JP2007262021A - Method for producing granular organic material - Google Patents

Method for producing granular organic material Download PDF

Info

Publication number
JP2007262021A
JP2007262021A JP2006091929A JP2006091929A JP2007262021A JP 2007262021 A JP2007262021 A JP 2007262021A JP 2006091929 A JP2006091929 A JP 2006091929A JP 2006091929 A JP2006091929 A JP 2006091929A JP 2007262021 A JP2007262021 A JP 2007262021A
Authority
JP
Japan
Prior art keywords
gas
heat exchanger
temperature
cooling
cooling gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006091929A
Other languages
Japanese (ja)
Other versions
JP4952018B2 (en
Inventor
Hiroaki Kimura
浩章 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006091929A priority Critical patent/JP4952018B2/en
Publication of JP2007262021A publication Critical patent/JP2007262021A/en
Application granted granted Critical
Publication of JP4952018B2 publication Critical patent/JP4952018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a granular organic material without requiring a new facility, and capable of performing the circulating reuse of cooling gas while maintaining the cooling efficiency of a heat exchanger for a long period even on performing a continuous operation. <P>SOLUTION: This method for producing the granular organic material, by ejecting the molten liquid of the organic material as dripping from a nozzle arranged at the top part of a granulation column, granulating the molten liquid by making a contact with a low temperature gas lower than the temperature of the molten liquid counter-currently, taking-out the gas making the contact with the molten liquid from the top of the granulation column and then cooling by a heat exchanger and feeding the cooled gas to the lower part of the granulation column for using the gas as circulating is provided by regulating the feeding amount and temperature of a coolant fed to the heat exchanger so that the vapor pressure of the organic material at the gas temperature at the entrance side of the heat exchanger becomes at or lower than the saturation vapor pressure of the organic material at the surface temperature of a heat-conducting surface of the heat exchanger. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、粒状有機物の製造方法に関し、詳しくは、粒状有機物を製造する際の冷却に使用するガスの循環再利用をすることができ、長期連続運転が可能な粒状有機物の製造方法に関する。   The present invention relates to a method for producing a granular organic material, and more particularly, to a method for producing a granular organic material that can recycle and reuse a gas used for cooling when producing the granular organic material, and enables long-term continuous operation.

ビスフェノールAに代表される有機物の製造における造粒工程では、上部に目皿を有する造粒塔を使用し、溶融した有機物の液滴を目皿より落下させ、造粒塔下部から供給される窒素などの冷却用ガスを液滴に向流接触させることにより、球状の有機物粒子を製造する。造粒塔から抜き出された冷却用ガスは、温度が上昇しているため、熱交換器により冷却を行い、循環再使用される。   In the granulation step in the production of organic matter typified by bisphenol A, a granulation tower having a top plate is used, and drops of molten organic matter are dropped from the top plate, and nitrogen supplied from the bottom of the granulation tower Spherical organic particles are produced by bringing a cooling gas such as a counter current into contact with the droplets. Since the temperature of the cooling gas extracted from the granulation tower has risen, it is cooled by a heat exchanger and recycled.

有機物の冷却後に造粒塔から抜き出された冷却用ガスは、造粒塔内で溶融した有機物と接触しているため、当該有機物の蒸気の他、種々の物質の蒸気を含有する。このような、有機物などの蒸気圧を分圧として有する有機物冷却後のガスを熱交換器により冷却した際、ガス中に含有されていた有機物などが熱交換器の伝熱面に固結・付着し、熱交換器の伝熱効率が低下する。   Since the cooling gas extracted from the granulation tower after cooling the organic substance is in contact with the organic substance melted in the granulation tower, it contains vapors of various substances in addition to the vapor of the organic substance. When a gas after cooling an organic substance having a vapor pressure such as an organic substance as a partial pressure is cooled by a heat exchanger, the organic substance contained in the gas is consolidated and adhered to the heat transfer surface of the heat exchanger. As a result, the heat transfer efficiency of the heat exchanger decreases.

上記の問題を解決する方法として、造粒される有機物および冷却用ガスとしてビスフェノールA及び窒素ガスをそれぞれ使用したビスフェノールAの造粒方法において、専用の洗浄塔にビスフェノールAの冷却使用後の窒素ガスを供給し、窒素ガス中の不純物を除去した後に循環再使用する方法が知られている(例えば特許文献1参照)。しかしながら、この方法では、冷却用ガスのための専用の洗浄塔という新たな設備を必要とするという問題点がある。そのため、新たな設備を必要とせず、連続運転を行っても熱交換器の冷却効率を長期間維持しながら冷却用ガスの循環再利用を行うことができる、粒状有機物の製造方法が望まれている。   As a method for solving the above problems, in the granulation method of bisphenol A using bisphenol A and nitrogen gas as the granulated organic substance and cooling gas, respectively, nitrogen gas after cooling use of bisphenol A in a dedicated washing tower Is used, and after the impurities in the nitrogen gas are removed, a method of recycling is known (see, for example, Patent Document 1). However, this method has a problem that a new facility called a dedicated cleaning tower for the cooling gas is required. Therefore, there is a demand for a method for producing a granular organic material that does not require new equipment and can circulate and reuse the cooling gas while maintaining the cooling efficiency of the heat exchanger for a long time even if continuous operation is performed. Yes.

特表2002−534402号公報Special table 2002-534402 gazette

本発明は、上記の実情に鑑みなされたものであり、その目的は、新たな設備を必要とせず、連続運転を行っても熱交換器の冷却効率を長期間維持しながら冷却用ガスの循環再利用を行うことができる、粒状有機物の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to circulate the cooling gas while maintaining the cooling efficiency of the heat exchanger for a long period of time even if continuous operation is performed without requiring new equipment. An object of the present invention is to provide a method for producing a granular organic material that can be reused.

上記課題を解決するために、本発明者らは鋭意検討した結果、(1)熱交換器の伝熱面に固結・付着している物質は造粒されるべき有機物を主体とするものであること、(2)熱交換器の伝熱面に固結・付着している有機物は、伝熱面で生じて成長するのであって、微粉などが飛来して伝熱面に付着するのではないこと、(3)熱交換器の入口側のガスの温度における有機物の蒸気圧が、熱交換器の伝熱表面温度における有機物の飽和蒸気圧を超えない様に、熱交換器に供給される冷媒の供給量および温度を制御することにより、上記課題を解決できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, (1) the substance consolidated and adhered to the heat transfer surface of the heat exchanger is mainly composed of organic substances to be granulated. (2) Organic substances that are consolidated and attached to the heat transfer surface of the heat exchanger are generated and grown on the heat transfer surface. (3) The vapor pressure of the organic substance at the temperature of the gas on the inlet side of the heat exchanger is supplied to the heat exchanger so that it does not exceed the saturated vapor pressure of the organic substance at the heat transfer surface temperature of the heat exchanger. The inventors have found that the above problems can be solved by controlling the supply amount and temperature of the refrigerant, and have completed the present invention.

すなわち、本発明の要旨は、造粒塔の塔上部に配置されたノズルから有機物の溶融液を液滴状に吐出し、溶融液の温度より低温のガスと交流接触させることにより溶融液を粒状化し、溶融液と接触させたガスを造粒塔の塔上部から抜き出した後に熱交換器で冷却し、冷却したガスを造粒塔の塔下部に供給して循環使用する粒状有機物の製造方法において、熱交換器の入口側のガスの温度における有機物の蒸気圧が、熱交換器の伝熱面の表面温度における有機物の飽和蒸気圧以下となる様に、熱交換器に供給される冷媒の供給量および温度を制御することを特徴とする粒状有機物の製造方法に存する。   That is, the gist of the present invention is that a molten liquid of an organic substance is discharged in a droplet form from a nozzle disposed in the upper part of a granulation tower, and the molten liquid is granulated by alternating current contact with a gas lower than the temperature of the molten liquid. In the method for producing a granular organic material, the gas brought into contact with the molten liquid is extracted from the upper part of the granulation tower and then cooled by a heat exchanger, and the cooled gas is supplied to the lower part of the granulation tower and circulated for use. Supply of refrigerant supplied to the heat exchanger so that the vapor pressure of the organic substance at the gas temperature on the inlet side of the heat exchanger is equal to or lower than the saturated vapor pressure of the organic substance at the surface temperature of the heat transfer surface of the heat exchanger There exists in the manufacturing method of the granular organic substance characterized by controlling quantity and temperature.

本発明の粒状有機物の製造方法によれば、新たな設備を必要とせず、連続運転を行っても熱交換器の冷却効率を長期間維持しながら冷却用ガスの循環再利用を行うことができる。   According to the method for producing a granular organic material of the present invention, it is possible to circulate and reuse the cooling gas while maintaining the cooling efficiency of the heat exchanger for a long period of time even if continuous operation is performed without requiring new equipment. .

以下、本発明を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の代表例であり、これらの内容に本発明は限定されるものではない。   Hereinafter, the present invention will be described in detail. However, the description of the constituent elements described below is a representative example of embodiments of the present invention, and the present invention is not limited to these contents.

本発明の粒状有機物の製造方法では、造粒塔の塔上部に配置されたノズルから有機物の溶融液を液滴状に吐出し、溶融液の温度より低温のガスと交流接触させることにより溶融液を粒状化し、溶融液と接触させたガスを造粒塔の塔上部から抜き出した後に熱交換器で冷却し、冷却したガスを造粒塔の塔下部に供給して循環使用する。本発明の製造方法における有機物としては、上記の方法で造粒を行うものであれば特に制限は無く、ビスフェノールA、尿素などが例示される。以下、ビスフェノールAを代表例とし、図1を使用して説明するが、他の有機物を対象とする場合は、ビスフェノールAを当該他の有機物に置き換えて本発明を実施することができる。   In the method for producing a granular organic material of the present invention, the molten liquid of the organic material is discharged in a droplet form from a nozzle disposed at the upper part of the granulation tower, and the molten liquid is brought into AC contact with a gas lower than the temperature of the molten liquid. The gas brought into contact with the molten liquid is extracted from the upper part of the granulation tower and then cooled by a heat exchanger, and the cooled gas is supplied to the lower part of the granulation tower and circulated for use. The organic substance in the production method of the present invention is not particularly limited as long as it is granulated by the above method, and examples thereof include bisphenol A and urea. Hereinafter, bisphenol A will be described as a representative example and will be described with reference to FIG. 1. However, in the case where another organic substance is targeted, the present invention can be implemented by replacing bisphenol A with the other organic substance.

ビスフェノールAの溶融液は、ライン(101)を介して造粒塔(1)に供給される。造粒塔(1)としては、通常の有機物の造粒に使用されるものであれば特に制限は無く、例えば公知の造粒塔が使用できる。造粒塔(1)の構造としては、内容積が、通常1〜2000mであり、下端が略逆円錐状に形成された縦長の円筒胴部を有する構造体である。造粒塔(1)の塔上部には、滴下ノズル(11)が設置されており、ライン(101)を介して供給されたビスフェノールAの溶融液が滴下ノズル(11)によって液滴を形成し、造粒塔(1)内を落下する。滴下ノズル(11)としては特に制限されることなく公知のものが使用でき、製造される粒状物の粒径や溶融体の粘度などに応じて、噴霧ノズル、目皿などの多孔板構造のノズルや遠心力を利用した回転ノズル等を適宜選択できる。ビスフェノールAの液滴は、滴下ノズル(11)から鉛直下方に落下させることが好ましい。 The melt of bisphenol A is supplied to the granulation tower (1) via the line (101). The granulation tower (1) is not particularly limited as long as it is used for usual organic granulation, and for example, a known granulation tower can be used. The structure of the granulation tower (1) is a structure having an elongated cylindrical body having an internal volume of usually 1 to 2000 m 3 and a lower end formed in a substantially inverted conical shape. A dripping nozzle (11) is installed in the upper part of the granulating tower (1), and the bisphenol A melt supplied via the line (101) forms droplets by the dropping nozzle (11). , Fall in the granulation tower (1). There are no particular restrictions on the dropping nozzle (11), and any known nozzle can be used. Depending on the particle size of the granular material to be produced, the viscosity of the melt, etc., a nozzle having a perforated plate structure such as a spray nozzle or a plate And a rotating nozzle using centrifugal force can be appropriately selected. The bisphenol A droplet is preferably dropped vertically downward from the dropping nozzle (11).

有機物中に低沸点の不純物が存在する場合、当該不純物が冷却ガス中に蒸気となって混入し、系内を循環することがある。これらの冷却ガス中に蒸気となって混入した不純物が、ガス冷却用熱交換器の伝熱面と接触すると、伝熱面に析出、付着し、冷却効率を低下させる場合がある。ビスフェノールAの場合、フェノール及びイソプロペニルフェノールはビスフェノールAより低沸点の不純物であり、これらの不純物の混入量が多いと、冷却用ガスにこれらの不純物の蒸気が混入し、冷却用ガスが系内を循環しているうちにガス冷却用熱交換器(3)の伝熱面と接触して冷却されることにより、冷却用熱交換器の伝熱面に結晶が析出し、冷却効率の低下が生じる。従って、ビスフェノールAの溶融液中に含まれる不純物であるフェノール及びイソプロペニルフェノールの合計量は50重量ppm以下であることが好ましい。   When impurities having a low boiling point are present in the organic matter, the impurities may be mixed into the cooling gas as vapor and circulate in the system. When impurities mixed as vapor in the cooling gas come into contact with the heat transfer surface of the gas cooling heat exchanger, they may precipitate and adhere to the heat transfer surface, thereby reducing the cooling efficiency. In the case of bisphenol A, phenol and isopropenyl phenol are impurities having a lower boiling point than bisphenol A. If the amount of these impurities is large, the vapor of these impurities is mixed in the cooling gas, and the cooling gas is contained in the system. As a result of being cooled in contact with the heat transfer surface of the gas cooling heat exchanger (3) while circulating, the crystals are deposited on the heat transfer surface of the cooling heat exchanger, resulting in a decrease in cooling efficiency. Arise. Therefore, the total amount of phenol and isopropenylphenol, which are impurities contained in the bisphenol A melt, is preferably 50 ppm by weight or less.

造粒塔(1)の塔下部には、冷却用ガスの入り口(13)を有し、ガス冷却用熱交換器(3)によって冷却されたガスがライン(103)を介して、造粒塔(1)の塔下部から供給される。造粒塔(1)内にて均一にガスを上昇させるため、冷却用ガスの入口は複数であるのが好ましく、例えば2つの冷却用ガスの入り口(13)が対称位置に配置されることが好ましい。   The granulation tower (1) has a cooling gas inlet (13) at the bottom of the granulation tower (1), and the gas cooled by the gas cooling heat exchanger (3) passes through the line (103) through the granulation tower. Supplied from the lower part of the tower of (1). In order to raise the gas uniformly in the granulation tower (1), it is preferable that there are a plurality of cooling gas inlets. For example, the two cooling gas inlets (13) are arranged at symmetrical positions. preferable.

冷却用ガスとしては、通常のビスフェノールA等の有機物の造粒に使用されるものであれば特に制限は無く、窒素ガス、アルゴン等の不活性ガスや空気などが例示される。ビスフェノールAの場合、ビスフェノールAの粉塵爆発を防止する為に、爆発下限の酸素濃度である12体積%より低い酸素ガス濃度の窒素ガスが好ましく、更に好ましくは酸素ガス濃度が1体積%以下の窒素ガス、特に好ましくは酸素ガス濃度が1000体積ppm以下の窒素ガスが用いられる。また系外から系内への酸素の混入を防ぐため、冷却用ガスが循環する系内を大気圧に対する相対圧力として1〜10kPa、好ましくは1〜5kPaの微加圧状態とすることが好ましい。冷却用ガスの入り口(13)から供給された冷却用ガスは、造粒塔(1)内を上昇し、滴下ノズル(11)から落下したビスフェノールAの液滴と向流接触した後、造粒塔(1)の塔頂、好ましくは塔頂の中央部に設けられた冷却用ガスの出口(12)から塔外に抜き出される。   The cooling gas is not particularly limited as long as it is used for granulating organic substances such as ordinary bisphenol A, and examples thereof include inert gas such as nitrogen gas and argon, air, and the like. In the case of bisphenol A, in order to prevent dust explosion of bisphenol A, nitrogen gas having an oxygen gas concentration lower than 12% by volume, which is the oxygen concentration at the lower limit of explosion, is preferable, more preferably nitrogen having an oxygen gas concentration of 1% by volume or less. Gas, particularly preferably nitrogen gas having an oxygen gas concentration of 1000 ppm by volume or less is used. In order to prevent oxygen from being mixed into the system from outside the system, the inside of the system in which the cooling gas circulates is preferably set to a slightly pressurized state of 1 to 10 kPa, preferably 1 to 5 kPa as a relative pressure to the atmospheric pressure. The cooling gas supplied from the cooling gas inlet (13) rises in the granulation tower (1) and comes into countercurrent contact with the bisphenol A droplets dropped from the dropping nozzle (11), and then granulated. It is drawn out from the tower top of the tower (1), preferably from the cooling gas outlet (12) provided at the center of the tower top.

一方、冷却用ガスと向流接触したビスフェノールAの液滴は、冷却固化されることにより粒状化され、ビスフェノールAプリルとして塔底の粒状物排出口(14)より抜き出される。製造される粒状物の平均粒径は、通常1〜2mmである。粒状物排出口(14)の近傍には、例えば、特開2002−306943号公報に開示されているような公知の閉塞防止手段を設けてもよい。これにより、粒状物排出口(14)の入口および内部が塊状物によって閉塞するのを有効に防止できる。   On the other hand, the droplets of bisphenol A in countercurrent contact with the cooling gas are granulated by cooling and solidifying, and are extracted as bisphenol A prills from the particulate outlet (14) at the bottom of the tower. The average particle diameter of the produced granular material is usually 1 to 2 mm. In the vicinity of the particulate matter discharge port (14), for example, a known blocking prevention means as disclosed in JP-A-2002-306943 may be provided. Thereby, it can prevent effectively that the inlet_port | entrance and the inside of a granular material discharge port (14) are obstruct | occluded with a lump.

造粒塔(1)の塔頂から抜出された冷却用ガスは、ライン(102)を介し、必要であればバグフィルター(5)により、冷却用ガスに同伴した微細なビスフェノールA粉を回収除去した後、循環ガスブロワー(2)に供給される。使用することができるバグフィルター(5)としては、特に制限されず、例えば機械振動式、逆気流式、パルスジェット式などの公知のものが使用できる。循環ガスの供給量は、循環ガスブロワー(2)の手前に設けた調節弁(4)により調節する。循環ガスブロワー(2)からライン(104)を介して、ガス冷却用熱交換器(3)に冷却用ガスを供給する。循環ガスブロワー(2)から供給されるガスの一部は、冷却用ガス中に含まれる凝固性の有機化合物の濃度を下げるために、弁(21)を使用してライン(105)より系外に抜き出し、系内の循環冷却用ガスの圧力を一定にするために、弁(22)を使用してライン(106)より新たな冷却用ガスが供給される。   The cooling gas extracted from the top of the granulation tower (1) collects the fine bisphenol A powder accompanying the cooling gas through the line (102) and, if necessary, the bag filter (5). After removal, it is supplied to the circulating gas blower (2). The bag filter (5) that can be used is not particularly limited, and a known filter such as a mechanical vibration type, a reverse air flow type, and a pulse jet type can be used. The supply amount of the circulating gas is adjusted by a control valve (4) provided in front of the circulating gas blower (2). The cooling gas is supplied from the circulating gas blower (2) to the gas cooling heat exchanger (3) via the line (104). A part of the gas supplied from the circulating gas blower (2) is out of the system from the line (105) using a valve (21) in order to lower the concentration of the solidifying organic compound contained in the cooling gas. In order to make the pressure of the circulating cooling gas in the system constant, new cooling gas is supplied from the line (106) using the valve (22).

熱交換器(3)としては特に制限は無く、例えばShell & Tube型や、プレート型などの公知の熱交換器が使用できる。通常、冷却用ガス側の伝熱係数が小さいため、冷却用ガスに接触する側にフィン等を設け、伝熱面積を広くするような構造とされることが多い。しかしながら、この場合、フィンにビスフェノールA等の有機物の結晶が析出し、付着すると、直ちに差圧が生じ且つ徐々に除熱性能が低下する。この結晶の析出の有無は、熱交換器(3)の前後の差圧を測定することにより監視できるので、差圧計(34)を設置することが好ましい。   There is no restriction | limiting in particular as a heat exchanger (3), For example, well-known heat exchangers, such as Shell & Tube type and a plate type, can be used. Usually, since the heat transfer coefficient on the cooling gas side is small, fins or the like are provided on the side in contact with the cooling gas to increase the heat transfer area in many cases. However, in this case, when an organic crystal such as bisphenol A is deposited on the fin and adheres thereto, a differential pressure is immediately generated and the heat removal performance is gradually lowered. Since the presence or absence of this crystal precipitation can be monitored by measuring the differential pressure before and after the heat exchanger (3), it is preferable to install a differential pressure gauge (34).

熱交換器(3)に使用する冷媒としては特に制限は無く、水、エチレングリコール等の通常使用されている冷媒が使用できるが、有機物がビスフェノールAの場合はそれほど低い冷却温度が必要とはされないので、水を冷媒として使用することが好ましい。   There is no restriction | limiting in particular as a refrigerant | coolant used for a heat exchanger (3), Although refrigerant | coolants normally used, such as water and ethylene glycol, can be used, When organic substance is bisphenol A, the cooling temperature so low is not required. Therefore, it is preferable to use water as a refrigerant.

本発明の製造方法は、熱交換器(3)の上流の温度におけるビスフェノールAの蒸気圧が、熱交換器(3)の伝熱表面温度におけるビスフェノールAの飽和蒸気圧以下となる様に、熱交換器(3)に供給される冷媒の供給量および温度を制御することを特徴とする。熱交換器(3)の上流の温度は、造粒塔(1)の塔頂、好ましくは塔頂の中央部に設けられた冷却用ガスの出口(12)の直近において測定するのが好ましい。しかしながら、この場所において、放熱により温度低下が発生しやすい場合は、造粒塔(1)の内部で温度を測定してもよい。   The production method of the present invention is such that the vapor pressure of bisphenol A at the temperature upstream of the heat exchanger (3) is less than or equal to the saturated vapor pressure of bisphenol A at the heat transfer surface temperature of the heat exchanger (3). The supply amount and temperature of the refrigerant supplied to the exchanger (3) are controlled. The temperature upstream of the heat exchanger (3) is preferably measured at the top of the granulation tower (1), preferably in the immediate vicinity of the cooling gas outlet (12) provided at the center of the top of the granulation tower (1). However, in this place, if the temperature is likely to decrease due to heat dissipation, the temperature may be measured inside the granulation tower (1).

本発明の上記特徴部分の具体的な方法の例としては、先ず、熱交換器(3)の上流の温度測定点において、温度を計測し、冷却ガスを採取する。採取した冷却ガスには、通常、冷却ガスと共に、造粒される有機物が当該温度での蒸気圧の分だけ存在するため、この蒸気圧を測定する。そのためには、造粒される有機物を溶解できる溶媒(有機物がビスフェノールAの場合は、例えばアセトニトリル)に採取した冷却ガスをバブリングさせた後、造粒される有機物が溶解した溶媒の液体クロマトグラフィー(HPLC)分析を行い、溶媒中に含まれる有機物量から、採取した冷却ガス中の有機物の分圧を算出する。   As an example of a specific method of the above-mentioned characteristic part of the present invention, first, the temperature is measured at the temperature measurement point upstream of the heat exchanger (3), and the cooling gas is collected. In the collected cooling gas, since the organic substance to be granulated is usually present together with the cooling gas by the vapor pressure at the temperature, this vapor pressure is measured. For that purpose, after cooling the collected cooling gas in a solvent capable of dissolving the granulated organic substance (for example, acetonitrile when the organic substance is bisphenol A), liquid chromatography of the solvent in which the granulated organic substance is dissolved ( HPLC) analysis is performed, and the partial pressure of the organic matter in the collected cooling gas is calculated from the amount of the organic matter contained in the solvent.

次に、有機物(ビスフェノールA)の飽和蒸気圧曲線を準備し、上記の採取した冷却ガス中の有機物の分圧が、熱交換器(3)の伝熱表面温度における有機物(ビスフェノールA)の飽和蒸気圧以下となる様に、熱交換器(3)に供給される冷媒の供給量および温度を制御する。上記の制御は、通常は冷媒を循環させる弁(32)や、ポンプ(33)を調節して行うことができるが、弁(32)を用いる方法が簡便で好ましい。また、冷媒が水である場合は、図1に示す様に、ライン(107)から弁(31)を介して水を供給し、ライン(108)から排出するが、ライン(107)からの水の供給量を制御することにより、上記の制御を行うこともできる。すなわち、新たに供給される水の温度は、ポンプ(33)及び弁(32)を介して供給される再循環水の温度よりも通常は低いため、弁(31)、弁(32)、ポンプ(33)等を使用して、新たに供給される水の量と再循環水の量との混合比率を適宜調節することにより、熱交換器(3)に供給される冷却水の温度を制御することができる。上記の採取した冷却ガス中の有機物の分圧が、熱交換器(3)の伝熱表面温度における有機物(ビスフェノールA)の飽和蒸気圧を超えると、熱交換器(3)の伝熱表面に有機物(ビスフェノールA)が固結・付着し、冷却効率の低下が生じると共に、熱交換器(3)の閉塞が起るおそれがある。   Next, a saturated vapor pressure curve of the organic matter (bisphenol A) is prepared, and the partial pressure of the organic matter in the collected cooling gas is saturated with the organic matter (bisphenol A) at the heat transfer surface temperature of the heat exchanger (3). The supply amount and temperature of the refrigerant supplied to the heat exchanger (3) are controlled so as to be equal to or lower than the vapor pressure. The above control can be usually performed by adjusting the valve (32) for circulating the refrigerant and the pump (33), but the method using the valve (32) is simple and preferable. When the refrigerant is water, as shown in FIG. 1, water is supplied from the line (107) via the valve (31) and discharged from the line (108), but the water from the line (107) is discharged. The above-mentioned control can be performed by controlling the supply amount. That is, since the temperature of the newly supplied water is usually lower than the temperature of the recirculated water supplied through the pump (33) and the valve (32), the valve (31), the valve (32), the pump (33) etc. are used to control the temperature of the cooling water supplied to the heat exchanger (3) by appropriately adjusting the mixing ratio between the amount of newly supplied water and the amount of recirculated water. can do. When the partial pressure of the organic matter in the collected cooling gas exceeds the saturated vapor pressure of the organic matter (bisphenol A) at the heat transfer surface temperature of the heat exchanger (3), the heat transfer surface of the heat exchanger (3) Organic matter (bisphenol A) may be consolidated and adhered, resulting in a decrease in cooling efficiency and a possibility of clogging the heat exchanger (3).

なお、弁(21)を介してライン(105)から抜出す使用済み冷却ガスの量や、弁(22)を介してライン(106)から供給される新たな冷却ガスの量を調節することにより熱交換器(3)に供給される再循環冷却ガスの温度や有機物の蒸気圧を制御することもでき、熱交換器(3)に供給される冷媒の供給量および温度の制御と併用してもよい。ただし、ライン(105)から抜き出す場合、有機物を含んでいる冷却ガスであるので、有機物の蒸気圧によってはそのまま大気中に放出することができないことがある。そのような場合は、その処理のために、例えば、吸収塔などの新たな設備を必要とする場合がある。   By adjusting the amount of used cooling gas withdrawn from the line (105) via the valve (21) and the amount of new cooling gas supplied from the line (106) via the valve (22) It is also possible to control the temperature of the recirculation cooling gas supplied to the heat exchanger (3) and the vapor pressure of the organic matter, in combination with the control of the supply amount and temperature of the refrigerant supplied to the heat exchanger (3). Also good. However, when extracting from the line (105), since it is a cooling gas containing organic matter, it may not be released into the atmosphere as it is depending on the vapor pressure of the organic matter. In such a case, new equipment such as an absorption tower may be required for the treatment.

また、滴下ノズル(11)から落下させる有機物(ビスフェノールA)の量を調節することにより、冷却ガス中の有機物(ビスフェノールA)の蒸気圧(分圧)を制御することもできるが、装置全体の稼働率を変更することになるので簡便な方法であるとはいえない。   Moreover, the vapor pressure (partial pressure) of the organic substance (bisphenol A) in the cooling gas can be controlled by adjusting the amount of the organic substance (bisphenol A) dropped from the dropping nozzle (11). Since the operation rate is changed, it is not a simple method.

以下、本発明を実施例を用いて更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated still in detail using an Example, this invention is not limited by a following example, unless the summary is exceeded.

以下の諸例においては、図1に示す構成と同様の装置を使用した。なお、熱交換器(3)として、フィンチューブ式のShell & Tube型熱交換器を使用した。なお、不純物の分析は、ガスクロマトグラフ法(島津製作所社製「GC−14B」を使用、検出器:FID、キャリアガス:ヘリウム、カラム:フロンティアラボ社製「Ultra ALLOY−1」)により定量分析を行った。   In the following examples, the same apparatus as that shown in FIG. 1 was used. In addition, the fin tube type Shell & Tube type heat exchanger was used as a heat exchanger (3). In addition, the analysis of impurities uses a gas chromatographic method (“GC-14B” manufactured by Shimadzu Corporation, detector: FID, carrier gas: helium, column: “Ultra ALLOY-1” manufactured by Frontier Laboratories)). went.

実施例1:
フェノール10重量ppmと、イソプロペニルフェノール15重量ppmとを含有するビスフェノールA溶融液(温度172℃)を13重量部/Hrの速度で滴下ノズル(8)より造粒塔(1)内に落下させた。冷却ガスとしては、酸素濃度5重量ppmの窒素ガスを使用し、冷却ガスの流量が80重量部/Hrとなるように弁(4)で調節しながら循環させた。さらに、ライン(105)より循環ガスのパージを行い、造粒塔(1)内の圧力が大気圧に対する相対圧力で2.5kPaとなるように、ライン(106)より酸素濃度5重量ppmの窒素ガスを供給した。
Example 1:
A bisphenol A melt (temperature: 172 ° C.) containing 10 wt ppm of phenol and 15 wt ppm of isopropenyl phenol is dropped into the granulation tower (1) from the dropping nozzle (8) at a rate of 13 parts by weight / hr. It was. Nitrogen gas having an oxygen concentration of 5 ppm by weight was used as the cooling gas, and it was circulated while adjusting the valve (4) so that the flow rate of the cooling gas was 80 parts by weight / Hr. Further, the circulating gas is purged from the line (105), so that the pressure in the granulation tower (1) is 2.5 kPa relative to the atmospheric pressure, and nitrogen with an oxygen concentration of 5 ppm by weight is obtained from the line (106). Gas was supplied.

次に、冷却用ガスの出口(12)の冷却用ガスの温度が73℃となるように、熱交換器(3)の冷媒である水の温度を28℃に調節した。予め作成したビスフェノールAの飽和蒸気圧曲線より、28℃におけるビスフェノールAの飽和蒸気圧は1.1×10−6kPaである。この際、冷却用ガスの出口(12)付近で冷却用ガスを採取し、アセトニトリル中でバブリングさせ、ビスフェノールAを吸収させた後に、液体クロマトグラフィー(HPLC)で分析を行った結果、冷却用ガスの出口(12)付近の冷却用ガスのビスフェノールAの分圧は7.3×10−7kPaと算出された。装置の稼働初期の熱交換器(3)の前後の差圧は0.57kPaであり、75日間連続運転を行っても差圧の上昇はほとんど見られなかった。さらに、75日間運転を行った後に運転を停止し、熱交換器(3)のチューブ表面を確認したところ、ビスフェノールA等の有機化合物結晶の付着はほとんど見られなかった。 Next, the temperature of water as the refrigerant of the heat exchanger (3) was adjusted to 28 ° C. so that the temperature of the cooling gas at the outlet (12) of the cooling gas became 73 ° C. From the saturated vapor pressure curve of bisphenol A prepared in advance, the saturated vapor pressure of bisphenol A at 28 ° C. is 1.1 × 10 −6 kPa. At this time, the cooling gas was collected in the vicinity of the cooling gas outlet (12), bubbled in acetonitrile, absorbed bisphenol A, and analyzed by liquid chromatography (HPLC). The partial pressure of bisphenol A in the cooling gas in the vicinity of the outlet (12) was calculated as 7.3 × 10 −7 kPa. The differential pressure before and after the heat exchanger (3) at the initial stage of operation of the apparatus was 0.57 kPa, and almost no increase in the differential pressure was observed even when the apparatus was continuously operated for 75 days. Furthermore, when the operation was stopped after 75 days of operation and the tube surface of the heat exchanger (3) was confirmed, adhesion of organic compound crystals such as bisphenol A was hardly observed.

実施例2:
冷却用ガスの出口(12)の冷却用ガスの温度が76℃となるように、熱交換器(3)の冷媒である水の供給量を減らした以外(水の温度は28℃)は実施例1と同様の操作を行った。冷却用ガスの出口(12)付近で冷却用ガスを採取し、分析した結果、冷却用ガスの出口(12)付近の冷却用ガスのビスフェノールAの分圧は9.2×10−7kPaと算出された。装置の稼働初期の熱交換器(3)の前後の差圧は0.57kPaであり、約30日間差圧が上昇する傾向にあったが、それ以降、差圧の上昇は緩和し、85日間安定して連続運転を行うことができた。
Example 2:
Except for reducing the supply amount of water, which is the refrigerant of the heat exchanger (3), so that the temperature of the cooling gas at the outlet (12) of the cooling gas becomes 76 ° C (the temperature of the water is 28 ° C). The same operation as in Example 1 was performed. As a result of collecting and analyzing the cooling gas in the vicinity of the cooling gas outlet (12), the partial pressure of bisphenol A in the cooling gas near the cooling gas outlet (12) was 9.2 × 10 −7 kPa. Calculated. The differential pressure before and after the heat exchanger (3) at the initial stage of operation of the apparatus was 0.57 kPa, and there was a tendency for the differential pressure to increase for about 30 days. Stable and continuous operation was possible.

比較例1:
冷却用ガスの出口(12)の冷却用ガスの温度が80℃となるように、熱交換器(3)の冷媒である水の供給量を減らした以外(水の温度は28℃)は実施例1と同様の操作を行った。冷却用ガスの出口(12)付近で冷却用ガスを採取し、分析した結果、冷却用ガスの出口(12)付近の冷却用ガスのビスフェノールAの分圧は2.0×10−6kPaと算出された。装置の稼働初期の熱交換器(3)の前後の差圧は0.57kPaであったが、差圧の上昇傾向が継続し、75日後の差圧は2.2kPaとなった。そのため、熱交換器(3)の冷却能力が低下し、冷却に支障を来したので、運転を停止した。熱交換器(3)のチューブ表面を確認したところ、ビスフェノールA等の有機化合物結晶が付着していた。
Comparative Example 1:
Except for reducing the supply amount of water, which is the refrigerant of the heat exchanger (3), so that the temperature of the cooling gas at the cooling gas outlet (12) is 80 ° C. (water temperature is 28 ° C.). The same operation as in Example 1 was performed. As a result of collecting and analyzing the cooling gas in the vicinity of the cooling gas outlet (12), the partial pressure of bisphenol A of the cooling gas in the vicinity of the cooling gas outlet (12) was 2.0 × 10 −6 kPa. Calculated. Although the differential pressure before and after the heat exchanger (3) at the initial stage of operation of the apparatus was 0.57 kPa, the differential pressure continued to increase, and the differential pressure after 75 days was 2.2 kPa. For this reason, the cooling capacity of the heat exchanger (3) was reduced, which hindered cooling, and the operation was stopped. When the tube surface of the heat exchanger (3) was confirmed, organic compound crystals such as bisphenol A were adhered.

本発明の製造方法の1実施態様を示すフローシートである。It is a flow sheet which shows one embodiment of the manufacturing method of the present invention.

符号の説明Explanation of symbols

1:造粒塔
2:循環ガスブロワー
3:熱交換器
4:弁
5:バグフィルター
11:滴下ノズル
12:冷却用ガスの出口
13:冷却用ガスの入口
14:粒状物排出口
21:弁
22:弁
31:弁
32:弁
33:ポンプ
34:差圧計
1: Granulation tower 2: Circulating gas blower 3: Heat exchanger 4: Valve 5: Bag filter 11: Dropping nozzle 12: Cooling gas outlet 13: Cooling gas inlet 14: Granular outlet 21: Valve 22 : Valve 31: Valve 32: Valve 33: Pump 34: Differential pressure gauge

Claims (5)

造粒塔の塔上部に配置されたノズルから有機物の溶融液を液滴状に吐出し、溶融液の温度より低温のガスと交流接触させることにより溶融液を粒状化し、溶融液と接触させたガスを造粒塔の塔上部から抜き出した後に熱交換器で冷却し、冷却したガスを造粒塔の塔下部に供給して循環使用する粒状有機物の製造方法において、熱交換器の入口側のガスの温度における有機物の蒸気圧が、熱交換器の伝熱面の表面温度における有機物の飽和蒸気圧以下となる様に、熱交換器に供給される冷媒の供給量および温度を制御することを特徴とする粒状有機物の製造方法。   The molten liquid of the organic substance was discharged in a droplet form from a nozzle disposed in the upper part of the granulation tower, and the molten liquid was granulated by bringing it into AC contact with a gas lower than the temperature of the molten liquid, and brought into contact with the molten liquid. In a method for producing a granular organic substance in which a gas is extracted from the upper part of the granulation tower and then cooled by a heat exchanger, and the cooled gas is supplied to the lower part of the granulation tower and circulated, it is provided on the inlet side of the heat exchanger. Control the amount and temperature of the refrigerant supplied to the heat exchanger so that the vapor pressure of the organic substance at the gas temperature is equal to or lower than the saturated vapor pressure of the organic substance at the surface temperature of the heat transfer surface of the heat exchanger. A method for producing a granular organic material. 前記有機物がビスフェノールAである請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the organic substance is bisphenol A. 前記ガスが窒素ガスである請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1, wherein the gas is nitrogen gas. 有機物の溶融液をほぼ鉛直下方に吐出し、前記ガスを造粒塔の塔下部から塔上部に向かって流通させる請求項1〜3の何れかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein an organic melt is discharged substantially vertically downward, and the gas is circulated from a lower part of the granulation tower toward an upper part of the tower. 熱交換器に供給される冷媒が水である請求項1〜4の何れかに記載の製造方法。   The manufacturing method according to claim 1, wherein the refrigerant supplied to the heat exchanger is water.
JP2006091929A 2006-03-29 2006-03-29 Method for producing granular bisphenol A Active JP4952018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091929A JP4952018B2 (en) 2006-03-29 2006-03-29 Method for producing granular bisphenol A

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091929A JP4952018B2 (en) 2006-03-29 2006-03-29 Method for producing granular bisphenol A

Publications (2)

Publication Number Publication Date
JP2007262021A true JP2007262021A (en) 2007-10-11
JP4952018B2 JP4952018B2 (en) 2012-06-13

Family

ID=38635363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091929A Active JP4952018B2 (en) 2006-03-29 2006-03-29 Method for producing granular bisphenol A

Country Status (1)

Country Link
JP (1) JP4952018B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213641A (en) * 2010-03-31 2011-10-27 Mitsubishi Chemicals Corp Method for washing apparatus for producing bisphenol a
WO2015147198A1 (en) * 2014-03-28 2015-10-01 出光興産株式会社 Methylene chloride solution of 3-pentadecylphenol, process for producing same, and process for producing polycarbonate resin using said solution
JP7490148B2 (en) 2021-09-15 2024-05-24 エルジー・ケム・リミテッド Apparatus and method for predicting dust amount

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107581A (en) * 1992-09-30 1994-04-19 Nippon Steel Chem Co Ltd Production of bisphenol a prill
JP2006071123A (en) * 2004-08-31 2006-03-16 Kyowa Exeo Corp Exhaust gas utilization heat exchanger for ash melting facility
JP2007197391A (en) * 2006-01-27 2007-08-09 Idemitsu Kosan Co Ltd Method for producing bisphenol a prill

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107581A (en) * 1992-09-30 1994-04-19 Nippon Steel Chem Co Ltd Production of bisphenol a prill
JP2006071123A (en) * 2004-08-31 2006-03-16 Kyowa Exeo Corp Exhaust gas utilization heat exchanger for ash melting facility
JP2007197391A (en) * 2006-01-27 2007-08-09 Idemitsu Kosan Co Ltd Method for producing bisphenol a prill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213641A (en) * 2010-03-31 2011-10-27 Mitsubishi Chemicals Corp Method for washing apparatus for producing bisphenol a
WO2015147198A1 (en) * 2014-03-28 2015-10-01 出光興産株式会社 Methylene chloride solution of 3-pentadecylphenol, process for producing same, and process for producing polycarbonate resin using said solution
JP7490148B2 (en) 2021-09-15 2024-05-24 エルジー・ケム・リミテッド Apparatus and method for predicting dust amount

Also Published As

Publication number Publication date
JP4952018B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
CN101660012B (en) Anhydrous granulating technique of metallurgical slag and device thereof
JP4952018B2 (en) Method for producing granular bisphenol A
JP4707835B2 (en) Bisphenol A prill production method and production apparatus, and bisphenol A prill produced in accordance therewith
DE2108050A1 (en) Device for producing metal powder
US3505135A (en) Steady state copper etching system with ammonium persulfate
CN101389918B (en) Arrangement and method for cooling a solution
US4652675A (en) Process and device for purifying benzoic acid
US3975472A (en) Process and device for preparing prills
CN112441946A (en) Production process of acrylonitrile device absorption tower
JP5260019B2 (en) Method for producing granular sodium iodide
JP6256496B2 (en) Crystallizer and crystallization method
US8247604B2 (en) Method of replacing dispersion medium
US3362989A (en) Method for fractional sublimation
US4028447A (en) Method of prilling material
EP2794042B1 (en) Process and apparatus for forced circulation evaporative crystallization with large deposit inventory
WO2007086223A1 (en) Process for producing bisphenol-a prill
JP5133029B2 (en) Method for removing inorganic particles in liquid
EP0157562A2 (en) Crystallization apparatus for metal stripping
CN219735744U (en) Continuous cooling and purifying device for special isocyanate carbonylation intermediate
JP2010155803A (en) Production method of bisphenol compound particle
CN211724933U (en) Filtering device for packed tower
US3250017A (en) After-treatment of particulate solids
JP2006097909A (en) Molten material granulating cooling device
RU2229332C2 (en) Method of production of granules from a melt and a device for its realization
JP2011213641A (en) Method for washing apparatus for producing bisphenol a

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Ref document number: 4952018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350