JP2009068019A - Spherical silsesquioxane fine particle and surface modifier for polymer material - Google Patents

Spherical silsesquioxane fine particle and surface modifier for polymer material Download PDF

Info

Publication number
JP2009068019A
JP2009068019A JP2008300596A JP2008300596A JP2009068019A JP 2009068019 A JP2009068019 A JP 2009068019A JP 2008300596 A JP2008300596 A JP 2008300596A JP 2008300596 A JP2008300596 A JP 2008300596A JP 2009068019 A JP2009068019 A JP 2009068019A
Authority
JP
Japan
Prior art keywords
silanol
fine particles
silsesquioxane fine
silicon compound
forming silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008300596A
Other languages
Japanese (ja)
Other versions
JP4936563B2 (en
Inventor
Terushi Hattori
輝志 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2008300596A priority Critical patent/JP4936563B2/en
Publication of JP2009068019A publication Critical patent/JP2009068019A/en
Application granted granted Critical
Publication of JP4936563B2 publication Critical patent/JP4936563B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spherical silsesquioxane fine particle that has an exceedingly small average value of a particle size and an exceedingly narrow particle size distribution and a surface modifier for a polymer material composed of the spherical silsesquioxane fine particle. <P>SOLUTION: The spherical silsesquioxane fine particle having the average value of the particle size of 10-30 nm and a variation coefficient of particle sizes of 15% or less is produced by bringing a specific silanol-forming silicon compound into contact with a fixed amount of water in the presence of a prescribed amount of a specific acid catalyst and simultaneously carrying out hydrolysis reaction and condensation reaction at a prescribed temperature. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、球状シルセスキオキサン微粒子及び高分子材料用表面改質剤に関する。高分子材料用表面改質剤、化粧品原料、コーティング材、診断薬用担体、塗料原料等として、球状シルセスキオキサン微粒子が広く利用されている。本発明は、粒子径の平均値が極めて小さく、また粒子径の分布が極めて狭い球状シルセスキオキサン微粒子及びかかる球状シルセスキオキサン微粒子から成る高分子材料用表面改質剤に関する。   The present invention relates to spherical silsesquioxane fine particles and a surface modifier for polymer materials. Spherical silsesquioxane fine particles are widely used as surface modifiers for polymer materials, cosmetic raw materials, coating materials, diagnostic agent carriers, paint raw materials, and the like. The present invention relates to spherical silsesquioxane fine particles having an extremely small average particle diameter and an extremely narrow particle size distribution, and a surface modifier for a polymer material comprising such spherical silsesquioxane fine particles.

従来、球状シルセスキオキサン微粒子は、1)アルカリ触媒存在下に、シラノール形成性ケイ素化合物を水と接触させ、加水分解反応及び縮合反応を同時に行なわせる方法(例えば特許文献1〜14参照)、2)アルカリ触媒存在下に、シラノール形成性ケイ素化合物を水と接触させ、加水分解反応させてシラノール化合物とした後、該シラノール化合物を縮合反応させる方法(例えば特許文献15参照)、3)無機酸触媒存在下に、シラノール形成性ケイ素化合物を水と接触させ、加水分解反応及び縮合反応を同時に行なわせる方法(例えば特許文献16参照)、4)有機酸触媒存在下に、シラノール形成性ケイ素化合物を水と接触させ、加水分解反応させてシラノール化合物とした後、該シラノール化合物を縮合反応させる方法(例えば特許文献17参照)等で得られている。   Conventionally, spherical silsesquioxane fine particles are: 1) a method in which a silanol-forming silicon compound is brought into contact with water in the presence of an alkali catalyst, and a hydrolysis reaction and a condensation reaction are simultaneously performed (for example, see Patent Documents 1 to 14); 2) A method in which a silanol-forming silicon compound is brought into contact with water in the presence of an alkali catalyst and hydrolyzed to form a silanol compound, followed by a condensation reaction of the silanol compound (see, for example, Patent Document 15), 3) inorganic acid A method in which a silanol-forming silicon compound is brought into contact with water in the presence of a catalyst, and a hydrolysis reaction and a condensation reaction are simultaneously performed (for example, see Patent Document 16). 4) A silanol-forming silicon compound is formed in the presence of an organic acid catalyst. A method of bringing the silanol compound into contact with water and hydrolyzing it to make a silanol compound, followed by condensation reaction of the silanol compound (for example, It has been obtained in Patent Document 17 reference) and the like.

ところが、これらの方法で得られる従来の球状シルセスキオキサン微粒子には、その粒子径の平均値が比較的に大きく、また粒子径の分布が比較的に広いという問題がある。具体的には、一般に得られる球状シルセスキオキサン微粒子の粒子径の平均値が100nm以上であり、また粒子径の変動係数が30%以上なのである。
特開昭61−159427号公報 特開昭61−159467号公報 特開昭62−43424号公報 特開昭63−8461号公報 特開昭63−15849号公報 特開昭63−77940号公報 特開昭63−295637号公報 特開昭63−297313号公報 特開平1−144423号公報 特開平2−209927号公報 特開平1−144423号公報 特開平2−209927号公報 特開平6−49209号公報 特開昭63−312324号公報 特開平6−263875号公報 特開昭61−194009号公報 特開平4−337390号公報
However, the conventional spherical silsesquioxane fine particles obtained by these methods have a problem that the average value of the particle diameter is relatively large and the distribution of the particle diameter is relatively wide. Specifically, the average value of the particle diameter of spherical silsesquioxane fine particles generally obtained is 100 nm or more, and the coefficient of variation of the particle diameter is 30% or more.
JP-A 61-159427 JP-A 61-159467 JP 62-43424 A JP-A 63-8461 JP 63-15849 A JP-A 63-77940 Japanese Patent Laid-Open No. 63-295537 JP-A 63-297313 JP-A-1-144423 JP-A-2-209927 JP-A-1-144423 JP-A-2-209927 JP-A-6-49209 JP-A-63-312324 JP-A-6-263875 JP 61-194209 A JP-A-4-337390

本発明が解決しようとする課題は、粒子径の平均値が極めて小さく、また粒子径の分布が極めて狭い球状シルセスキオキサン微粒子及びかかる球状シルセスキオキサン微粒子から成る高分子材料用表面改質剤を提供する処にある。   The problems to be solved by the present invention include spherical silsesquioxane fine particles having an extremely small average particle diameter and an extremely narrow particle size distribution, and surface modification for polymer materials comprising such spherical silsesquioxane fine particles. It is in place to provide the agent.

しかして本発明者らは、前記の課題を解決するべく研究した結果、特定のシラノール形成性ケイ素化合物を、所定量の特定の酸触媒の存在下で、所定量の水と接触させ、所定の温度下で加水分解反応及び縮合反応を同時に行なわせることにより得られる球状シルセスキオキサン微粒子が正しく好適であることを見出した。   Thus, as a result of researches to solve the above problems, the present inventors contacted a specific silanol-forming silicon compound with a predetermined amount of water in the presence of a predetermined amount of a specific acid catalyst, It has been found that spherical silsesquioxane fine particles obtained by simultaneously performing a hydrolysis reaction and a condensation reaction at a temperature are suitable.

すなわち本発明は、下記の条件1〜5を同時に満足する条件下で、シラノール形成性ケイ素化合物を酸触媒存在下で水と接触させ、加水分解反応及び縮合反応を同時に行なわせることにより得られる粒子径の平均値が10〜30nm且つ粒子径の変動係数が15%以下の球状シルセスキオキサン微粒子に係る。また本発明はかかる球状シルセスキオキサン微粒子から成る高分子材料用表面改質剤に係る。   That is, the present invention provides particles obtained by bringing a silanol-forming silicon compound into contact with water in the presence of an acid catalyst and simultaneously performing a hydrolysis reaction and a condensation reaction under the conditions that simultaneously satisfy the following conditions 1 to 5. The present invention relates to spherical silsesquioxane fine particles having an average diameter of 10 to 30 nm and a particle diameter variation coefficient of 15% or less. The present invention also relates to a surface modifier for polymer materials comprising such spherical silsesquioxane fine particles.

条件1:シラノール形成性ケイ素化合物が、メチルトリメトキシシランであること。   Condition 1: The silanol-forming silicon compound is methyltrimethoxysilane.

条件2:酸触媒が、ドデシルベンゼンスルホン酸であること。   Condition 2: The acid catalyst is dodecylbenzenesulfonic acid.

条件3:酸触媒の使用割合が、シラノール形成性ケイ素化合物1モル当たり0.004〜0.03モルであること。   Condition 3: The usage ratio of the acid catalyst is 0.004 to 0.03 mol per mol of the silanol-forming silicon compound.

条件4:シラノール形成性ケイ素化合物と水との使用割合が、シラノール形成性ケイ素化合物/水=5/95〜16/84(重量比)であること。   Condition 4: Use ratio of silanol-forming silicon compound and water is silanol-forming silicon compound / water = 5/95 to 16/84 (weight ratio).

条件5:加水分解反応及び縮合反応時の温度が、15〜25℃であること。   Condition 5: The temperature during the hydrolysis reaction and the condensation reaction is 15 to 25 ° C.

本発明に係る球状シルセスキオキサン微粒子は、後述する特定の条件1〜5を同時に満足する条件下で、シラノール形成性ケイ素化合物を酸触媒存在下で水と接触させ、加水分解反応及び縮合反応を同時に行なわせることにより得られるものである。   The spherical silsesquioxane fine particles according to the present invention are prepared by bringing a silanol-forming silicon compound into contact with water in the presence of an acid catalyst under the conditions simultaneously satisfying specific conditions 1 to 5 described later, and performing a hydrolysis reaction and a condensation reaction. Can be obtained simultaneously.

条件1は、シラノール形成性ケイ素化合物が、メチルトリメトキシシランであることである。メチルトリメトキシシランは、加水分解反応によって、1分子当たり3個のシラノール基を形成する。   Condition 1 is that the silanol-forming silicon compound is methyltrimethoxysilane. Methyltrimethoxysilane forms three silanol groups per molecule by a hydrolysis reaction.

条件2は、酸触媒が、ドデシルベンゼンスルホン酸であることである。   Condition 2 is that the acid catalyst is dodecylbenzenesulfonic acid.

条件3は、酸触媒の使用割合が、シラノール形成性ケイ素化合物1モル当たり、0.004〜0.03モルであることである。   Condition 3 is that the usage ratio of the acid catalyst is 0.004 to 0.03 mol per mol of the silanol-forming silicon compound.

条件4は、シラノール形成性ケイ素化合物と水との使用割合が、シラノール形成性ケイ素化合物/水=5/95〜16/84(重量比)、好ましくは7/93〜13/87(重量比)であることである。ここで使用する水は脱イオン水が好ましい。   Condition 4 is that the use ratio of silanol-forming silicon compound and water is silanol-forming silicon compound / water = 5/95 to 16/84 (weight ratio), preferably 7/93 to 13/87 (weight ratio). It is to be. The water used here is preferably deionized water.

条件5は、加水分解反応及び縮合反応時の温度が、15〜25℃であることである。かかる温度の制御は、反応系の加熱や冷却の他に、シラノール形成性ケイ素化合物に対する酸触媒の使用割合、シラノール形成性ケイ素化合物と水との使用割合、シラノール形成性ケイ素化合物及び水の温度、反応装置等を適宜選択して行うことができる。   Condition 5 is that the temperature during the hydrolysis reaction and the condensation reaction is 15 to 25 ° C. Such temperature control includes, in addition to heating and cooling of the reaction system, the use ratio of the acid catalyst to the silanol-forming silicon compound, the use ratio of the silanol-forming silicon compound and water, the temperature of the silanol-forming silicon compound and water, A reaction apparatus or the like can be selected as appropriate.

本発明に係る球状シルセスキオキサン微粒子は、以上説明したような特定の条件1〜5を同時に満足する条件下で、シラノール形成性ケイ素化合物を酸触媒の存在下で水と接触させ、加水分解反応及び縮合反応を同時に行なわせることにより得られるものである。より具体的には例えば、前記した特定の条件1〜5を同時に満足することを前提として、1)反応容器に水及び酸触媒を仕込んだ後、攪拌しつつシラノール形成性ケイ素化合物を滴下し、反応系の温度を制御しながら加水分解反応及び縮合反応を同時に行なわせる方法、2)反応容器に水を仕込んでおき、攪拌しつつ酸触媒及びこれとは別のシラノール形成性ケイ素化合物を同時に滴下して、反応系の温度を制御しながら加水分解反応及び縮合反応を同時に行なわせる方法等が挙げられる。かかる方法により、球状シルセスキオキサン微粒子はその半透明の水性懸濁液として得られるので、これをアルカリで中和した水性懸濁液とし、更に乾燥して、例えばスプレードライヤーにより100〜250℃で加熱乾燥して、所望通りの球状シルセスキオキサン微粒子を得る。   The spherical silsesquioxane fine particles according to the present invention are hydrolyzed by bringing a silanol-forming silicon compound into contact with water in the presence of an acid catalyst under the conditions satisfying the specific conditions 1 to 5 as described above. It is obtained by carrying out the reaction and the condensation reaction simultaneously. More specifically, for example, on the assumption that the specific conditions 1 to 5 described above are satisfied at the same time, 1) after adding water and an acid catalyst to the reaction vessel, the silanol-forming silicon compound is dropped while stirring, A method in which the hydrolysis reaction and the condensation reaction are simultaneously performed while controlling the temperature of the reaction system. 2) Water is charged in a reaction vessel, and an acid catalyst and a silanol-forming silicon compound different from this are dropped simultaneously while stirring. For example, a method in which a hydrolysis reaction and a condensation reaction are simultaneously performed while controlling the temperature of the reaction system. By this method, since the spherical silsesquioxane fine particles are obtained as a translucent aqueous suspension, this is made into an aqueous suspension neutralized with an alkali, and further dried, for example, 100 to 250 ° C. with a spray dryer. And dried by heating to obtain spherical silsesquioxane fine particles as desired.

かくして得られる本発明に係る球状シルセスキオキサン微粒子は、粒子径の平均値が10〜30nmで且つ粒子径の変動係数が15%以下のものとなる。   The spherical silsesquioxane fine particles according to the present invention thus obtained have an average particle diameter of 10 to 30 nm and a particle diameter variation coefficient of 15% or less.

本発明に係る高分子材料用表面改質剤は、前記した本発明に係る球状シルセスキオキサン微粒子から成るものである。前記した本発明に係る球状シルセスキオキサン微粒子は、高分子材料用表面改質剤、化粧品原料、コーティング材、診断薬用担体、塗料原料等として広く利用できる。なかでも、前記した本発明に係る球状シルセスキオキサン微粒子は、粒子径の平均値が極めて小さく、また粒子径の分布が極めて狭いため、従来の球状シルセスキオキサン微粒子と比べて、フィルムやシート等の高分子材料成形品表面への高速塗工性に優れ、かかる高分子材料成形品表面に平滑性、密着防止性及び離型性等の表面特性を安定して付与することができるので、高分子材料用表面改質剤として、特に滑剤として有用である。   The surface modifier for a polymer material according to the present invention comprises the spherical silsesquioxane fine particles according to the present invention described above. The spherical silsesquioxane fine particles according to the present invention described above can be widely used as a surface modifier for polymer materials, cosmetic raw materials, coating materials, diagnostic carriers, coating raw materials, and the like. Especially, since the above-mentioned spherical silsesquioxane fine particles according to the present invention have an extremely small average particle diameter and a very narrow particle size distribution, the film or film is smaller than the conventional spherical silsesquioxane fine particles. Because it is excellent in high-speed coating properties on the surface of polymer material molded products such as sheets, it can stably impart surface properties such as smoothness, adhesion prevention and release properties to the surface of such polymer material molded products. It is useful as a surface modifier for polymer materials, particularly as a lubricant.

本発明に係る高分子材料用表面改質剤を適用する高分子材料としては、ポリエステル、ナイロン、ポリエチレン、ポリプロピレン、ポリカプロラクトン、アクリル樹脂、スチレン系樹脂、ポリカーボネート等の合成高分子から成形された合成高分子フィルムやシート、同様の合成高分子から成形されたフィラメントヤーンやステープルファイバー等の合成繊維が挙げられる。   The polymer material to which the surface modifier for the polymer material according to the present invention is applied is a synthetic material molded from a synthetic polymer such as polyester, nylon, polyethylene, polypropylene, polycaprolactone, acrylic resin, styrenic resin, and polycarbonate. Examples include polymer films and sheets, and synthetic fibers such as filament yarns and staple fibers formed from similar synthetic polymers.

本発明に係る高分子材料用表面改質剤を合成高分子フィルムの滑剤として適用する方法としては、高分子材料用表面改質剤の水性懸濁液を調製し、又は本発明の製造方法によって得られる前記の水性懸濁液をそのまま使用して、これをローラータッチ法、スプレー法、スピンコート法等の公知の方法によって合成高分子フィルムの表面に塗布する方法が挙げられる。塗布する工程としては、合成高分子フィルムの製造工程において、これらの溶融押出し直後における延伸配向前の工程、一軸延伸配向後における二軸延伸配向前の工程等が挙げられる。これらの工程で塗布する場合に通常は、高分子材料用表面改質剤を、合成高分子フィルム1m当たり、0.01〜0.2gとなるように塗布する。 As a method of applying the surface modifier for a polymer material according to the present invention as a lubricant for a synthetic polymer film, an aqueous suspension of the surface modifier for a polymer material is prepared, or by the production method of the present invention. Examples thereof include a method in which the obtained aqueous suspension is used as it is and applied to the surface of the synthetic polymer film by a known method such as a roller touch method, a spray method, a spin coating method or the like. Examples of the coating step include a step before stretch orientation immediately after melt extrusion in the synthetic polymer film production step, a step before biaxial stretch orientation after uniaxial stretch orientation, and the like. When apply | coating at these processes, the surface modifier for polymeric materials is normally apply | coated so that it may become 0.01-0.2g per 1 m < 2 > of synthetic polymer films.

本発明によると、粒子径が極めて小さく、また粒子径の分布が極めて狭い球状シルセスキオキサン微粒子を提供できるという効果がある。   According to the present invention, there is an effect that it is possible to provide spherical silsesquioxane fine particles having a very small particle size and a very narrow particle size distribution.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明がこれらの実施例に限定されるというものではない。尚、以下の実施例、参考例及び比較例において、部は重量部を、また%は重量%を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to these examples. In the following Examples, Reference Examples and Comparative Examples, “part” means “part by weight” and “%” means “% by weight”.

試験区分1(球状シルセスキオキサン微粒子の製造と評価)
・実施例1
反応容器に水672g及びドデシルベンゼンスルホン酸6g(0.018モル)を仕込み、攪拌しながら、メチルトリメトキシシラン90g(0.66モル)を10分間かけて滴下し、加水分解反応及び縮合反応を同時に行なわせた。滴下中は、発熱による反応系の温度上昇を20〜25℃に制御するため、適宜冷却した。メチルトリメトキシシランの滴下終了後、更に反応系の温度を20〜25℃に制御しながら、攪拌を続けて、メチルトリメトキシシラン滴下開始から24時間後に、5%水酸化ナトリウム水溶液14.7gを投入して触媒を中和し、加水分解反応及び縮合反応を終了させて、水性懸濁液を得た。この水性懸濁液をスプレードライヤーで乾燥処理して、白色粉体42gを得た。この白色粉体を元素分析、NMR分析、ICP発光分光分析により分析したところ、ケイ素含有量41%、炭素含有量18%の球状シルセスキオキサン微粒子であり、走査型電子顕微鏡による任意の100個の球状シルセスキオキサン微粒子の測定結果から、粒子径の平均値21nm、粒子径の変動係数12%の球状シルセスキオキサン微粒子であった。これを球状シルセスキオキサン微粒子(P−1)とした。
Test category 1 (Production and evaluation of spherical silsesquioxane fine particles)
Example 1
Into the reaction vessel, 672 g of water and 6 g (0.018 mol) of dodecylbenzenesulfonic acid were charged, and 90 g (0.66 mol) of methyltrimethoxysilane was added dropwise over 10 minutes with stirring to conduct hydrolysis reaction and condensation reaction. I made it happen simultaneously. During dripping, in order to control the temperature rise of the reaction system due to heat generation to 20 to 25 ° C., cooling was appropriately performed. After completion of the dropwise addition of methyltrimethoxysilane, stirring was continued while controlling the temperature of the reaction system at 20 to 25 ° C., and 14.7 g of 5% aqueous sodium hydroxide solution was added 24 hours after the start of dropwise addition of methyltrimethoxysilane. The catalyst was added to neutralize the catalyst, the hydrolysis reaction and the condensation reaction were terminated, and an aqueous suspension was obtained. This aqueous suspension was dried with a spray dryer to obtain 42 g of white powder. This white powder was analyzed by elemental analysis, NMR analysis, and ICP emission spectroscopic analysis. As a result, spherical silsesquioxane fine particles having a silicon content of 41% and a carbon content of 18% were obtained. From the measurement results of the spherical silsesquioxane fine particles, the spherical silsesquioxane fine particles having an average particle diameter of 21 nm and a coefficient of variation of the particle diameter of 12%. This was designated as spherical silsesquioxane fine particles (P-1).

・実施例又は参考例2〜7及び比較例1〜8
実施例1の球状シルセスキオキサン微粒子(P−1)と同様にして、実施例又は参考例2〜7の球状シルセスキオキサン微粒子(P−2)〜(P−7)及び比較例1〜8の球状シルセスキオキサン微粒子(R−1)〜(R−8)を得た。これらの内容を表1にまとめて示した。
Examples or Reference Examples 2 to 7 and Comparative Examples 1 to 8
In the same manner as the spherical silsesquioxane fine particles (P-1) of Example 1, the spherical silsesquioxane fine particles (P-2) to (P-7) of Examples or Reference Examples 2 to 7 and Comparative Example 1 were used. ˜8 spherical silsesquioxane fine particles (R-1) to (R-8) were obtained. These contents are summarized in Table 1.

・実施例8
反応容器に水588gを仕込み、攪拌しながら、メチルトリメトキシシラン90g(0.66モル)と、ドデシルベンゼンスルホン酸6g(0.018モル)を溶解した水溶液90gとを、10分間かけて同時に滴下した。滴下中は、発熱による反応系の温度上昇を20〜25℃に制御するため、適宜冷却した。メチルトリメトキシシラン及びドデシルベンゼンスルホン酸水溶液の滴下終了後、更に反応系の温度を20〜25℃に制御しながら、攪拌を続けて、これらの滴下開始から24時間後に、5%水酸化ナトリウム水溶液14.7gを投入して触媒を中和し、加水分解反応及び縮合反応を終了させて、水性懸濁液を得た。この水性懸濁液をスプレードライヤーで乾燥処理して、白色粉体42gを得た。この白色粉体について実施例1と同様に分析し、測定したところ、粒子径の平均値22nm、粒子径の変動係数12%の球状シルセスキオキサン微粒子であった。これを球状シルセスキオキサン微粒子(P−8)とした。
Example 8
While charging 588 g of water in a reaction vessel and stirring, 90 g (0.66 mol) of methyltrimethoxysilane and 90 g of an aqueous solution in which 6 g (0.018 mol) of dodecylbenzenesulfonic acid is dissolved are dropped simultaneously over 10 minutes. did. During dripping, in order to control the temperature rise of the reaction system due to heat generation to 20 to 25 ° C., cooling was appropriately performed. After completion of the dropwise addition of the aqueous solution of methyltrimethoxysilane and dodecylbenzenesulfonic acid, stirring was continued while controlling the temperature of the reaction system at 20 to 25 ° C., and 24% after the start of the dropwise addition, 5% aqueous sodium hydroxide solution 14.7 g was added to neutralize the catalyst, the hydrolysis reaction and the condensation reaction were terminated, and an aqueous suspension was obtained. This aqueous suspension was dried with a spray dryer to obtain 42 g of white powder. The white powder was analyzed and measured in the same manner as in Example 1. As a result, spherical silsesquioxane fine particles having an average particle diameter of 22 nm and a particle diameter variation coefficient of 12% were obtained. This was designated as spherical silsesquioxane fine particles (P-8).

・参考例9〜11
実施例8の球状シルセスキオキサン微粒子(P−8)と同様にして、参考例9〜11の球状シルセスキオキサン微粒子(P−9)〜(P−11)を得た。これらの内容を表1にまとめて示した。
Reference examples 9-11
In the same manner as the spherical silsesquioxane fine particles (P-8) of Example 8, spherical silsesquioxane fine particles (P-9) to (P-11) of Reference Examples 9 to 11 were obtained. These contents are summarized in Table 1.

比較例9
反応容器にpH12.5の水酸化ナトリウム水溶液800gを入れ、撹拌しつつ、昇温した。液温が50℃に到達したところで、メチルトリメトキシシラン67g(0.49モル)を5分間かけて滴下した。滴下中は、発熱による反応系の温度上昇を50〜55℃に制御するため、適宜冷却した。滴下終了後、さらに2分間撹拌した後、撹拌を止め、静置下に50〜55℃で1時間熟成した。その後、50%酢酸水溶液8gを添加して触媒を中和し、濾過した。濾別したケークを取出し、150℃で2時間乾燥して白色粉末28gを得た。この白色粉末を実施例1と同様にして測定したところ、粒子径の平均値500nm、粒子径の変動係数15%の球状シルセスキオキサン微粒子であった。これを球状シルセスキオキサン微粒子(R−9)とした。
Comparative Example 9
A reaction vessel was charged with 800 g of an aqueous sodium hydroxide solution having a pH of 12.5, and the temperature was raised while stirring. When the liquid temperature reached 50 ° C., 67 g (0.49 mol) of methyltrimethoxysilane was added dropwise over 5 minutes. During dripping, in order to control the temperature rise of the reaction system due to heat generation to 50 to 55 ° C., cooling was appropriately performed. After completion of the dropwise addition, the mixture was further stirred for 2 minutes, then the stirring was stopped, and the mixture was aged at 50 to 55 ° C. for 1 hour while standing still. Thereafter, 8 g of 50% aqueous acetic acid solution was added to neutralize the catalyst, followed by filtration. The cake separated by filtration was taken out and dried at 150 ° C. for 2 hours to obtain 28 g of white powder. When this white powder was measured in the same manner as in Example 1, it was spherical silsesquioxane fine particles having an average particle diameter of 500 nm and a particle diameter variation coefficient of 15%. This was designated as spherical silsesquioxane fine particles (R-9).

比較例10
反応容器に水216g及び酢酸0.04gを仕込み、撹拌しつつメチルトリメトキシシラン272g(2.0モル)を加えた。加水分解反応が進行し、10分間で液温が60℃に上昇した。4時間撹拌を続けた後、濾過して透明なシラノール溶液を得た。別の反応容器に水2000g及び28%アンモニア水溶液50gを仕込み、25℃に調温した。これを撹拌しながら、前記のシラノール溶液488gを10分間かけて滴下した。滴下終了後、16時間撹拌を続けた。反応系を遠心分離処理して沈降物を取り出し、150℃で2時間乾燥して白色粉末131gを得た。この白色粉末を実施例1と同様にして測定したところ、粒子径の平均値130nm、粒子径の変動係数30%の球状シルセスキオキサン微粒子であった。これを球状シルセスキオキサン微粒子(R−10)とした。
Comparative Example 10
A reaction vessel was charged with 216 g of water and 0.04 g of acetic acid, and 272 g (2.0 mol) of methyltrimethoxysilane was added with stirring. The hydrolysis reaction proceeded, and the liquid temperature rose to 60 ° C. in 10 minutes. Stirring was continued for 4 hours, followed by filtration to obtain a transparent silanol solution. In another reaction vessel, 2000 g of water and 50 g of 28% aqueous ammonia solution were charged, and the temperature was adjusted to 25 ° C. While stirring this, 488 g of the silanol solution was added dropwise over 10 minutes. After completion of dropping, stirring was continued for 16 hours. The reaction system was centrifuged and the precipitate was taken out and dried at 150 ° C. for 2 hours to obtain 131 g of a white powder. When this white powder was measured in the same manner as in Example 1, it was spherical silsesquioxane fine particles having an average particle diameter of 130 nm and a particle diameter variation coefficient of 30%. This was designated as spherical silsesquioxane fine particles (R-10).

・比較例11
反応容器にpH4.0の塩酸水溶液500g及びメチルトリメトキシシラン100g(0.74モル)を仕込み、5時間撹拌して、加水分解反応及び縮合反応を同時に行なわせ、シルセスキオキサンの硬化物を得た。この硬化物をアトマイザーで粉砕し、白色粉体44gを得た。この白色粉末を実施例1と同様にして測定したところ、粒子径の平均値5000nm、粒子径の変動係数75%のシルセスキオキサン微粒子であった。これをシルセスキオキサン微粒子(R−11)とした。
Comparative Example 11
A reaction vessel was charged with 500 g of a hydrochloric acid aqueous solution of pH 4.0 and 100 g (0.74 mol) of methyltrimethoxysilane, and stirred for 5 hours to simultaneously perform a hydrolysis reaction and a condensation reaction, and a cured product of silsesquioxane was obtained. Obtained. This cured product was pulverized with an atomizer to obtain 44 g of a white powder. The white powder was measured in the same manner as in Example 1 and found to be silsesquioxane fine particles having an average particle diameter of 5000 nm and a particle diameter variation coefficient of 75%. This was designated as silsesquioxane fine particles (R-11).

・比較例12
反応容器に水216g及び酢酸0.04gを仕込み、撹拌しつつメチルトリメトキシシラン272g(2.0モル)を加えた。加水分解反応が進行し、10分間で液温が60℃に上昇した。4時間撹拌を続けた後、濾過して透明なシラノール溶液を得た。別の反応容器に水475g及びドデシルベンゼンスルホン酸50g(0.15モル)を仕込み、液温を80〜85℃に加熱調温した。これを撹拌しながら、先のシラノール溶液300gを2時間かけて滴下した。滴下終了後、15分間撹拌を続けた後、冷却し、炭酸ナトリウム水溶液でpH7となるよう中和して、水性懸濁液を得た。この水性懸濁液を遠心分離処理して沈降物を取り出し、150℃で2時間乾燥して、白色粉末75gを得た。この白色粉末を実施例1と同様にして測定したところ、粒子径の平均値85nm、粒子径の変動係数55%の球状シルセスキオキサン微粒子であった。これを球状シルセスキオキサン微粒子(R−12)とした。






















Comparative Example 12
A reaction vessel was charged with 216 g of water and 0.04 g of acetic acid, and 272 g (2.0 mol) of methyltrimethoxysilane was added with stirring. The hydrolysis reaction proceeded, and the liquid temperature rose to 60 ° C. in 10 minutes. Stirring was continued for 4 hours, followed by filtration to obtain a transparent silanol solution. In a separate reaction vessel, 475 g of water and 50 g (0.15 mol) of dodecylbenzenesulfonic acid were charged, and the temperature of the liquid was adjusted to 80 to 85 ° C. While stirring this, 300 g of the previous silanol solution was dropped over 2 hours. After completion of the dropwise addition, stirring was continued for 15 minutes, followed by cooling and neutralization with an aqueous sodium carbonate solution to pH 7 to obtain an aqueous suspension. The aqueous suspension was centrifuged to remove the precipitate, and dried at 150 ° C. for 2 hours to obtain 75 g of white powder. When this white powder was measured in the same manner as in Example 1, it was spherical silsesquioxane fine particles having an average particle diameter of 85 nm and a particle diameter variation coefficient of 55%. This was designated as spherical silsesquioxane fine particles (R-12).






















Figure 2009068019
Figure 2009068019

表1において、
*1:シラノール形成性ケイ素化合物1モルに対する酸触媒のモル数
A−1:メチルトリメトキシシラン
A−2:プロピルトリメトキシシラン
A−3:フェニルトリメトキシシラン
B−1:ドデシルベンゼンスルホン酸
B−2:ジノニルベンゼンスルホン酸
B−3:酸性硫酸ドデシル
B−4:リン酸モノデシル=二水素
BR−1:硫酸
BR−2:トリメチルラウリルアンモニウムクロライド
BR−3:水酸化ナトリウム
In Table 1,
* 1: Number of moles of acid catalyst per mole of silanol-forming silicon compound A-1: Methyltrimethoxysilane A-2: Propyltrimethoxysilane A-3: Phenyltrimethoxysilane B-1: Dodecylbenzenesulfonic acid B- 2: dinonylbenzenesulfonic acid B-3: acidic dodecyl sulfate B-4: monodecyl phosphate = dihydrogen BR-1: sulfuric acid BR-2: trimethyllauryl ammonium chloride BR-3: sodium hydroxide

試験区分2(高分子材料用表面改質剤としての評価)
・平滑性の評価
25℃のオルソクロロフェノール中で測定した極限粘度が0.62の、無機質フィラーを全く含まないポリエチレンテレフタレートを、エクストルーダーで口金から押し出し、これを40℃に冷却したドラム上で静電印加を行ないながら厚さ152μmの押し出しフィルムとし、続いて93℃に加熱した金属ロール上で長手方向へ3.6倍に延伸して、一軸延伸フィルムとした。次にこの一軸延伸フィルムがテンターに至る直前の位置で、該一軸延伸フィルムの片面上に、試験区分1で合成した球状シルセスキオキサン微粒子の0.1%水性懸濁液を3本のロールからなるコーターヘッドから均一塗布した。この際の球状シルセスキオキサン微粒子の塗工量は上記一軸延伸フィルム1m2当り2.3gとした(この塗布量は、下記の二軸延伸フィルムでは1m2当り0.0129gに相当する)。最後に片面塗工した一軸延伸フィルムをテンター内に導き、101℃で横方向へ3.5倍に延伸し、更に225℃で6.3秒間熱固定して、二軸延伸フィルムとした(片面塗工後のフィルムが加熱を受けた時間は合計で11秒間である)。この二軸延伸フィルムを23℃×65%RHの雰囲気にて調湿し、同条件下で、梨地表面のステンレス板に対する動摩擦係数を摩擦係数測定機(東洋精機社製のTR型、荷重200g、速度300mm/分)で測定し、下記の基準で評価した。結果を表2にまとめて示した。
◎:動摩擦係数が0.3未満、優れている。
○:動摩擦係数が0.3以上0.5未満、良好である。
△:動摩擦係数が0.5以上0.7未満、やや劣る。
×:動摩擦係数が0.7以上、劣る。
Test category 2 (Evaluation as surface modifier for polymer materials)
・ Evaluation of smoothness Polyethylene terephthalate having an intrinsic viscosity of 0.62 measured in orthochlorophenol at 25 ° C. and containing no inorganic filler is extruded from a die with an extruder, and this is cooled on a drum cooled to 40 ° C. An extruded film having a thickness of 152 μm was formed while applying static electricity, and then stretched 3.6 times in the longitudinal direction on a metal roll heated to 93 ° C. to obtain a uniaxially stretched film. Next, at a position just before the uniaxially stretched film reaches the tenter, three rolls of 0.1% aqueous suspension of spherical silsesquioxane fine particles synthesized in Test Section 1 are formed on one side of the uniaxially stretched film. The coater head was uniformly coated. The coating amount of the spherical silsesquioxane fine particles at this time was 2.3 g per 1 m 2 of the uniaxially stretched film (this coating amount corresponds to 0.0129 g per 1 m 2 for the following biaxially stretched film). Finally, the uniaxially stretched film coated on one side was introduced into a tenter, stretched 3.5 times in the transverse direction at 101 ° C., and further heat-set at 225 ° C. for 6.3 seconds to obtain a biaxially stretched film (single side The total time for which the coated film was heated was 11 seconds). The biaxially stretched film was conditioned in an atmosphere of 23 ° C. × 65% RH, and under the same conditions, the coefficient of dynamic friction with respect to the stainless steel plate on the satin surface was determined by a friction coefficient measuring machine (TR type manufactured by Toyo Seiki Co., Ltd., load 200 g, At a speed of 300 mm / min) and evaluated according to the following criteria. The results are summarized in Table 2.
A: The coefficient of dynamic friction is less than 0.3, which is excellent.
○: The coefficient of dynamic friction is 0.3 or more and less than 0.5, which is good.
(Triangle | delta): A dynamic friction coefficient is 0.5 or more and less than 0.7, and is somewhat inferior.
X: The dynamic friction coefficient is inferior by 0.7 or more.

・高速塗工性の評価
前記の一軸延伸フィルム上に、球状シルセスキオキサン微粒子の0.1%水性懸濁液を、スピンコーターによるスピンコート法により、回転速度4000rpmで高速塗工した。一軸延伸フィルムの高速塗工面を走査型電子顕微鏡で観察し、球状シルセスキオキサン微粒子の水性懸濁液の高速塗工性を下記の基準で評価した。結果を表2にまとめて示した。
評価基準
◎:均一な塗工膜である。
○:ほぼ均一な塗工膜である。
△:塗工抜けが幾分あるが、全体としてはほぼ均一な塗工膜である。
×:塗工抜けが多く、不均一な塗工膜である。
Evaluation of high-speed coating property A 0.1% aqueous suspension of spherical silsesquioxane fine particles was applied onto the uniaxially stretched film at a rotational speed of 4000 rpm by a spin coating method using a spin coater. The high-speed coating surface of the uniaxially stretched film was observed with a scanning electron microscope, and the high-speed coating property of the aqueous suspension of spherical silsesquioxane fine particles was evaluated according to the following criteria. The results are summarized in Table 2.
Evaluation criteria A: Uniform coating film.
○: Almost uniform coating film.
Δ: Although there is some coating omission, the coating film is almost uniform as a whole.
X: There are many coating omissions and it is a non-uniform coating film.

・剥離性(密着防止性又は離型性)の評価
前記の一軸延伸フィルム上に、球状シルセスキオキサン微粒子の0.1%水性懸濁液を、スピンコーターによるスピンコート法により、回転速度4000rpmで高速塗工した。一軸延伸フィルムの高速塗工面に粘着テープを貼り合わせ、20mm幅に切り出し、一軸延伸フィルムの高速塗工面と粘着テープとの間の180度剥離力をテンシロンにより測定して、下記の基準で評価した。結果を表2にまとめて示した。
◎:剥離力が10g/20mm未満、優れている。
○:剥離力が10g/20mm以上50g/20mm未満、良好である。
△:剥離力が50g/20mm以上70g/20mm未満、やや劣る。
×:剥離力が70g/20mm以上、劣る。











-Evaluation of peelability (adhesion prevention or releasability) A 0.1% aqueous suspension of spherical silsesquioxane fine particles on the uniaxially stretched film was rotated at 4000 rpm by a spin coater using a spin coater. High speed coating. Adhesive tape was bonded to the high-speed coated surface of the uniaxially stretched film, cut into a width of 20 mm, 180 degree peel force between the high-speed coated surface of the uniaxially stretched film and the adhesive tape was measured with Tensilon, and evaluated according to the following criteria. . The results are summarized in Table 2.
A: Excellent peel strength of less than 10 g / 20 mm.
○: The peel force is 10 g / 20 mm or more and less than 50 g / 20 mm, which is good.
Δ: Peeling force is 50 g / 20 mm or more and less than 70 g / 20 mm or slightly inferior.
X: The peeling force is inferior by 70 g / 20 mm or more.











Figure 2009068019
Figure 2009068019

表2において、
P−1〜P−11及びR−1〜R−12:試験区分1で合成した球状シルセスキオキサン微粒子
In Table 2,
P-1 to P-11 and R-1 to R-12: spherical silsesquioxane fine particles synthesized in test category 1

Claims (4)

下記の条件1〜5を同時に満足する条件下で、シラノール形成性ケイ素化合物を酸触媒存在下で水と接触させ、加水分解反応及び縮合反応を同時に行なわせることにより得られる粒子径の平均値が10〜30nm且つ粒子径の変動係数が15%以下の球状シルセスキオキサン微粒子。
条件1:シラノール形成性ケイ素化合物が、メチルトリメトキシシランであること。
条件2:酸触媒が、ドデシルベンゼンスルホン酸であること。
条件3:酸触媒の使用割合が、シラノール形成性ケイ素化合物1モル当たり0.004〜0.03モルであること。
条件4:シラノール形成性ケイ素化合物と水との使用割合が、シラノール形成性ケイ素化合物/水=5/95〜16/84(重量比)であること。
条件5:加水分解反応及び縮合反応時の温度が、15〜25℃であること。
The average particle diameter obtained by bringing the silanol-forming silicon compound into contact with water in the presence of an acid catalyst and simultaneously performing a hydrolysis reaction and a condensation reaction under the conditions that simultaneously satisfy the following conditions 1 to 5: Spherical silsesquioxane fine particles having a particle size variation coefficient of 15% or less of 10 to 30 nm.
Condition 1: The silanol-forming silicon compound is methyltrimethoxysilane.
Condition 2: The acid catalyst is dodecylbenzenesulfonic acid.
Condition 3: The usage ratio of the acid catalyst is 0.004 to 0.03 mol per mol of the silanol-forming silicon compound.
Condition 4: The use ratio of the silanol-forming silicon compound and water is silanol-forming silicon compound / water = 5/95 to 16/84 (weight ratio).
Condition 5: The temperature during the hydrolysis reaction and the condensation reaction is 15 to 25 ° C.
請求項1記載の球状シルセスキオキサン微粒子から成る高分子材料用表面改質剤。   A surface modifier for a polymer material comprising the spherical silsesquioxane fine particles according to claim 1. 高分子材料用滑剤である請求項2記載の高分子材料用表面改質剤。   The surface modifier for a polymer material according to claim 2, which is a lubricant for the polymer material. 合成高分子の押し出しフィルム用のものである請求項2又は3記載の高分子材料用表面改質剤。   The surface modifier for a polymer material according to claim 2 or 3, which is used for an extruded film of a synthetic polymer.
JP2008300596A 2008-11-26 2008-11-26 Surface modifier for polymer materials Expired - Fee Related JP4936563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300596A JP4936563B2 (en) 2008-11-26 2008-11-26 Surface modifier for polymer materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008300596A JP4936563B2 (en) 2008-11-26 2008-11-26 Surface modifier for polymer materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004273005A Division JP4397037B2 (en) 2004-09-21 2004-09-21 Method for producing spherical silsesquioxane fine particles

Publications (2)

Publication Number Publication Date
JP2009068019A true JP2009068019A (en) 2009-04-02
JP4936563B2 JP4936563B2 (en) 2012-05-23

Family

ID=40604598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300596A Expired - Fee Related JP4936563B2 (en) 2008-11-26 2008-11-26 Surface modifier for polymer materials

Country Status (1)

Country Link
JP (1) JP4936563B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018149475A1 (en) * 2017-02-14 2018-08-23 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
WO2019079194A3 (en) * 2017-10-16 2019-05-23 Polyone Corporation Inherently flame retardant compound to diffuse visible light from fixtures containing light emitting diodes and panels made therefrom
US11535737B2 (en) 2017-02-09 2022-12-27 Geon Performance Solutions, Llc Thermally conductive polyvinyl halide

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424297A (en) * 1982-07-08 1984-01-03 Dow Corning Corporation Colloidal silesquioxanes
JPS6013813A (en) * 1983-07-05 1985-01-24 Toshiba Silicone Co Ltd Preparation of polymethylsilsesquioxane
JPS61108628A (en) * 1984-11-01 1986-05-27 Fujitsu Ltd Production of lower-alkylpolysilsesquioxane
JPS6252119A (en) * 1985-08-29 1987-03-06 Tokuyama Soda Co Ltd Production of silica particle
JPS6377940A (en) * 1986-09-19 1988-04-08 Toshiba Silicone Co Ltd Perfectly spherical polymethylsilsesquioxane powder and production thereof
JPH01145317A (en) * 1987-12-01 1989-06-07 Nippon Shokubai Kagaku Kogyo Co Ltd Production of spherical fine particle of silica
JPH03269020A (en) * 1990-03-19 1991-11-29 Shin Etsu Chem Co Ltd Production of silsesqueoxane globular fine powder containing acryloxy group and mercapto group
JPH04335031A (en) * 1990-12-28 1992-11-24 Wacker Chemie Gmbh Manufacture of organopolysiloxane hydrosol
JPH04337390A (en) * 1991-05-14 1992-11-25 Takemoto Oil & Fat Co Ltd Aqueous mold release agent for die-casting
JPH06179751A (en) * 1992-12-14 1994-06-28 Tokuyama Soda Co Ltd Production of polyorganosilsesquioxane
JPH06279589A (en) * 1993-03-26 1994-10-04 Toray Ind Inc Production of fine spherical silicone particles
JPH07178335A (en) * 1993-11-09 1995-07-18 Nippon Shokubai Co Ltd Organic polymer combined inorganic fine particle, its production and dispersed body and film forming composition containing the same
JPH09302257A (en) * 1996-05-20 1997-11-25 Nippon Shokubai Co Ltd Composite composed of fine inorganic particle and organic polymer, production thereof, and film-forming composition
JPH11152336A (en) * 1997-08-29 1999-06-08 Ube Nitto Kasei Co Ltd Production of polyorganosiloxane microparticle
JPH11181095A (en) * 1997-09-10 1999-07-06 Ube Nitto Kasei Co Ltd Production of polyorganosiloxane microparttcle
JPH11322945A (en) * 1998-05-21 1999-11-26 Ge Toshiba Silicone Kk Polyorganosiloxane emulsion and its production
WO2000034392A1 (en) * 1998-12-08 2000-06-15 Kaneka Corporation Flame retardant for thermoplastic resin and flame-retardant resin composition
JP2000264968A (en) * 1999-03-16 2000-09-26 Kanegafuchi Chem Ind Co Ltd Production of polyorganosiloxane-based latex
JP2001106786A (en) * 1999-10-07 2001-04-17 Toray Ind Inc Method for producing fain particle
JP2003295409A (en) * 2002-04-03 2003-10-15 Konica Corp Heat treating apparatus and heat developing device provided with heat treating apparatus
JP2004075995A (en) * 2002-06-19 2004-03-11 Nippon Shokubai Co Ltd Fine particle of organic/inorganic composite and additive for film
JP2004277476A (en) * 2003-03-13 2004-10-07 Ube Nitto Kasei Co Ltd Method for producing polyorganosiloxane particle
JP2004339297A (en) * 2003-05-14 2004-12-02 Ube Nitto Kasei Co Ltd Method for producing polyorganosiloxane particle and method for producing silica particle

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424297A (en) * 1982-07-08 1984-01-03 Dow Corning Corporation Colloidal silesquioxanes
JPS6013813A (en) * 1983-07-05 1985-01-24 Toshiba Silicone Co Ltd Preparation of polymethylsilsesquioxane
JPS61108628A (en) * 1984-11-01 1986-05-27 Fujitsu Ltd Production of lower-alkylpolysilsesquioxane
JPS6252119A (en) * 1985-08-29 1987-03-06 Tokuyama Soda Co Ltd Production of silica particle
JPS6377940A (en) * 1986-09-19 1988-04-08 Toshiba Silicone Co Ltd Perfectly spherical polymethylsilsesquioxane powder and production thereof
JPH01145317A (en) * 1987-12-01 1989-06-07 Nippon Shokubai Kagaku Kogyo Co Ltd Production of spherical fine particle of silica
JPH03269020A (en) * 1990-03-19 1991-11-29 Shin Etsu Chem Co Ltd Production of silsesqueoxane globular fine powder containing acryloxy group and mercapto group
JPH04335031A (en) * 1990-12-28 1992-11-24 Wacker Chemie Gmbh Manufacture of organopolysiloxane hydrosol
JPH04337390A (en) * 1991-05-14 1992-11-25 Takemoto Oil & Fat Co Ltd Aqueous mold release agent for die-casting
JPH06179751A (en) * 1992-12-14 1994-06-28 Tokuyama Soda Co Ltd Production of polyorganosilsesquioxane
JPH06279589A (en) * 1993-03-26 1994-10-04 Toray Ind Inc Production of fine spherical silicone particles
JPH07178335A (en) * 1993-11-09 1995-07-18 Nippon Shokubai Co Ltd Organic polymer combined inorganic fine particle, its production and dispersed body and film forming composition containing the same
JPH09302257A (en) * 1996-05-20 1997-11-25 Nippon Shokubai Co Ltd Composite composed of fine inorganic particle and organic polymer, production thereof, and film-forming composition
JPH11152336A (en) * 1997-08-29 1999-06-08 Ube Nitto Kasei Co Ltd Production of polyorganosiloxane microparticle
JPH11181095A (en) * 1997-09-10 1999-07-06 Ube Nitto Kasei Co Ltd Production of polyorganosiloxane microparttcle
JPH11322945A (en) * 1998-05-21 1999-11-26 Ge Toshiba Silicone Kk Polyorganosiloxane emulsion and its production
WO2000034392A1 (en) * 1998-12-08 2000-06-15 Kaneka Corporation Flame retardant for thermoplastic resin and flame-retardant resin composition
JP2000264968A (en) * 1999-03-16 2000-09-26 Kanegafuchi Chem Ind Co Ltd Production of polyorganosiloxane-based latex
JP2001106786A (en) * 1999-10-07 2001-04-17 Toray Ind Inc Method for producing fain particle
JP2003295409A (en) * 2002-04-03 2003-10-15 Konica Corp Heat treating apparatus and heat developing device provided with heat treating apparatus
JP2004075995A (en) * 2002-06-19 2004-03-11 Nippon Shokubai Co Ltd Fine particle of organic/inorganic composite and additive for film
JP2004277476A (en) * 2003-03-13 2004-10-07 Ube Nitto Kasei Co Ltd Method for producing polyorganosiloxane particle
JP2004339297A (en) * 2003-05-14 2004-12-02 Ube Nitto Kasei Co Ltd Method for producing polyorganosiloxane particle and method for producing silica particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11535737B2 (en) 2017-02-09 2022-12-27 Geon Performance Solutions, Llc Thermally conductive polyvinyl halide
WO2018149475A1 (en) * 2017-02-14 2018-08-23 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
US11028228B2 (en) 2017-02-14 2021-06-08 Wacker Chemie Ag Process for producing sperhical polysilsesquioxane particles
WO2019079194A3 (en) * 2017-10-16 2019-05-23 Polyone Corporation Inherently flame retardant compound to diffuse visible light from fixtures containing light emitting diodes and panels made therefrom

Also Published As

Publication number Publication date
JP4936563B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
KR101704548B1 (en) Substrate-less double-sided pressure-sensitive adhesive sheet
CN112601791B (en) Release film containing fluorine group
JP4217315B2 (en) Release coating composition, release product comprising the release coating composition, and method for producing the release product
JP6841355B2 (en) Release film for manufacturing ceramic green sheets
KR101707863B1 (en) Mold release film
JP2012159548A (en) Mold-release polyester film for polarizing plate
JP6165141B2 (en) Biaxially stretched polyester film for mold release
WO1998051490A1 (en) Release film
JP4936563B2 (en) Surface modifier for polymer materials
JP2004323766A (en) Mold release film
JP4397037B2 (en) Method for producing spherical silsesquioxane fine particles
JP7144715B2 (en) Release film roll for manufacturing ceramic green sheets
JP2009214347A (en) Mold release film
JPH08506775A (en) In-line silicone coated biaxially oriented copolyester film and method for making the film
JP5236318B2 (en) Release film
JP6447330B2 (en) Release film
KR100446413B1 (en) Method for manufacturing polyester film coated with primer capable of improving coating state and final physical properties of polyester film
JP5864352B2 (en) Release film for anisotropic conductive film
JP2020146890A (en) Process paper for synthetic leather and manufacturing method of process paper for synthetic leather
JP2007106782A (en) Method for producing biaxially oriented polyester film
JP2012232493A (en) Release polyester film
JP2004131546A (en) Polyester film for wrapping material
JP2015208943A (en) Release polyester film
JP5711557B2 (en) Release polyester film
JP2010090219A (en) Manufacturing method for mold-release polyester film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees