JP2009085165A - 内燃機関の制御装置、及び圧力制御システム - Google Patents

内燃機関の制御装置、及び圧力制御システム Download PDF

Info

Publication number
JP2009085165A
JP2009085165A JP2007258513A JP2007258513A JP2009085165A JP 2009085165 A JP2009085165 A JP 2009085165A JP 2007258513 A JP2007258513 A JP 2007258513A JP 2007258513 A JP2007258513 A JP 2007258513A JP 2009085165 A JP2009085165 A JP 2009085165A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
pressure
fuel
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007258513A
Other languages
English (en)
Inventor
Tomoyoshi Tsujimura
知祥 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007258513A priority Critical patent/JP2009085165A/ja
Publication of JP2009085165A publication Critical patent/JP2009085165A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】燃料ポンプ44から圧送されデリバリパイプ72内で高圧状態にて蓄えられる燃料が燃料噴射弁20を介して噴射供給される内燃機関10について、デリバリパイプ72内の圧力が過度に高くなる異常に簡易且つ適切に対処することが困難なこと。
【解決手段】上記異常が生じると、燃料噴射弁20の噴射量が増量することから、空燃比がリッチ側にずれる。このため、空燃比フィードバック制御によって、燃料噴射量が減量される。しかし、燃料噴射弁20には開弁時間の下限値があるため、最小噴射量にも下限がある。デリバリパイプ72内の燃圧が上昇することで最小噴射量が増量すると、アイドル回転速度制御時において実空燃比が目標空燃比よりもリッチとなる。このため、目標回転速度を上昇させる。
【選択図】 図1

Description

本発明は、燃料ポンプから圧送され蓄圧容器内で高圧状態にて蓄えられる燃料が燃料噴射弁を介して噴射供給される内燃機関を制御対象とする内燃機関の制御装置、及びこれを備える圧力制御システムに関する。
筒内噴射式内燃機関にあっては、フィードポンプによって汲み上げられた燃料タンク内の燃料が高圧燃料ポンプによってデリバリパイプに加圧供給(圧送)され、デリバリパイプ内に高圧状態にて蓄えられた燃料が燃料噴射弁を介して内燃機関の燃焼室に噴射供給される。この際、例えば下記特許文献1に見られるように、デリバリパイプ内の圧力が異常に高くなる場合、フィードポンプを停止することも提案されている。これにより、デリバリパイプ内の圧力を低下させることができる。詳しくは、上記特許文献1記載のものにあっては、車両の走行時にあっては、デリバリパイプ内の圧力に応じてフィードポンプをオン・オフ操作することで、デリバリパイプ内の圧力を所定の圧力領域内に制御するようにしている。また、上記特許文献1記載の燃料供給システムにあっては、フィードポンプの停止時であっても、アイドル回転速度制御に必要な少量の燃料が高圧燃料ポンプによってデリバリパイプに供給可能となっている。
特許第3237567号公報
上記燃料供給システムにあっては、フィードポンプの停止時であっても高圧燃料ポンプによってデリバリパイプに少量の燃料を圧送可能な構成とすることで、異常時においてデリバリパイプ内の圧力を確実に低下させつつもアイドル運転が可能となっている。しかし、このような構成とすることで、構成の複雑化や部品点数の増加も無視できない。更に、上記のものにあっては、車両の走行時にデリバリパイプ内の圧力に応じてフィードポンプをオン・オフ操作することでデリバリパイプ内の圧力を制御しているものの、このようなフィードバック制御によっては、圧力の変動も大きくなることから、微視的なタイムスケールで見た際には、燃料噴射量が過大となったり、過小となったりして、内燃機関の排気特性やトルクが適切な値から過度にずれるおそれもある。
本発明は、上記課題を解決するためになされたものであり、その目的は、燃料ポンプから圧送され蓄圧容器内で高圧状態にて蓄えられる燃料が燃料噴射弁を介して噴射供給される内燃機関について、蓄圧容器内の圧力が過度に高くなる異常に簡易且つ適切に対処することのできる内燃機関の制御装置、及びこれを備える圧力制御システムを提供することにある。
以下、上記課題を解決するための手段、及びその作用効果について記載する。
請求項1記載の発明は、燃料ポンプから圧送され蓄圧容器内で高圧状態にて蓄えられる燃料が燃料噴射弁を介して噴射供給される内燃機関を制御対象とする内燃機関の制御装置において、前記燃料ポンプに、前記蓄圧容器内の圧力を上昇させる側の異常が生じたことを検出する検出手段と、前記異常が検出される場合、前記内燃機関の燃焼制御のためのアクチュエータを操作することで燃料の燃焼と相関を有する物理量の前記異常に起因する変化を補償する補償手段とを備えることを特徴とする。
上記発明では、補償手段によって上記物理量(空燃比、トルク等)の変化が補償されるために、蓄圧容器内の圧力が過度に上昇する場合であっても、これに適切に対処することができる。しかも、燃焼制御のためのアクチュエータの操作によって対処するために、燃料ポンプ等の構造を複雑化したりする必要もなく、簡易な対処が可能となる。
請求項2記載の発明は、請求項1記載の発明において、前記内燃機関の空燃比を目標空燃比にフィードバック制御するフィードバック制御手段を更に備え、前記補償手段は、前記異常に起因する前記フィードバック制御の制御性の低下を補償することを特徴とする。
蓄圧容器の圧力が過度に高くなる異常が生じる場合、燃料噴射弁を介して内燃機関に噴射供給される燃料量が増加するおそれがある。そして、燃料噴射弁の最小噴射量が増量する場合には、最小噴射量としても実空燃比が目標空燃比よりもリッチとなる事態が生じ得るため、空燃比のフィードバック制御性が低下するおそれがある。この点、上記発明では、フィードバック制御の制御性の低下を補償するために、実空燃比と目標空燃比とのずれを抑制することができ、ひいては排気特性の悪化を好適に抑制することができる。
請求項3記載の発明は、請求項2記載の発明において、前記補償手段は、前記異常が検出される場合、前記内燃機関のアイドル回転速度制御時における目標回転速度を上昇させる回転速度上昇手段を備えることを特徴とする。
蓄圧容器の圧力が過度に高くなる異常が生じる場合、燃料噴射弁を介して内燃機関に噴射供給される燃料量が増加するおそれがある。そして、燃料噴射弁の最小噴射量が増量する場合には、トルクが増大するおそれがあり、ひいては回転速度が上昇するおそれがある。ここで、アイドル回転速度制御がされている場合、回転速度の上昇を抑制すべく吸入空気量が低減される。これは、実空燃比を目標空燃比よりもリッチ側に制御することとなるため、空燃比の制御性が低下する。この点、上記発明では、目標回転速度を上昇させることで、アイドル回転速度制御によって吸入空気量を増量させることができ、ひいては空燃比の制御性を回復することができる。
請求項4記載の発明は、請求項3記載の発明において、前記回転速度上昇手段は、前記目標回転速度を漸増させることを特徴とする。
上記発明では、目標回転速度を漸増させるために、一気に上昇させる場合と比較して、極力ユーザに体感される事態を回避することができる。
請求項5記載の発明は、請求項3又は4記載の発明において、前記回転速度上昇手段は、前記蓄圧容器内の圧力に応じて前記目標回転速度を設定することを特徴とする。
蓄圧容器内の圧力が高いほど、燃料噴射弁から噴射可能な最小噴射量が増量する傾向にある。このため、実空燃比と目標空燃比との乖離を抑制するために要求される目標回転速度は、圧力が高いほど大きくなる傾向にある。上記発明では、この点に鑑み、圧力に応じて目標回転速度を設定することで、空燃比のフィードバック制御性の低下を好適に補償することができる。
請求項6記載の発明は、請求項1〜5のいずれか1項に記載の発明において、前記補償手段は、前記異常に起因する前記内燃機関のトルクの増大を抑制すること特徴とする。
蓄圧容器の圧力が過度に高くなる異常が生じる場合、燃料噴射弁を介して内燃機関に噴射供給される燃料量が増加し、内燃機関のトルクが増大するおそれがある。この点、上記発明では、トルクの増大を抑制することで、燃料ポンプの異常に好適に対処することができる。
請求項7記載の発明は、請求項1〜6のいずれか1項に記載の発明において、前記内燃機関は、火花点火式内燃機関であり、前記補償手段は、前記異常が検出される場合、点火時期を遅角させる遅角手段を備えることを特徴とする。
蓄圧容器の圧力が過度に高くなる異常が生じる場合、燃料噴射弁を介して内燃機関に噴射供給される燃料量が増加し、内燃機関のトルクが増大するおそれがある。また、燃料噴射弁の最小噴射量が増量する場合には、最小噴射量としても実空燃比が目標空燃比よりもリッチとなる事態が生じ得るため、空燃比のフィードバック制御をしている場合には、その制御性が低下するおそれもある。
ここで、点火時期を遅角操作する場合には、内燃機関のトルクが低下するために、上記トルクの増大を抑制することができる。更に、トルクの低下が吸入空気量の増量につながる場合には、遅角操作によって実空燃比をリーン側とすることができるため、上記フィードバック制御の制御性の低下を補償することもできる。
請求項8記載の発明は、請求項7記載の発明において、前記遅角手段は、前記内燃機関の排気温度が所定温度以下となる範囲で前記点火時期を遅角させることを特徴とする。
点火時期を遅角させる場合、燃焼タイミングが排気行程側に移行するために、排気温度が上昇する。一方、排気温度の過度の上昇は、内燃機関の排気系の信頼性の低下につながるおそれがある。上記発明では、この点に鑑み、排気温度が所定温度以下となる範囲で遅角操作を行うために、排気系の信頼性の低下を好適に回避することができる。
請求項9記載の発明は、請求項1〜8のいずれか1項に記載の発明において、前記内燃機関は、多気筒内燃機関であり、前記補償手段は、前記異常が検出される場合、前記内燃機関の気筒の一部について燃焼制御を停止させることを特徴とする。
蓄圧容器の圧力が過度に高くなる異常が生じる場合、燃料噴射弁を介して内燃機関に噴射供給される燃料量が増加し、内燃機関のトルクが増大するおそれがある。また、燃料噴射弁の最小噴射量が増量する場合には、最小噴射量としても実空燃比が目標空燃比よりもリッチとなる事態が生じ得るため、空燃比のフィードバック制御をしている場合には、その制御性が低下するおそれもある。
ここで、燃焼制御を行う気筒を低減するなら、内燃機関のトルクが低下するために、上記トルクの増大を抑制することができる。更に、トルクの低下が単位気筒当たりの吸入空気量の増量につながる場合には、実空燃比をリーン側とすることができるため、上記フィードバック制御の制御性の低下を補償することもできる。
請求項10記載の発明は、請求項1〜9のいずれか1項に記載の発明において、前記蓄圧容器内の圧力を減圧する手段が、前記蓄圧容器内の圧力が規定圧を超えて上昇しようとする場合に前記蓄圧容器内の圧力を前記規定圧に機械的に調節する手段と、前記燃料噴射弁とからなることを特徴とする。
上記発明では、燃料ポンプの上記異常時において、蓄圧容器内の圧力が規定圧に制御される。このため、蓄圧容器内の圧力が、蓄圧容器の信頼性の低下を招くほど上昇することを回避することができる。
請求項11記載の発明は、請求項10記載の制御装置と、前記蓄圧容器及び前記燃料ポンプを備えることを特徴とする圧力制御システムである。
(第1の実施形態)
以下、本発明にかかる内燃機関の制御装置を車載ガソリン機関の制御装置に適用した第1の実施の形態について、図面を参照しつつ説明する。
図1に、本実施形態のシステム構成を示す。図示される内燃機関10は、筒内噴射式内燃機関である。本実施形態では、8気筒内燃機関を想定しているが、ここでは、便宜上1気筒のみを図示する。内燃機関10のシリンダブロック12及びピストン14によって区画される燃焼室16には、点火プラグ18及び燃料噴射弁20が突出している。燃焼室16は、吸気バルブ22の開動作によって吸気通路24と連通され、これにより、燃焼室16に燃料が吸入される。一方、燃料噴射弁20は、燃料(ガソリン燃料)を燃焼室16に噴射する。そして、燃焼室16内の空気と燃料との混合気が点火プラグ18の点火によって燃焼することで、その燃焼エネルギがクランク軸26の回転エネルギとして取り出される。その後、燃焼室16は、排気バルブ28の開動作によって排気通路30と連通し、燃焼室16において燃焼に供された混合気が、排気として排気通路30に排出される。
上記燃焼噴射弁20を介して燃焼室16内に噴射供給される燃料は、燃料タンク40に蓄えられているものである。燃料タンク40内の燃料は、電動式のフィードポンプ42によって汲み上げられ、燃料ポンプ44に供給される。燃料ポンプ44は、シリンダ46と、シリンダ46内で往復動するプランジャ48と、シリンダ46の内周壁面及びプランジャ48によって区画形成される加圧室50と、低圧室52と、加圧室50及び低圧室52間を連通及び遮断するスピル弁54とを備えている。
このように構成される燃料ポンプ44において、プランジャ48の下端に取り付けられたタペット60は、スプリング62によって駆動軸64に連結されたカム66に押し付けられている。駆動軸64は、クランク軸26と直接機械的に連結されるか吸気カム軸又は排気カム軸のいずれかに機械的に連結されるかすることで、クランク軸26の回転によって機械的に回転するものである。一方、カム66は、駆動軸64と外周との距離が変化する形状を有しており、これにより、駆動軸64の回転に同期してプランジャ48がシリンダ46内を往復動することとなる。そして、プランジャ48の往復動によって、加圧室50内の容積が変化する。
上記加圧室50には、スピル弁51の開弁時において、低圧室52を介してフィードポンプ42からの燃料が供給される。低圧室52には、スピル弁54を閉弁方向に吸引する電磁ソレノイド56と、スピル弁54に対して開弁方向に力を加えるスプリング58とが設けられている。このため、電磁ソレノイド56に対する通電がなされない場合には、スピル弁54は、スプリング58によって開弁状態とされ、電磁ソレノイド56に対する通電がなされる場合には、その吸引力によって閉弁状態とされる。このように、スピル弁54は、ノーマリーオープンタイプの弁体である。
上記加圧室50には、逆止弁74及び吐出通路70を介して、燃料を高圧状態で蓄えて且つ各気筒の燃料噴射弁20に供給する蓄圧容器(デリバリパイプ72)が接続されている。デリバリパイプ72は、リリーフ弁76、リリーフ通路78を介して燃料タンク40に接続されている。リリーフ弁76は、デリバリパイプ72内の圧力が規定圧(例えば「20〜30MPa」)を越えて上昇しようとすることで機械的に開弁し、デリバリパイプ72内の圧力を規定圧に機械的に調節するレギュレータである。なお、規定圧は、デリバリパイプ72の信頼性を維持することのできる上限値以下に設定されている。
低圧室52及びフィードポンプ42間は、リリーフ弁80、リリーフ通路82を介して燃料タンク40に接続されている。リリーフ弁80は、低圧室52及びフィードポンプ42間の通路内の圧力が所定以上となることで開弁する。これにより、低圧室52及びフィードポンプ42間の通路内の圧力が所定圧に維持される。
燃料タンク40は、ベーパ通路90を介して、燃料タンク40内で発生した燃料蒸気を捕集するキャニスタ92に接続されている。キャニスタ92は、燃料蒸気を吸着する吸着剤92aを備えている。また、キャニスタ92は、キャニスタ92内の圧力が大気圧よりも高い所定圧以上となることで開弁し、キャニスタ92内の余分な空気を逃すための大気弁92bを備えている。更に、キャニスタ92は、キャニスタ92内に大気を導入するための電子制御式の大気導入弁92cを備えている。そして、キャニスタ92は、パージ通路94、及び電子制御式のパージバルブ96を介して吸気通路24に接続されている。こうした構成によれば、大気導入弁92c及びパージバルブ96が開弁されることでキャニスタ92内が減圧されると、吸着剤92aに吸着された燃料蒸気が再離脱し、吸気通路24に吸引される。
電子制御装置(ECU100)は、内燃機関10を制御対象とする制御装置である。ECU100は、デリバリパイプ72内の圧力を検出する燃圧センサ102や、クランク軸26の回転角度を検出するクランク角センサ104、排気通路30の排気の成分に基づき燃焼室16の空燃比を検出する空燃比センサ106、排気通路30内の排気温度を検出する排気温度センサ108、吸入空気量を検出するエアーフローメータ110等の各種センサの検出値を取り込む。そして、ECU100は、これら検出値に基づき、点火プラグ18や燃料噴射弁20、電磁ソレノイド56、大気導入弁92c、パージバルブ96等の各種アクチュエータを操作することで、内燃機関10の燃焼制御を行う。具体的には、例えば吸入空気量と回転速度とに基づき算出される噴射量の基本値FFを、空燃比センサ106の検出する実空燃比を目標空燃比(例えば理論空燃比)にフィードバック制御するためのフィードバック補正量A/FFBにて補正することで、燃料噴射弁20の開弁時間を操作する空燃比フィードバック制御などを行う。なお、ECU100は、所定の演算結果を外部に通知する手段として、同演算結果を視覚情報として出力する表示器120に電気的に接続されている。
ここで、ECU100による燃料ポンプ44の操作について、図2に基づき更に説明する。図2(a)に示すプランジャ48の下降行程においては、電磁ソレノイド56への通電を行わず、スピル弁54を開弁状態とする。これにより、上記フィードポンプ42によって燃料タンク40から汲み上げられた燃料は、加圧室50に吸入される。これに対し、図2(b)に示すように、プランジャ48の上昇行程においても、電磁ソレノイド56の通電がなされないなら、スピル弁54は開弁状態となる。このため、加圧室50内の燃料は低圧室52を介して燃料タンク40へと戻される。一方、図2(c)に示されるように、電磁ソレノイド56に対する通電によってスピル弁54が閉弁状態となる場合には、加圧室50内の燃料は吐出通路70を介して上記デリバリパイプ72へと圧送される。ECU100では、デリバリパイプ72内の燃圧を所定圧(例えば「5〜15Mpa」)に制御すべく、燃圧センサ102の検出値に基づき電磁ソレノイド56に対する通電タイミングを決定する。ちなみに、上記所定圧は、アイドル回転速度制御時等を除く内燃機関10の通常運転時には、固定値としてもよい。
ところで、例えば電磁ソレノイド56の通電経路がバッテリの正極とショートするなどする場合には、電磁ソレノイド56に常時通電がなされることとなる。この場合、スピル弁54は、プランジャ48の上昇行程の略全期間に渡って閉弁状態を維持する。ただし、プランジャ48の下降行程にあっては、加圧室50内の圧力が低下することでスピル弁54が開弁側に吸引され、この吸引力とスプリング58の弾性力との合力が電磁ソレノイド56の吸引力に打ち勝つことでスピル弁54が開弁する。このため、プランジャ48が下降するたびに加圧室50内に燃料が吸引され、プランジャ48が上昇する略全期間に渡って燃料がデリバリパイプ72へと吐出される。したがって、デリバリパイプ72には、燃料ポンプ44の略最大の吐出能力によって燃料が圧送されることとなり、その圧力が過度に高くなるおそれがある。そして、上記リリーフ弁76を開弁させる規定圧以上とする燃料量が圧送されると、リリーフ弁76によってデリバリパイプ72内の燃圧が規定圧に機械的に制御される。
この状態においては、上記吸入空気量や回転速度に応じて算出される噴射量の基本値FFに応じた燃料噴射弁20の開弁時間によっては、基本値FFよりも過度に多量の燃料が噴射されるおそれがある。これは、噴射量は、噴射期間が長いほど、また燃焼室16内の燃圧に対するデリバリパイプ72内の燃圧が高いほど多くなることによる。このため、同一の開弁時間であったとしても、燃料ポンプ44の異常のためにデリバリパイプ72内の燃圧が過度に高い場合には、噴射量が過大となる。この場合、実際の空燃比(実空燃比)が目標空燃比よりもリッチ側となるために、空燃比フィードバック制御によって噴射量(又は燃料噴射弁20の開弁時間)が低減される。ただし、燃料噴射弁20には、噴射量の制御性の信頼性が維持できる開弁時間の最小値があるため、開弁時間の下限値が設定されているのが常である。このため、空燃比フィードバック制御による開弁時間のフィードバック補正は、開弁時間の下限値による制約を受ける。すなわち、開弁時間が下限値となると、実空燃比が未だリッチ状態である場合であっても開弁時間の補正はできなくなる。
こうした事態は、内燃機関10に要求されるトルクが小さい領域において特に生じやすい。すなわち、この場合、吸入空気量が少量であるために、噴射量が過大となると実空燃比がリッチ化しやすい。逆に、ある程度要求トルクが大きい運転領域にあっては、目標空燃比への制御性を維持することができる。すなわち、この場合、デリバリパイプ72の異常高圧に起因して噴射量が増量すると生成トルクが増大し、ユーザによるトルク低減要求に応じて吸入空気量が低減される。この際、実空燃比は噴射量の増量や吸入空気量の減量に起因してリッチ側にずれるものの、空燃比フィードバック制御によって目標空燃比への制御が可能となる。
以上から、燃料ポンプ44の吐出量が過大となる異常に際しては、特にアイドル時の空燃比制御の制御性が低下する懸念がある。すなわち、デリバリパイプ72内の圧力がリリーフ弁76によって制御される状況下において燃料噴射弁20の開弁時間を下限値とする際の噴射量がアイドル回転速度制御によって通常要求される噴射量よりも大きくなる場合には、空燃比制御の制御性が低下するおそれがある。
そこで本実施形態では、上記異常時においては、ECU100から表示器120を通じてユーザにその旨を通知する処理を行う一方で、空燃比フィードバック制御の制御性の低下を補償するフェールセーフ処理を行うことで、通常時に準じた内燃機関10の稼動を維持し、ひいては車両の走行性能を維持する。
図3に、本実施形態にかかるフェールセーフ処理の手順を示す。この処理は、ECU100により、例えば所定周期で繰り返し実行される。
この一連の処理では、まずステップS10において、アイドル回転速度制御時であるか否かを判断する。ここで、アイドル回転速度制御時とは、内燃機関10の回転状態を安定に維持することのできる目標回転速度に自動的に制御する処理がなされているときのことである。この制御は、実回転速度を目標回転速度に制御すべく、吸入空気量を操作するものである。そして、アイドル回転速度制御時であると判断される場合には、ステップS12に移行する。ステップS12においては、燃料ポンプ44のプランジャ48の上昇行程において常時スピル弁54が閉弁状態となる閉固着異常が生じているか否かを判断する。この処理は、例えば燃圧センサ102の検出値に基づき、デリバリパイプ72内の燃圧がリリーフ弁76を開弁させる規定圧となっていると判断される場合に異常と判断するものであってもよい。また、これに代えて、電磁ソレノイド56の通電状態を監視することで判断するものであってもよい。
ステップS12において肯定判断される場合には、ステップS14において、パージバルブ96の開弁を禁止する。これは、上記異常時には燃料噴射量が増量されるため空燃比がリッチ化しやすいにもかかわらず、パージバルブ96が開弁されるなら、空燃比のリッチ化が助長されると考えられるためである。一方、ステップS16においては、実空燃比が目標空燃比よりも所定量α以上リッチか否かを判断する。この処理は、空燃比フィードバック制御の制御性の低下の有無を判断するためのものである。そして、ステップS16において肯定判断される場合には、ステップS18に移行する。
ステップS18においては、目標回転速度が上限速度β以下であるか否かを判断する。この処理は、目標回転速度を上昇させることができるか否かを判断するものである。ここで上限速度βは、例えば車両がオートマティックトランスミッション車(AT車)である場合、クリープトルクが過度に大きくならない値に設定される。そして、ステップS18において肯定判断される場合には、ステップS20に移行する。ステップS20においては、目標回転速度を所定速度γだけ上昇させる。この処理は、空燃比フィードバック制御の制御性の低下を補償するための処理である。すなわち、目標回転速度が上昇すれば吸入空気量も増量するため、これにより、実空燃比をリーン側に移行させることができる。
なお、上記ステップS10,S12,S16,S18において否定判断される場合や、ステップS20の処理が完了する場合には、この一連の処理を一旦終了する。
こうした処理によれば、目標回転速度を上限速度βを上限として上昇させることで、吸入空気量を増量することができ、ひいては実空燃比の目標空燃比への追従性を高めることができる。なお、上限速度βは、デリバリパイプ72内の燃圧(リリーフ弁76の規定圧)に応じて可変設定される。上限速度βを可変設定可能な処理(プログラム等)を搭載しておくことで、エンジンシステムの仕様(リリーフ弁76の仕様)に応じて規定圧が変化しても、これに適切に対処することができる。ここで、上限速度βは、アイドル回転速度制御による内燃機関10のトルクが過度に大きくならないとの制約の下、デリバリパイプ72内の燃圧(レギュレート圧)が高いほど大きくなるようにする。すなわち、目標回転速度の増大は、例えばAT車の場合、まず第1にドライブレンジへのシフト時にショックとして生じるが、過度なリッチ化が失火の原因となることに鑑みれば、上記ショックよりも失火の回避を優先させることが望ましい。このため、アイドル回転速度時のトルクが過大となりクリープ時の車両の操作性に支障が生じることがない範囲で、燃圧が高いほど上限速度βを大きくする。
同様に、所定速度γについても、デリバリパイプ72内の燃圧に応じて可変設定する。詳しくは、デリバリパイプ72内の燃圧が高いほど所定速度γを大きくする。これは、燃圧が高いほど実空燃比がよりリッチとなるために、燃圧にかかわらず所定速度γを同一としたのでは燃圧が高いほど目標回転速度への追従が遅れることに鑑みた設定である。
図4に、本実施形態にかかるフェールセーフ処理の態様を示す。詳しくは、図4(a)に、燃料ポンプ44の操作信号の推移を示し、図4(b)に、デリバリパイプ72内の燃圧の推移を示し、図4(c)に燃料噴射弁20の開指令時間の推移を示し、図4(d)に、空燃比の推移を示し、図4(e)に、目標回転速度の推移を示す。
燃料ポンプ44の正常時にあっては、図4(b)に実線にて示す燃圧が、1点鎖線にて示す目標燃圧に追従している。ここで、燃料ポンプ44の電磁ソレノイド56の常時通電状態となる異常が生じると、燃料ポンプ44の吐出量が増大することから、燃圧が目標燃圧を上回って上昇する。この際、燃料噴射弁20の噴射量が増大することから、図4(d)に実線にて示す実空燃比が1点鎖線にて示す目標空燃比よりもリッチとなる。実空燃比がリッチとなると、空燃比フィードバック制御により燃料噴射弁20の噴射量や開指令期間が低減される。その後、燃圧が規定圧Pth以上となることに基づき(又は、燃料ポンプ44の常時通電状態が所定時間継続することに基づき)、時刻t1において燃料ポンプ44の異常が検出される。
これにより、目標回転速度が上昇する。このため、実際の回転速度を上昇させるべくトルクを上昇させる必要から、アイドル回転速度制御により吸入空気量が増量し、実空燃比が目標空燃比に追従するようになる。これに対し、図4(e)に2点鎖線にて示すように、目標回転速度の上昇処理を行わない場合には、図4(d)に示すように、実空燃比はリッチのままとなる。
以上詳述した本実施形態によれば、以下の効果が得られるようになる。
(1)燃料ポンプ44に、デリバリパイプ72内の圧力を上昇させる側の異常が生じた場合、空燃比フィードバック制御の制御性の低下を補償する処理を行った。これにより、噴射量の増量によって実空燃比が目標空燃比よりもリッチとなる事態が生じたとしても、実空燃比と目標空燃比とのずれを抑制することができ、ひいては排気特性の悪化を好適に抑制することができる。
(2)内燃機関10のアイドル回転速度制御時における目標回転速度を上昇させた。これにより、吸入空気量を増量させることができ、ひいては空燃比の制御性を回復することができる。
(3)燃料ポンプ44の異常時において、目標回転速度を漸増させた。これにより、一気に上昇させる場合と比較して、極力ユーザに体感される事態を回避することができる。
(4)デリバリパイプ72内の圧力に応じて目標回転速度の上限速度βを設定した。これにより、実空燃比と目標空燃比との乖離を抑制するために要求される目標回転速度が、圧力が高いほど大きくなる傾向を考慮して、圧力に見合った上限速度βを設定することができ、ひいては空燃比のフィードバック制御性の低下を好適に補償することができる。
(5)デリバリパイプ72内の圧力を減圧する手段として、燃料噴射弁20に加えて、デリバリパイプ72内の圧力が規定圧を超えて上昇しようとする場合にその圧力を規定圧に機械的に調節する手段を備えた。これにより、デリバリパイプ72内の圧力が、デリバリパイプ72の信頼性の低下を招くほど上昇することを回避することができる。
(第2の実施形態)
以下、第2の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
図5に、本実施形態にかかるフェールセーフ処理の手順を示す。この処理は、ECU100により、例えば所定周期で繰り返し実行される。なお、図5に示す処理において、先の図3に示した処理に対応する処理については、便宜上同一のステップ番号を付している。
この一連の処理では、ステップS14の処理が完了すると、ステップS22において、排気温度が閾値温度Tth以下であるか否かを判断する。この処理は、点火時期の遅角操作を行うことができるか否かを判断するためものである。ここで、閾値温度Tthは、排気通路30や排気浄化装置からなる排気系の信頼性の低下を招くことのない上限温度に応じて設定されている。そして、ステップS22において肯定判断される場合、点火時期遅角操作が可能と判断し、ステップS24において、点火時期を単位量だけ遅角し、ステップS22に戻る。こうした処理によれば、排気温度が所定温度(<「閾値温度Tth+単位量」)以下となる範囲で点火時期を遅角させることができる。ここで、所定温度は、上記上限温度以下に設定されるものである。なお、点火時期を遅角させることで、内燃機関10に異音(こもり音)が生じる懸念があることに鑑みれば、排気温度を異音発生のパラメータとして利用し、上記所定温度の設定に際し、更に異音の発生を抑制することのできる温度以下との条件を課してもよい。そして、ステップS22において否定判断される場合には、もはや点火時期を遅角させることができないとして、ステップS16に移行する。
このように点火時期を遅角させることで、燃料ポンプ44の異常に起因する噴射量の増量によって内燃機関10のトルクが増大したとしても、これを抑制することができる。更に、こうした処理の後に実空燃比を目標空燃比に追従させるべく目標回転速度を上昇させるために、目標回転速度の上昇量を先の第1の実施形態と比較して低減することができる。すなわち、点火時期の遅角によって内燃機関10のトルクが低下するために、目標回転速度とするために必要な吸入空気量が増大する。このため、目標回転速度の上昇量が小さくても実空燃比を目標空燃比とすることができる。
以上詳述した本実施形態によれば、先の第1の実施形態の上記各効果に加えて、更に以下の効果が得られるようになる。
(6)異常に起因する内燃機関10のトルクの増大を抑制する処理を行った。これにより、燃料ポンプ44の異常に好適に対処することができる。
(7)燃料ポンプ44の異常が検出される場合、点火時期を遅角させた。これにより、トルクの増大を抑制したり、空燃比フィードバック制御の制御性の低下を補償するための目標回転速度の上昇量を低減したりすることができる。
(8)排気温度が所定温度以下となる範囲で点火時期を遅角させた。これにより、排気系の信頼性の低下を好適に回避することができる。
(第3の実施形態)
以下、第3の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
図6に、本実施形態にかかるフェールセーフ処理の手順を示す。この処理は、ECU100により、例えば所定周期で繰り返し実行される。なお、図6に示す処理において、先の図3に示した処理に対応する処理については、便宜上同一のステップ番号を付している。
この一連の処理では、ステップS14の処理が完了すると、ステップS26において、燃焼制御を行う気筒数を低減する。そして、その後ステップS16に移行する。これにより、単位期間(4ストロークの整数倍の期間)あたりの内燃機関10のトルクの平均値や燃焼エネルギ量を低減することができる。このため、燃料ポンプ44の異常に起因した噴射量の増量による内燃機関10のトルクの増大を抑制することができる。更に、こうした処理の後に実空燃比を目標空燃比に追従させるべく目標回転速度を上昇させるために、目標回転速度の上昇量を先の第1の実施形態と比較して低減することができる。すなわち、燃料制御の気筒数の低減によって内燃機関10のトルクが低下するために、目標回転速度とするために必要な単位気筒当たりの吸入空気量が増大する。このため、目標回転速度の上昇量が小さくても実空燃比を目標空燃比とすることができる。
以上詳述した本実施形態によれば、先の第1の実施形態の上記各効果に加えて、更に以下の効果が得られるようになる。
(9)燃料ポンプ44の異常が検出される場合、内燃機関10の気筒の一部について燃焼制御を停止させた。これにより、トルクの増大を抑制したり、空燃比フィードバック制御の制御性の低下を補償するための目標回転速度の上昇量を低減したりすることができる。
(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
・上記第2の実施形態では、排気温度が閾値温度Tthとなるまで点火時期を遅角させていき、排気温度が閾値温度Tthとなった時点で、未だ実空燃比が目標空燃比よりもリッチ側である場合に目標回転速度を変更したがこれに限らない。例えば、燃料ポンプ44の異常時に点火時期をフェールセーフ用の点火時期に一気に遅角させ、その後、排気温度が閾値温度Tthとなると点火時期を進角補正してもよい。この場合、点火時期を一気に遅角させた後に速やかに実空燃比と目標空燃比との乖離度合いに応じて目標回転速度を上昇させる処理に移行することができるため、実空燃比をより迅速に目標空燃比に制御することができる。
また、上記第2の実施形態において、目標回転速度が上限速度β以上となっても未だ実空燃比が目標空燃比よりもリッチである場合には、燃焼制御を行う気筒数を低減してもよい。更に、上記第2の実施形態において、目標回転速度の変更を行わなくてもよい。この場合であっても、点火時期の遅角操作によって内燃機関10のトルクが低下することから、燃料ポンプ44の異常に起因するトルクの増大を補償することはできる。更に、トルクの低下によってアイドル回転速度制御時の実回転速度が低下するなら、アイドル回転速度制御によって吸入空気量が増量補正されるため、実空燃比を目標空燃比へと近づけることも可能である。
・上記第3の実施形態において、目標回転速度が上限速度β以上となっても未だ実空燃比が目標空燃比よりもリッチである場合には、燃焼制御を行う気筒数を更に低減するようにしてもよい。換言すれば、燃料カット制御を行う気筒数を増加させてもよい。また、目標回転速度が上限速度β以上となっても未だ実空燃比が目標空燃比よりもリッチである場合には、点火時期を遅角補正してもよい。
更に、上記第3の実施形態において、目標回転速度の変更を行わなくてもよい。この場合であっても、燃焼制御を行う気筒数を低減することによって内燃機関10のトルクが低下することから、燃料ポンプ44の異常に起因するトルクの増大を補償することはできる。更に、トルクの低下によってアイドル回転速度制御時の実回転速度が低下するなら、アイドル回転速度制御によって単位気筒当たりの吸入空気量が増量補正されるため、実空燃比を目標空燃比へと近づけることも可能である。
・上記第1の実施形態において、目標回転速度を上昇させる前に、点火時期遅角操作及び燃焼制御気筒の低減処理の双方を行ってもよい。また、これに代えて、目標回転速度が上限速度β以上となっても未だ実空燃比が目標空燃比よりもリッチである場合に、点火時期遅角操作及び燃焼制御気筒の低減処理の双方を行ってもよい。
・上記各実施形態では、アイドル回転速度制御時に、目標回転速度を漸増させる処理を行ったが、これに代えて、フェールセーフ処理で目標回転速度の上昇処理を一旦行った後には、補正された目標回転速度を学習値として常時記憶保持装置に記憶しておき、アイドル回転速度制御に移行するたびに、目標回転速度を初めから学習値に設定するようにしてもよい。ここで、常時記憶保持装置とは、エンジン制御システムの起動スイッチ(制御装置(ECU100)の主電源)の状態にかかわらず、常時記憶を保持する記憶装置のことである。具体的には、例えば上記起動スイッチの状態にかかわらず常時給電状態が維持されるバックアップRAMや、給電の有無にかかわらず常時記憶を保持するEEPROM等の不揮発性メモリなどである。
・燃料ポンプ44の異常時、ユーザによる要求トルクが最低となる場合にアイドル回転速度制御を行う代わりに、吸入空気量を目標吸入空気量とするフェールセーフ処理を行ってもよい。ここで、目標吸入空気量は、実空燃比を目標空燃比に追従させるためのフィードフォワード量である。ただし、空燃比フィードバック制御において噴射量が最小噴射量となった後は、目標吸入空気量をフィードバック補正対象としてもよい。
・上記各実施形態では、燃料ポンプ44に異常が生じる場合、アイドル回転速度制御時にフェールセーフ処理を行った。この場合、減速時の燃料カット制御を除けば、アイドル回転速度制御時の内燃機関10のトルクを下限として、トルクを連続的に調節可能であるものの、アイドル回転速度制御への移行直前のトルクが正常時のものと比較して増大するために、トルクの調節可能範囲の低下を招いてしまう。これに対し、アイドル回転速度制御時よりも高トルク運転領域において、燃焼制御に用いる気筒数を低減したり点火時期を遅角補正したりする手段を備えるなら、高トルク領域から低トルク領域までトルクを十分に調節可能となる。
・燃料ポンプ44としては、ノーマリーオープンタイプのスピル弁54を備えるものに限らない。ノーマリークローズタイプのスピル弁を備えるものにあっても、例えばソレノイドコイルに対する通電経路が断線する場合等にあっては、プランジャの上昇行程の初めからスピル弁が閉弁状態となる。このため、プランジャの下降行程における加圧室50内の負圧によってスピル弁が機械的に開弁してしまう場合には、毎回最大吐出量の燃料が吐出されることとなり、デリバリパイプ72が異常な高圧となる。したがって、本発明の適用は有効である。更に、燃料ポンプとしては、吐出調量弁を備えるものにかぎらず、吸入調量弁を備えるものであってもよい。
・上記実施形態では、デリバリパイプ72に、その内部の圧力が規定圧Pthを超えて上昇する場合にこれを規定圧Pthに機械的に制御するリリーフ弁76を備えたが、これに代えて又はこれとともに、吐出通路70に、その内部の圧力が規定圧Pthを超えて上昇する場合にこれを規定圧Pthに機械的に制御するリリーフ弁を設けてもよい。更に、こうしたリリーフ弁を備えないものであってもよい。
・内燃機関の気筒数は任意に変更してもよい。また、筒内噴射式の火花点火式内燃機関に限らない。例えば、ディーゼル機関等、筒内噴射式の圧縮着火式内燃機関であってもよい。この場合であっても、例えば、コモンレール式のディーゼル機関において、コモンレール内の圧力が異常な高圧になる際に燃焼制御を行う気筒数を低減することでトルクの増大を抑制することはできる。
第1の実施形態にかかるシステム構成を示す図。 同実施形態にかかる燃料ポンプの吸入吐出動作を示す断面図。 同実施形態にかかる燃料ポンプの異常時の処理手順を示す流れ図。 同実施形態にかかる空燃比制御態様を示すタイムチャート。 第2の実施形態にかかる燃料ポンプの異常時の処理手順を示す流れ図。 第3の実施形態にかかる燃料ポンプの異常時の処理手順を示す流れ図。
符号の説明
10…内燃機関、20…燃料噴射弁、44…燃料ポンプ、72…デリバリパイプ、100…ECU(内燃機関の制御装置の一実施形態)。

Claims (11)

  1. 燃料ポンプから圧送され蓄圧容器内で高圧状態にて蓄えられる燃料が燃料噴射弁を介して噴射供給される内燃機関を制御対象とする内燃機関の制御装置において、
    前記燃料ポンプに、前記蓄圧容器内の圧力を上昇させる側の異常が生じたことを検出する検出手段と、
    前記異常が検出される場合、前記内燃機関の燃焼制御のためのアクチュエータを操作することで燃料の燃焼と相関を有する物理量の前記異常に起因する変化を補償する補償手段とを備えることを特徴とする内燃機関の制御装置。
  2. 前記内燃機関の空燃比を目標空燃比にフィードバック制御するフィードバック制御手段を更に備え、
    前記補償手段は、前記異常に起因する前記フィードバック制御の制御性の低下を補償することを特徴とする請求項1記載の内燃機関の制御装置。
  3. 前記補償手段は、前記異常が検出される場合、前記内燃機関のアイドル回転速度制御時における目標回転速度を上昇させる回転速度上昇手段を備えることを特徴とする請求項2記載の内燃機関の制御装置。
  4. 前記回転速度上昇手段は、前記目標回転速度を漸増させることを特徴とする請求項3記載の内燃機関の制御装置。
  5. 前記回転速度上昇手段は、前記蓄圧容器内の圧力に応じて前記目標回転速度を設定することを特徴とする請求項3又は4記載の内燃機関の制御装置。
  6. 前記補償手段は、前記異常に起因する前記内燃機関のトルクの増大を抑制すること特徴とする請求項1〜5のいずれか1項に記載の内燃機関の制御装置。
  7. 前記内燃機関は、火花点火式内燃機関であり、
    前記補償手段は、前記異常が検出される場合、点火時期を遅角させる遅角手段を備えることを特徴とする請求項1〜6のいずれか1項に記載の内燃機関の制御装置。
  8. 前記遅角手段は、前記内燃機関の排気温度が所定温度以下となる範囲で前記点火時期を遅角させることを特徴とする請求項7記載の内燃機関の制御装置。
  9. 前記内燃機関は、多気筒内燃機関であり、
    前記補償手段は、前記異常が検出される場合、前記内燃機関の気筒の一部について燃焼制御を停止させることを特徴とする請求項1〜8のいずれか1項に記載の内燃機関の制御装置。
  10. 前記蓄圧容器内の圧力を減圧する手段が、前記蓄圧容器内の圧力が規定圧を超えて上昇しようとする場合に前記蓄圧容器内の圧力を前記規定圧に機械的に調節する手段と、前記燃料噴射弁とからなることを特徴とする請求項1〜9のいずれか1項に記載の内燃機関の制御装置。
  11. 請求項10記載の制御装置と、
    前記蓄圧容器及び前記燃料ポンプを備えることを特徴とする圧力制御システム。
JP2007258513A 2007-10-02 2007-10-02 内燃機関の制御装置、及び圧力制御システム Pending JP2009085165A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007258513A JP2009085165A (ja) 2007-10-02 2007-10-02 内燃機関の制御装置、及び圧力制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007258513A JP2009085165A (ja) 2007-10-02 2007-10-02 内燃機関の制御装置、及び圧力制御システム

Publications (1)

Publication Number Publication Date
JP2009085165A true JP2009085165A (ja) 2009-04-23

Family

ID=40658878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007258513A Pending JP2009085165A (ja) 2007-10-02 2007-10-02 内燃機関の制御装置、及び圧力制御システム

Country Status (1)

Country Link
JP (1) JP2009085165A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052641A (ja) * 2009-09-03 2011-03-17 Denso Corp 内燃機関の排気浄化装置
JP2012172603A (ja) * 2011-02-22 2012-09-10 Toyota Motor Corp 燃料系の異常検出装置
US9121364B2 (en) 2011-05-13 2015-09-01 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2017510743A (ja) * 2014-10-14 2017-04-13 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH 内燃機関用の燃料供給システムの動作方法
JP2017214832A (ja) * 2016-05-30 2017-12-07 トヨタ自動車株式会社 内燃機関の制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052641A (ja) * 2009-09-03 2011-03-17 Denso Corp 内燃機関の排気浄化装置
JP2012172603A (ja) * 2011-02-22 2012-09-10 Toyota Motor Corp 燃料系の異常検出装置
US9121364B2 (en) 2011-05-13 2015-09-01 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
DE112011105240B4 (de) * 2011-05-13 2017-03-16 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für Maschine mit interner Verbrennung
JP2017510743A (ja) * 2014-10-14 2017-04-13 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH 内燃機関用の燃料供給システムの動作方法
JP2017214832A (ja) * 2016-05-30 2017-12-07 トヨタ自動車株式会社 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
JP4428405B2 (ja) 燃料噴射制御装置及びエンジン制御システム
JP4081819B2 (ja) 燃料噴射システム
US7124740B2 (en) Fuel injection control device for internal combustion engine
WO2011077951A1 (ja) 内燃機関の燃料供給装置および燃料供給制御方法
US7373918B2 (en) Diesel engine control system
JP4922906B2 (ja) 内燃機関の高圧燃料供給装置および制御装置
WO2012056534A1 (ja) 内燃機関の燃料噴射制御システム
JP2010156340A (ja) 可変操作が可能な吸入弁を備え、空気−燃料比の自己調整制御を行い、制御機能を監視できる内燃機関
US20110196594A1 (en) Controller for fuel injection system
JP2009085165A (ja) 内燃機関の制御装置、及び圧力制御システム
JP2009250051A (ja) 車載内燃機関の燃料噴射制御装置及び燃料噴射制御システム
CN108625996B (zh) 用于发动机控制的方法和***
JP6146274B2 (ja) 内燃機関の制御装置
WO2015064075A1 (ja) 内燃機関の制御装置
JP4569598B2 (ja) 減圧弁制御装置およびそれを用いた燃料噴射システム
JP4862873B2 (ja) 内燃機関の燃料噴射制御装置及び燃料噴射制御システム
JP2009221906A (ja) 筒内噴射式内燃機関の低圧ポンプ制御装置
JP2009002262A (ja) 内燃機関の燃料供給装置
JP4925409B2 (ja) 高圧燃料供給装置の制御装置
JP2011256726A (ja) 内燃機関の制御装置
JP4529943B2 (ja) 内燃機関の燃料噴射制御装置
JP5282468B2 (ja) ディーゼルエンジンの自動停止制御方法及び自動停止装置
JP4983751B2 (ja) 燃料噴射制御装置
JP2013253508A (ja) 筒内噴射式内燃機関の燃料供給装置
JP6295518B2 (ja) 内燃機関の制御装置及び制御方法