JP2009079900A - Seal mechanism and environmental container - Google Patents

Seal mechanism and environmental container Download PDF

Info

Publication number
JP2009079900A
JP2009079900A JP2007247010A JP2007247010A JP2009079900A JP 2009079900 A JP2009079900 A JP 2009079900A JP 2007247010 A JP2007247010 A JP 2007247010A JP 2007247010 A JP2007247010 A JP 2007247010A JP 2009079900 A JP2009079900 A JP 2009079900A
Authority
JP
Japan
Prior art keywords
seal
chamber
gas
test
storage member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007247010A
Other languages
Japanese (ja)
Inventor
Yoichi Takeda
陽一 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2007247010A priority Critical patent/JP2009079900A/en
Publication of JP2009079900A publication Critical patent/JP2009079900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seal mechanism capable of more enhancing the airtightness of a chamber, and to provide an environmental container. <P>SOLUTION: A housing member 11 has the chamber 21 inside and also has the opening 22 communicating with the chamber 21. The seal mechanism 16 has a pair of first seal members 36 and a gas circulation means 38. The respective first seal members 36 have elasticity and are interposed between a housing member 11 and a closure member 15 to mutually open gaps 39 so as to seal the connection part of the housing member 11 and the closure member 15 closing the opening 22 of the chamber 21. The gas circulation means 38 is configured to circulate not only a predetermined gas to the chamber 21 but also the gas discharged from the chamber 21 to the gaps 39 of the respective first seal members 36. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シール機構および環境容器   The present invention relates to a sealing mechanism and an environmental container

従来、内部のチャンバーに所定のガスを封入した容器の開口をシールするために、リング状やシート状等のゴム製または金属製のガスケットが一般的に使用されている。従来の腐食試験装置でも、石英ガラス製の試験槽と金属製の架台との間を、ゴム製のパッキンによりシールしているものがある(例えば、特許文献1参照)。   Conventionally, in order to seal an opening of a container in which a predetermined gas is sealed in an internal chamber, a rubber or metal gasket such as a ring shape or a sheet shape is generally used. Some conventional corrosion test apparatuses also seal a space between a quartz glass test tank and a metal frame with rubber packing (see, for example, Patent Document 1).

実公平1−27082号公報Japanese Utility Model Publication No. 1-27082

しかしながら、腐食試験などでより高精度な測定を行うためには、外部からチャンバーへの不純物の侵入を、特許文献1に記載の腐食試験装置のシール機構よりもさらに効果的に防いで、チャンバーの気密性をより高くする必要があるという課題があった。   However, in order to perform measurement with higher accuracy in a corrosion test or the like, it is possible to prevent impurities from entering the chamber from the outside more effectively than the seal mechanism of the corrosion test apparatus described in Patent Document 1. There was a problem that it was necessary to increase the airtightness.

本発明は、このような課題に着目してなされたもので、チャンバーの気密性をより高くすることができるシール機構および環境容器を提供することを目的とする。   The present invention has been made paying attention to such problems, and an object of the present invention is to provide a sealing mechanism and an environmental container that can further increase the airtightness of the chamber.

上記目的を達成するために、本発明に係るシール機構は、内部にチャンバーを有し、前記チャンバーに連通する開口を有する収納部材と、前記開口を塞ぐ閉塞部材との接続部をシールするためのシール機構であって、1対のシール部材とガス循環手段とを有し、各シール部材は弾性を有し、それぞれ前記接続部をシールするよう前記収納部材と前記閉塞部材との間に互いに間隙を開けて設けられ、前記ガス循環手段は前記チャンバーに所定のガスを循環させ、前記チャンバーから排出された前記ガスを各シール部材の前記間隙に循環させるよう構成されていることを、特徴とする。   In order to achieve the above object, a sealing mechanism according to the present invention includes a chamber therein, and seals a connecting portion between a storage member having an opening communicating with the chamber and a closing member closing the opening. A sealing mechanism having a pair of sealing members and a gas circulation means, each sealing member having elasticity, and a gap between the housing member and the closing member so as to seal the connecting portion, respectively; The gas circulation means is configured to circulate a predetermined gas in the chamber and to circulate the gas discharged from the chamber through the gaps of the seal members. .

本発明に係るシール機構は、1対のシール部材がそれぞれ、収納部材と閉塞部材との接続部をシールするため、1つのシール部材でシールする場合に比べて、チャンバーの気密性を高めることができる。さらに、ガス循環手段が、チャンバーから排出されたガスを各シール部材の間隙に循環させるため、チャンバーと外部との間にチャンバー内部のガス組成とほぼ同じ組成のガスが循環し、外部からチャンバーへの不純物の侵入をより効果的に防ぐことができる。このように、1対のシール部材および各シール部材の間隙を循環するガスにより、チャンバーの気密性をより高くすることができる。また、収納部材と閉塞部材との間に温度差があっても、収納部材と閉塞部材との間の熱伝導を防ぐことができる。   Since the seal mechanism according to the present invention seals the connecting portion between the storage member and the closing member, the pair of seal members can improve the airtightness of the chamber as compared with the case of sealing with one seal member. it can. Further, since the gas circulating means circulates the gas discharged from the chamber through the gap between the seal members, a gas having the same composition as the gas composition inside the chamber circulates between the chamber and the outside, and from the outside to the chamber. Intrusion of impurities can be prevented more effectively. As described above, the gas tightness of the chamber can be further enhanced by the gas circulating in the gap between the pair of seal members and the seal members. Even if there is a temperature difference between the storage member and the closing member, heat conduction between the storage member and the closing member can be prevented.

本発明に係るシール機構で、前記収納部材および前記閉塞部材は、互いに熱膨張率が異なる材質から成り、前記収納部材は前記開口の周縁部が筒状に形成されており、前記閉塞部材は前記周縁部の内面または外面に沿うよう設けられた接触部を有し、各シール部材はOリングから成り、前記周縁部と前記接触部との間に設けられていることが好ましい。この場合、収納部材に熱が加えられたときなど、収納部材と閉塞部材との熱膨張率の差により、収納部材の周縁部と閉塞部材の接触部との間に作用する力の変化を、弾性を有する各Oリングで緩和することができる。このため、収納部材と閉塞部材とを、それぞれが使用される環境温度に応じて異なる材質にすることができる。   In the sealing mechanism according to the present invention, the storage member and the closing member are made of materials having different coefficients of thermal expansion, and the storage member has a peripheral edge portion of the opening formed in a cylindrical shape. It has a contact part provided so that the inner surface or outer surface of a peripheral part may be met, Each seal member consists of O-rings, and it is preferable to be provided between the said peripheral part and the said contact part. In this case, when heat is applied to the storage member, due to the difference in coefficient of thermal expansion between the storage member and the closing member, a change in the force acting between the peripheral portion of the storage member and the contact portion of the closing member is Each O-ring having elasticity can be relaxed. For this reason, a storage member and an obstruction | occlusion member can be made into a different material according to the environmental temperature in which each is used.

本発明に係る環境容器は、本発明に係るシール機構を有し、前記収納部材は石英ガラス製であり、前記閉塞部材は金属製であることを、特徴とする。   An environmental container according to the present invention includes the sealing mechanism according to the present invention, wherein the storage member is made of quartz glass, and the closing member is made of metal.

本発明に係る環境容器は、本発明に係るシール機構を有するため、外部からチャンバーへの不純物の侵入を効果的に防いで、チャンバーの気密性を高めることができる。本発明に係る環境容器は、チャンバーに高温ガスや低温ガスを封入して、温度を一定に保つことができ、例えば、材料腐食試験などに使用することができる。材料腐食試験に使用される場合、石英ガラス製の収納部材の内部で、試料を高温のガスと反応させることにより、腐食試験を行うことができる。収納部材が石英ガラス製であり、ガスに対して不活性であるため、高精度の測定を行うことができる。また、試験中、高温のガスで収納部材が高温になるため、石英ガラス製の収納部材と金属製の閉塞部材との熱膨張率の差により、収納部材と閉塞部材との接続部に作用する力が変化するが、この力の変化を、弾性を有する各シール部材で緩和することができる。   Since the environmental container according to the present invention has the sealing mechanism according to the present invention, it is possible to effectively prevent impurities from entering the chamber from the outside and improve the airtightness of the chamber. The environmental container according to the present invention can maintain a constant temperature by enclosing a high-temperature gas or a low-temperature gas in a chamber, and can be used for, for example, a material corrosion test. When used in a material corrosion test, the corrosion test can be performed by reacting the sample with a high-temperature gas inside a quartz glass housing member. Since the storage member is made of quartz glass and is inert to the gas, highly accurate measurement can be performed. In addition, during the test, the storage member becomes hot due to the high-temperature gas, and therefore acts on the connecting portion between the storage member and the closing member due to the difference in thermal expansion coefficient between the quartz glass storage member and the metal closing member. Although the force changes, this change in force can be mitigated by each elastic sealing member.

本発明によれば、チャンバーの気密性をより高くすることができるシール機構および環境容器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the sealing mechanism and environmental container which can make the airtightness of a chamber higher can be provided.

以下、図面に基づき、本発明の実施の形態について説明する。
図1乃至図4は、本発明の実施の形態のシール機構および環境容器を示す。
図1に示すように、環境容器10は、材料腐食試験装置として構成され、収納部材11とテストセクション12とガス導入管13と熱電対保護管14と閉塞部材15とシール機構16とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 show a sealing mechanism and an environmental container according to an embodiment of the present invention.
As shown in FIG. 1, the environmental container 10 is configured as a material corrosion test apparatus, and includes a storage member 11, a test section 12, a gas introduction pipe 13, a thermocouple protection pipe 14, a closing member 15, and a seal mechanism 16. ing.

収納部材11は、石英ガラス製で、底部がドーム状を成す試験管形状を成している。収納部材11は、内部にチャンバー21を有し、上端にチャンバー21に連通する開口22を有している。収納部材11は、開口22の周縁部が円筒形状を成している。   The storage member 11 is made of quartz glass and has a test tube shape with a bottom portion forming a dome shape. The storage member 11 has a chamber 21 inside, and an opening 22 communicating with the chamber 21 at the upper end. The storage member 11 has a cylindrical peripheral portion of the opening 22.

テストセクション12は、4つから成り、石英ガラス製で、収納部材11よりも径が小さい試験管形状を成している。各テストセクション12は、内部に試料収納室23を有し、上端に試料収納室23に連通する収納口24を有している。各テストセクション12は、収納部材11のチャンバー21の下部に、収納部材11の径方向に沿って並べて配置されている。各テストセクション12は、互いに接触せず、下端をチャンバー21の底部から離すよう配置されている。   The test section 12 is composed of four, made of quartz glass, and has a test tube shape having a diameter smaller than that of the storage member 11. Each test section 12 has a sample storage chamber 23 inside, and a storage port 24 communicating with the sample storage chamber 23 at the upper end. Each test section 12 is arranged below the chamber 21 of the storage member 11 along the radial direction of the storage member 11. The test sections 12 are arranged so as not to contact each other and to have their lower ends separated from the bottom of the chamber 21.

ガス導入管13は、4つから成り、細長く、石英ガラス製である。各ガス導入管13は、一端25が各テストセクション12の収納口24から試料収納室23に挿入され、他端26が収納部材11の開口22より上方に突出するよう配置されている。各ガス導入管13は、一端25と試料収納室23の底面との間に、所定の間隔を有するよう配置されている。   The gas introduction pipe 13 is composed of four, is elongated, and is made of quartz glass. Each gas introduction tube 13 is arranged such that one end 25 is inserted into the sample storage chamber 23 from the storage port 24 of each test section 12 and the other end 26 protrudes above the opening 22 of the storage member 11. Each gas introduction tube 13 is arranged between the one end 25 and the bottom surface of the sample storage chamber 23 so as to have a predetermined interval.

熱電対保護管14は、石英ガラス製で、各テストセクション12より径が小さい試験管形状を成している。熱電対保護管14は、内部に熱電対収納室27を有し、上端に熱電対収納室27に連通する挿入口28を有している。熱電対保護管14は、下端が各テストセクション12の間に挿入され、挿入口28がガス導入管13の他方の端部より上方に突出するよう配置されている。熱電対保護管14は、下端が各テストセクション12の下端付近に位置するよう配置されている。   The thermocouple protection tube 14 is made of quartz glass and has a test tube shape having a diameter smaller than that of each test section 12. The thermocouple protection tube 14 has a thermocouple storage chamber 27 inside, and has an insertion port 28 communicating with the thermocouple storage chamber 27 at the upper end. The thermocouple protection tube 14 is arranged such that the lower end is inserted between the test sections 12 and the insertion port 28 protrudes above the other end of the gas introduction tube 13. The thermocouple protection tube 14 is arranged so that the lower end is positioned near the lower end of each test section 12.

閉塞部材15は、金属製であり、収納部材11の開口22を塞ぐよう、収納部材11の上部に取り付けられている。閉塞部材15は、下方に円筒状に突出して収納部材11の開口22の周縁部の外面に沿うよう設けられた接触部29と、上下方向に貫通するよう中心部に設けられた貫通孔30と、貫通孔30に沿って上方に突出した円筒状の突出部31とを有している。閉塞部材15は、各ガス導入管13の他端26の開口部を覆い、貫通孔30に熱電対保護管14を貫通させて取り付けられている。また、閉塞部材15は、外部から各ガス導入管13の他端26の開口部に連通する給気孔32と、収納部材11のチャンバー21から外部に連通する排気孔33と、接触部29の厚みを貫通した1対の第1シール孔34と、突出部31の厚みを貫通した1対の第2シール孔35とを有している。   The closing member 15 is made of metal, and is attached to the upper portion of the storage member 11 so as to close the opening 22 of the storage member 11. The closing member 15 projects in a cylindrical shape downward and is provided with a contact portion 29 provided along the outer surface of the peripheral portion of the opening 22 of the storage member 11, and a through hole 30 provided in the center portion so as to penetrate in the vertical direction. And a cylindrical protruding portion 31 protruding upward along the through hole 30. The closing member 15 covers the opening of the other end 26 of each gas introduction pipe 13 and is attached by penetrating the thermocouple protection pipe 14 through the through hole 30. Further, the closing member 15 includes an air supply hole 32 communicating with the opening of the other end 26 of each gas introduction pipe 13 from the outside, an exhaust hole 33 communicating with the outside from the chamber 21 of the storage member 11, and the thickness of the contact portion 29. And a pair of second seal holes 35 penetrating the thickness of the protruding portion 31.

シール機構16は、1対の第1シール部材36と1対の第2シール部材37とガス循環手段38とを有している。各第1シール部材36および各第2シール部材37は、弾性を有するOリングから成っている。各第1シール部材36は、収納部材11の開口22の周縁部と閉塞部材15の接触部29との間に、隙間をシールするよう設けられている。各第1シール部材36は、間に各第1シール孔34を挟むよう、互いに間隙39をあけて設けられている。また、各第2シール部材37は、閉塞部材15の突出部31と熱電対保護管14との間に、隙間をシールするよう設けられている。各第2シール部材37は、間に各第2シール孔35を挟むよう、互いに間隙40をあけて設けられている。   The seal mechanism 16 has a pair of first seal members 36, a pair of second seal members 37, and a gas circulation means 38. Each first seal member 36 and each second seal member 37 are made of an O-ring having elasticity. Each first seal member 36 is provided so as to seal a gap between the peripheral edge portion of the opening 22 of the storage member 11 and the contact portion 29 of the closing member 15. The first seal members 36 are provided with a gap 39 therebetween so as to sandwich the first seal holes 34 therebetween. Each of the second seal members 37 is provided so as to seal a gap between the protruding portion 31 of the closing member 15 and the thermocouple protection tube 14. The second seal members 37 are provided with a gap 40 therebetween so as to sandwich the second seal holes 35 therebetween.

ガス循環手段38は、閉塞部材15の排気孔33と一方の第1シール孔34とを結ぶ循環路41、および、他方の第1シール孔34と一方の第2シール孔35とをそれぞれ結ぶ循環路42を有している。ガス循環手段38は、給気孔32からチャンバー21に所定のガスを循環させ、チャンバー21から排気孔33を通して排出されたガスを、循環路41を通して一方の第1シール孔34から各第1シール孔34の間隙39に循環させ、その間隙39から他方の第1シール孔34を通して排出されたガスを、循環路42を通して一方の第2シール孔35から各第2シール孔35の間隙40に循環させ、その間隙40から他方の第2シール孔35を通してガスを排出させるよう構成されている。   The gas circulation means 38 circulates the circulation path 41 that connects the exhaust hole 33 of the closing member 15 and the first seal hole 34, and the circulation path 41 that connects the other first seal hole 34 and the second seal hole 35. A path 42 is provided. The gas circulation means 38 circulates a predetermined gas from the air supply hole 32 to the chamber 21, and the gas discharged from the chamber 21 through the exhaust hole 33 passes through the circulation path 41 from one of the first seal holes 34 to each first seal hole. The gas discharged from the gap 39 through the other first seal hole 34 is circulated from the one second seal hole 35 to the gap 40 of each second seal hole 35 through the circulation path 42. The gas is discharged from the gap 40 through the other second seal hole 35.

なお、給気孔32から供給されたガスは、各ガス導入管13を通ってテストセクション12の内部に入り、さらにテストセクション12の収納口24を通ってチャンバー21全体に循環し、排気孔33から排出されるようになっている。また、逆流による大気の侵入を防ぐため、第2シール孔35からのガスは、シリコンオイル中を通して外部に排出されるようになっている。   The gas supplied from the air supply holes 32 enters the inside of the test section 12 through the gas introduction pipes 13, and further circulates throughout the chamber 21 through the storage port 24 of the test section 12, and from the exhaust holes 33. It is supposed to be discharged. Further, in order to prevent air from entering due to the backflow, the gas from the second seal hole 35 is discharged outside through the silicon oil.

なお、環境容器10は、閉塞部材15の内部に冷却水を循環させることにより、接触部29や各第1シール部材36、その間隙39を冷却するようになっている。また、収納部材11の長さを調整することにより、各第1シール部材36に伝わる熱量を調整可能になっている。各第1シール部材36および各第2シール部材37は、使用可能温度が−40〜140度のブチルゴム製のOリングや、使用可能温度が−50〜120度のニトリルゴム製のOリングから成ることが好ましい。この場合、具体的な一例として、収納容器11を950度に保ち、2ヶ月間連続運転した場合でも、各第1シール部材36および各第2シール部材37には、顕著な変形等は認められなかった。   The environmental container 10 cools the contact portion 29, each first seal member 36, and the gap 39 by circulating cooling water inside the closing member 15. Further, by adjusting the length of the storage member 11, the amount of heat transmitted to each first seal member 36 can be adjusted. Each first seal member 36 and each second seal member 37 are made of a butyl rubber O-ring having a usable temperature of −40 to 140 degrees and a nitrile rubber O-ring having a usable temperature of −50 to 120 degrees. It is preferable. In this case, as a specific example, even when the storage container 11 is kept at 950 degrees and continuously operated for two months, the first seal member 36 and the second seal member 37 are not significantly deformed. There wasn't.

次に、作用について説明する。
環境容器10は、各テストセクション12の底に試料1を入れ、熱電対保護管14に挿入口28から熱電対を挿入し、石英ガラス製の収納部材11を高温の電気炉内に設置し、ガス循環手段38によりチャンバー21の内部にガスを循環させて、試料1を高温のガスと反応させることにより、腐食試験を行うことができる。各ガス導入管13により高温のガスを試料1の近傍まで導くため、試料1をガスと十分に反応させることができ、効率よく試験を行うことができる。収納部材11が石英ガラス製であり、ガスに対して不活性であるため、高精度の測定を行うことができる。
Next, the operation will be described.
The environmental container 10 puts the sample 1 at the bottom of each test section 12, inserts a thermocouple into the thermocouple protection tube 14 through the insertion port 28, and installs the quartz glass storage member 11 in a high-temperature electric furnace. A corrosion test can be performed by circulating gas in the chamber 21 by the gas circulating means 38 and reacting the sample 1 with a high-temperature gas. Since each gas introduction pipe 13 guides a high-temperature gas to the vicinity of the sample 1, the sample 1 can be sufficiently reacted with the gas, and the test can be performed efficiently. Since the storage member 11 is made of quartz glass and is inert to the gas, highly accurate measurement can be performed.

シール機構16により、1対の第1シール部材36および1対の第2シール部材37がそれぞれ、収納部材11の開口22の周縁部と閉塞部材15の接触部29との間、および、閉塞部材15の突出部31と熱電対保護管14との間をシールするため、それぞれ1つのシール部材でシールする場合に比べて、チャンバー21の気密性を高めることができる。さらに、ガス循環手段38が、チャンバー21から排出されたガスを各第1シール部材36の間隙39および各第2シール部材37の間隙40に循環させるため、チャンバー21と外部との間にチャンバー21の内部のガス組成とほぼ同じ組成のガスが循環し、外部からチャンバー21への不純物の侵入をより効果的に防ぐことができる。このように、1対の第1シール部材36、1対の第2シール部材37および各シール部材の間隙39,40を循環するガスにより、収納部材11の開口22の周縁部と閉塞部材15の接触部29との間、および、閉塞部材15の突出部31と熱電対保護管14との間を通って、外部からチャンバー21へ不純物が侵入するのを効果的に防ぐことができ、チャンバー21の気密性をより高くすることができる。このため、材料腐食試験をより高精度に行うことができる。   By the seal mechanism 16, the pair of first seal members 36 and the pair of second seal members 37 are respectively disposed between the peripheral portion of the opening 22 of the storage member 11 and the contact portion 29 of the closing member 15, and the closing member. Since the space between the 15 protruding portions 31 and the thermocouple protection tube 14 is sealed, the airtightness of the chamber 21 can be improved as compared with the case where each is sealed with one sealing member. Further, since the gas circulation means 38 circulates the gas discharged from the chamber 21 through the gap 39 of each first seal member 36 and the gap 40 of each second seal member 37, the chamber 21 is interposed between the chamber 21 and the outside. A gas having substantially the same composition as the gas composition inside the gas circulates, so that impurities can be effectively prevented from entering the chamber 21 from the outside. Thus, the gas circulating through the pair of first seal members 36, the pair of second seal members 37, and the gaps 39, 40 between the seal members 11, the peripheral portion of the opening 22 of the storage member 11 and the closing member 15. It is possible to effectively prevent impurities from entering the chamber 21 from the outside through the contact portion 29 and between the protruding portion 31 of the closing member 15 and the thermocouple protection tube 14. The airtightness can be made higher. For this reason, the material corrosion test can be performed with higher accuracy.

また、試験中、高温のガスで収納部材11が高温になるため、石英ガラス製の収納部材11および熱電対保護管14と金属製の閉塞部材15との熱膨張率の差により、収納部材11および熱電対保護管14と閉塞部材15との接続部に作用する力が変化するが、この力の変化を、弾性を有する各第1シール部材36および各第2シール部材37で緩和することができる。また、シール機構16により、収納部材11と閉塞部材15との間の温度差による熱伝導を防ぐことができる。   Further, during the test, the storage member 11 is heated to a high temperature by a high-temperature gas, and therefore the storage member 11 is caused by the difference in thermal expansion coefficient between the storage member 11 made of quartz glass and the thermocouple protection tube 14 and the metal closing member 15. The force acting on the connecting portion between the thermocouple protection tube 14 and the closing member 15 changes, and the change in this force can be mitigated by the first seal members 36 and the second seal members 37 having elasticity. it can. Further, the heat transfer due to the temperature difference between the storage member 11 and the closing member 15 can be prevented by the seal mechanism 16.

本発明の実施の形態のシール機構16および環境容器10を用いて、材料腐食試験を行った。試料1(供試材)として、表1の化学組成から成るハステロイXRを用いた。なお、試料1は、直径10mm、厚さ5mmの円盤状に形成され、表面をバフ研磨により鏡面に仕上げられている。   A material corrosion test was performed using the seal mechanism 16 and the environmental container 10 according to the embodiment of the present invention. As sample 1 (test material), Hastelloy XR having the chemical composition shown in Table 1 was used. The sample 1 is formed in a disk shape having a diameter of 10 mm and a thickness of 5 mm, and the surface is finished to a mirror surface by buffing.

試料1を、エタノールにて超音波洗浄し、秤量した後、高温ヘリウム雰囲気中に設置された環境容器10のチャンバー21の、テストセクション12の試料収納室23の底部に導入した。収納部材11は、ターボポンプで吸引することにより、大気由来の不純物を取り去るとともに、収納部材11ならびに試料1の表面汚染物等の除去のため、300℃に昇温して真空度が安定するまで10時間以上保持した。その後、収納部材11の内部が大気圧に到達するまで、試験ガスを導入する。試験中は、ガスは連続的に導入され、ガス循環手段38からの排気ガスはシリコンオイルの満たされた収納部材11へ吹き込むことにより外気から遮断されるようになっている。ガスを導入しながら定められた昇温速度にて試験温度まで昇温し、試験温度に達成した時点からあらかじめ決められた時間まで試験を継続させる。その後、定められた降温速度にて室温まで環境容器10を冷却した後、試料1を取り出し、秤量して酸化増量(減量)を評価する。表面は、電子顕微鏡により観察する。   The sample 1 was ultrasonically cleaned with ethanol, weighed, and then introduced into the bottom of the sample storage chamber 23 of the test section 12 of the chamber 21 of the environmental container 10 installed in a high-temperature helium atmosphere. The storage member 11 is suctioned by a turbo pump to remove impurities derived from the atmosphere, and in order to remove the surface contaminants of the storage member 11 and the sample 1, the temperature is raised to 300 ° C. until the degree of vacuum is stabilized. Hold for more than 10 hours. Thereafter, the test gas is introduced until the inside of the storage member 11 reaches atmospheric pressure. During the test, gas is continuously introduced, and the exhaust gas from the gas circulation means 38 is cut off from the outside air by blowing into the storage member 11 filled with silicon oil. The temperature is raised to the test temperature at a predetermined temperature rise rate while introducing the gas, and the test is continued from the time when the test temperature is reached until a predetermined time. Then, after the environmental container 10 is cooled to room temperature at a predetermined temperature decrease rate, the sample 1 is taken out and weighed to evaluate the oxidation increase (decrease). The surface is observed with an electron microscope.

ガスの組成として、表2に示すように、主たる成分がヘリウムから成る3ケースを実施し、それぞれの組成において二条件の試験時間を設定した。それぞれの条件における試料1(試験片)の試験前後の質量をまとめて、表2に示す。いずれの条件においても、酸化により試験後の質量は増加していた。しかしながら、試験時間に伴う増加の挙動は、ガス組成ごとに異なったものであった。ケース1では、時間の進行に伴い、試料1の質量増量が減少している。一方、ケース3では、単調増加の傾向が観察されている。   As the gas composition, as shown in Table 2, three cases in which the main component was helium were carried out, and two test times were set for each composition. Table 2 shows the mass before and after the test of Sample 1 (test piece) under each condition. Under any condition, the mass after the test increased due to oxidation. However, the increasing behavior with test time was different for each gas composition. In Case 1, the increase in mass of Sample 1 decreases with time. On the other hand, in case 3, a trend of monotonic increase is observed.

試験後の試料1の表面形態について、走査型電子顕微鏡により観察した結果を、図2乃至図4に示す。それぞれの試料1について、低倍率ならびに高倍率の観察を実施した。低倍率の観察結果より、ケース1ならびにケース2においては、粒界と思われる領域に周辺とは異なった様子が見られた。ケース1においてのそれは、粒界近傍がやや溝状に腐食した形跡が見られる。一方で、ケース2においては、粒界での酸化物の形成が周囲より多いことが伺える。ケース3においては、粒界と思われる領域が明確でなく、粒内粒界に腐食形態に大きな差はないものと考えられる。   The results of observation of the surface form of the sample 1 after the test with a scanning electron microscope are shown in FIGS. Each sample 1 was observed at low magnification and high magnification. From the observation result at a low magnification, in Case 1 and Case 2, a state different from the periphery was observed in the region considered to be a grain boundary. In Case 1, there is evidence that the vicinity of the grain boundary has slightly corroded into a groove shape. On the other hand, in case 2, it can be seen that the formation of oxides at the grain boundaries is more than the surroundings. In Case 3, the region considered to be a grain boundary is not clear, and it is considered that there is no great difference in the corrosion form in the grain boundary within the grain.

高倍率の観察結果からは、各ケースにおいて全く異なった酸化物の形態が観察された。ケース1においては、ウイスカー上の酸化物の下地の上に長さ1μm程度の針状酸化物が分布している。その針状酸化物の大きさは、試験時間とともに成長していることが伺える。ケース2では、表面の殆どが針状酸化物でおおわれており、試験時間に伴った成長は顕著ではない。一方、ケース3においては、他ケースとは全く異なった球状酸化物で表面が覆われており、その大きさも試験時間が150時間から300時間に倍増するに伴い、おおよそ2倍の大きさに成長している。   From the observation results at high magnification, completely different oxide forms were observed in each case. In Case 1, acicular oxide having a length of about 1 μm is distributed on the oxide base on the whisker. It can be seen that the size of the acicular oxide grows with the test time. In Case 2, most of the surface is covered with acicular oxide, and the growth with the test time is not significant. On the other hand, the surface of Case 3 is covered with a spherical oxide that is completely different from the other cases, and its size grows to approximately twice as large as the test time doubles from 150 hours to 300 hours. is doing.

図2乃至図4に示す観察結果を基にすると、ケース1で観察された酸化時間の経過にともなって腐食増量が減少していることは、外層での針状酸化物の成長に伴う増量が、粒界と思われる領域での母地合金からの減量に対して小さかったため、150時間から304時間での期間に質量が減少したと考えることができる。一般に、酸化速度に比べて母地内部での反応である脱浸炭速度は遅いため、このような挙動は、母地内部での特に粒界周辺での脱炭挙動に関連していると考えられる。   Based on the observation results shown in FIGS. 2 to 4, the decrease in the corrosion increase with the lapse of the oxidation time observed in case 1 indicates that the increase associated with the growth of the acicular oxide in the outer layer. Since the weight loss from the base alloy in the region considered to be grain boundaries was small, it can be considered that the mass decreased during the period from 150 hours to 304 hours. In general, the decarburization rate, which is a reaction inside the matrix, is slower than the oxidation rate, so this behavior is considered to be related to the decarburization behavior inside the matrix, especially around the grain boundaries. .

ケース2においては、試験時間に対する腐食増量の増加は顕著でなかったが、表面状態についても試験時間への依存性は大きくなく、腐食増量の結果と同様の傾向が読み取れる。ケース1と比較すると、一酸化炭素濃度が異なるが、この影響は表面に形成される酸化物種に影響を及ぼすだけでなく、粒界近傍での選択的な減量もしくは増量挙動に影響を及ぼすことが読み取れる。   In Case 2, the increase in the corrosion increase with respect to the test time was not remarkable, but the dependence on the test time was not great for the surface state, and the same tendency as the result of the increase in corrosion can be read. Compared with Case 1, the carbon monoxide concentration is different, but this effect not only affects the oxide species formed on the surface, but also affects the selective weight loss or weight increase behavior near the grain boundary. I can read.

ケース3については、球状酸化物の成長により試験時間に対して単調な腐食増量の増加が生じたと考えられる。今後、これら脱浸炭と表面酸化物の成長について、断面の観察など、より詳細な観察が必要であると思われる。   In Case 3, it is considered that the increase in the corrosion increase monotonously with respect to the test time occurred due to the growth of the spherical oxide. In the future, more detailed observations such as cross-sectional observation will be necessary for the decarburization and surface oxide growth.

表2、図2乃至図4に示すように、シール機構16により、外部からチャンバー21へ不純物が侵入するのを効果的に防いで、チャンバー21の気密性をより高くすることができ、材料腐食試験をより高精度に行うことができることが確認された。   As shown in Table 2 and FIGS. 2 to 4, the sealing mechanism 16 can effectively prevent impurities from entering the chamber 21 from the outside, and the airtightness of the chamber 21 can be further increased. It was confirmed that the test can be performed with higher accuracy.

本発明の実施の形態のシール機構および環境容器を示す断面図である。It is sectional drawing which shows the sealing mechanism and environmental container of embodiment of this invention. 図1に示すシール機構および環境容器による、表2に示すケース1の材料腐食試験結果を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the material corrosion test result of case 1 shown in Table 2 by the sealing mechanism and environmental container shown in FIG. 図1に示すシール機構および環境容器による、表2に示すケース2の材料腐食試験結果を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the material corrosion test result of case 2 shown in Table 2 by the sealing mechanism and environmental container shown in FIG. 図1に示すシール機構および環境容器による、表2に示すケース3の材料腐食試験結果を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the material corrosion test result of case 3 shown in Table 2 by the sealing mechanism and environmental container shown in FIG.

符号の説明Explanation of symbols

1 試料
10 環境容器
11 収納部材
12 テストセクション
13 ガス導入管
14 熱電対保護管
15 閉塞部材
16 シール機構
21 チャンバー
22 開口
23 試料収納室
24 収納口
27 熱電対収納室
28 挿入口
29 接触部
30 貫通孔
31 突出部
32 給気孔
33 排気孔
34 第1シール孔
35 第2シール孔
36 第1シール部材
37 第2シール部材
38 ガス循環手段
39,40 間隙
41,42 循環路

DESCRIPTION OF SYMBOLS 1 Sample 10 Environmental container 11 Storage member 12 Test section 13 Gas introduction pipe 14 Thermocouple protection tube 15 Closure member 16 Seal mechanism 21 Chamber 22 Opening 23 Sample storage chamber 24 Storage port 27 Thermocouple storage chamber 28 Insertion port 29 Contact part 30 Through Hole 31 Projection portion 32 Air supply hole 33 Exhaust hole 34 First seal hole 35 Second seal hole 36 First seal member 37 Second seal member 38 Gas circulation means 39, 40 Gap 41, 42 Circulation path

Claims (3)

内部にチャンバーを有し、前記チャンバーに連通する開口を有する収納部材と、前記開口を塞ぐ閉塞部材との接続部をシールするためのシール機構であって、
1対のシール部材とガス循環手段とを有し、
各シール部材は弾性を有し、それぞれ前記接続部をシールするよう前記収納部材と前記閉塞部材との間に互いに間隙を開けて設けられ、
前記ガス循環手段は前記チャンバーに所定のガスを循環させ、前記チャンバーから排出された前記ガスを各シール部材の前記間隙に循環させるよう構成されていることを、
特徴とするシール機構。
A sealing mechanism for sealing a connecting portion between a housing member having an interior and an opening communicating with the chamber, and a closing member for closing the opening,
A pair of seal members and gas circulation means;
Each sealing member has elasticity, and is provided with a gap between the storage member and the closing member so as to seal the connecting portion,
The gas circulation means is configured to circulate a predetermined gas in the chamber and circulate the gas discharged from the chamber to the gap of each seal member.
Characteristic seal mechanism.
前記収納部材および前記閉塞部材は、互いに熱膨張率が異なる材質から成り、
前記収納部材は前記開口の周縁部が筒状に形成されており、
前記閉塞部材は前記周縁部の内面または外面に沿うよう設けられた接触部を有し、
各シール部材はOリングから成り、前記周縁部と前記接触部との間に設けられていることを、
特徴とする請求項1記載のシール機構。
The storage member and the closing member are made of materials having different coefficients of thermal expansion,
The storage member has a cylindrical peripheral edge of the opening,
The closing member has a contact portion provided along the inner surface or the outer surface of the peripheral edge,
Each sealing member is composed of an O-ring, and is provided between the peripheral portion and the contact portion.
The sealing mechanism according to claim 1, wherein
請求項1または2記載のシール機構を有し、
前記収納部材は石英ガラス製であり、
前記閉塞部材は金属製であることを、
特徴とする環境容器。
The seal mechanism according to claim 1 or 2,
The storage member is made of quartz glass,
The closure member is made of metal,
Environmental container characterized.
JP2007247010A 2007-09-25 2007-09-25 Seal mechanism and environmental container Pending JP2009079900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007247010A JP2009079900A (en) 2007-09-25 2007-09-25 Seal mechanism and environmental container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247010A JP2009079900A (en) 2007-09-25 2007-09-25 Seal mechanism and environmental container

Publications (1)

Publication Number Publication Date
JP2009079900A true JP2009079900A (en) 2009-04-16

Family

ID=40654773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247010A Pending JP2009079900A (en) 2007-09-25 2007-09-25 Seal mechanism and environmental container

Country Status (1)

Country Link
JP (1) JP2009079900A (en)

Similar Documents

Publication Publication Date Title
US20040060519A1 (en) Quartz to quartz seal using expanded PTFE gasket material
JP4268069B2 (en) Vertical heat treatment equipment
JP5144990B2 (en) Heat treatment equipment
JP3164248B2 (en) Heat treatment equipment
JP2006342386A (en) Seal structure of vacuum apparatus
TWI697037B (en) Processing apparatus
US6988886B2 (en) Thermal treatment system for semiconductors
JP4963336B2 (en) Heat treatment equipment
US5252062A (en) Thermal processing furnace
JP3725612B2 (en) Substrate processing equipment
JP2009079900A (en) Seal mechanism and environmental container
KR20010056330A (en) Apparatus for fabricating a semiconductor device
JP4361668B2 (en) Heat treatment apparatus and method
US20180053667A1 (en) High Temperature Process Chamber Lid
JP3256037B2 (en) Heat treatment equipment
JP2018125466A (en) Ozone gas heating mechanism, substrate processing device, and substrate processing method
JP2003209064A (en) Semiconductor device manufacturing apparatus
JP2003178991A (en) Apparatus and method for insulating seal in process chamber
JP5192685B2 (en) Vacuum cooling member and vacuum equipment
JP4364962B2 (en) Substrate processing apparatus and substrate processing method
US8790600B2 (en) Sample-support element for ultra-high vacuums
JP2006269820A (en) Furnace core tube for semiconductor annealing furnace
JP2005252184A (en) Seal plate of vacuum gate valve and seal member used for the same
JP2008187067A (en) Heat treatment equipment, heat insulation vacuum buffer, and heat insulation board
JP2001093841A (en) Apparatus for thermally treating at high temperature and under high vacuum