JP2009069065A - Device for measuring effective leakage current - Google Patents

Device for measuring effective leakage current Download PDF

Info

Publication number
JP2009069065A
JP2009069065A JP2007239559A JP2007239559A JP2009069065A JP 2009069065 A JP2009069065 A JP 2009069065A JP 2007239559 A JP2007239559 A JP 2007239559A JP 2007239559 A JP2007239559 A JP 2007239559A JP 2009069065 A JP2009069065 A JP 2009069065A
Authority
JP
Japan
Prior art keywords
leakage current
voltage
phase
effective
distribution system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007239559A
Other languages
Japanese (ja)
Other versions
JP4993728B2 (en
Inventor
Sadataka Miyajima
貞敬 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2007239559A priority Critical patent/JP4993728B2/en
Publication of JP2009069065A publication Critical patent/JP2009069065A/en
Application granted granted Critical
Publication of JP4993728B2 publication Critical patent/JP4993728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring an effective leakage current capable of detecting incorrect connection, in effective leakage current measurement for a three-phase three-line power distribution system. <P>SOLUTION: The device 10 for measuring the effective leakage current includes a leakage current input section 12 and an A/D conversion circuit 2b for detecting a combined leakage current flowing between the three-phase three-line power distribution system and a grounded point, a voltage input section 11 and an A/D conversion circuit 2a for detecting a line-to-line voltage of the power distribution system, and a calculation section 3 for calculating an effective leakage current via a resistance to earth of the power distribution system, by using the combined leakage current and the phase angle between the line-to-line voltage and the combined leakage current. The device includes a determination section 7 for determining incorrect connection of the device 10 to the power distribution system by detecting that, when a certain line-to-line voltage is captured into the device 10 as an acquired voltage, the phase angle between the acquired voltage and the combined leakage current is not within a predetermined angle range corresponding to the acquired voltage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば電源ラインの絶縁点検に使用される有効漏れ電流測定器に関し、詳しくは、三相3線式の配電系統において測定器の誤結線を検出可能とした有効漏れ電流測定器に関するものである。   The present invention relates to an effective leakage current measuring device used for, for example, power supply line insulation inspection, and more particularly to an effective leakage current measuring device capable of detecting an erroneous connection of a measuring device in a three-phase three-wire distribution system. It is.

配電系統の基本波実効値、基本波位相角、漏れ電流、高調波等を測定して配電系統の品質を解析、評価する電源ラインモニタは、例えば特許文献1に記載されている。
図5は、三相3線式の配電系統を対象として、特許文献1に記載された電源ラインモニタを有効漏れ電流測定器10Aとして使用した場合のブロック図である。
A power supply line monitor that analyzes and evaluates the quality of a power distribution system by measuring the fundamental wave effective value, fundamental wave phase angle, leakage current, harmonics, and the like of the power distribution system is described in Patent Document 1, for example.
FIG. 5 is a block diagram when the power supply line monitor described in Patent Document 1 is used as the effective leakage current measuring instrument 10A for a three-phase three-wire distribution system.

図5において、a,b,cは三相3線式の電路、R,Rは電路a,cの対地抵抗、C,Cは電路a,cの対地静電容量、11は、二つの電路間の線間電圧(例えば、電路aとB種接地による接地電路bとの間の線間電圧Vab)が有効漏れ電流測定時の基準電圧(取得電圧ともいう)として入力されると共に、入力電圧値のレベル調整等を行う電圧入力部、ZCTは接地電路bに接続されて合成漏れ電流(有効漏れ電流、無効漏れ電流のベクトル和)Iを検出する零相変流器、12は合成漏れ電流Iが入力されてそのレベル調整等を行う漏れ電流入力部、2a,2bはA/D変換回路、3は有効漏れ電流等を演算する演算部(CPU)、4はA/D変換回路2a,2bを介して収集された演算部3の入力データや演算結果を格納するメモリ、5はsin波、cos波の基準波形データが記憶された基準波形データメモリ、6は演算部3による演算結果を表示し、または外部へ伝送するための出力部である。
ここで、上記基準波形データは、電圧入力部11への入力電圧波形と同一周期であり、A/D変換回路2a,2bと同じ分解能でテーブル上に予め作成されたデータである。
In FIG. 5, a, b, and c are three-phase three-wire electric circuits, R a and R c are ground resistances of the electric circuits a and c, C a and C c are ground capacitances of the electric circuits a and c, and 11 is The line voltage between the two electric circuits (for example, the line voltage V ab between the electric circuit a and the ground electric circuit b by the B type grounding) is input as a reference voltage (also referred to as an acquired voltage) at the time of measuring effective leakage current. Rutotomoni, voltage input unit for adjusting the level of the input voltage value, ZCT synthetic leakage current is connected to a ground path b (effective leakage current, the vector sum of the invalid leakage current) zero-phase detecting an I g current transformer , 12 is a leakage current input unit that receives the combined leakage current Ig and adjusts the level thereof, 2a and 2b are A / D conversion circuits, 3 is a calculation unit (CPU) that calculates an effective leakage current, etc. Input data and calculation results of the calculation unit 3 collected via the A / D conversion circuits 2a and 2b Reference numeral 5 is a reference waveform data memory storing sin wave and cos wave reference waveform data, and 6 is an output section for displaying the result of calculation by the calculation section 3 or transmitting it to the outside.
Here, the reference waveform data has the same period as the input voltage waveform to the voltage input unit 11, and is data created in advance on the table with the same resolution as the A / D conversion circuits 2a and 2b.

次に、図6は、図5の構成により有効漏れ電流Igrを求めるための原理を示すベクトル図である。なお、有効漏れ電流Igrは図5における対地抵抗R,Rにそれぞれ流れる漏れ電流Igra,Igrcのベクトル和であるが、電路a,cの絶縁不良が同時に起こることは稀であるため、対地抵抗R,Rによる有効漏れ電流Igrは、対地抵抗R,Rのうち何れか一方による漏れ電流値、つまり、Igr=Igra、またはIgr=Igrcと考えて良い。なお、IgraはVabと同相、IgrcはVcbと同相である。
この図6を参照しながら、従来技術による有効漏れ電流Igrの測定方法を以下に略述する。
Next, FIG. 6 is a vector diagram showing the principle for obtaining the effective leakage current I gr with the configuration of FIG. The effective leakage current I gr is a vector sum of the leakage currents I gra and I grc flowing in the ground resistances R a and R c in FIG. 5 respectively, but it is rare that an insulation failure of the electric paths a and c occurs at the same time. Therefore, ground resistance R a, the effective leakage current I gr by R c are ground resistance R a, the leakage current due to either of R c, that is, I gr = I gra or I gr = I grc and thinking, Good. Note that I gra is in phase with V ab and I grc is in phase with V cb .
A method for measuring the effective leakage current I gr according to the prior art will be briefly described below with reference to FIG.

いま、取得電圧がVabであるとすると、まず、図5の演算部3は、電圧入力部11から取り込んだ所定波数分の電圧Vabと基準波形データメモリ5内のsin波データ、cos波データとを用いて積和演算を行い、電圧Vabの第1積算値、第2積算値を求める。同様に、演算部3は、漏れ電流入力部12から取り込んだ所定波数分の合成漏れ電流Iと前記sin波データ、cos波データとを用いて積和演算を行い、合成漏れ電流Iの第1積算値、第2積算値を求める。
ここで、上記各積算値の演算方法は本発明の要旨ではないため、説明を省略する。
Now, assuming that the acquired voltage is V ab , the arithmetic unit 3 in FIG. 5 firstly, the voltage V ab for a predetermined wave number fetched from the voltage input unit 11 and sin wave data and cos wave in the reference waveform data memory 5. The product-sum operation is performed using the data, and the first integrated value and the second integrated value of the voltage V ab are obtained. Similarly, the arithmetic unit 3 performs product-sum calculation using the sin wave data and combining leakage current I g of predetermined wave number of captured from the leak current input 12, and a cos wave data, the synthetic leakage current I g A first integrated value and a second integrated value are obtained.
Here, since the calculation method of each integrated value is not the gist of the present invention, the description thereof is omitted.

次に、これらの電圧Vab及び合成漏れ電流Iの第1積算値、第2積算値を用いて、図6に示すように、基準波形に対する電圧Vab及び合成漏れ電流Iの位相角θ,θをそれぞれ求める。次いで、合成漏れ電流Iの第1積算値、第2積算値並びに位相角θを用いて、合成漏れ電流Iの基本波成分I(1)を求める。
なお、有効漏れ電流Igrだけでなく、更に絶縁抵抗も求める場合には、上記に加えて、電圧Vabの第1積算値、第2積算値並びに位相角θを用いて、電圧Vabの基本波成分Vab(1)を求める。
Next, a first integrated value of these voltages V ab and synthetic leakage current I g, by using the second integrated value, as shown in FIG. 6, the phase angle of the voltage V ab and synthetic leakage current I g to the reference waveform θ 1 and θ 2 are obtained, respectively. Then, the first integrated value of the combined leakage current I g, the second integrated value and by using the phase angle theta 2, determine the fundamental component I g of synthetic leakage current I g (1).
When not only the effective leakage current I gr but also the insulation resistance is obtained, in addition to the above, the voltage V ab is calculated using the first integrated value, the second integrated value, and the phase angle θ 1 of the voltage V ab. The fundamental wave component V ab (1) is obtained.

更に、θとθとの位相差、すなわち電圧Vabに対する合成漏れ電流Iの位相角θを求める。
いま、対地静電容量C,Cによる漏れ電流Igca,Igccが等しいとすると、そのベクトル合成値である無効漏れ電流Igcは図6に示す如くVcaと同相であり、他方、対地抵抗R,Rによる有効漏れ電流Igrは、前述のようにIgr=IgraまたはIgr=Igrcである。
Further, the phase difference between the theta 1 and theta 2, i.e. obtains the phase angle theta synthetic leakage current I g for the voltage V ab.
If the leakage currents I gca and I gcc due to the ground capacitances C a and C c are equal, the reactive leakage current I gc, which is a vector composite value thereof, is in phase with V ca as shown in FIG. The effective leakage current I gr due to the ground resistances R a and R c is I gr = I gra or I gr = I grc as described above.

従って、図6において、Igra,Igrc,Igcの位相差が60°であることを考慮すると、有効漏れ電流Igrは、数式1によって求めることができる。
[数式1]
gr=I(1)cosθ+I(1)sinθ/tan60°
=(2/√3)×I(1)×sin(θ+60°)
図5の演算部3は、上記数式1の演算により有効漏れ電流Igrを求め、その測定値を合成漏れ電流Iや位相角θと共に出力部6に数値表示すると共に、必要に応じて出力部6から外部に伝送することとなる。
Therefore, in FIG. 6, considering that the phase difference of I gra , I grc , and I gc is 60 °, the effective leakage current I gr can be obtained by Equation 1.
[Formula 1]
I gr = I g (1) cos θ + I g (1) sin θ / tan 60 °
= (2 / √3) × I g (1) × sin (θ + 60 °)
The calculation unit 3 in FIG. 5 obtains the effective leakage current I gr by the calculation of the above formula 1, displays the measured value together with the combined leakage current Ig and the phase angle θ on the output unit 6, and outputs it as necessary. The data is transmitted from the unit 6 to the outside.

特開2006−234402号公報(請求項7,9、段落[0070]〜[0078]、図5等)JP 2006-234402 A (Claims 7 and 9, paragraphs [0070] to [0078], FIG. 5 and the like)

上記のように、従来技術によれば、有効漏れ電流Igrを合成漏れ電流Iの基本波成分I(1)と位相角θとから求めることができる。
しかし、電路a,b,cに対する電圧入力部11の結線を間違えると、電圧Vabに対する合成漏れ電流Iの位相角θを求めたつもりであっても、他の線間電圧(例えばVcb)に対する合成漏れ電流Iの位相角を求めてしまい、その結果、前記数式1により演算した有効漏れ電流Igrの値が実際の値とは大きく異なってしまうという問題があった。
ここで、上記の誤結線には、接続するべき電路a,bを電路c,bと間違える(すなわちVabとVcbとを間違える)ような場合以外に、電路a,bを逆に接続して極性を間違える(VabとVbaとを間違える)場合も含まれる。
また、零相変流器ZCTの向きを間違える場合も含まれる。
As described above, according to the prior art, it can be obtained from the a phase angle θ the effective leakage current I gr synthetic leakage current I g of the fundamental wave component I g (1).
However, paths a, b, the wrong connection of the voltage input section 11 with respect to c, even going calculated phase angle θ of the composite leakage current I g for the voltage V ab, other line voltage (e.g., V cb ) it will seek the phase angle of the composite leakage current I g for, as a result, the the value of the actual value of the effective leakage current I gr computed by equation 1 has a problem that greatly different.
Here, except for the case where the electric circuits a and b to be connected are mistaken for the electric circuits c and b (that is, V ab and V cb are mistaken), the electric circuits a and b are connected in reverse to the erroneous connection. In this case, the polarity is wrong ( Vab and Vba are wrong).
Moreover, the case where the direction of the zero phase current transformer ZCT is wrong is also included.

なお、単相3線式、三相4線式の配電系統では、上述の如く誤結線しても特に支障はないが、誤結線によって有効漏れ電流Igrの値が大きく異なる三相3線式の配電系統では、有効漏れ電流Igrの演算に先立って誤結線を高精度に判定できることが望まれていた。 In the single-phase three-wire and three-phase four-wire distribution systems, there is no particular problem even if the connection is incorrect as described above. However, the effective leakage current I gr differs greatly depending on the connection. In this distribution system, it has been desired that an erroneous connection can be determined with high accuracy prior to the calculation of the effective leakage current I gr .

一方、三相電力測定装置において、装置の誤結線を検出可能とした従来技術は、例えば特開2000−338147号公報「電力測定装置」や特開2001−124806号公報「三相電力測定器および三相電力量計ならびにその結線状態判別方法」等が知られているが、有効漏れ電流測定器の一機能として事前に誤結線を判定可能としたものは未だ提供されていない。   On the other hand, in the three-phase power measuring apparatus, conventional techniques that enable detection of erroneous connection of the apparatus include, for example, Japanese Patent Laid-Open No. 2000-338147 “Power Measuring Device” and Japanese Patent Laid-Open No. 2001-124806 “Three-Phase Power Measuring Device and A “three-phase watt-hour meter and its connection state determination method” and the like are known, but no function capable of determining an erroneous connection in advance as a function of an effective leakage current measuring device has been provided yet.

そこで本発明の解決課題は、三相3線式の配電系統を対象として有効漏れ電流を測定する際に、誤結線を高精度かつ容易に検出可能とした有効漏れ電流測定器を提供することにある。   Therefore, the problem to be solved by the present invention is to provide an effective leakage current measuring device capable of easily and accurately detecting misconnection when measuring effective leakage current for a three-phase three-wire distribution system. is there.

上記課題を解決するため、請求項1に係る発明は、三相3線式の配電系統と接地点との間を流れる合成漏れ電流を検出する手段と、
配電系統の線間電圧を検出する手段と、
前記線間電圧と前記合成漏れ電流との間の位相角、及び、前記合成漏れ電流を用いて、配電系統の対地抵抗を介した有効漏れ電流を演算する手段と、
を備えた有効漏れ電流測定器において、
ある線間電圧を取得電圧として前記測定器に入力した際に、その取得電圧と前記合成漏れ電流との間の位相角が、前記取得電圧に対応する所定の角度範囲内に存在しないことを検出して前記測定器の配電系統に対する誤結線を判定する判定手段を備えたものである。
In order to solve the above-mentioned problem, the invention according to claim 1 detects a combined leakage current flowing between a three-phase three-wire distribution system and a grounding point,
Means for detecting the line voltage of the distribution system;
A phase angle between the line voltage and the combined leakage current, and a means for calculating an effective leakage current through a ground resistance of a distribution system using the combined leakage current;
In the effective leakage current measuring instrument with
When a certain line voltage is input to the measuring instrument as an acquired voltage, it is detected that the phase angle between the acquired voltage and the combined leakage current does not exist within a predetermined angle range corresponding to the acquired voltage And determining means for determining an erroneous connection of the measuring device to the power distribution system.

前記所定の角度範囲としては、請求項2に記載するように120°の幅を持たせるか、誤結線の判定精度を一層高めるために、請求項3に記載する如く60°の幅を持たせることが望ましい。   The predetermined angle range has a width of 120 ° as described in claim 2 or a width of 60 ° as described in claim 3 in order to further improve the accuracy of determination of erroneous connection. It is desirable.

更に、請求項4に記載する如く、判定手段による判定動作は、少なくとも二つの線間電圧を取得電圧として、各取得電圧及び合成漏れ電流について誤結線の判定動作を実行しても良い。   Further, according to a fourth aspect of the present invention, the determination operation by the determination means may be performed with a determination of erroneous connection for each acquired voltage and combined leakage current using at least two line voltages as the acquired voltages.

請求項1,2または4に係る発明によれば、取得電圧に応じて決まる所定の角度範囲内に合成漏れ電流の位相角が存在しない場合に、配電系統の電路に対して測定器(電圧入力部または合成漏れ電流検出手段)が誤結線されていると判定することができる。この場合の判定ロジックは比較的単純で済むから、既存の有効漏れ電流測定器のソフトウェアに若干の変更を加えるだけで容易に実現可能であり、コスト高になるおそれもない。
また、請求項3に係る発明によれば、誤結線を一層高精度に判定することが可能になる。
According to the first, second, or fourth aspect of the invention, when the phase angle of the combined leakage current does not exist within a predetermined angle range determined according to the acquired voltage, the measuring device (voltage input) Or the combined leakage current detection means) can be determined to be misconnected. Since the determination logic in this case is relatively simple, the determination logic can be easily realized by making a slight change to the software of the existing effective leakage current measuring instrument, and there is no risk of increasing the cost.
Moreover, according to the invention which concerns on Claim 3, it becomes possible to determine an erroneous connection with still higher precision.

以下、図に沿って本発明の実施形態を説明する。
図1は、実施形態に係る有効漏れ電流測定器10の構成を示すブロック図であり、図5と同一の構成要素には同一の番号を付してある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of an effective leakage current measuring instrument 10 according to the embodiment, and the same components as those in FIG. 5 are given the same numbers.

図1において、前記同様に、a,b,cは三相3線式の電路、R,Rは電路a,cの対地抵抗、C,Cは電路a,cの対地静電容量、11は二つの電路間の線間電圧が取得電圧として入力され、そのレベル調整等を行う電圧入力部、ZCTはB種接地の接地電路bに接続されて漏れ電流Iを検出する零相変流器、12は漏れ電流Iのレベル調整等を行う漏れ電流入力部、2a,2bは各入力部11,12にそれぞれ接続されたA/D変換回路である。
また、CPU等からなる演算部3は、従来技術と同様に、メモリ4に格納されたデータ(A/D変換回路2a,2bの出力データ)及び基準波形データメモリ5内の基準波形データ等を用いて、有効漏れ電流Igrを演算する。
In FIG. 1, a, b, and c are three-phase three-wire electric circuits, R a and R c are ground resistances of the electric circuits a and c, and C a and C c are ground electrostatics of the electric circuits a and c. capacity, 11 line voltage between the two paths is input as acquired voltage, the voltage input section for performing the level adjustment, ZCT detects the leakage current I g is connected to a ground path b of B type grounding zero A phase current transformer, 12 is a leakage current input unit for adjusting the level of leakage current Ig , and the like, and 2a and 2b are A / D conversion circuits connected to the input units 11 and 12, respectively.
Further, the arithmetic unit 3 composed of a CPU or the like receives the data stored in the memory 4 (output data of the A / D conversion circuits 2a and 2b), the reference waveform data in the reference waveform data memory 5 and the like, as in the prior art. To calculate the effective leakage current I gr .

本実施形態では、上記演算部3の出力側に判定部7が設けられており、この判定部7は、電路a,b,cに対する電圧入力部11の誤結線を検出する機能を備えている。
この誤結線検出機能は、以下の通りである。
In this embodiment, the determination part 7 is provided in the output side of the said calculating part 3, This determination part 7 is provided with the function to detect the misconnection of the voltage input part 11 with respect to the electric circuit a, b, c. .
This erroneous connection detection function is as follows.

例えば、取得電圧をVabとするために、取得電圧がVabの場合を正しい結線と見なすように有効漏れ電流測定器10に予め設定しておく。電圧入力部11が電路a,bに正しく接続されている場合(正常結線時)、演算部3により検出される電圧Vabと漏れ電流Iとの間の位相角θは、図2に示すように取得電圧Vabの位相角を基準(=0°)とした0°〜120°の範囲にある。この理由を以下に説明する。 For example, in order to obtain voltage and V ab, acquiring voltage preliminarily set to enable leakage current measurement device 10 as deemed proper connection in the case of V ab. When the voltage input unit 11 is properly connected to the electrical path a, b (normal connection), the phase angle θ between the voltage V ab and the leakage current I g is detected by the arithmetic unit 3, shown in FIG. 2 Thus, it is in the range of 0 ° to 120 ° with the phase angle of the acquired voltage V ab as a reference (= 0 °). The reason for this will be described below.

すなわち、電路aだけが絶縁劣化している場合、無効漏れ電流Igcを無視すれば、I=Igra(=Igr)、つまりIはVabと同相になり、θ=0°となる。また、電路cだけが絶縁劣化している場合、無効漏れ電流Igcを無視すれば、I=Igrc(=Igr)、つまりIはVcbと同相になり、θ=60°となる。ここで、無効漏れ電流Igcを考慮したとしても、Iは常に0°以上の位相角θをもって存在する。
一方、電路a,bに絶縁劣化がない理想的な状態では、I=Igcとなって無効漏れ電流Igcのみとなり、IはVcaと同相になるため、θ=120°となる。
That is, when only the electric circuit a is deteriorated in insulation, if the reactive leakage current I gc is ignored, I g = I gra (= I gr ), that is, I g is in phase with V ab and θ = 0 ° Become. Further, when only the electric circuit c is deteriorated in insulation, if the reactive leakage current I gc is ignored, I g = I grc (= I gr ), that is, I g is in phase with V cb and θ = 60 ° Become. Here, even considering invalid leakage current I gc, I g is always present with a phase angle θ of more than 0 °.
On the other hand, in an ideal state where there is no insulation deterioration in the electric paths a and b, I g = I gc and only the reactive leakage current I gc is obtained, and I g is in phase with V ca , so θ = 120 °. .

従って、電圧入力部11が電路a,bに正しく接続されており、電圧入力部11における取得電圧がVabである場合には、上述の如くθの存在する範囲は0°〜120°である。同様にして、取得電圧がVbcである場合のθの存在する範囲は、Vabの位相角を基準(=0°)とすれば120°〜240°、同じく取得電圧がVcaの場合は240°〜360°(0°)、取得電圧がVcbの場合は300°〜60°、取得電圧がVacの場合は60°〜180°、取得電圧がVbaの場合は180°〜300°となる。 Therefore, when the voltage input unit 11 is correctly connected to the electric paths a and b and the acquired voltage at the voltage input unit 11 is V ab , the range where θ exists is 0 ° to 120 ° as described above. . Similarly, the range where θ exists when the acquired voltage is V bc is 120 ° to 240 ° when the phase angle of V ab is set as a reference (= 0 °), and when the acquired voltage is V ca 240 ° to 360 ° (0 °), 300 ° to 60 ° when the acquisition voltage is V cb , 60 ° to 180 ° when the acquisition voltage is V ac , 180 ° to 300 when the acquisition voltage is V ba °.

よって、判定部7は、位相角θが取得電圧、例えばVabに応じた範囲0°〜120°に存在しないことを検出した場合に、電圧入力部11が本来接続されるべき電路a,bに接続されていないか、または、零相変流器ZCTを接続する向きが間違っていると判断し、電圧入力部11または零相変流器ZCT(どちらかの特定はできない)の誤結線を判定する。こうして誤結線と判定した場合には、判定部7から出力部8に信号を送り、音声や表示器による警報出力(「結線が間違っているため確認して下さい。」等)を行って測定者に知らせればよい。 Therefore, when the determination unit 7 detects that the phase angle θ does not exist in the range of 0 ° to 120 ° according to the acquired voltage, for example, V ab , the electric paths a and b to which the voltage input unit 11 should originally be connected. Is not connected, or the direction in which the zero-phase current transformer ZCT is connected is wrong, and the voltage input unit 11 or the zero-phase current transformer ZCT (which cannot be specified either) is connected incorrectly. judge. If it is determined that there is an incorrect connection, a signal is sent from the determination unit 7 to the output unit 8 and an alarm is output by voice or a display (such as "Please check because the connection is incorrect"). Just let me know.

ここで、図3は、正常結線時にθが存在する範囲を、取得電圧の位相角を基準(0°)として取得電圧ごとに示した模式図であり、例えば、取得電圧がVabの時にはVabの位相角を0°とした0°〜120°、取得電圧がVcaの時にはVcaの位相角を0°とした240°〜360°(0°)が、それぞれの正常結線時におけるθの存在範囲であることを意味している。なお、図3を一覧表にして示すと、図4の通りである。
図3に示すように、θが時計方向に減少すると有効漏れ電流Igrが支配的になり、θが反時計方向に増加すると無効漏れ電流Igcが支配的になることがわかる。
Here, FIG. 3 is a schematic diagram showing the range in which θ exists during normal connection for each acquired voltage with the phase angle of the acquired voltage as a reference (0 °). For example, when the acquired voltage is V ab 0 ° to 120 ° where the phase angle of ab is 0 °, and 240 ° to 360 ° (0 °) where the phase angle of V ca is 0 ° when the acquired voltage is V ca , θ in each normal connection It means that it is in the existence range. FIG. 4 is a table showing FIG.
As shown in FIG. 3, it can be seen that the effective leakage current I gr becomes dominant when θ decreases in the clockwise direction, and the reactive leakage current I gc becomes dominant when θ increases in the counterclockwise direction.

以上のように、この実施形態によれば、位相角θに着目することで測定器の誤結線状態を判定可能である。
ここで、上記実施形態では、請求項2に記載したように、取得電圧と合成漏れ電流との間の位相角θが、120°の幅を持つ範囲内にあるか否かによって誤結線を判定している。
しかし、結線が正常であっても、対地静電容量C,Cのアンバランス等に起因して上記位相角θが120°を超えることもあるので、結線が正常であると判断すべき角度範囲を、120°より広い幅で設定しておいても良い。
As described above, according to this embodiment, it is possible to determine the erroneous connection state of the measuring device by paying attention to the phase angle θ.
Here, in the above embodiment, as described in claim 2, a misconnection is determined based on whether or not the phase angle θ between the acquired voltage and the combined leakage current is within a range having a width of 120 °. is doing.
However, even if the connection is normal, the phase angle θ may exceed 120 ° due to the unbalance of the capacitances C a and C c to the ground, so it should be determined that the connection is normal. The angle range may be set with a width wider than 120 °.

更に、電路に絶縁劣化がない理想的な状態では、漏れ電流Iのうち無効漏れ電流Igcが支配的になるので、位相角θは、取得電圧に応じて存在し得る範囲の最大値に近くなり、例えば取得電圧がVabの場合にはθが120°近くになる。
従って、判定部7における判定の角度範囲を更に狭め、取得電圧の位相角を基準として例えば60°〜120°の範囲とし、θがこの範囲以外の値である場合を誤結線と判定することにより、絶縁劣化がない状態における誤結線の判定精度を高めることができる。
つまり、請求項3に記載したように、判定の角度範囲の幅を60°として誤結線を判定することも有効である。
Further, in an ideal state where there is no insulation deterioration in path, so disable leakage current I gc of the leakage current I g is dominant, the phase angle theta, the maximum value of the range that can be present according to the acquired voltage For example, when the acquired voltage is V ab , θ is close to 120 °.
Accordingly, the determination angle range in the determination unit 7 is further narrowed, for example, a range of 60 ° to 120 ° with reference to the phase angle of the acquired voltage, and a case where θ is a value outside this range is determined as an erroneous connection. In addition, it is possible to improve the determination accuracy of erroneous connection in a state where there is no insulation deterioration.
That is, as described in claim 3, it is also effective to determine a misconnection by setting the width of the determination angle range to 60 °.

このようにすれば、取得電圧がVabの時の正常結線時の角度範囲が60°〜120°、Vbcの時の範囲が180°〜240°、Vcaの時の範囲が300°〜360°(0°)、Vcbの時の範囲が0°〜60°、Vacの時の範囲が120°〜180°、Vbaの時の範囲が240°〜300°となり、6つの取得電圧について正常結線時の角度範囲が重複せず、0°〜360°を6等分した状態に設定することができる。これにより、それぞれの取得電圧について、θが該当する範囲内に存在しない場合には誤結線と判定する判定精度を一層高めることができる。 In this way, the angle range during normal connection when the acquired voltage is V ab is 60 ° to 120 °, the range when V bc is 180 ° to 240 °, and the range when V ca is 300 ° to 360 ° (0 °), the range when V cb is 0 ° to 60 °, the range when V ac is 120 ° to 180 °, the range when V ba is 240 ° to 300 °, 6 acquisitions With respect to the voltage, the angle ranges at the time of normal connection do not overlap, and it is possible to set a state in which 0 ° to 360 ° is divided into six equal parts. Thereby, it is possible to further improve the determination accuracy for determining the erroneous connection when θ does not exist within the corresponding range for each acquired voltage.

なお、図3,図4に示したように、取得電圧に応じた所定の角度範囲内にθが存在したとしても、結線が正常であるとは必ずしも断定できない。例えば、取得電圧をVabとして検出したθが0°〜120°の範囲内にある時、図3,図4によれば、この範囲は取得電圧がVcbまたはVacである時にθが存在する角度範囲と一部重なっているので、正常結線の場合(電路a,bに接続)と、誤結線の場合(電路c,bに誤接続、または電路a,cに誤接続)とがあり得ることになる。
すなわち、θが0°〜120°の範囲内に存在したとしても、電圧入力部11が電路c,bまたは電路a,cに誤結線されている可能性も否定できない。
As shown in FIGS. 3 and 4, even if θ exists within a predetermined angle range corresponding to the acquired voltage, it cannot be determined that the connection is normal. For example, when the acquired voltage is V ab and θ is in the range of 0 ° to 120 °, according to FIGS. 3 and 4, this range exists when the acquired voltage is V cb or V ac. There is a case of normal connection (connected to electric circuits a and b) and a case of incorrect connection (incorrect connection to electric circuits c and b, or incorrect connection to electric circuits a and c). Will get.
That is, even if θ is in the range of 0 ° to 120 °, the possibility that the voltage input unit 11 is erroneously connected to the electric circuits c and b or the electric circuits a and c cannot be denied.

そこで、誤結線の検出精度を向上させるには、二つの取得電圧、例えばVab,Vcbについて、上述した判定動作をそれぞれ行えば良い。つまり、1回目の判定動作として、取得電圧Vabに対してθが0°〜120°の範囲内に存在するか否かを判定し、存在する場合には、更に2回目の判定動作として、取得電圧Vcbに対してθが300°〜60°の範囲内に存在するか否かを判定する。 Therefore, in order to improve the detection accuracy of erroneous connection, the above-described determination operation may be performed for two acquired voltages, for example, V ab and V cb . That is, as the first determination operation, it is determined whether or not θ is within a range of 0 ° to 120 ° with respect to the acquired voltage V ab . It is determined whether or not θ is within a range of 300 ° to 60 ° with respect to the acquired voltage V cb .

2回目の判定動作の結果、取得電圧Vcbに対してθが300°〜60°の範囲内に存在すれば、結果的にθは0°〜60°の範囲内に存在することになる。従って、第1回目の判定動作時に取得電圧がVacであった可能性(電路a,cに誤接続していた可能性)はなくなる。
また、2回目の判定動作の結果、取得電圧Vcbに対してθが300°〜60°の範囲内に存在しない場合には、θは60°〜120°の範囲内に存在することになる。従って、第1回目の判定動作時に取得電圧がVcbであった可能性(電路c,bに誤接続していた可能性)はなくなる。
As a result of the second determination operation, if θ is in the range of 300 ° to 60 ° with respect to the acquired voltage V cb , as a result, θ is in the range of 0 ° to 60 °. Therefore, there is no possibility that the acquired voltage was Vac during the first determination operation (possibility of erroneous connection to the electric paths a and c).
When θ is not in the range of 300 ° to 60 ° with respect to the acquired voltage V cb as a result of the second determination operation, θ is in the range of 60 ° to 120 °. . Therefore, there is no possibility that the acquired voltage was V cb during the first determination operation (possibility of erroneous connection to the electric circuits c and b).

このように、誤結線を判定する角度範囲が、取得電圧の位相角を基準とした所定の角度範囲である場合にも、複数の取得電圧に対して判定動作を繰り返し行うことにより誤結線の判定精度を高めることができる。   As described above, even when the angle range for determining the erroneous connection is a predetermined angle range based on the phase angle of the acquired voltage, the determination of the erroneous connection is performed by repeatedly performing the determination operation on a plurality of acquired voltages. Accuracy can be increased.

次に、請求項4に係る発明の実施形態として、電圧入力部11の誤結線か、または、合成漏れ電流検出手段としての零相変流器ZCTの誤結線(接続する向きの間違い)かを特定する方法について説明する。
仮に取得電圧がVab,Vcbである場合、取得電圧Vabに対してVcbが60°±10°の範囲内に存在するか否かを判定し、存在する場合には、その時の電圧入力部11の結線は正常であると判断する。Vcbが60°±10°の範囲内に存在しない場合には、その時の電圧入力部11の結線は誤結線であると判断する。
結線が正常であると判断された場合、二つの取得電圧のうちの一方(例えばVab)と合成漏れ電流Iとの間の位相角θが0°〜120°の範囲内に存在するか否かを判定し、存在しなければ、零相変流器ZCTの誤結線であることがわかる。
Next, as an embodiment of the invention according to claim 4, whether it is an erroneous connection of the voltage input unit 11 or an erroneous connection of the zero-phase current transformer ZCT as a combined leakage current detection means (incorrect connection direction). A method of specifying will be described.
If the acquired voltages are V ab and V cb, it is determined whether or not V cb is within a range of 60 ° ± 10 ° with respect to the acquired voltage V ab . It is determined that the connection of the input unit 11 is normal. When V cb does not exist within the range of 60 ° ± 10 °, it is determined that the connection of the voltage input unit 11 at that time is an incorrect connection.
If the connection is determined to be normal, or present in the range phase angle θ is 0 ° to 120 ° between one (e.g. V ab) Synthesis leakage current I g of the two acquired voltage If it does not exist, it is found that the zero-phase current transformer ZCT is an erroneous connection.

本発明の実施形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. 本発明の実施形態により誤結線を検出する原理を示すベクトル図である。It is a vector diagram which shows the principle which detects a misconnection by embodiment of this invention. 本発明の実施形態において、正常結線時にθが存在する範囲を取得電圧ごとに示した模式図である。In embodiment of this invention, it is the schematic diagram which showed the range which (theta) exists at the time of normal connection for every acquisition voltage. 図3を一覧表にして示した図である。FIG. 4 is a diagram showing FIG. 3 as a list. 従来技術を示すブロック図である。It is a block diagram which shows a prior art. 従来技術により有効漏れ電流を求める原理を示すベクトル図である。It is a vector diagram which shows the principle which calculates | requires effective leakage current by a prior art.

符号の説明Explanation of symbols

10:有効漏れ電流測定器
11:電圧入力部
12:漏れ電流入力部
2a,2b:A/D変換回路
3:演算部
4:メモリ
5:基準波形データメモリ
7:判定部
8:出力部
ZCT:零相変流器
10: Effective leakage current measuring instrument 11: Voltage input unit 12: Leakage current input unit 2a, 2b: A / D conversion circuit 3: Calculation unit 4: Memory 5: Reference waveform data memory 7: Determination unit 8: Output unit ZCT: Zero phase current transformer

Claims (4)

三相3線式の配電系統と接地点との間を流れる合成漏れ電流を検出する手段と、
前記配電系統の線間電圧を検出する手段と、
前記線間電圧と前記合成漏れ電流との間の位相角、及び、前記合成漏れ電流を用いて、前記配電系統の対地抵抗を介した有効漏れ電流を演算する手段と、
を備えた有効漏れ電流測定器において、
ある線間電圧を取得電圧として前記測定器に入力した際に、その取得電圧と前記合成漏れ電流との間の位相角が、前記取得電圧に対応する所定の角度範囲内に存在しないことを検出して前記測定器の前記配電系統に対する誤結線を判定する判定手段を備えたことを特徴とする有効漏れ電流測定器。
Means for detecting a combined leakage current flowing between a three-phase three-wire distribution system and a ground point;
Means for detecting a line voltage of the distribution system;
A phase angle between the line voltage and the combined leakage current, and a means for calculating an effective leakage current through a ground resistance of the distribution system using the combined leakage current;
In the effective leakage current measuring instrument with
When a certain line voltage is input to the measuring instrument as an acquired voltage, it is detected that the phase angle between the acquired voltage and the combined leakage current does not exist within a predetermined angle range corresponding to the acquired voltage And an effective leakage current measuring device comprising a determining means for determining an erroneous connection of the measuring device to the power distribution system.
請求項1に記載した有効漏れ電流測定器において、
前記所定の角度範囲が、120°の幅を持つことを特徴とする有効漏れ電流測定器。
The effective leakage current measuring instrument according to claim 1,
An effective leakage current measuring instrument characterized in that the predetermined angle range has a width of 120 °.
請求項1に記載した有効漏れ電流測定器において、
前記所定の角度範囲が、60°の幅を持つことを特徴とする有効漏れ電流測定器。
The effective leakage current measuring instrument according to claim 1,
An effective leakage current measuring instrument characterized in that the predetermined angle range has a width of 60 °.
請求項1〜3の何れか1項に記載した有効漏れ電流測定器において、
少なくとも二つの線間電圧を前記取得電圧として、前記判定手段が、各取得電圧及び合成漏れ電流に対して誤結線の判定動作を実行することを特徴とする有効漏れ電流測定器。
In the effective leakage current measuring device according to any one of claims 1 to 3,
The effective leakage current measuring device, wherein the determination means executes an operation of determining an erroneous connection for each acquired voltage and the combined leakage current, using at least two line voltages as the acquired voltage.
JP2007239559A 2007-09-14 2007-09-14 Effective leakage current measuring instrument Active JP4993728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007239559A JP4993728B2 (en) 2007-09-14 2007-09-14 Effective leakage current measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007239559A JP4993728B2 (en) 2007-09-14 2007-09-14 Effective leakage current measuring instrument

Publications (2)

Publication Number Publication Date
JP2009069065A true JP2009069065A (en) 2009-04-02
JP4993728B2 JP4993728B2 (en) 2012-08-08

Family

ID=40605468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007239559A Active JP4993728B2 (en) 2007-09-14 2007-09-14 Effective leakage current measuring instrument

Country Status (1)

Country Link
JP (1) JP4993728B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027449A (en) * 2009-07-22 2011-02-10 Hioki Ee Corp Leakage current measuring device
CN102914686A (en) * 2012-11-14 2013-02-06 天津市翔晟远电力设备实业有限公司 Detecting system of real-tine load current and zero sequence current of three-phase power transmission and distribution line
JP2014157161A (en) * 2014-04-23 2014-08-28 Mitsubishi Electric Corp Electronic indicating instrument
JP2018004394A (en) * 2016-06-30 2018-01-11 共立電気計器株式會社 Leakage current measuring method and leakage current measuring device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142421B (en) * 2013-05-07 2016-12-28 常州顺创电气科技有限公司 Converting equipment insulated on-line monitoring system and method for work thereof
CN103575970A (en) * 2013-11-14 2014-02-12 国家电网公司 Transformer grounding current monitoring device and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258484A (en) * 1999-03-10 2000-09-22 Hioki Ee Corp Connection state detector in power meter
JP2001124806A (en) * 1999-10-27 2001-05-11 Mitsubishi Electric Corp Three-phase power meter, three-phase watt-hour meter, and connection state judging method of them
JP2002168883A (en) * 2000-11-30 2002-06-14 Hioki Ee Corp Displaying method for vector line in power meter
JP2006234402A (en) * 2005-02-22 2006-09-07 Hioki Ee Corp Power source line measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258484A (en) * 1999-03-10 2000-09-22 Hioki Ee Corp Connection state detector in power meter
JP2001124806A (en) * 1999-10-27 2001-05-11 Mitsubishi Electric Corp Three-phase power meter, three-phase watt-hour meter, and connection state judging method of them
JP2002168883A (en) * 2000-11-30 2002-06-14 Hioki Ee Corp Displaying method for vector line in power meter
JP2006234402A (en) * 2005-02-22 2006-09-07 Hioki Ee Corp Power source line measuring instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027449A (en) * 2009-07-22 2011-02-10 Hioki Ee Corp Leakage current measuring device
CN102914686A (en) * 2012-11-14 2013-02-06 天津市翔晟远电力设备实业有限公司 Detecting system of real-tine load current and zero sequence current of three-phase power transmission and distribution line
JP2014157161A (en) * 2014-04-23 2014-08-28 Mitsubishi Electric Corp Electronic indicating instrument
JP2018004394A (en) * 2016-06-30 2018-01-11 共立電気計器株式會社 Leakage current measuring method and leakage current measuring device

Also Published As

Publication number Publication date
JP4993728B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
US20150073734A1 (en) Method and Device for Measuring Electrical Quantities
JP4993728B2 (en) Effective leakage current measuring instrument
JP5140012B2 (en) Electric leakage test device, electric leakage circuit breaker, circuit breaker, and electric leakage monitoring device provided with the same
US10088546B2 (en) Method and apparatus to diagnose current sensor polarities and phase associations for a three-phase electric power system
US9829519B2 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
JP5494929B2 (en) Ground fault current detection method and detection apparatus
JP5449895B2 (en) Leakage current measuring device
KR20190076794A (en) Apparatus for measuring current error of mof
JP2007248104A (en) Method for determining ratio and polarity of current transformer, and its device
CN110402396A (en) Detect leakage current detection device, method and the program of leakage current
US9897647B2 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
JP5743296B1 (en) Leakage location exploration method and apparatus
JP2006071341A (en) Insulation monitoring device and method of electric installation
WO2017140616A1 (en) A method and a system for measuring power loss in a power transformer
CN105548941A (en) Mutual inductor calibrator with function of calibration
JP2017194465A (en) Monitoring device
JP4993727B2 (en) Leakage current measuring instrument
US11940476B2 (en) Three-phase power meter monitoring for star and delta configurations
JP6809189B2 (en) Insulation resistance measurement method for DC power supply circuit
JP2008309681A (en) Insulation deterioration monitoring device and its method
Voloh et al. Fault locator based on line current differential relays synchronized measurements
JP2010060329A (en) Apparatus and method for measuring leakage current of electrical path and electric instrument
JP2014202686A (en) Non-outage insulation diagnostic device and non-outage insulation diagnostic method
JP2012088275A (en) Insulation level monitoring device
JP5452972B2 (en) Wiring connection inspection method and inspection device for integrated watt-hour meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250