JP2009065796A - 架空送電線の電流容量動的決定装置、これに用いるコンピュータプログラム及び架空送電線の電流容量動的決定方法 - Google Patents

架空送電線の電流容量動的決定装置、これに用いるコンピュータプログラム及び架空送電線の電流容量動的決定方法 Download PDF

Info

Publication number
JP2009065796A
JP2009065796A JP2007232484A JP2007232484A JP2009065796A JP 2009065796 A JP2009065796 A JP 2009065796A JP 2007232484 A JP2007232484 A JP 2007232484A JP 2007232484 A JP2007232484 A JP 2007232484A JP 2009065796 A JP2009065796 A JP 2009065796A
Authority
JP
Japan
Prior art keywords
weather
data
transmission line
current capacity
solar radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007232484A
Other languages
English (en)
Other versions
JP4919903B2 (ja
Inventor
Hideyuki Kotani
秀行 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007232484A priority Critical patent/JP4919903B2/ja
Publication of JP2009065796A publication Critical patent/JP2009065796A/ja
Application granted granted Critical
Publication of JP4919903B2 publication Critical patent/JP4919903B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Electric Cable Installation (AREA)

Abstract

【課題】架空送電線の電流容量に関して、過剰な余裕を持たせないより現実的な電流容量を求めることができるようにする。
【解決手段】
情報処理部が、(1)架空送電線が設置されている送電線ルート上の複数の気象観測点における気温、風速及び日射量を含む気象条件データを入力し、(2)気温、風速及び日射量を含む気象条件の値を変数として架空送電線の電流容量を算出する計算式に個々の気象観測点毎に入力された気象条件データの値を当てはめて当該個々の気象観測点毎に電流容量を算出し(3)算出した個々の気象観測点毎の電流容量のうちの最小値を架空送電線の電流容量として出力する。
【選択図】図6

Description

本発明は、架空送電線に流す電流の電流容量を動的に決定するための架空送電線の電流容量動的決定装置、これに用いるコンピュータプログラム及び架空送電線の電流容量動的決定方法に関する。
架空送電線は、送電電流による発熱により、電線の弛度増加と機械的強度の低下とを来たす。このため、架空送電線を用いた送電に際しては、電流容量を予め規定しておき、その電流容量を超えた電流を流さないようにしている。ここで用いられる架空送電線の電流容量は、気温、風速、日射量という気象条件について過去の最大値及び測定結果などをもとに最悪条件を決定論的に求め、その条件が年間を通して全国一律に続くとした上で、設備使用期間における電線の熱による機械的強度の低下率が10%となるような電線の連続許容温度に基づいて計算されている。このような電流容量の決定手法は、昭和24年の電気協同研究会アルミ裸線電流容量専門委員会「アルミ裸送電線の電流容量について」、昭和40年の電力中央研究所送電機能研究委員会「送電機能向上に関する研究報告 その1 架空送電」での検討内容に基づくものであり、現在も一般的に使われている手法である(非特許文献1の第3頁〜第8頁参照)。こうした電流容量の決定手法は、気象条件を決定論的に取り扱う手法であるといえる。このため、想定される電流容量には、大きな余裕が見込まれることになる。
このようなことから、非特許文献1では、従前の電流容量決定手法の再評価を行なうと共に、気温、風速、風向、日射量等の気象要因の算出手法等を検討し、確率論的に電流容量を決定しようとする試みがなされている。これにより、従前よりも電流容量の増加を見込むことができるようになった。
電気学会技術報告第660号「架空送電線の電流容量」、1997年12月、電気学会 電力・エネルギー部門 電力技術委員会
しかしながら、従来の架空送電線の電流容量の決定手法は、非特許文献1で紹介されている手法も含め、あくまでも過去における固定的かつ確定的なデータに基づく手法であり、実際には、相当程度に大きな安全率が見込まれたものにならざるを得ない。
本発明の目的は、架空送電線の電流容量に関して、より現実的な電流容量を求めることができるようにすることである。
本発明の架空送電線の電流容量動的決定装置は、データを入力するためのデータ入力部とデータを出力するためのデータ出力部とを有して情報処理を実行する情報処理部を備え、この情報処理部が、(1)架空送電線が設置されている送電線ルート上の複数の気象観測点における気温、風速及び日射量を含む気象条件データを前記データ入力部から入力する処理と、(2)気温、風速及び日射量を含む気象条件の値を変数として架空送電線の電流容量を算出する計算式に前記個々の気象観測点毎に入力された気象条件データの値を当てはめて当該個々の気象観測点毎に電流容量を算出する処理と、(3)前記算出した個々の気象観測点毎の電流容量のうちの最小値を前記架空送電線の電流容量として前記データ出力部から出力する処理と、を実行する。
本発明のコンピュータプログラムは、データを入力するためのデータ入力部とデータを出力するためのデータ出力部とを有して情報処理を実行するコンピュータにインストールされ、当該コンピュータに、(1)架空送電線が設置されている送電線ルート上の複数の気象観測点における気温、風速及び日射量を含む気象条件データを前記データ入力部から入力する機能と、(2)気温、風速及び日射量を含む気象条件の値を変数として架空送電線の電流容量を算出する計算式に前記個々の気象観測点毎に入力された気象条件データの値を当てはめて当該個々の気象観測点毎に電流容量を算出する機能と、(3)前記情報処理部が、前記算出した個々の気象観測点毎の電流容量のうちの最小値を前記架空送電線の電流容量として前記データ出力部から出力する機能と、を実行させる。
本発明の架空送電線の電流容量動的決定方法は、データを入力するためのデータ入力部とデータを出力するためのデータ出力部とを有して情報処理を実行する情報処理部によって実行されるステップとして、(1)架空送電線が設置されている送電線ルート上の複数の気象観測点における気温、風速及び日射量を含む気象条件データを前記データ入力部から入力するステップと、(2)気温、風速及び日射量を含む気象条件の値を変数として架空送電線の電流容量を算出する計算式に前記個々の気象観測点毎に入力された気象条件データの値を当てはめて当該個々の気象観測点毎に電流容量を算出するステップと、(3)前記算出した個々の気象観測点毎の電流容量のうちの最小値を前記架空送電線の電流容量として前記データ出力部から出力するステップと、を備える。
本発明によれば、架空送電線が設置されている送電線ルート上の複数の気象観測点における気温、風速及び日射量を含む気象条件データが入力されると、入力された気象条件データの値に基づいて個々の気象観測点毎の電流容量を算出して当該架空送電線の電流容量を出力することができるので、過剰な余裕を持たせない、より現実的な架空送電線の電流容量を求めることができ、したがって、架空送電線を利用しての安全かつ効率的な送電を実現することができる。
[第1の実施の形態]
本発明の第1の実施の形態を図1ないし図7に基づいて説明する。
1.自動給電システム
図1は、全体のシステム構成を示すブロック図である。図1に示すシステムは、電力事業者の給電指令所に設置される自動給電システム11である。自動給電システム11は、各種の発電所201及び変電所202等に設置されている電力関連設備を制御したり、それらの発電所201及び変電所202に必要な情報を提供したりするためのシステムである。
このような自動給電システム11は、データを入力するためのデータ入力部とデータを出力するためのデータ出力部とを有して情報処理を実行する情報処理部(いずれも図示せず)を内蔵する電子計算機101を有している。電子計算機101は、一例として複数台のコンピュータが集まって構成されており、データ入力部に入力されたデータに基づいて情報処理部が予め決められた処理を実行し、処理結果をデータ出力部から出力する。このような電子計算機101は、処理手順を予め記憶するシーケンサ構成のコンピュータとして構成されていても、インストールされているコンピュータソフトウェアに従った処理をプロセッサが実行するように構成されていても、いずれでもよい。
電子計算機101には、専用ワークステーション102、リアルタイムサーバ103、オフラインサーバ104及びプリンタ105がオンラインLAN(Local Area Network)106を介して接続されている。これらの専用ワークステーション102、リアルタイムサーバ103及びオフラインサーバ104は、いずれも、データを入力するためのデータ入力部とデータを出力するためのデータ出力部とを有して情報処理を実行する情報処理部(いずれも図示せず)を有するコンピュータである。
専用ワークステーション102は、給電指令台に設置されている入力装置や表示装置等から構成されるユーザインターフェース107からデータを入出力する。ユーザインターフェース107は、24時間体制で監視作業を実行する監視員をユーザとする。この監視員であるユーザは、ユーザインターフェース107を操作することによって、後述する各種の発電所201や変電所202に設置されている機器の制御指示や、それらの発電所201や変電所202に対する必要な情報の送信指示を行なう。
リアルタイムサーバ103は、給電指令所に設置されている後述する系統監視盤108を駆動制御して必要な情報を表示したり、後述する各種の発電所201及び変電所202に設置されている機器を制御したり、それらの発電所201や変電所202に必要な情報を送信したりするために、電子計算機101及び専用ワークステーション102から送信されたデータを中継する。そのために、リアルタイムサーバ103には系監盤情報LAN109、通信制御LAN110及び給電情報LAN111が接続されている。リアルタイムサーバ103は、それらのネットワークを介して外部機器とデータ通信を実行する。
オフラインサーバ104は、オンラインLAN106に接続されている電子計算機101等の機器と社内システム151とを中継したり、オフラインLAN112を介してオンラインLAN106に接続されている電子計算機101等の機器と気象情報収集システム152とを中継したりしている。社内システム151は、電力事業者の社内におけるコンピュータシステムである。気象情報収集システム152は、気象庁が収集して気象協会から電子データとして提供される気象情報を取得する。そのために、気象情報収集システム152は、気象協会のコンピュータ301にデータ通信網401を介してデータ受信可能に接続されている。
リアルタイムサーバ103に接続されている系監盤情報LAN109には、系監盤コントローラ113を介して前述した系統監視盤108が接続されている。系統監視盤108は、ユーザインターフェース107が設置されている給電指令台が配備されている給電指令所の壁面等に設置されている大型の表示盤である。系統監視盤108には、電力総需要とそれに対する発電状況とを種類別に表示する需給盤、発電や電気の流れを一目で分かるようにする系統監視盤、他の電力事業者との間の電力融通や周波数状況等を表示する融通盤、気象情報を表示する気象盤等が含まれている(個々の盤については図示せず)。
リアルタイムサーバ103に接続されている通信制御LAN110には、通信制御装置114及び通信接続装置115が接続されている。
通信制御装置114は、専用回線であるデータ通信網402を介して、個々の発電所201に設置されている電力設備を制御するための制御データをそれらの発電所201に送信する。このような制御データは、現在の需要と予想値とから将来の需要変動を予測し、出力の増減余力と出力変化速度をチェックして各発電所201の電力設備を制御するためのデータである(経済負荷配分制御)。
通信接続装置115は、専用回線であるデータ通信網402を介して、個々の発電所201や変電所202等に設置されている電力設備を制御するための制御データをそれらの発電所201や変電所202等に送信する。このような制御データは、発電所201の出力調整や電力系統の切り替えを制御するためのデータである。つまり、自動給電システム11では、個々の発電所201から供給される電力について周波数の偏差や負荷変動量のデータを収集して電力の過不足量を検出し、これに基づいて通信接続装置115からデータ通信網402を介して運系線潮流・周波数設備116に制御データを送信し、個々の発電所201の出力を変化させたり電力系統の切り替えを行なったりしている(負荷周波数制御)。
リアルタイムサーバ103に接続されている給電情報LAN111には、情報集配信装置117が接続されている。情報集配信装置117は、専用回線であるデータ通信網402を介して、変電所202及び個々の発電所201に対して運転指令を行なう給電制御所118に対して、運転指令等のような電力事業運営に必要な情報をデータ送信する。
2.電力設備
図1に示す一例では、発電所201として、水力発電所201a、火力発電所201b、原子力発電所201c及び揚水式水力発電所201dが示されている。揚水式水力発電所201dでは、夜間などの電力消費の少ない時間帯に、原子力発電所201cや大規模な火力発電所201bから余剰電力の供給を受けて下部貯水池(下池)から上部貯水池(上池)へ水をくみ上げておき、水力発電の原理でピーク時に発電するシステムを採用している。
発電所201で発電された電気は変電所202に送電され、複数の変電所202の間を送電されて徐々に電圧が落とされ、最終的に消費者のもとに届けられる。この際、発電所201から変電所202への送電及び複数の変電所202の間の送電に用いられるのが送電線203(図2参照)である。送電線には、鉄塔205(図3参照)に保持されている架空送電線と、地下に埋設されている地下送電線とがある。
図2(a)は、架空送電線として用いられる送電線203を示す断面図である。送電線203は、一例として、複数本の鋼より線203aの周囲をアルミ線203bで取り囲んだ形態を有している。
図2(b)は、送電線203を支持するスペーサ204の斜視図である。送電線203は、例えば四本一組で一つのスペーサ204によって支持されている。
図3は、送電線203を支持する鉄塔205を示す模式図である。四本一組で一つのスペーサ204によって支持されている送電線203は、鉄塔205に設けられている碍子206に固定されて鉄塔205に支持されている。碍子206は、アークホーン207を介して鉄塔205に取り付けられている。
3.架空送電線の電流容量の動的決定
架空送電線として用いられる送電線203は、送電電流による発熱により、電線の弛度増加と機械的強度の低下とを来たす。そこで、送電線203に流すことができる電流容量を規定し、その電流容量を超えた電流を流さないようにする必要がある。本実施の形態の自動給電システム11では、そのような電流容量を動的に決定している。以下、架空送電線の電流容量の動的決定手法について説明する。
(1)概要
本実施の形態では、自動給電システム11が有している電子計算機101が、そのコンピュータ機能を用いたデータ処理によって架空送電線の電流容量を動的に決定している。このようなデータ処理は、一例として、電子計算機101の情報処理部が、それらの機器にインストールされているコンピュータプログラムに従ったプロセスを実行することによってなされる。このプロセスは、概略的には、電子計算機101が、
・架空送電線である送電線203が設置されている送電線ルート(図4参照)上の複数の気象観測点a、b、c、…(図4参照)における気温、風速及び日射量を含む気象条件データを電子計算機101又はリアルタイムサーバ103の情報処理部が有しているデータ入力部(図示せず)から入力する第1のステップ
・気温、風速及び日射量を含む気象条件の値を変数として架空送電線の電流容量を算出する計算式に個々の気象観測点毎に入力された気象条件データの値を当てはめて当該個々の気象観測点毎に電流容量を算出する第2のステップ
・算出した個々の気象観測点毎の電流容量のうちの最小値を送電線203の電流容量として情報処理部が有するデータ出力部から出力する第3のステップ
という三つのステップの機能を実行することによって遂行される。以下、第1のステップから第3のステップについて説明する。
(2)第1のステップ
第1のステップで用いられる気象条件データは、本実施の形態では、現実に観測された気象観測データに基づき生成されたデータではなく、気象協会から入手可能な気象観測データに基づき推計するデータである。
図4は、気象条件データを推計する処理を説明するための模式図である。図4に示す一例では、送電線ルート上の三箇所に白丸(○)によって気象観測点a〜cが示されている。第1のステップでは、これらの個々の気象観測点a〜cで気温、風速及び日射量を含む気象条件データを取得するわけであるが、この場合、それらの気象観測点a〜cで実際に観測したデータを取得するのでなく、それらの気象観測点a〜cでの気象観測データを推計する。なお,気象観測点a、b、c、…は、それぞれ、送電線ルート上で気温・風速・日照等の気象条件が大きく変化すると考えられる地点を選定することが望ましい。そのような地点は、例えば、尾根部、岬部、海峡、河川横断部、高鉄塔部、周辺を建物で囲まれた市街地部等である。
図5は、図4に示す気象観測点のうち一つ(気象観測点a)を抜き出して気象条件データを推計する処理を更に詳細に説明するための模式図である。図5中、二重丸(◎)で示されるA、B、Cの各地点は、気象庁が発表する気象観測データを観測する気象官署がある地点である。地点A、B、Cは、気象観測点aを取り囲んでいる三地点として選ばれている。本実施の形態では、それらの気象観測点aを取り囲むA、B、Cという気象官署がある地点での気象観測データに基づいて気象観測点aにおける気温、風速及び日射量を含む気象条件データを推計する。
図6は、送電線203の電流容量を動的に決定する処理の流れを示すフローチャートである。このフローチャートは、電子計算機101の情報処理部が実行する処理手順を概略的に示している。送電線203の電流容量を動的に決定するための手順として、まず、電子計算機101は、図5に示す気象観測点aを例に用いて説明すると、この気象観測点aを取り囲む気象官署が位置するA、B、C地点での気象観測データを取得し、推計式によって気象観測点aの気象を推計する(ステップS101)。この際、A、B、C地点での気象観測データは、データ通信網401を介して気象協会のコンピュータ301から気象情報収集システム152が受信したデータである。気象情報収集システム152は、オフラインサーバ104を経由して電子計算機101に受信した気象観測データを送信する。電子計算機101は、こうして受信した気象観測点aを囲む三箇所(A、B、C地点)で観測された個々の気象観測データに基づいて、気温、風速及び日射量を含む気象条件基礎データを生成する。そして、3点加重距離按分法、つまり、生成した気象条件基礎データについて対応する気象観測点(A、B、C地点)からの距離に応じた按分値を算出し、当該算出した按分値により気象条件データを推計する。
気象条件データの推計処理についてより詳細に説明する。ここでは、図5に示す気象観測点aを例に用いて説明する。まず、気象官署(A、B、C地点)及び気象観測点aが平地であって同一の標高で同一の地形条件である位置にある場合、A、B、C地点によって形成される3角形の内部に位置する気象観測点aの気象データ値は、一般的に3角形の頂点に位置する気象官署(A、B、C地点)の気象観測データの範囲内にあるとともに、各気象官署(A、B、C地点)からの隔たり(距離)に影響されると考えるのが妥当である。このため、各気象官署(A、B、C地点)の気象観測データの値を3角形の各頂点の重みと考え、各頂点からの相対位置として送電線ルート上の気象観測点aの気象条件データを得ることができる。
そして、この気象条件データの値に、気象官署の地点A、B、C及び気象観測点aという各4点の標高や地形条件等の違いから生じる条件の不統一を解消するための補正値を加味することにより、実際の気象観測点aの気象データをより正しく推計することができる。この場合の補正値は、気象観測点aにおける実際に観測した気象観測データと、同一期間の3気象官署(A、B、C地点)での気象観測データから計算される推計値との差によって求められる。条件は、標高や地形条件等の他、時刻、季節、台風時等のような特異な気象状況によっても異なることが考えられるため、それぞれに応じた補正値を求めておき、推計時の状況に応じて適切な補正値を用いることが望ましい。実際のデータ処理に際しては、気象観測点a、b、c、…で実測された気温、風速及び日射量(実測値ではなく推計値)を含む気象条件データと対応する推計された気象条件データとの差に基づく補正値を個々の気象観測点a、b、c、…毎に記憶する補正値データベースを生成して記憶部(図示せず)に格納しておき、この補正値データベースを参照して推計した気象条件データの値を補正することになる。
気象条件データを推計するための推計式について言及する。ここでは、図5に示す気象観測点aを例に用いて説明する。したがって、気象官署の位置はA、B、Cであり、送電線ルート上の気象観測点はaである。また、気象官署の位置Aと気象観測点aとを結んだ直線が延長して辺BCと交差する交点をDとする。そして、BD、DC、Aa、aDの距離をそれぞれp、q、r、sとする。今、各地点A、B、Cの気温値をA、B、Cとして、D点及びa点の推計値をそれぞれD、aとすると、D、aは次式によって求められる。
D=B+p(C−B)/(p+q) ………(101)
a=D+s(A−D)/(r+s) ………(102)
ここで、送電線ルート上の気象観測点aでの現実の観測値をtaとすれば、補正値daは、
da=ta−a ………(103)
となり、a点の推計値paは(104)式で表わされる。
pa=a+da ………(104)
ここで、気温、風速及び日射量についてそれぞれ考察する。
まず、気温について考察する。気温は、気象官署の気象観測データをそのままの数値として用い、上記(101)〜(104)式によって気象条件基礎データとして推計する。そして、補正値は、観測点の日照差に影響されるため、補正値データベース中に観測点の日照の差(快晴、晴れ、曇り、雨等)毎の統計データを予め準備しておき、例えば当日の天気予報(天候)によりどの補正値を用いるかを決定する。この場合、一例として、気象情報収集システム152は、気象協会のコンピュータ301から送信された天気予報データを受信し、電子計算機101に送信する。これにより、電子計算機101は、その情報処理機能によって補正値を自動決定することが可能である。
ついで、風速について考察する。風速は、気象官署の気象観測データをそのままの数値として用い、上記(101)〜(104)式によって気象条件基礎データとして推計する。そして、補正値は、観測点の風測値に比例して増加する傾向にあるため、補正値データベース中に観測点の風測値(例えば、2.5m/s以下、2.5〜5.0m/s、5.0〜7.5m/s、7.5〜10.0m/s、10.0〜15.0m/s、15.0〜20.0m/s、20.0m/s以上等)毎の統計データを予め準備しておき、当日の天気予報(風速)によりどの補正値を用いるかを決定する。この場合、一例として、気象情報収集システム152は、気象協会のコンピュータ301から送信された天気予報データを受信し、電子計算機101に送信する。これにより、電子計算機101は、その情報処理機能によって補正値を自動決定することが可能である。
最後に、日射量について考察する。日照時間については気象官署の気象観測データがあるが、日射量のデータは無いため、日照時間によって日射量を推計する。つまり、送電線ルート上の気象観測点aでの日射量及び日照時間についての実測データと最寄の気象官署の日照時間データとを分析し、補正値データベース中、1時間の日照時間(例えば、1.0時間、0.5時間等)毎に日照時間から日射量を推計できる統計データを予め準備しておき、当日の天気予報(天候)に基づいて、日照時間として使用する値を決定する。この場合、一例として、気象情報収集システム152は、気象協会のコンピュータ301から送信された天気予報データを受信し、電子計算機101に送信する。これにより、電子計算機101は、その情報処理機能によって補正値を自動決定することが可能である。
以上により、電子計算機101による第1のステップの処理(図6中のステップS101の処理)が実行される。
(3)第2のステップ
図6に示すように、電子計算機101は、ステップS101に続く処理として、送電線203の電流容量を算出する処理を実行する(ステップS102)。つまり、電子計算機101は、ステップS101で推計した気象条件データを計算式に当てはめ、送電線ルート上の各気象観測点a、b、c、…での送電線203の電流容量を算出する。この場合の計算式は次の通りである。
定常状態においては、送電線203の電流による発熱、日射からの吸熱、送電線203の表面からの放熱が平衡することから、(1)式が成り立つ。
ac×10−5+q =q +q ………(1)
但し、Iac:電流による発熱(W/cm)
I:通電電流(A)
ac:使用温度における交流抵抗(Ω/km)
:日射からの吸熱(W/cm)
:放射による熱放散(W/cm)
:対流による熱放散(W/cm)
ここで、(1)式の左辺は、風の有無にかかわらず、以下による。
ac=βRdc=ββdc ………(2)
但し、β:交直抵抗比
β :表皮効果係数
β :鉄損係数
dc:使用温度における直流抵抗(Ω/km)
dc=Rdc(20){1+α(t −20)}
dc(20):周囲温度20℃での直流電気抵抗(Ω/km)
α:定質量抵抗温度係数(/℃)
:周囲温度(℃)
=W Dη ………(3)
但し、W :日射量(W/cm−2
D:電線の外径(cm)
η :吸収率0.9
ここで、有風時には(4)式の関係が成り立つ。
+q =πD(hη+h)(t−t) ………(4)
但し、h :放射による熱放散係数
η :放射率0.9
:風の強制対流による熱放散係数
:電線温度(℃)
IβRdc×10−5+W Dη =πD(hη+h)(t−t)………(5)
ここで、吸収率と放射率とは等しいものとすると、η=η=ηより、
Figure 2009065796
同様に、無風時には、
c:無風時における空気層への熱伝導率及び自然対流による熱放散係数
とすると、以下のように表すことができる。
Figure 2009065796
以上の関係式から、電気容量Iは、
Figure 2009065796
となる。但し、
(1)有風時
Figure 2009065796
(2)無風時
Figure 2009065796
である。但し、
θ=t−t
ここで、h は、Stefan-Boltzmanの法則から(13)式で求められる。
Figure 2009065796
は、CIGREの強制対流計算式から(14)式で求められる。(=[CIGREのPc ]/πD(t−t)×10
Figure 2009065796
は、CIGREの自然対流計算式から(14)式で求められる。(=[CIGREのPc ]/πD(t−t)×10
Figure 2009065796
但し、Gr:グラスホフ数
Pr:プラントル数
g:重力加速度9.807m/s
,m :レイリー数(Gr・Pr)によって定まる定数
ここで、レイノルズ数と電線表面粗度とによって決まる定数については表1、レイリー数によって定まる定数については表2を参照のこと。
Figure 2009065796
Figure 2009065796
以上説明したように、(10)式によって送電線203の電流容量を求めることができる。そこで、図6のステップS102では、ステップS101で推計した気温、風速及び日射量を含む気象条件データの値を上記(10)式に当てはめることで、架空送電線として用いられる送電線203の電流容量(I(A))を求めることができる。ここで、上記(10)式中、周囲温度ta については推計した気温を使用する。また、電線温度t については、表3に示す連続許容温度を使用する。つまり、表3は、送電線203に用いられる電線の種類毎に連続許容温度と短時間許容温度との値を示している。このような連続許容温度と短時間許容温度との値は、十分な安全率を見込んで予め定められている既知の値をそのまま利用すればよい。そして、一例として、上記(10)式で用いる電線温度t の値としては、通常は、表3に示す連続許容温度の値を用いる。これに対して、事故等により一時的に負荷が増大した場合には、短時間許容温度の値を用いて運用すればよい。
Figure 2009065796
こうして、電子計算機101は、図6中のステップS102の処理として、送電線ルート上の個々の気象観測点a、b、c、…毎に送電線203の電流容量の値を求める。
(4)第3のステップ
図6に示すように、電子計算機101は、ステップS102に続く処理として、送電線ルート上の個々の気象観測点a、b、c、…で求めた送電線203の電流容量の値のうち、最小値を送電線203の電流容量としてデータ出力部から出力する。こうして、上記第1のステップから第3のステップまでの三つのステップが実行される。
図7は、送電線203の電流監視処理の流れを示すフローチャートである。図7に示す処理は、一例として、リアルタイムサーバ103の情報処理部によって実行される。つまり、リアルタイムサーバ103は、通信接続装置115を介して送電線203を介して送電される電力の周波数偏差や負荷変動等のデータを取得し、その監視を行なっている(ステップS151)。そこで、リアルタイムサーバ103は、電子計算機101が出力する送電線203の電流容量のデータを受信してこれを最大許容電流(Imax)として記憶し、送電線203を流れる電流(I)がその最大許容電流(Imax)を超えていないかどうかを判定する(ステップS152)。リアルタイムサーバ103は、その判定の結果、実際に送電線203を流れる電流(I)が最大許容電流(Imax)を超えているとことが分かれば、通信接続装置115に指令を発して転負荷等の処理により電流抑制をかける(ステップS153)。そして、実際に送電線203を流れる電流(I)が最大許容電流(Imax)を下回るまで電流抑制処理を続行する。
以上説明したように、本実施の形態の電子計算機101によれば、架空送電線である送電線203が設置されている送電線ルート上の複数の気象観測点a、b、c、…における気温、風速及び日射量を含む気象条件データを入力し、入力した気象条件データの値に基づいて個々の気象観測点a、b、c、…毎の電流容量を算出し、最も高い安全性を見込める最小電流容量値を送電線203の電流容量として出力する。したがって、過剰な余裕を持たせないより現実的な送電線203の電流容量を求めて安全かつ効率的な送電を実現することができる。
[第2の実施の形態]
本発明の第2の実施の形態を図8に基づいて説明する。なお、第1の実施の形態と同一部分は同一符号で示し説明も省略する。
図8は、送電線203の電流容量を動的に決定する処理の流れを示すフローチャートである。第1の実施形態では、電子計算機101に入力する気温、風速及び日射量を含む気象条件データとして、現実に観測された気象観測データに基づき生成されたデータではなく、気象協会から入手可能な気象観測データに基づき推計したデータを用いている。つまり、電子計算機101は、現実の気象観測データに基づいて気象条件データを推計する処理を実行する。ところが、現実の気象観測データは、約半時間遅れで発表されることから、電子計算機101で計算する送電線203の電流容量の値は、少なくとも半時間以上前の気象観測データに基づき生成されており、現時点以降の電流容量とはなっていないため、実際の送電線の運用には役立たないことになる。そこで、本実施の形態では、気象協会が発表する市町村区3時間気象予報を利用し、この市町村区3時間気象予報のデータに基づいて電子計算機101に入力する気象条件データを生成するようにしている。
そこで、図8のフローチャートに示すように、まず、電子計算機101は、図5に示す気象観測点aを例に用いて説明すると、この気象観測点aを取り囲む気象官署が位置するA、B、C地点での気象予報データを取得し、推計式によって気象観測点aの気象を推計する(ステップS201−1)。この場合、気象予報地点(A、B、C)は、気象協会が発表する市町村区3時間気象予報地点のうち、気象台やアメダス等の気象官署がある地点を選定することになる。そして、ステップS201−1では、気温についての情報を例示する表4に示すように、3時間予報値に基づいて1時間等差区分値を求める。表4中、KKは気象協会、KAは気象官署を意味する。
Figure 2009065796
表4中に示すように、KK5時の3時間予報が6時で16℃、9時で19℃、12時で22℃、15時で25℃であったとすると、電子計算機101は、6時から9時までの3時間の温度差である3℃を1時間分割して、
6時:16℃
7時:17℃
8時:18℃
を得、9時から12時までの3時間の温度差である3℃を1時間分割して、
9時:19℃
10時:20℃
11時:21℃
を得、12時から15時までの3時間の温度差である3℃を1時間分割して、
12時:22℃
13時:23℃
14時:24℃
15時:25℃
を得る。これが、3時間予報値に基づく1時間等差区分値である。
気象協会の3時間予報は、通常、一日4回(5時、11時、17時、21時)見直し公表される。そこで、見直し公表される度に、3時間予報値に基づく1時間等差区分値を変更する。
また、気象官署の実際の気象観測データは、約半時間遅れで毎時間公表される。そこで、電子計算機101は、3時間予報値に基づく1時間等差区分値を、更に、約半時間遅れで毎時間公表される実際の気象観測データに基づいて見直しする(ステップS201−2)。つまり、一例として、気象官署で実際に観測して公表されるKA6時の実績が17℃だったとすると、この実績値は約半時間遅れで公表される。この例では、おおよそ6時半過ぎに公表される。そこで、3時間予報として予報されている次の時刻である9時までの1時間時刻である7時と8時との気温を見直す。
見直し手法の一例を紹介する。6時から9時までの3時間、予報では16℃から19℃と3℃上昇するのに対して、6時の実績値が17℃なので、9時の19℃を真であると推定すると、2℃上昇することになる。そこで、2℃を6時から9時までの3時間で割って得た0.666…(℃)を求め、この値で7時の予報値と8時の予報値とを見直す。その結果、
7時:予報値に基づく1時間等差分割値17℃→見直し値17.7℃
8時:予報値に基づく1時間等差分割値18℃→見直し値18.3℃
を得る(小数点1以下を四捨五入)。
同様の手法で、気象官署で実際に観測して公表されるKA7時の実績である18℃をもって、3時間予報として予報されている次の時刻である9時までの1時間時刻である8時の気温を見直す。つまり、7時から9時までの2時間、予報では17℃から19℃と2℃上昇するのに対して、7時の実績値が18℃なので、9時の19℃を真であると推定すると、1℃上昇することになる。そこで、1℃を7時から9時までの2時間で割って得た0.5(℃)を求め、この値で8の予報値を見直す。その結果、
8時:予報値18℃→見直し値18.5℃
を得る(小数点1以下を四捨五入)。
そして、9時半過ぎには9時の実績値(ここでは20℃)が発表されるので、同様の手法で10時と11時との予報値を見直し、
9時:予報値に基づく1時間等差分割値19℃→見直し値20.7℃
10時:予報値に基づく1時間等差分割値20℃→見直し値21.3℃
を得る(小数点1以下を四捨五入)。また、10時過ぎには10時の実績値(ここでは21℃)が発表されるので、同様の手法で11の予報値を見直し、
10時:予報値に基づく1時間等差分割値20℃→見直し値21.5℃
を得る(小数点1以下を四捨五入)。
こうして、電子計算機101は、6時の実績値が公表される6時半過ぎの時点で、
7時の見直し値:17.7℃
8時の見直し値:18.3℃
を得、7時の実績値が公表される7時半過ぎの時点で、
8時の見直し値:18.5℃
を得、9時の実績値が公表される9時半過ぎの時点で、
10時の見直し値:20.7℃
11時の見直し値:21.3℃
を得、10時の実績値が公表される10時半過ぎの時点で、
11時の見直し値:21.5℃
を得ることができる。
以上、気温について説明したが、風速及び日射量の値についても同様にして取得する。つまり、風速は、気象協会が発表する気象予報データに含まれている風速の値をそのまま用いる。日射量については、気象協会が発表する気象予報データに含まれていないため、気象予報データに含まれている日照時間によって日射量を推計する。つまり、送電線ルート上の気象観測点aでの日射量及び日照時間についての実測データと最寄の気象官署の日照時間データとを分析し、補正値データベース中、1時間の日照時間(例えば、1.0時間、0.5時間等)毎に日照時間から日射量を推計できる統計データを予め準備しておき、当日の天気予報(天候)に基づいて、日照時間として使用する値を決定する。この場合、一例として、気象情報収集システム152は、気象協会のコンピュータ301から送信された天気予報データを受信し、電子計算機101に送信する。これにより、電子計算機101は、その情報処理機能によって補正値を自動決定することが可能である。こうして、気温、風速及び日射量を含む気象データを生成することができる。
電子計算機101は、ステップS102で架空送電線である送電線203の電流容量を算出するに際して、こうして得た時間的に少し先の見直し値を使用する。つまり、電子計算機101は、送電線203が配置されている送電線ルート上の気象観測点a、b、c、…(図4参照)の気象条件データをステップS201−1で推計するわけであるが、この際、推計対象となる例えば気象観測点aを取り囲む気象官署が位置する地点A、B、C(図5参照)での気象予報データ及び実際の気象観測データに基づいて上記時間的に少し先の見直し値を取得し、これらの見直し値に基づいて気象観測点aでの気象条件データを推計する。この場合の推計手法は、第1の実施の形態で紹介した手法と同一であるので、その説明を省略する。
以上説明したように、本実施の形態によれば、少し先の気象予報データに基づいて気象条件データを生成するようにしたので、近未来(30分程度先)以降の送電線ルート上の送電線203の電流容量の値をより高精度に求めることができ、送電線の運用精度も向上する。
[第3の実施の形態]
本発明の第3の実施の形態を図9に基づいて説明する。なお、第1の実施の形態と同一部分は同一符号で示し説明も省略する。
図9は、全体のシステム構成を簡略化して示すブロック図である。送電線ルート上に位置する鉄塔205の上部には、気象センサ251が配備されている。気象センサ251は、気温、風速及び日射量を実測することができる公知のセンシングデバイスである。気象センサ251は、そのような公知のセンシングデバイスから出力される実測値をデジタル変換して出力する。そして、鉄塔205には、通信線252を介して、気象センサ251が出力する気温、風速及び日射量についてのデジタル変換された実測値を取り込む気象条件データ送信機253が配備されている。通信線252は、一例として、OPGW(架空地線内蔵光ファイバーケーブル)である。気象条件データ送信機253は、処理プロセスを記憶し、記憶する処理プロセスに従った処理を実行する半導体チップ等を主体に構成されている。別の実施の形態として、コンピュータプログラムをインストールし、インストールしているコンピュータプログラムに従って処理を実行するマイクロコンピュータによって気象条件データ送信機253を構築しても良い。このような気象条件データ送信機253は、第2の情報処理部を構成する。
気象条件データ送信機253は、気象センサ251が出力する気温、風速及び日射量についてのデジタル変換された実測値を取り込むと、取り込んだ実測値に基づいて気象条件データを生成する。この気象条件データは、取り込んだ気温、風速及び日射量についてのデジタル変換された実測値を、自動給電システム11で処理可能なデータ形態に変換したデータである。
個々の鉄塔205に配備されている気象条件データ送信機253は、専用回線であるデータ通信網402を介して自動給電システム11にデータ通信自在に接続されている。一例として、個々の気象条件データ送信機253は、リアルタイムサーバ103に接続されている。そこで、気象条件データ送信機253は、データ通信網402を介して、生成した気象条件データを自動給電システム11に送信する。送信は、一例として数分〜数十分単位で実行される。これにより、自動給電システム11の電子計算機101は、送電線ルート上の気象観測点a、b、c、…における実測データを取得することができる。
自動給電システム11の電子計算機101は、送電線ルート上の気象観測点a、b、c、…における実測データを取得するので、取得したデータをそのまま用いる。つまり、第1の実施の形態では、図6のステップS101で気象観測データに基づく気象条件データの推計処理を実行していたのに対して、このような推計処理が不要となる。このため、電子計算機101は、図6のステップS102で実行する上記(10)式へ当てはめる気象条件データとして、気象条件データ送信機253から送信された気象条件データをそのまま用いればよい。
本実施の形態によれば、送電線ルート上の気象観測点a、b、c、…における気温、風速及び日射量について、リアルタイムの実測値を用いて送電線203の電流容量の値を算出できるので、電流容量の値をより高精度に求めることができる。
本発明の第1の実施の形態として、全体のシステム構成を示すブロック図である。 (a)は架空送電線として用いられる送電線を示す断面図、(b)は送電線を支持するスペーサの斜視図である。 架空送電線を支持する鉄塔を示す模式図である。 気象条件データを推計する処理を説明するための模式図である。 図4に示す気象観測点のうち一つ(気象観測点a)を抜き出して気象条件データを推計する処理を更に詳細に説明するための模式図である。 架空送電線の電流容量を動的に決定する処理の流れを示すフローチャートである。 架空送電線の電流監視処理の流れを示すフローチャートである。 本発明の第2の実施の形態として、架空送電線の電流容量を動的に決定する処理の流れを示すフローチャートである。 本発明の第3の実施の形態として、全体のシステム構成を簡略化して示すブロック図である。
符号の説明
203:送電線(架空送電線)
a、b、c、…:気象観測点

Claims (12)

  1. データを入力するためのデータ入力部とデータを出力するためのデータ出力部とを有して情報処理を実行する情報処理部と、
    前記情報処理部が、架空送電線が設置されている送電線ルート上の複数の気象観測点における気温、風速及び日射量を含む気象条件データを前記データ入力部から入力する手段と、
    前記情報処理部が、気温、風速及び日射量を含む気象条件の値を変数として架空送電線の電流容量を算出する計算式に前記個々の気象観測点毎に入力された気象条件データの値を当てはめて当該個々の気象観測点毎に電流容量を算出する手段と、
    前記情報処理部が、前記算出した個々の気象観測点毎の電流容量のうちの最小値を前記架空送電線の電流容量として前記データ出力部から出力する手段と、
    を備える架空送電線の電流容量動的決定装置。
  2. 前記計算式は、
    Figure 2009065796
    但し、
    ・I :電流容量(A)
    ・D :送電線の外径(cm)
    ・t :周囲温度(℃)
    ・t :送電線の電線温度(℃)
    ・β :交直抵抗比
    ・Rdc:使用温度における直流抵抗(Ω/km)
    ・有風時のK:
    Figure 2009065796
    但し、
    ・h :放熱による熱放散係数
    ・θ :t −t
    ・W :日射量(W/cm
    ・η :放射率
    ・h :風の強制対流による熱放散係数
    ・無風時のK:
    Figure 2009065796
    但し、
    ・h :放熱による熱放散係数
    ・θ :t −t
    ・W :日射量(W/cm
    ・η :放射率
    ・h :無風時における空気層への熱伝導及び自然対流による熱放散係数
    である請求項1記載の架空送電線の電流容量動的決定装置。
  3. 前記情報処理部が、前記個々の気象観測点を囲む少なくとも三箇所で観測された気象観測データに基づいて気温、風速及び日射量を含む気象条件基礎データを生成する手段と、
    前記情報処理部が、前記生成した気象条件基礎データについて対応する前記気象観測点からの距離に応じた按分値で前記データ入力部から入力する気象条件データを推計する手段と、
    を備える請求項1又は2記載の架空送電線の電流容量動的決定装置。
  4. 前記情報処理部が、前記気象観測点で実測された気温、風速及び日射量を含む気象条件データと対応する前記推計された気象条件データとの差に基づく補正値を前記個々の気象観測点毎に記憶する補正値データベースを参照し、前記推計した気象条件データの値を補正する手段を備える、請求項3記載の架空送電線の電流容量動的決定装置。
  5. 前記補正値データベースは、前記気象観測点で実測された気温、風速及び日射量を含む気象条件データと対応する前記推計された気象条件データとの差の値を変動させる変動要因毎に前記補正値を記憶しており、
    前記情報処理部は、前記入力部に入力された前記変動要因に応じた補正値を前記補正値データベースから選択して前記推計した気象条件データの値を補正する、
    請求項4記載の架空送電線の電流容量動的決定装置。
  6. 前記情報処理部が、前記個々の気象観測点を囲む少なくとも三箇所で予報された気象予報データに基づいて気温、風速及び日射量を含む気象予測基礎データを生成する手段と、
    前記情報処理部が、前記生成した気象予測基礎データについて対応する前記気象観測点からの距離に応じた按分値で前記データ入力部から入力する気象予測データを推計する手段と、
    前記情報処理部が、前記推計した気象予測データと当該気象予測データ以前の前記推計された気象条件データとの差に基づいて当該気象予測データを修正し、前記データ入力部から入力する気象条件データとして用いる手段と、
    を備える請求項3ないし5のいずれか一記載の架空送電線の電流容量動的決定装置。
  7. 前記情報処理部が、前記個々の気象観測点を含む地域の気象予報データに基づいて気温、風速及び日射量を含む気象予測データを生成する手段と、
    前記情報処理部が、前記生成した気象予測データと当該気象予測データ以前の前記推計された気象条件データとの差に基づいて当該気象予測データを修正し、前記データ入力部から入力する気象条件データとして用いる、
    請求項3ないし5のいずれか一記載の架空送電線の電流容量動的決定装置。
  8. データを入力するためのデータ入力部とデータを出力するためのデータ出力部とを有して情報処理を実行するコンピュータにインストールされ、当該コンピュータに、
    架空送電線が設置されている送電線ルート上の複数の気象観測点における気温、風速及び日射量を含む気象条件データを前記データ入力部から入力する機能と、
    気温、風速及び日射量を含む気象条件の値を変数として架空送電線の電流容量を算出する計算式に前記個々の気象観測点毎に入力された気象条件データの値を当てはめて当該個々の気象観測点毎に電流容量を算出する機能と、
    前記算出した個々の気象観測点毎の電流容量のうちの最小値を前記架空送電線の電流容量として前記データ出力部から出力する機能と、
    を実行させる機械読み取り可能なコンピュータプログラム。
  9. 前記計算式は、
    Figure 2009065796
    但し、
    ・I :電流容量(A)
    ・D :送電線の外径(cm)
    ・t :周囲温度(℃)
    ・t :送電線の電線温度(℃)
    ・β :交直抵抗比
    ・Rdc:使用温度における直流抵抗(Ω/km)
    ・有風時のK:
    Figure 2009065796
    但し、
    ・h :放熱による熱放散係数
    ・θ :t −t
    ・W :日射量(W/cm
    ・η :放射率
    ・h :風の強制対流による熱放散係数
    ・無風時のK:
    Figure 2009065796
    但し、
    ・h :放熱による熱放散係数
    ・θ :t −t
    ・W :日射量0.1(W/cm
    ・η :放射率
    ・h :無風時における空気層への熱伝導及び自然対流による熱放散係数
    である請求項8記載のコンピュータプログラム。
  10. データを入力するためのデータ入力部とデータを出力するためのデータ出力部とを有して情報処理を実行する情報処理部が、架空送電線が設置されている送電線ルート上の複数の気象観測点における気温、風速及び日射量を含む気象条件データを前記データ入力部から入力するステップと、
    前記情報処理部が、気温、風速及び日射量を含む気象条件の値を変数として架空送電線の電流容量を算出する計算式に前記個々の気象観測点毎に入力された気象条件データの値を当てはめて当該個々の気象観測点毎に電流容量を算出するステップと、
    前記情報処理部が、前記算出した個々の気象観測点毎の電流容量のうちの最小値を前記架空送電線の電流容量として前記データ出力部から出力するステップと、
    を備える架空送電線の電流容量動的決定方法。
  11. 前記計算式は、
    Figure 2009065796
    但し、
    ・I :電流容量(A)
    ・D :送電線の外径(cm)
    ・t :周囲温度(℃)
    ・t :送電線の電線温度(℃)
    ・β :交直抵抗比
    ・Rdc:使用温度における直流抵抗(Ω/km)
    ・有風時のK:
    Figure 2009065796
    但し、
    ・h :放熱による熱放散係数
    ・θ :t −t
    ・W :日射量(W/cm
    ・η :放射率
    ・h :風の強制対流による熱放散係数
    ・無風時のK:
    Figure 2009065796
    但し、
    ・h :放熱による熱放散係数
    ・θ :t −t
    ・W :日射量(W/cm
    ・η :放射率
    ・h :無風時における空気層への熱伝導及び自然対流による熱放散係数
    である請求項10記載の架空送電線の電流容量動的決定方法。
  12. 前記個々の気象観測点に設置されて当該気象観測点における気温、風速及び日射量を含む気象条件の値をセンシング可能なセンサの出力を取り込む第2の情報処理部が、前記取り込んだ気象条件の値に基づく気象条件データを生成するステップと、
    前記第2の情報処理部が、データ通信網を介して前記生成した気象条件データを送信出力するステップと、
    前記第1の情報処理部が、前記データ通信網を介して送信された前記気象条件データを前記データ入力部から入力する気象条件データとして取り込むステップと、
    を備える請求項10又は11記載の架空送電線の電流容量動的決定方法。
JP2007232484A 2007-09-07 2007-09-07 架空送電線の電流容量動的決定装置、これに用いるコンピュータプログラム及び架空送電線の電流容量動的決定方法 Expired - Fee Related JP4919903B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232484A JP4919903B2 (ja) 2007-09-07 2007-09-07 架空送電線の電流容量動的決定装置、これに用いるコンピュータプログラム及び架空送電線の電流容量動的決定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232484A JP4919903B2 (ja) 2007-09-07 2007-09-07 架空送電線の電流容量動的決定装置、これに用いるコンピュータプログラム及び架空送電線の電流容量動的決定方法

Publications (2)

Publication Number Publication Date
JP2009065796A true JP2009065796A (ja) 2009-03-26
JP4919903B2 JP4919903B2 (ja) 2012-04-18

Family

ID=40559860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232484A Expired - Fee Related JP4919903B2 (ja) 2007-09-07 2007-09-07 架空送電線の電流容量動的決定装置、これに用いるコンピュータプログラム及び架空送電線の電流容量動的決定方法

Country Status (1)

Country Link
JP (1) JP4919903B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565597A (zh) * 2012-02-14 2012-07-11 广东易事特电源股份有限公司 一种应用同步相量技术的动态输电线容量估计方法
JP2014533484A (ja) * 2011-11-04 2014-12-11 エルテウ、レゾ、ド、トランスポール、デレクトリスィテRte Reseau De Transport D’Electricite 高圧電流伝送線を監視する方法および装置
JP2018072197A (ja) * 2016-10-31 2018-05-10 住友電気工業株式会社 電線監視システム
CN110829613A (zh) * 2019-12-05 2020-02-21 国网湖南省电力有限公司 架空输电线路的地线取能方法
CN112461398A (zh) * 2020-10-26 2021-03-09 广东工业大学 一种架空输电线路的纵向等效温度获取方法及装置
CN114493171A (zh) * 2021-12-31 2022-05-13 国网山东省电力公司临沂供电公司 一种动态增容设备安装选址方案生成方法及***
WO2023238350A1 (ja) * 2022-06-09 2023-12-14 中国電力株式会社 無人航空機の運航支援システム及び運航支援方法
WO2023238348A1 (ja) * 2022-06-09 2023-12-14 中国電力株式会社 送電線運用支援装置、送電線運用支援装置の制御方法及びプログラム
WO2024062672A1 (ja) * 2022-09-22 2024-03-28 住友電気工業株式会社 送電線管理装置、送電線温度推定方法および送電線温度推定プログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015890A (ja) * 2002-06-05 2004-01-15 Toshiba Eng Co Ltd グリーン電力供給方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004015890A (ja) * 2002-06-05 2004-01-15 Toshiba Eng Co Ltd グリーン電力供給方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533484A (ja) * 2011-11-04 2014-12-11 エルテウ、レゾ、ド、トランスポール、デレクトリスィテRte Reseau De Transport D’Electricite 高圧電流伝送線を監視する方法および装置
CN102565597A (zh) * 2012-02-14 2012-07-11 广东易事特电源股份有限公司 一种应用同步相量技术的动态输电线容量估计方法
WO2013120352A1 (zh) * 2012-02-14 2013-08-22 广东易事特电源股份有限公司 一种应用同步相量技术的动态输电线容量估计方法
CN102565597B (zh) * 2012-02-14 2015-01-07 广东易事特电源股份有限公司 一种应用同步相量技术的动态输电线容量估计方法
JP2020177025A (ja) * 2016-10-31 2020-10-29 住友電気工業株式会社 電線監視システム
JP2018072197A (ja) * 2016-10-31 2018-05-10 住友電気工業株式会社 電線監視システム
CN110829613A (zh) * 2019-12-05 2020-02-21 国网湖南省电力有限公司 架空输电线路的地线取能方法
CN110829613B (zh) * 2019-12-05 2023-08-29 国网湖南省电力有限公司 架空输电线路的地线取能方法
CN112461398A (zh) * 2020-10-26 2021-03-09 广东工业大学 一种架空输电线路的纵向等效温度获取方法及装置
CN114493171A (zh) * 2021-12-31 2022-05-13 国网山东省电力公司临沂供电公司 一种动态增容设备安装选址方案生成方法及***
CN114493171B (zh) * 2021-12-31 2023-11-28 国网山东省电力公司临沂供电公司 一种动态增容设备安装选址方案生成方法及***
WO2023238350A1 (ja) * 2022-06-09 2023-12-14 中国電力株式会社 無人航空機の運航支援システム及び運航支援方法
WO2023238348A1 (ja) * 2022-06-09 2023-12-14 中国電力株式会社 送電線運用支援装置、送電線運用支援装置の制御方法及びプログラム
WO2024062672A1 (ja) * 2022-09-22 2024-03-28 住友電気工業株式会社 送電線管理装置、送電線温度推定方法および送電線温度推定プログラム

Also Published As

Publication number Publication date
JP4919903B2 (ja) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4919903B2 (ja) 架空送電線の電流容量動的決定装置、これに用いるコンピュータプログラム及び架空送電線の電流容量動的決定方法
Douglass et al. Real-time overhead transmission-line monitoring for dynamic rating
Kopsidas et al. Optimal demand response scheduling with real-time thermal ratings of overhead lines for improved network reliability
JP5980536B2 (ja) 発電システム、並びに当該発電システムに用いるパワーコンディショナおよび出力抑制管理装置
Samarakoon et al. Reporting available demand response
JP5198386B2 (ja) 自然エネルギー発電制御システム、制御装置および制御方法
JP5886407B1 (ja) 予測装置
US10423185B2 (en) Systems and methods for regulating a microgrid
Javadi et al. Look ahead dynamic security-constrained economic dispatch considering frequency stability and smart loads
JP2014143835A (ja) 電力系統の制御システム
JP2013183622A (ja) 分散電源システム及び電圧調整方法
Uski-Joutsenvuo et al. Maximising power line transmission capability by employing dynamic line ratings–technical survey and applicability in Finland
JP5164678B2 (ja) マイクログリッド電力系統における不平衡電流の補償方法、及びこの方法に用いる制御装置
JP5989754B2 (ja) 予測装置
JP6082811B2 (ja) 再生可能エネルギー発電設備の制御システム及びその制御方法並びに再生可能エネルギー発電システム
JP2013029923A (ja) 太陽光発電量把握システム及びこれを用いた負荷予想装置、負荷調整装置
JP2010130762A (ja) 自然エネルギー発電装置を含む電力供給システムおよび需給調整方法
CN106877404A (zh) 一种发输电联合动态增容方法及***
Carlini et al. Methodologies to uprate an overhead line. Italian TSO case study
JP6375161B2 (ja) 再生可能エネルギー発電施設の制御システム
JP4864839B2 (ja) 電力変動予測システム
Michiorri et al. Forecasting real-time ratings for electricity distribution networks using weather forecast data
JP6153651B2 (ja) 管理サーバ、局所気象情報生成システム、および局所気象情報生成方法
EP2871741A1 (en) Power management device and power management method
JP6833303B1 (ja) 発電量予測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Ref document number: 4919903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees