JP2009065178A - Solid-state image pickup element - Google Patents

Solid-state image pickup element Download PDF

Info

Publication number
JP2009065178A
JP2009065178A JP2008258306A JP2008258306A JP2009065178A JP 2009065178 A JP2009065178 A JP 2009065178A JP 2008258306 A JP2008258306 A JP 2008258306A JP 2008258306 A JP2008258306 A JP 2008258306A JP 2009065178 A JP2009065178 A JP 2009065178A
Authority
JP
Japan
Prior art keywords
wavelength
color filter
solid
layer
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008258306A
Other languages
Japanese (ja)
Other versions
JP5056709B2 (en
Inventor
Kenzo Fukuyoshi
健蔵 福吉
Tomohito Kitamura
智史 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008258306A priority Critical patent/JP5056709B2/en
Publication of JP2009065178A publication Critical patent/JP2009065178A/en
Application granted granted Critical
Publication of JP5056709B2 publication Critical patent/JP5056709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-sate image pickup element for remarkably suppressing variation of a pixel size and a shape of a color filter, reducing influence to picture quality and color unevenness, remarkably suppressing occurrence of residue and reducing influence to color unevenness even in the solid-state image pickup element having the pixel size of not more than 3.5 μm, and 3.0 μm in addition. <P>SOLUTION: In the solid-state image pickup element, at least a light receiving element, a planarized layer, a color filter, a transparent resin layer and a micro lens in two-dimensional arrangement on the transparent resin layer are sequentially laminated on a semiconductor substrate. The color filter is formed on a photosensitive resin film comprising pigment, which is formed on the planarized layer as film coating, by exposure, development and hardening. A reflection factor in wavelength of 365 nm of the planarized layer, which is defined by a value obtained by multiplying a transmission factor at wavelength of 365 nm of the color filter and a square of a transmission factor at wavelength of 365 nm of the planarized layer, is not more than 2%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、CCDやC−MOS等の固体撮像素子に関するものであり、特に、3.5μm以下の微細な画素に対応した、形状の良好な高精度なカラーフィルタを有する固体撮像素子関する。 The present invention relates to a solid-state imaging device such as a CCD or C-MOS, in particular, corresponding to the following fine pixels 3.5 [mu] m, about the solid-state imaging device having a good high-precision color filter shape.

デジタルカメラ、ビデオカメラ、携帯電話、PDAなどに搭載されるCCDやC−MOSなどの固体撮像素子は、その高精細化、多画素化が進んでいる。画素サイズは、4μm以下、3.5μm以下、さらには3.0μm以下まで微細化が進展し、同時に、画素数では、300万画素あるいは600万画素を超えるレベルの固体撮像素子が製造されている。   Solid-state imaging devices such as CCDs and C-MOSs mounted on digital cameras, video cameras, mobile phones, PDAs, and the like are becoming higher in definition and more pixels. Miniaturization has progressed to pixel sizes of 4 μm or less, 3.5 μm or less, and even 3.0 μm or less, and at the same time, solid-state imaging devices with a level exceeding 3 million pixels or 6 million pixels are manufactured. .

一方、これら固体撮像素子は、原色系(RGB)や補色系(YMC)のカラーフィルタを備え、高品位のカラー画像を静止画や動画で提供できるレベルにまでなっている。補色系カラーフィルタは、受光素子の高感度化が可能なため、近時、注目されている。こうした固体撮像素子のカラーフィルタは、半導体分野では一般的なステッパーと呼ばれる露光装置を用いて、上記微細な画素サイズにて製造されている。ステッパー露光装置の露光波長は365nmである。   On the other hand, these solid-state imaging devices are provided with primary color (RGB) and complementary color (YMC) color filters, and have reached a level at which high-quality color images can be provided as still images and moving images. Complementary color filters have recently attracted attention because they can increase the sensitivity of light receiving elements. Such a color filter of a solid-state imaging device is manufactured with the above-mentioned fine pixel size by using an exposure apparatus called a stepper generally used in the semiconductor field. The exposure wavelength of the stepper exposure apparatus is 365 nm.

前記3.5μm以下の画素サイズでは、従来の5〜4μm付近の画素サイズのものと比較して極めて高い精度を、半導体デバイスである受光素子のみでなく、カラーフィルタにも要求する事になる。   With a pixel size of 3.5 μm or less, extremely high accuracy is required not only for a light receiving element that is a semiconductor device but also for a color filter as compared with a conventional pixel size of about 5 to 4 μm.

従来の5〜4μm付近の画素サイズでは、受光素子(受光素子の開口部は2μm前後の大きさ)は、カラーフィルタの画素サイズや形状のバラツキの影響を受ることは少なく、受光素子の上を大まかにカラーフィルタが覆う程度の加工で十分であった。   With a conventional pixel size of about 5 to 4 μm, the light receiving element (the opening of the light receiving element is about 2 μm) is hardly affected by variations in the pixel size and shape of the color filter, The processing to the extent that the color filter roughly covers was sufficient.

しかし、3.5μmさらには3.0μm以下の画素サイズでは、受光素子の位置に対してカラーフィルタのエッヂが近いこともあり、カラーフィルタの形状や異なる色のカラーフィルタの重なり部分の状態、膜厚バラツキなどが、画質や色の均質性(ムラ)に影響することを本発明者らは見いだした。   However, for pixel sizes of 3.5 μm or even 3.0 μm or less, the edge of the color filter may be close to the position of the light receiving element, the shape of the color filter, the state of overlapping portions of the color filters of different colors, the film The present inventors have found that the thickness variation affects the image quality and color uniformity (unevenness).

3.5μmさらには3.0μm以下の画素サイズでは、カラーフィルタの画素サイズや形状のバラツキが、0.1μm〜0.3μm程度で、画質や色ムラに影響するといった問題が顕著となってくる。R(赤)・G(緑)・B(青)の原色系カラーフィルタにおける、G(緑)二画素と、R(赤)、B(青)各一画素で構成する、いわゆるベイヤー配列と呼ぶ画素配列では、G(緑)二画素を1色目に形成し、次にR(赤)、B(青)を形成することが多い。   When the pixel size is 3.5 μm or more and 3.0 μm or less, the variation in the pixel size and shape of the color filter is about 0.1 μm to 0.3 μm, and the problem of affecting the image quality and color unevenness becomes prominent. . In a primary color filter of R (red), G (green), and B (blue), it is called a so-called Bayer array composed of two G (green) pixels and one R (red) and B (blue) pixel. In the pixel array, two G (green) pixels are formed in the first color, and then R (red) and B (blue) are often formed.

この画素配列は、CCDやC−MOSでは極一般的であるが、この場合、G(緑)の形状のバラツキが面内、ロット間であると、これに付随して画質や色ムラに影響するといった問題があった。この現象は、透過率の高い(明るい)原色系カラーフィルタほど顕著になってくる。   This pixel arrangement is extremely common in CCDs and C-MOSs. In this case, if the variation in the shape of G (green) is in-plane and lot-to-lot, this affects the image quality and color unevenness. There was a problem such as. This phenomenon becomes more prominent for primary color filters having a high transmittance (bright).

また、画素サイズの微細化に伴って、より高感度化が可能な補色系カラーフィルタが注
目されている。しかし、補色系カラーフィルタは、原色系カラーフィルタより高透過率であるため、一層、上記の画質や色ムラへの影響が大きくなってくるといった問題があった。
In addition, as the pixel size is miniaturized, a complementary color type color filter capable of achieving higher sensitivity is attracting attention. However, since the complementary color filter has a higher transmittance than the primary color filter, there is a problem that the influence on the image quality and color unevenness is further increased.

さらに、3.5μmさらには3.0μm以下の画素サイズでは、画素サイズが小さく剥がれやすい傾向があるため、従来の大きめの画素サイズの場合と比較して、ステッパー露光装置での露光量を大きくする傾向にある。この際に各色の残渣が画素の形状に悪影響を及ぼし、画素の形状不良が発生し易くなる。この画素の形状不良が色ムラとなるといった問題があった。   Furthermore, since the pixel size tends to be small and easily peeled off when the pixel size is 3.5 μm or even 3.0 μm or less, the exposure amount in the stepper exposure apparatus is increased as compared with the case of the conventional larger pixel size. There is a tendency. At this time, the residue of each color adversely affects the shape of the pixel, and pixel shape defects are likely to occur. There has been a problem that the defective shape of the pixel causes color unevenness.

すなわち、画素サイズや形状のバラツキの問題だけでなく、フォトリソグラフィーの現像プロセスで生じる各色の残渣も、色ムラの原因になるといった問題があった。また、残渣は、他色の画素上に形成されると透過率を低減することにもなる。   That is, there is a problem that not only the pixel size and shape variation but also the residue of each color generated in the photolithography development process causes color unevenness. Further, when the residue is formed on a pixel of another color, the transmittance is also reduced.

本発明は、3.5μmさらには3.0μm以下の画素サイズにおいて、カラーフィルタの画素サイズや形状のバラツキを大幅に抑制して、画質や色ムラへの影響を低減させ、また、残渣の発生を大幅に抑制して、色ムラへの影響低減された固体撮像素子提供することを課題とする。 The present invention significantly suppresses variations in the pixel size and shape of the color filter in a pixel size of 3.5 μm or even 3.0 μm or less, thereby reducing the influence on image quality and color unevenness, and generating residue. the greatly suppressed, and to provide a solid-state imaging device effects on the color unevenness is reduced.

本発明は、上記課題を解決するために、半導体基板上に、少なくとも受光素子、平坦化層、ラーフィルタ、透明樹脂層、該透明樹脂層上に2次元的な配置のマイクロレンズを順次に積層した固体撮像素子おいて、前記カラーフィルタは、前記平坦化層上に塗膜として形成された顔料を含む感光性樹脂膜に、露光、現像、硬膜して形成されており、前記カラーフィルタの波長365nmでの透過率と、前記平坦化層の波長365nmでの透過率の2乗とを乗じた値で定義する平坦化層の波長365nmでの反射率が2%以下であることを特徴とする固体撮像素子ある。 The present invention, in order to solve the above problems, on a semiconductor substrate, at least the light receiving element, planarization layer, color filter, a transparent resin layer sequentially two-dimensional arrangement of microlenses in the transparent resin layer Oite the stacked solid-state imaging device, the color filter, the photosensitive resin film containing a pigment formed as coating on the planarization layer, exposing, developing, is formed by hardening, the collar The reflectivity at a wavelength of 365 nm of the planarization layer defined by a value obtained by multiplying the transmittance at a wavelength of 365 nm of the filter by the square of the transmittance at the wavelength of 365 nm of the planarization layer is 2% or less. a solid-state image pickup element characterized.

本発明は、半導体基板上に、少なくとも受光素子、平坦化層、光の波長365nmにおける透過率が8%以下であり、かつ、画素サイズが3.5μm以下の原色系カラーフィルタ、透明樹脂層、該透明樹脂層上に2次元的な配置のマイクロレンズを順次に積層する固体撮像素子おいて、平坦化層として、光の波長365nmでの透過率が40%以下の平坦化層を用いるので、3.5μmさらには3.0μm以下の画素サイズにおいて、カラーフィルタの画素サイズや形状のバラツキを大幅に抑制して、画質や色ムラへの影響を低減させ、また、残渣の発生を大幅に抑制して、色ムラへの影響低減さた固体撮像素子なる。 The present invention provides at least a light receiving element, a planarizing layer, a primary color filter having a light transmittance of 8% or less at a wavelength of 365 nm, and a pixel size of 3.5 μm or less, a transparent resin layer, on a semiconductor substrate, Oite the solid-state imaging device which sequentially laminating two-dimensional arrangement of microlenses in the transparent resin layer, a planarization layer, the transmittance at a wavelength 365nm light using a planarizing layer of 40% or less In a pixel size of 3.5 μm or even 3.0 μm or less, the variation in the pixel size and shape of the color filter is greatly suppressed, the influence on image quality and color unevenness is reduced, and the occurrence of residue is greatly increased. and suppressed and solid-state imaging device effects on the color unevenness is reduced.

本発明により、デジタルカメラなどの撮像装置において、3μm以下の微細ピッチにもかかわらず色ムラがなく、色バランスの良い均質な画像を得ることができる。   According to the present invention, in an imaging apparatus such as a digital camera, a uniform image with good color balance can be obtained without color unevenness despite a fine pitch of 3 μm or less.

以下に、本発明による固体撮像素子の製造方法を、その実施の形態に基づいて説明する。本発明者らは、RGB原色系カラーフィルタを形状良く形成するために、波長365nmでの透過率が40%以下である平坦化層上に、カラーフィルタの画素を形成することが最適であることを見いだした。   Below, the manufacturing method of the solid-state image sensor by this invention is demonstrated based on the embodiment. In order to form the RGB primary color filter in a good shape, the present inventors optimally form the color filter pixels on the planarizing layer having a transmittance of 40% or less at a wavelength of 365 nm. I found.

平坦化層は、アクリル、エポキシ、ポリエステル、ウレタン、メラミン、尿素樹脂、スチレン樹脂、フェノール樹脂、あるいはこれらの共重合物などの透明樹脂が使用可能である。   The planarizing layer can be made of transparent resin such as acrylic, epoxy, polyester, urethane, melamine, urea resin, styrene resin, phenol resin, or a copolymer thereof.

波長365nmでの透過率を40%以下にする手法は、紫外線吸収性化合物や紫外線吸収剤をこれら透明樹脂に添加、あるいはペンダント(反応型紫外線吸収剤などの形で樹脂分子鎖に組み込む)方式にて可能である。紫外線吸収剤には、ベンゾトリアゾール系、ベンゾフェノン系、トリアジン系、サリシレート系、クマリン系、キサンテン系あるいはメトキシケイ皮酸系有機化合物などが挙げられる。酸化セリウムや酸化チタンなどの金属酸化物微粒子の紫外線吸収剤も利用可能である。   In order to reduce the transmittance at a wavelength of 365 nm to 40% or less, an ultraviolet absorbing compound or an ultraviolet absorber is added to these transparent resins, or a pendant (incorporated into a resin molecular chain in the form of a reactive ultraviolet absorber) is used. Is possible. Examples of the ultraviolet absorber include benzotriazole series, benzophenone series, triazine series, salicylate series, coumarin series, xanthene series, and methoxycinnamic acid series organic compounds. Ultraviolet absorbers of metal oxide fine particles such as cerium oxide and titanium oxide can also be used.

また、補色系カラーフィルタは、原色系カラーフィルタと比較して波長365nmでの透過率が高く、その分、補色系カラーフィルタを透過しての再反射光が大きくなる傾向にある。その分、平坦化層の波長365nmでの吸収を付与(波長365nmでの透過率を低く)することが最適であることを見いだした。   Further, the complementary color filter has a higher transmittance at a wavelength of 365 nm than the primary color filter, and accordingly, the re-reflected light transmitted through the complementary color filter tends to increase. Accordingly, it has been found that it is optimal to provide the planarization layer with absorption at a wavelength of 365 nm (low transmittance at a wavelength of 365 nm).

固体撮像素子に配設されるカラーフィルタは、可視域400nm〜700nmの範囲を利用するため、マイクロレンズや平坦化層など他の部材の可視域光透過率は80%以上高いことが好ましい。また、R(赤)、G(緑)、B(青)、Y(イエロー)、M(マゼンタ)、C(シアン)それぞれの主波長(最も透過率の高い領域)では、90%以上の高透過率であることが望まれる。   Since the color filter disposed in the solid-state imaging device uses a visible range of 400 nm to 700 nm, the visible range light transmittance of other members such as a microlens and a flattened layer is preferably 80% or higher. In addition, the main wavelength (the region with the highest transmittance) of each of R (red), G (green), B (blue), Y (yellow), M (magenta), and C (cyan) is 90% or higher. The transmittance is desired.

一方、カラーフィルタやマイクロレンズをステッパー露光装置によりフォトリソグラフィーの手法で形成するときは、形成するカラーフィルタやマイクロレンズの下方にある平坦化層には、露光波長の365nmでの光吸収があって、その再反射を抑えることが好ましい。平坦化層に光吸収があることによって、これらの画素やパターン形状のバラツキを減少させることができる。   On the other hand, when a color filter or microlens is formed by a photolithography technique using a stepper exposure apparatus, the planarizing layer below the color filter or microlens to be formed has light absorption at an exposure wavelength of 365 nm. It is preferable to suppress the re-reflection. The light absorption in the planarization layer can reduce variations in these pixels and pattern shapes.

また、外線吸収剤の脱色(ブリーチング)は、熱や光によって行うことができる。より具体的には、上記固体撮像素子の最終工程に近い工程でホットプレートによる加熱、あるいは、紫外線など高エネルギーの放射線照射などによって脱色する事ができる。あるいは、それぞれ形成工程でのカラーフィルタ硬膜時の熱処理で徐々に脱色させていく手法をとっても良い。 Further, decolorization of ultraviolet absorber (bleaching) can be performed by heat or light. More specifically, decolorization can be performed by heating with a hot plate or irradiation with high energy radiation such as ultraviolet rays in a process close to the final process of the solid-state imaging device. Alternatively, a method of gradually decolorizing by heat treatment at the time of color filter hardening in each forming step may be used.

この場合、それぞれの色での画素サイズ及び形状を確保するため、波長365nmの光の透過率の高い色から形成していくことが好ましい。これは、平坦化層に含まれる紫外線吸収剤の波長365nmでの吸収が高い(透過率が低い)ときに、露光のハレーションの影響を受けやすい色から形成し、影響の少ない色は、ある程度、紫外線吸収剤の脱色の進んだ後工程で形成することを意味する。   In this case, in order to ensure the pixel size and shape of each color, it is preferable to form the color from a light having a high transmittance of light having a wavelength of 365 nm. This is because the ultraviolet absorber contained in the planarizing layer has a high absorption at a wavelength of 365 nm (low transmittance) and is formed from a color that is easily affected by exposure halation. It means that it is formed in a post-process where the decolorization of the ultraviolet absorber proceeds.

図1(a)〜(d)は、本発明による固体撮像素子の製造方法の一実施例の説明図である。また、図2(a)〜(d)は、本発明による固体撮像素子の製造方法の他の例の説明図である。   1A to 1D are explanatory views of an embodiment of a method for manufacturing a solid-state imaging device according to the present invention. 2A to 2D are explanatory views of another example of a method for manufacturing a solid-state imaging device according to the present invention.

図3は、本発明で用いる紫外線吸収剤の一例の、熱処理による脱色にかかわる分光特性図である。図4は、本発明における残渣の低減を示すSEM(電子顕微鏡)写真であり、図4(b)は、紫外線吸収剤を用いた場合、(a)は、紫外線吸収剤を用いない場合である。また、図5は、マゼンタの分光特性に与える紫外線吸収剤の影響を示す説明図である。   FIG. 3 is a spectral characteristic diagram related to decolorization by heat treatment of an example of the ultraviolet absorber used in the present invention. FIG. 4 is an SEM (electron microscope) photograph showing the reduction of residues in the present invention. FIG. 4 (b) shows a case where an ultraviolet absorber is used, and FIG. 4 (a) shows a case where no ultraviolet absorber is used. . FIG. 5 is an explanatory diagram showing the influence of the ultraviolet absorber on the spectral characteristics of magenta.

本発明による固体撮像素子の製造方法の一実施例によって製造された固体撮像素子は、図1(d)に示すように、受光素子(11)、遮光層(12)が形成された半導体基板(10)上に、光の波長365nmを吸収する平坦化層(13)、カラーフィルタであるマゼンタ画素(15)、イエロー画素(16)、シアン画素(17)、およびマイクロレンズ(19)を積層した構成である。   As shown in FIG. 1D, a solid-state image sensor manufactured by an embodiment of a method for manufacturing a solid-state image sensor according to the present invention includes a semiconductor substrate (1) on which a light receiving element (11) and a light shielding layer (12) are formed. 10) A flattening layer (13) that absorbs a light wavelength of 365 nm, a magenta pixel (15) that is a color filter, a yellow pixel (16), a cyan pixel (17), and a microlens (19) are laminated on top. It is a configuration.

また、他の例による固体撮像素子は、図2(d)に示すように、受光素子(21)、遮光層(22)が形成された半導体基板(20)上に、光の波長365nmを吸収する平坦化層(23)、カラーフィルタであるマゼンタ画素(25)、イエロー画素(26)、シアン画素(27)、およびマイクロレンズ(29)を積層した構成である。   Further, as shown in FIG. 2D, a solid-state imaging device according to another example absorbs a light wavelength of 365 nm on a semiconductor substrate (20) on which a light receiving element (21) and a light shielding layer (22) are formed. And a magenta pixel (25) as a color filter, a yellow pixel (26), a cyan pixel (27), and a microlens (29).

平坦化層(13)、(23)の形成は、前記したアクリ樹脂などの透明樹脂に、紫外線吸収剤を添加して用いることが簡便である。後述する実施例においては、クマリン系紫外線吸収剤を溶剤に溶解し、これをアクリル樹脂液に添加した例を示した。以下、カラーフィルターをCFと略称する。   The planarization layers (13) and (23) can be easily formed by adding an ultraviolet absorber to a transparent resin such as the aforementioned acrylic resin. In the examples described later, an example was shown in which a coumarin ultraviolet absorber was dissolved in a solvent and added to an acrylic resin liquid. Hereinafter, the color filter is abbreviated as CF.

Figure 2009065178
表1に、膜厚約1μmのCF単体それぞれの、波長365nmでの透過率を示した。本発明者らは、これらCFの波長365nmでの透過率と、CF下地である平坦化層の波長365nmでの透過率が、CFの画素サイズ及び形状に大きく影響することを見いだした。この傾向は、画素サイズが5μm以上では大きな影響がなく、3.5μmさらには3.0μm以下の画素サイズの場合に大きな悪影響がある。
Figure 2009065178
Table 1 shows the transmittance at a wavelength of 365 nm of each CF simple substance having a film thickness of about 1 μm. The present inventors have found that the transmittance of the CF at a wavelength of 365 nm and the transmittance at a wavelength of 365 nm of the flattening layer which is the CF base greatly affect the pixel size and shape of the CF. This tendency does not have a significant effect when the pixel size is 5 μm or more, and has a significant adverse effect when the pixel size is 3.5 μm or even 3.0 μm or less.

すなわち、本発明者らは、平坦化層の波長365nmでの反射率が、明らかにCFの画素サイズ及び形状に関係する事を見いだした。本願における、平坦化層の波長365nmでの反射率とは、平坦化層上にCFを形成した状態で、下記の数式(1)で定義したものである。
平坦化層の波長365nmでの反射率=(CFの波長365nmでの透過率)×(平坦化層の波長365nmでの透過率)2 ・・・・(1)
厳密には、平坦化層の下地である半導体基板の反射率を考慮しなければならないが、それぞれCFの形状を議論する上では、数式(1)で十分である。
That is, the present inventors have found that the reflectance at a wavelength of 365 nm of the planarizing layer is clearly related to the CF pixel size and shape. In the present application, the reflectance of the planarizing layer at a wavelength of 365 nm is defined by the following formula (1) in a state where CF is formed on the planarizing layer.
Reflectivity of flattening layer at wavelength 365 nm = (transmittance of CF at wavelength 365 nm) × (transmittance of flattening layer at wavelength 365 nm) 2 (1)
Strictly speaking, the reflectance of the semiconductor substrate that is the base of the planarization layer must be taken into account, but in discussing the shape of the CF, Equation (1) is sufficient.

なお、受光素子などが形成される半導体基板には、受光素子とのデータのやりとりを行うアルミニウム配線がマトリックス状に形成される。アルミニウムは紫外線領域においても光の反射率の高い金属であり、微細な画素における本発明者らの提案が重要となる。   Note that aluminum wiring for exchanging data with the light receiving element is formed in a matrix on a semiconductor substrate on which the light receiving element and the like are formed. Aluminum is a metal having a high light reflectance even in the ultraviolet region, and the present inventors' proposal for a fine pixel is important.

表1に示す、CFの波長365nmでの透過率を基に、平坦化層の波長365nmでの反射率を数式(1)を用いて算出したものを表2に示した。平坦化層の波長365nmでの透過率は、50%〜10%を用いた。また、それぞれの、画素サイズが3.5μm以下での画素の形状評価を示した。なお、図6には、画素の形状が悪い例を示した。直方体でなく台形状を呈している例である。   Table 2 shows the reflectance calculated at the wavelength 365 nm of the planarizing layer using Formula (1) based on the transmittance of CF at 365 nm shown in Table 1. The transmittance of the planarizing layer at a wavelength of 365 nm was 50% to 10%. Moreover, the shape evaluation of each pixel with a pixel size of 3.5 μm or less was shown. FIG. 6 shows an example in which the pixel shape is bad. This is an example of a trapezoidal shape instead of a rectangular parallelepiped.

Figure 2009065178
Figure 2009065178

表2に示すように、補色系CF(Y、M、C)では、平坦化層の波長365nmでの透過率が20%以下のとき、3色とも画素の形状が良くなり、また、原色系CF(R、G、B)では40%以下のとき、画素の形状が良好となる。すなわち、画素サイズ3.5μm以下において、波長365nmでの透過率の高いCFでは良好な形状を確保するためには、平坦化層の波長365nmでの反射率を2%以下に設定することが必要となる。   As shown in Table 2, in the complementary color system CF (Y, M, C), when the transmittance of the flattening layer at a wavelength of 365 nm is 20% or less, the shape of the pixel is improved for all three colors, and the primary color system When CF (R, G, B) is 40% or less, the shape of the pixel is good. That is, when the pixel size is 3.5 μm or less, in order to ensure a good shape with CF having a high transmittance at a wavelength of 365 nm, it is necessary to set the reflectance of the planarizing layer at a wavelength of 365 nm to 2% or less. It becomes.

以上のように、紫外線吸収剤などの添加により波長365nmに吸収機能を持たせた平坦化層上に、画素の形状の良好なCFを形成できるが、一般的に波長365nmに吸収を
持つ紫外線吸収剤の分光特性は、400nm〜450nmのブルー(青)に関わる可視域に若干の吸収を持つ。ところが、400nm〜450nmに吸収があると、ブルーの感度に影響することになり好ましくない。
As described above, a CF having a good pixel shape can be formed on a planarizing layer having an absorption function at a wavelength of 365 nm by adding an ultraviolet absorber or the like, but generally UV absorption having an absorption at a wavelength of 365 nm. The spectral characteristic of the agent has a slight absorption in the visible region relating to blue (blue) of 400 nm to 450 nm. However, absorption at 400 nm to 450 nm is not preferable because it affects blue sensitivity.

図5に、代表的にM(マゼンタ)の分光特性を破線にて、クマリン系紫外線吸収剤(SV−50、商品名)の分光特性を点線にて示した。また、M(マゼンタ)とクマリン系紫外線吸収剤(SV−50)を重ね合わせた分光特性を実線にて示した。クマリン系紫外線吸収剤(SV−50)が、450nm付近から短波長側に吸収を持つため、本来M(マゼンタ)単体では、85%の高い透過率であるものが、重ね合わせた分光特性の400nmの透過率は33%前後と大きくダウンすることがわかる。   In FIG. 5, the spectral characteristic of M (magenta) is typically shown by a broken line, and the spectral characteristic of a coumarin ultraviolet absorber (SV-50, trade name) is shown by a dotted line. In addition, the spectral characteristics obtained by superimposing M (magenta) and a coumarin ultraviolet absorber (SV-50) are indicated by a solid line. Since the coumarin ultraviolet absorber (SV-50) has an absorption on the short wavelength side from around 450 nm, originally M (magenta) alone has a high transmittance of 85%, but the superposed spectral characteristic of 400 nm. It can be seen that the transmittance of the filter greatly decreases to around 33%.

また、波長365nmでの透過率の高い補色系CFでは、それぞれの形成工程後、カラーレジストの残渣が残りやすい傾向にある。図4(b)に、本発明で用いた紫外線吸収剤を添加した平坦化層、図4(a)に、添加していない平坦化層の上の残渣状況を示した。紫外線吸収剤の入っていない平坦化層上に残渣が多いことがわかる。   Further, in the complementary color CF having a high transmittance at a wavelength of 365 nm, a color resist residue tends to remain after each forming step. FIG. 4B shows a planarized layer to which the ultraviolet absorber used in the present invention is added, and FIG. 4A shows a residue state on the planarized layer not added. It can be seen that there are many residues on the planarizing layer not containing the UV absorber.

本発明者らは、鋭意検討の結果、CFやマイクロレンズ形成時には、ハレーションを避けるために十分な紫外線吸収機能を平坦化層に持たせ、その後、CF形成後などに、平坦化層に含まれる紫外線吸収剤を脱色させることによって、CFに高い透過率を確保することができることを見いだした。   As a result of intensive studies, the inventors have made the flattening layer have an ultraviolet absorbing function sufficient for avoiding halation when forming CF and microlenses, and then included in the flattening layer after CF formation and the like. It has been found that high transmittance can be secured in CF by decolorizing the ultraviolet absorber.

図3は、本発明者らが見いだした比較的高温(230℃)で脱色可能な紫外線吸収剤(SV−35、商品名)の、高温熱処理時の分光特性の変化を示すものである。図3は、230℃で脱色できる例を示したが、熱処理温度や他の脱色処理(紫外線照射など)でも良いし、あるいは、用いるCFやマイクロレンズの耐熱性に応じて紫外線吸収剤を選択すればよい。また、用いるCFの波長365nmでの透過率に応じて、平坦化層への紫外線吸収剤の添加量(初期の波長365nmでの透過率)を調整すれば良い。   FIG. 3 shows changes in the spectral characteristics of the UV absorber (SV-35, trade name) that can be decolorized at a relatively high temperature (230 ° C.) found by the present inventors during high-temperature heat treatment. FIG. 3 shows an example in which decolorization can be performed at 230 ° C., but heat treatment temperature or other decolorization treatment (such as ultraviolet irradiation) may be used, or an ultraviolet absorber may be selected according to the heat resistance of the CF or microlens used. That's fine. Further, the addition amount of the ultraviolet absorber (transmittance at an initial wavelength of 365 nm) to the planarizing layer may be adjusted in accordance with the transmittance of the CF to be used at a wavelength of 365 nm.

染色系CFであれば、その硬膜温度は、およそ160℃〜180℃、顔料系CFであれば、180℃〜230℃の範囲内で行われることが多い。それぞれCFの色数は、3乃至4色で、色数に相当した工程(あるいは硬膜処理)が少なくとも必要である。平坦化層の脱色は、1)これら入色後に熱処理などにより実施しても良いし、あるいは、2)色工程(硬膜処理)を経る毎に徐々に脱色させても良い。   In the case of a dye-based CF, the dura mater temperature is often in the range of about 160 ° C. to 180 ° C., and in the case of a pigment-based CF, it is often performed within a range of 180 ° C. to 230 ° C. Each CF has 3 to 4 colors, and at least a process corresponding to the number of colors (or hardening process) is required. The decolorization of the flattening layer may be performed 1) by heat treatment after these colors are added, or 2) may be gradually decolored every time a color process (hardening process) is performed.

表2に示したように、色によって、あるいは色材の含有量や、CFの膜厚によって、波長365nmでの透過率が異なるので、後者2)による手法をとる場合は、波長365nmでの透過率の高い順から入色していくことが好ましい。補色系CFであれば、マゼンタ、イエロー、シアンの順となり、マゼンタを最初に入色することになる。   As shown in Table 2, the transmittance at a wavelength of 365 nm differs depending on the color, the content of the coloring material, and the film thickness of the CF. Therefore, when the method of the latter 2) is adopted, the transmission at the wavelength of 365 nm It is preferable to add colors in descending order of rate. In the case of the complementary color CF, magenta, yellow, and cyan are used in this order, and magenta is input first.

以下に、本発明による固体撮像素子の製造方法を実施例にて詳細に説明する。
<実施例1>
図1(b)に示すように、受光素子(11)や遮光層(12)(メタル配線やパッシベーション膜など詳細省略)の形成された半導体基板(10)上に、本発明による紫外線吸収機能を有する平坦化層(13)を、平均膜厚1.3μmにて塗布形成した。
Below, the manufacturing method of the solid-state image sensor by this invention is demonstrated in detail in an Example.
<Example 1>
As shown in FIG. 1B, the ultraviolet absorbing function according to the present invention is provided on a semiconductor substrate (10) on which a light receiving element (11) and a light shielding layer (12) (details of metal wiring, passivation film, etc. are omitted) are formed. A planarizing layer (13) having an average film thickness of 1.3 μm was formed by coating.

平坦化層は、主溶剤としてシクロヘキサノンを用い、熱硬化タイプのアクリル樹脂の固形分に対し、クマリン系紫外線吸収剤(SV−35)を7.7%添加した塗布液を、スピンコートで塗布し、200℃のホットプレートで硬膜したものである。平坦化層の波長365nmでの透過率は18%であった。   For the flattening layer, cyclohexanone is used as the main solvent, and a coating solution in which 7.7% of a coumarin ultraviolet absorber (SV-35) is added to the solid content of the thermosetting acrylic resin is applied by spin coating. The film is hardened by a hot plate at 200 ° C. The transmittance of the planarizing layer at a wavelength of 365 nm was 18%.

次に、図1(c)に示すように、マゼンタ顔料を固形比で15%含むアルカリ可溶性の感光性アクリル樹脂基材の塗布液(主溶剤シクロヘキサノン)を用いて、平坦化層(13)上にマゼンタ塗膜を形成し、ステッパー露光装置により露光を行い、現像、硬膜して膜厚約0.9μm、画素サイズ2.5μmのマゼンタ画素(15)を形成した。硬膜温度は、200℃とした。画素の形状は、画素周囲に裾を引くこともなく、また、現像後の残渣もなく良好であった。   Next, as shown in FIG. 1 (c), an alkali-soluble photosensitive acrylic resin base material coating solution (main solvent cyclohexanone) containing a magenta pigment in a solid ratio of 15% is used to form a surface on the planarizing layer (13). A magenta coating film was formed on the film, exposed with a stepper exposure apparatus, developed and hardened to form a magenta pixel (15) having a film thickness of about 0.9 μm and a pixel size of 2.5 μm. The hardening temperature was 200 ° C. The shape of the pixel was good with no tails around the pixel and no residue after development.

次に、図1(d)に示すように、同じく、膜厚約0.9μm、画素サイズ2.5μmのイエロー画素(16)、シアン画素(17)をそれぞれ形成した。イエロー画素はイエロー顔料を固形比で18%含む塗布液を、シアン画素はシアン顔料を固形比で20%含む塗布液を、同様にスピンコートで塗布形成したものである。画素の形状は、いずれも画素周囲に裾を引くこともなく、また、現像後の残渣もなく良好であった。   Next, as shown in FIG. 1D, yellow pixels (16) and cyan pixels (17) each having a film thickness of about 0.9 μm and a pixel size of 2.5 μm were formed. Similarly, a yellow pixel is formed by applying a coating solution containing 18% of a yellow pigment in a solid ratio, and a cyan pixel is formed by applying a coating solution containing a cyan pigment in a solid ratio of 20% by spin coating. The shape of the pixels was good with no skirts around the pixels and no residue after development.

このあと、図1(d)に示すように、さらに透明樹脂層(18)を膜厚約0.5μmで形成、フェノール樹脂系の感光性レンズ材料を用いて、2.5μmピッチにてマイクロレンズ(19)を形成した。露光は、カラーフィルタと同じくステッパー露光装置を用いた。マイクロレンズは、公知のフォトリソ技術、および熱フローの技術により形成したものである。マイクロレンズの硬膜温度は200℃とした。   Thereafter, as shown in FIG. 1 (d), a transparent resin layer (18) is further formed with a film thickness of about 0.5 μm, and a microlens is formed at a pitch of 2.5 μm using a phenol resin photosensitive lens material. (19) was formed. For the exposure, a stepper exposure apparatus was used in the same manner as the color filter. The microlens is formed by a known photolithography technique and a heat flow technique. The dura mater temperature of the microlens was 200 ° C.

さらに、このあと、230℃・6分の最終熱処理を行い、平坦化層の脱色(ブリーチング)を行った。最終熱処理は6分であったが、CFプロセス、透明樹脂硬膜、レンズ硬膜の熱処理を経ることにより、トータルで230℃・12分の熱処理相当の脱色効果が得られ、カラーフィルタは十分な透過率を確保することができた。   Further, after this, a final heat treatment was performed at 230 ° C. for 6 minutes, and the flattening layer was decolored (bleached). Although the final heat treatment was 6 minutes, a decoloring effect equivalent to a heat treatment of 230 ° C. and 12 minutes in total was obtained by heat treatment of the CF process, transparent resin hard film, and lens hard film, and the color filter was sufficient The transmittance could be secured.

<実施例2>
図2(b)に示すように、受光素子(21)や遮光層(22)(メタル配線やパッシベーション膜など詳細省略)の形成された半導体基板(20)上に、本発明による紫外線吸収機能を有する平坦化層(23)を、平均膜厚1.3μmにて塗布形成した。
<Example 2>
As shown in FIG. 2B, the ultraviolet absorbing function according to the present invention is provided on a semiconductor substrate (20) on which a light receiving element (21) and a light shielding layer (22) (details of metal wiring, passivation film, etc. are omitted) are formed. A planarizing layer (23) having an average film thickness of 1.3 μm was formed by coating.

平坦化層は、主溶剤としてシクロヘキサノンを用い、熱硬化タイプのアクリル樹脂の固形分に対し、紫外線吸収剤(SV−35)を4%添加した塗布液を、スピンコートで塗布し、200℃のホットプレートで硬膜したものである。平坦化層の波長365nmでの透過率は35%であった。   The flattening layer uses cyclohexanone as a main solvent, and a spin coat is applied to a coating solution in which 4% of an ultraviolet absorber (SV-35) is added to the solid content of a thermosetting acrylic resin. It is hardened with a hot plate. The transmittance of the planarizing layer at a wavelength of 365 nm was 35%.

次に、図2(c)に示すように、グリーン顔料およびイエロー顔料をあわせ固形比で26%含むアルカリ可溶性の感光性アクリル樹脂基材の塗布液(主溶剤シクロヘキサノン)を用いて、平坦化層(23)上にグリーン塗膜を形成し、ステッパー露光装置により露光を行い、現像、硬膜して膜厚約0.9μm、画素サイズ2.5μmのグリーン画素(25)を形成した。硬膜温度は、200℃とした。画素の形状は、画素周囲に裾を引くこともなく、また、現像後の残渣もなく良好であった。   Next, as shown in FIG. 2 (c), using a coating solution (main solvent cyclohexanone) of an alkali-soluble photosensitive acrylic resin base material containing a green pigment and a yellow pigment in a solid ratio of 26%, a planarization layer is formed. (23) A green coating film was formed thereon, exposed by a stepper exposure apparatus, developed and hardened to form a green pixel (25) having a film thickness of about 0.9 μm and a pixel size of 2.5 μm. The hardening temperature was 200 ° C. The shape of the pixel was good with no tails around the pixel and no residue after development.

次に、図2(d)に示すように、同じく、膜厚約0.9μm、画素サイズ2.5μmのレッド画素(26)、ブルー画素(27)をそれぞれ形成した。レッド画素はレッド顔料とイエロー顔料をあわせ固形比で40%含む塗布液を、ブルー画素はブルー顔料とバイオレット顔料をあわせ固形比で40%含む塗布液を、同様にスピンコートで塗布形成したものである。画素の形状は、いずれも 画素周囲に裾を引くこともなく、また、現像後の残渣もなく良好であった。   Next, as shown in FIG. 2D, a red pixel (26) and a blue pixel (27) each having a film thickness of about 0.9 μm and a pixel size of 2.5 μm were formed. The red pixel is a coating solution containing 40% of the solid ratio of the red and yellow pigments, and the blue pixel is a coating solution of 40% of the solid ratio of the blue and violet pigments. is there. The shape of the pixels was good with no tails around the pixels and no residue after development.

当実施例において、各色の波長365nmでの透過率の高さの順序から入色順を 本来
はレッドから行うべきであるが、レッドの波長365nmでの透過率が2色目の入色としても問題ない透過率であるため、グリーンを1色目に設定した。
In this example, the order of color entry should be performed from red, starting from the order of the transmittance of each color at a wavelength of 365 nm. However, the transmittance of red at a wavelength of 365 nm is also problematic as the second color. Green was set as the first color because of no transmittance.

このあと、図2(d)に示すように、さらに透明樹脂層(28)を膜厚約0.5μmで形成、フェノール樹脂系の感光性レンズ材料を用いて、2.5μmピッチにてマイクロレンズ(29)を形成した。露光は、カラーフィルタと同じくステッパー露光装置を用いた。マイクロレンズは、公知のフォトリソ技術、および熱フローの技術により形成したものである。マイクロレンズの硬膜温度は、200℃とした。   Thereafter, as shown in FIG. 2 (d), a transparent resin layer (28) is further formed with a film thickness of about 0.5 μm, and a microlens is formed at a pitch of 2.5 μm using a phenol resin photosensitive lens material. (29) was formed. For the exposure, a stepper exposure apparatus was used in the same manner as the color filter. The microlens is formed by a known photolithography technique and a heat flow technique. The dura mater temperature of the microlens was 200 ° C.

さらに、このあと、230℃・6分の最終熱処理を行い、平坦化層の脱色(ブリーチング)を行った。最終熱処理は6分であったが、CFプロセス、透明樹脂硬膜、レンズ硬膜の熱処理を経ることにより、トータルで230℃・12分の熱処理相当の脱色効果が得られ、カラーフィルタは十分な透過率を確保することができた。   Further, after this, a final heat treatment was performed at 230 ° C. for 6 minutes, and the flattening layer was decolored (bleached). Although the final heat treatment was 6 minutes, a decoloring effect equivalent to a heat treatment of 230 ° C. and 12 minutes in total was obtained by heat treatment of the CF process, transparent resin hard film, and lens hard film, and the color filter was sufficient The transmittance could be secured.

当実施例の固体撮像素子を用いたデジタルカメラは、微細ピッチであるが色ムラもなく極めて高画質であることを確認できた。   It was confirmed that the digital camera using the solid-state imaging device of this example has a very fine image quality even though it has a fine pitch but no color unevenness.

(a)〜(d)は、本発明による固体撮像素子の製造方法の一実施例の説明図である。(A)-(d) is explanatory drawing of one Example of the manufacturing method of the solid-state image sensor by this invention. (a)〜(d)は、本発明による固体撮像素子の製造方法の他の例の説明図である。(A)-(d) is explanatory drawing of the other example of the manufacturing method of the solid-state image sensor by this invention. 紫外線吸収剤の一例の、熱処理による脱色にかかわる分光特性図である。It is a spectral characteristic figure in connection with the decoloring by heat processing of an example of an ultraviolet absorber. (a)は、紫外線吸収剤を用いない場合の残渣を示すSEM写真である。(b)は、紫外線吸収剤を用いた場合の残渣の低減を示すSEM写真である。(A) is a SEM photograph which shows the residue when not using an ultraviolet absorber. (B) is the SEM photograph which shows reduction of the residue at the time of using an ultraviolet absorber. マゼンタの分光特性に与える紫外線吸収剤の影響を示す説明図である。It is explanatory drawing which shows the influence of the ultraviolet absorber which has on the spectral characteristic of magenta. 画素の形状が悪い例の説明図である。It is explanatory drawing of the example with a bad pixel shape.

符号の説明Explanation of symbols

10、20・・・ 半導体基板
11、21・・・受光素子
12、22・・・遮光層
13、23・・・平坦化層
15・・・ マゼンタ画素
16・・・ イエロー画素
17・・・ シアン画素
18、28・・・ 透明樹脂層
19、29・・・ マイクロレンズ
25・・・ グリーン画素
26・・・ レッド画素
27・・・ ブルー画素
10, 20 ... Semiconductor substrate 11, 21 ... Light receiving element 12, 22 ... Light shielding layer 13, 23 ... Flattening layer 15 ... Magenta pixel 16 ... Yellow pixel 17 ... Cyan Pixels 18, 28 ... Transparent resin layers 19, 29 ... Micro lens 25 ... Green pixel 26 ... Red pixel 27 ... Blue pixel

Claims (1)

半導体基板上に、少なくとも受光素子、平坦化層、ラーフィルタ、透明樹脂層、該透明樹脂層上に2次元的な配置のマイクロレンズを順次に積層した固体撮像素子おいて、前記カラーフィルタは、前記平坦化層上に塗膜として形成された顔料を含む感光性樹脂膜に、露光、現像、硬膜して形成されており、前記カラーフィルタの波長365nmでの透過率と、前記平坦化層の波長365nmでの透過率の2乗とを乗じた値で定義する平坦化層の波長365nmでの反射率が2%以下であることを特徴とする固体撮像素子 On a semiconductor substrate, at least the light receiving element, planarization layer, color filter, a transparent resin layer, Oite to sequentially stacked solid-state imaging device of the two-dimensional arrangement of microlenses in the transparent resin layer, the color filter Is formed by exposing, developing, and hardening a photosensitive resin film containing a pigment formed as a coating film on the planarizing layer, the transmittance of the color filter at a wavelength of 365 nm, and the flatness A solid-state imaging device, characterized in that the reflectance of the planarization layer at a wavelength of 365 nm defined by a value obtained by multiplying the square of the transmittance at a wavelength of 365 nm of the planarization layer is 2% or less .
JP2008258306A 2008-10-03 2008-10-03 Manufacturing method of solid-state imaging device Expired - Lifetime JP5056709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258306A JP5056709B2 (en) 2008-10-03 2008-10-03 Manufacturing method of solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258306A JP5056709B2 (en) 2008-10-03 2008-10-03 Manufacturing method of solid-state imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002224501A Division JP4292764B2 (en) 2002-08-01 2002-08-01 Manufacturing method of solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2009065178A true JP2009065178A (en) 2009-03-26
JP5056709B2 JP5056709B2 (en) 2012-10-24

Family

ID=40559420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258306A Expired - Lifetime JP5056709B2 (en) 2008-10-03 2008-10-03 Manufacturing method of solid-state imaging device

Country Status (1)

Country Link
JP (1) JP5056709B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215624A (en) * 2009-10-28 2015-12-03 アレンティック マイクロサイエンス インコーポレイテッド Microscopy imaging method
US9989750B2 (en) 2013-06-26 2018-06-05 Alentic Microscience Inc. Sample processing improvements for microscopy
US10502666B2 (en) 2013-02-06 2019-12-10 Alentic Microscience Inc. Sample processing improvements for quantitative microscopy
US10620234B2 (en) 2009-10-28 2020-04-14 Alentic Microscience Inc. Microscopy imaging

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932281A (en) * 1983-07-22 1984-02-21 Hitachi Ltd Color image pickup device
JPS62264005A (en) * 1986-05-06 1987-11-17 Mitsubishi Electric Corp Production of high precision color filter
JPH03178167A (en) * 1989-12-06 1991-08-02 Nec Corp Manufacture of solid-state image pickup device
JPH04235504A (en) * 1991-01-10 1992-08-24 Matsushita Electron Corp Manufacture of color solid image pick-up device
JPH05326902A (en) * 1992-05-26 1993-12-10 Toshiba Corp Manufacture of solid-state image sensing device
JP2002064193A (en) * 2000-08-22 2002-02-28 Sony Corp Solid-state imaging device and manufacturing method thereof
JP4292764B2 (en) * 2002-08-01 2009-07-08 凸版印刷株式会社 Manufacturing method of solid-state imaging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932281A (en) * 1983-07-22 1984-02-21 Hitachi Ltd Color image pickup device
JPS62264005A (en) * 1986-05-06 1987-11-17 Mitsubishi Electric Corp Production of high precision color filter
JPH03178167A (en) * 1989-12-06 1991-08-02 Nec Corp Manufacture of solid-state image pickup device
JPH04235504A (en) * 1991-01-10 1992-08-24 Matsushita Electron Corp Manufacture of color solid image pick-up device
JPH05326902A (en) * 1992-05-26 1993-12-10 Toshiba Corp Manufacture of solid-state image sensing device
JP2002064193A (en) * 2000-08-22 2002-02-28 Sony Corp Solid-state imaging device and manufacturing method thereof
JP4292764B2 (en) * 2002-08-01 2009-07-08 凸版印刷株式会社 Manufacturing method of solid-state imaging device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11294160B2 (en) 2009-10-28 2022-04-05 Alentic Microscience Inc. Microscopy imaging
US11635447B2 (en) 2009-10-28 2023-04-25 Alentic Microscience Inc. Microscopy imaging
JP2018028683A (en) * 2009-10-28 2018-02-22 アレンティック マイクロサイエンス インコーポレイテッド Method for microscopic imaging
US10520711B2 (en) 2009-10-28 2019-12-31 Alentic Microscience Inc. Microscopy imaging
US10114203B2 (en) 2009-10-28 2018-10-30 Alentic Microscience Inc. Microscopy imaging
US10345564B2 (en) 2009-10-28 2019-07-09 Alentic Microscience Inc. Microscopy imaging
US10620234B2 (en) 2009-10-28 2020-04-14 Alentic Microscience Inc. Microscopy imaging
JP2015215624A (en) * 2009-10-28 2015-12-03 アレンティック マイクロサイエンス インコーポレイテッド Microscopy imaging method
US11947096B2 (en) 2009-10-28 2024-04-02 Alentic Microscience Inc. Microscopy imaging
US9720217B2 (en) 2009-10-28 2017-08-01 Alentic Microscience Inc. Microscopy imaging
US10900999B2 (en) 2009-10-28 2021-01-26 Alentic Microscience Inc. Microscopy imaging
US10866395B2 (en) 2009-10-28 2020-12-15 Alentic Microscience Inc. Microscopy imaging
US10768078B2 (en) 2013-02-06 2020-09-08 Alentic Microscience Inc. Sample processing improvements for quantitative microscopy
US10502666B2 (en) 2013-02-06 2019-12-10 Alentic Microscience Inc. Sample processing improvements for quantitative microscopy
US11598699B2 (en) 2013-02-06 2023-03-07 Alentic Microscience Inc. Sample processing improvements for quantitative microscopy
US10809512B2 (en) 2013-06-26 2020-10-20 Alentic Microscience Inc. Sample processing improvements for microscopy
US10746979B2 (en) 2013-06-26 2020-08-18 Alentic Microscience Inc. Sample processing improvements for microscopy
US10459213B2 (en) 2013-06-26 2019-10-29 Alentic Microscience Inc. Sample processing improvements for microscopy
US11874452B2 (en) 2013-06-26 2024-01-16 Alentic Microscience Inc. Sample processing improvements for microscopy
US9989750B2 (en) 2013-06-26 2018-06-05 Alentic Microscience Inc. Sample processing improvements for microscopy

Also Published As

Publication number Publication date
JP5056709B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
TWI790145B (en) Colored photosensitive composition, cured film, pattern forming method, infrared cut filter with light-shielding film, solid-state imaging device, image display device, and infrared sensor
TWI682972B (en) Curable composition, cured film, infrared light transmission filter and solid-state photography device
KR101552578B1 (en) Titanium black dispersion, photosensitive resin composition, wafer level lens, light blocking film, method for producing the light blocking film, and solid-state image pickup element
US7932122B2 (en) Manufacturing method for solid state image pickup device
TWI278991B (en) Solid image-pickup device and method of manufacturing the same
US7750360B2 (en) Solid-state image pickup device
CN100533749C (en) Solid state image pickup device and manufacturing method thereof
JP4882182B2 (en) Solid-state image sensor
WO2021059977A1 (en) Curable composition, cured film, color filter, solid-state imaging element, and image display device
JP7245843B2 (en) Light-shielding film, method for manufacturing light-shielding film, optical element, solid-state imaging device, headlight unit
TWI644994B (en) Photosensitive resin composition, resin cured product thereof and color filter
JP5056709B2 (en) Manufacturing method of solid-state imaging device
TWI788415B (en) Photocurable composition, laminated body, and solid imaging element
KR20220146572A (en) Colored photosensitive composition, cured product, color filter, solid-state image sensor, and image display device
TWI604229B (en) Color filter, method of producing the same, colored curable composition, solid-state image sensing device and kit
JP4292764B2 (en) Manufacturing method of solid-state imaging device
KR20210056406A (en) Structure, solid-state imaging device and image display device
JP7185058B2 (en) Curable composition, cured product, color filter, solid-state imaging device, and image display device
TW201823859A (en) Pattern manufacturing method, color filter manufacturing method, method of manufacturing sold state imaging element, and method of manufacturing image display device
JP7083887B2 (en) Curable composition, cured film, optical element, solid-state image sensor, color filter
JP7417819B1 (en) Solid-state image sensor, solid-state image sensor manufacturing method, and electronic equipment
JP7190508B2 (en) Structure Manufacturing Method, Color Filter Manufacturing Method, Solid-State Imaging Device Manufacturing Method, and Image Display Device Manufacturing Method
JP2011176182A (en) Image sensor and method of manufacturing the same
JP2023143987A (en) Curable composition, cured product, color filter, solid-state imaging element and image display device
KR20220137949A (en) Photosensitive composition, cured film, color filter, light-shielding film, optical element, solid-state image sensor, infrared sensor, headlight unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5056709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term