sodium iodide falling in the vicinity of the countersink 15, the water content, and the retention amount are the above fluidized bed differences. Varies with pressure. When the fluidized bed differential pressure in the granulation chamber is limited to the above range, the granular sodium iodide having excellent uniformity in particle size distribution and a large average particle size is obtained as a result of particularly excellent drying efficiency. Since the granulation chamber static pressure is determined by the differential pressure between the amount of gas introduced into the granulation chamber 8 and the retention amount of the fluidized bed, in order to control the differential pressure to 0 to -0.2 kPaG, For example, a mechanism for adjusting the discharge amount of the in-layer granules may be provided from the granulation chamber 8 to the product outlet 33. The flow rate of the fluidized bed 25 is usually 1.4 to 1.8 m / s, preferably 1.5 to 1.6 m / s. If it is less than 1.4 m / s, it is difficult to form and control a fluidized bed from the particle weight, etc., and the granulation operation utilizing the entire inside of the layer may be insufficient. In addition, when the flow velocity exceeds 1.8 m / s, the granule collides violently due to, for example, a laminar flow swirling in the layer, or a part of the granule that grows by violently colliding with the inner wall of the layer. It is not preferable, such as chipping. The flow rate can be adjusted by changing the air volume of the warm air 67.

本発明によれば、粒度分布が均一で、平均粒子径が200〜300μmの粒状ヨウ化ナトリウムを製造することができる。この平均粒子径は、ヨウ化ナトリウム水溶液の流量速度や温度等の各種条件を制御することにより、所期の粒子径にコントロールすることができることは勿論である。また、平均粒子径を200〜300μmに揃えることで固結現象が起きず、常温で1年間流動性を保つことができた。   According to the present invention, granular sodium iodide having a uniform particle size distribution and an average particle size of 200 to 300 μm can be produced. Of course, this average particle size can be controlled to the desired particle size by controlling various conditions such as the flow rate and temperature of the aqueous solution of sodium iodide. Further, by setting the average particle diameter to 200 to 300 μm, no caking phenomenon occurred, and the fluidity could be maintained for 1 year at room temperature.

なお、本発明は、上述した実施の形態に限定されるものではない。例えば、粒子径50〜250μmのヨウ化ナトリウムの種結晶を更に供給するようにしてもよい。この種結晶の表面にヨウ化ナトリウム水溶液を順次積層させて乾燥造粒していくことになる。このとき、ヨウ化ナトリウム水溶液を上方に向けて噴霧することは必須とならない。   The present invention is not limited to the embodiment described above. For example, a seed crystal of sodium iodide having a particle size of 50 to 250 μm may be further supplied. The aqueous solution of sodium iodide is sequentially laminated on the surface of the seed crystal and dried and granulated. At this time, it is not essential to spray the sodium iodide aqueous solution upward.

以下、本発明の実施例により具体的に説明する。   Hereinafter, examples of the present invention will be described in detail.

図1に示す造粒装置に準じて粒状ヨウ化ナトリウムを製造した。   Granular sodium iodide was produced according to the granulator shown in FIG.

造粒室下部から185〜190℃の乾燥温風を送り込み、流量速度1.55〜1.65m/sに調整し、流動層を形成させた。   Dry hot air of 185 to 190 ° C. was sent from the lower part of the granulation chamber, adjusted to a flow rate of 1.55 to 1.65 m / s, and a fluidized bed was formed.

次に、この流動層に濃度50質量%のヨウ化ナトリウム水溶液を造粒室下部から上方に向けて、3本のノズルを用いて噴霧した。各1本のノズルからの噴霧量は13L/hr、噴霧空気圧は0.2MPaG、噴霧空気量を4.6Nm/hに調製して噴霧した。噴霧平均粒子径は35μmであった。造粒室内温度が170℃前後になるように導入する温風量を調整した。 Next, an aqueous solution of sodium iodide having a concentration of 50% by mass was sprayed onto the fluidized bed upward from the bottom of the granulation chamber using three nozzles. The spray amount from each one nozzle was adjusted to 13 L / hr, the spray air pressure was adjusted to 0.2 MPaG, and the spray air amount was adjusted to 4.6 Nm 3 / h. The sprayed average particle size was 35 μm. The amount of warm air introduced was adjusted so that the granulation room temperature was around 170 ° C.

分級および仕上げ乾燥を温度185〜190℃前後で行い、篩目開 φ1mmを通過したものを製品とし、製造量は30kg/hrであった。得られた製品の粒度子径は0.2〜0.3mmの間が90%であり、常温で1年間保管しても固結現象はおこさなかった。   Classification and finish drying were performed at a temperature of about 185 to 190 ° C., and a product that passed through a sieve opening φ1 mm was used as the product, and the production amount was 30 kg / hr. The particle size of the obtained product was 90% between 0.2 and 0.3 mm, and no caking phenomenon occurred even when stored for 1 year at room temperature.

本発明の粒状ヨウ化ナトリウムの製造に好ましい造粒装置の一例を模式的に示す図である。It is a figure which shows typically an example of a preferable granulator for manufacture of the granular sodium iodide of this invention.

符号の説明Explanation of symbols

1 造粒装置
4 ヨウ化ナトリウム水溶液用ノズル
6 排気ガス
7 粒状ヨウ化ナトリウム
8 造粒室
11 排気口
12 高圧空気
14 高圧空気
15 目皿板
16 ヨウ化ナトリウム水溶液タンク
18 バッグフィルター
25 流動層
33 製品出口
53 噴霧ヨウ化ナトリウム水溶液
67 温風
DESCRIPTION OF SYMBOLS 1 Granulator 4 Nozzle for sodium iodide aqueous solution 6 Exhaust gas 7 Granular sodium iodide 8 Granulation chamber 11 Exhaust port 12 High pressure air 14 High pressure air 15 Scale plate 16 Sodium iodide aqueous solution tank 18 Bag filter 25 Fluidized bed 33 Product Outlet 53 Sprayed sodium iodide aqueous solution 67 Hot air

Claims (3)

温度151〜200℃の雰囲気下で、濃度45〜60質量%のヨウ化ナトリウム水溶液を供給することによりヨウ化ナトリウムを乾燥造粒すること
を特徴とする粒状ヨウ化ナトリウムの製造方法。
A method for producing granular sodium iodide, comprising drying and granulating sodium iodide by supplying a sodium iodide aqueous solution having a concentration of 45 to 60% by mass in an atmosphere at a temperature of 151 to 200 ° C.
前記ヨウ化ナトリウム水溶液を上方に向けて噴霧してこれに熱風を吹き付けることにより、前記乾燥させたヨウ化ナトリウム粉末の表面に順次積層させること
を特徴とする請求項1記載の粒状ヨウ化ナトリウムの製造方法。
The granular sodium iodide according to claim 1, wherein the aqueous solution of sodium iodide is sequentially laminated on the surface of the dried sodium iodide powder by spraying the aqueous solution of sodium iodide upward and blowing hot air on the aqueous solution. Production method.
粒子径50〜250μmのヨウ化ナトリウムの種結晶を更に供給し、前記種結晶の表面に前記ヨウ化ナトリウム水溶液を順次積層させること
を特徴とする請求項1記載の粒状ヨウ化ナトリウムの製造方法。
The method for producing granular sodium iodide according to claim 1, wherein a seed crystal of sodium iodide having a particle diameter of 50 to 250 µm is further supplied, and the sodium iodide aqueous solution is sequentially laminated on the surface of the seed crystal.
JP2007265776A 2007-10-11 2007-10-11 Method for producing granular sodium iodide Active JP5260019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007265776A JP5260019B2 (en) 2007-10-11 2007-10-11 Method for producing granular sodium iodide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007265776A JP5260019B2 (en) 2007-10-11 2007-10-11 Method for producing granular sodium iodide

Publications (2)

Publication Number Publication Date
JP2009091223A true JP2009091223A (en) 2009-04-30
JP5260019B2 JP5260019B2 (en) 2013-08-14

Family

ID=40663576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007265776A Active JP5260019B2 (en) 2007-10-11 2007-10-11 Method for producing granular sodium iodide

Country Status (1)

Country Link
JP (1) JP5260019B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101592144B1 (en) 2015-06-19 2016-02-04 고려대학교 산학협력단 An iodine capsule, method for manufacturing the same, and salt of comprising the same
KR20180039045A (en) 2015-08-07 2018-04-17 소니 주식회사 LIGHT EMITTING DEVICE, METHOD FOR MANUFACTURING THE SAME
KR20180056646A (en) 2015-09-25 2018-05-29 소니 주식회사 Display device and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274501A (en) * 1988-09-09 1990-03-14 Manatsuku Kk Production of inorganic halogen compound powder
JPH09156920A (en) * 1995-11-30 1997-06-17 Nippo Kagaku Kk Granule of metal iodide and method for granulating the same
JPH11510426A (en) * 1995-04-21 1999-09-14 デグッサ アクチエンゲゼルシャフト Method and apparatus for producing granules by fluidized bed spray granulation
JP2005047764A (en) * 2003-07-30 2005-02-24 Nippo Kagaku Kk Manufacturing method of particulate metal iodide
JP2006315904A (en) * 2005-05-12 2006-11-24 Godo Shigen Sangyo Kk Method for producing alkali iodide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274501A (en) * 1988-09-09 1990-03-14 Manatsuku Kk Production of inorganic halogen compound powder
JPH11510426A (en) * 1995-04-21 1999-09-14 デグッサ アクチエンゲゼルシャフト Method and apparatus for producing granules by fluidized bed spray granulation
JPH09156920A (en) * 1995-11-30 1997-06-17 Nippo Kagaku Kk Granule of metal iodide and method for granulating the same
JP2005047764A (en) * 2003-07-30 2005-02-24 Nippo Kagaku Kk Manufacturing method of particulate metal iodide
JP2006315904A (en) * 2005-05-12 2006-11-24 Godo Shigen Sangyo Kk Method for producing alkali iodide

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101592144B1 (en) 2015-06-19 2016-02-04 고려대학교 산학협력단 An iodine capsule, method for manufacturing the same, and salt of comprising the same
KR20180039045A (en) 2015-08-07 2018-04-17 소니 주식회사 LIGHT EMITTING DEVICE, METHOD FOR MANUFACTURING THE SAME
US10326096B2 (en) 2015-08-07 2019-06-18 Sony Corporation Light emitting element, method for manufacturing the same, and display device
US11024823B2 (en) 2015-08-07 2021-06-01 Sony Corporation Light emitting element, method for manufacturing the same, and display device
US11765923B2 (en) 2015-08-07 2023-09-19 Sony Group Corporation Light emitting element, method for manufacturing the same, and display device
KR20230141872A (en) 2015-08-07 2023-10-10 소니그룹주식회사 Light emitting element, method for manufacturing same, and display device
KR20180056646A (en) 2015-09-25 2018-05-29 소니 주식회사 Display device and manufacturing method thereof
US10381424B2 (en) 2015-09-25 2019-08-13 Sony Corporation Display device and method for manufacturing the same
US10580844B2 (en) 2015-09-25 2020-03-03 Sony Corporation Display device and method for manufacturing the same
US11145701B2 (en) 2015-09-25 2021-10-12 Sony Corporation Display device and method for manufacturing the same
KR20230062890A (en) 2015-09-25 2023-05-09 소니그룹주식회사 Display device and method for manufacturing same
KR20240044541A (en) 2015-09-25 2024-04-04 소니그룹주식회사 Display device and method for manufacturing same

Also Published As

Publication number Publication date
JP5260019B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
EP3191406B1 (en) Method for production of aluminum chloride derivatives
EP2274088B1 (en) Method and device for processing of granules
US9050254B2 (en) Method for production of particles of pharmaceutical substances and the use thereof
US6998481B2 (en) Process for the preparation of β-mannitol for direct compression
JP5032133B2 (en) Granulation method and granulation apparatus
JP5260019B2 (en) Method for producing granular sodium iodide
JP4852270B2 (en) Method for producing granular urea product
JPWO2010055703A1 (en) Industrial salt, industrial salt production apparatus and production method
EP0473644B1 (en) Improved apparatus for a fast dissolving granular product
JP2007022934A5 (en)
CN109890780A (en) The particle of liquid containing ammonium sulfate, the method and system for producing it
RU2107660C1 (en) Granulates of alkali metal cyanides and method of preparation thereof
JP3562887B2 (en) Granules of metal iodide and granulation method thereof
JP2011051895A (en) Process for producing alkali metal hydrogen carbonate
RU54931U1 (en) PLANT FOR PRODUCING GRANULATED SODIUM PERCARBONATE
KR101913700B1 (en) Method for Preparing Aluminum Sulfate Powders
EA009533B1 (en) Process for the preparation of urea granules
JP2005047764A (en) Manufacturing method of particulate metal iodide
JP6419759B2 (en) Method for preparing directly compressible δ-mannitol
EP2091907A1 (en) Aluminium trilactate powder and method for preparation
JP2007262021A (en) Method for producing granular organic material
JPS6148405A (en) Rapidly dissolving calcium hypochlorite particle and manufacture thereof
Mandal et al. Granulation by fluidization technique-An experimental study
JPS6058193B2 (en) Fluid granulation method for urea
JPH07149738A (en) Granular melamine cyanurate and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250