JP2009065044A - Thermoelectric conversion module and its evaluation method - Google Patents

Thermoelectric conversion module and its evaluation method Download PDF

Info

Publication number
JP2009065044A
JP2009065044A JP2007232951A JP2007232951A JP2009065044A JP 2009065044 A JP2009065044 A JP 2009065044A JP 2007232951 A JP2007232951 A JP 2007232951A JP 2007232951 A JP2007232951 A JP 2007232951A JP 2009065044 A JP2009065044 A JP 2009065044A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
electrode
pair
type
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007232951A
Other languages
Japanese (ja)
Inventor
Yuichi Hiroyama
雄一 廣山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007232951A priority Critical patent/JP2009065044A/en
Priority to TW097133582A priority patent/TW200919790A/en
Priority to PCT/JP2008/066275 priority patent/WO2009031698A1/en
Publication of JP2009065044A publication Critical patent/JP2009065044A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module in which the resistance of a part of a circuit constituted of a plurality of electrodes, a plurality of p-type thermoelectric conversion elements and a plurality of n-type thermoelectric conversion elements can be measured, and to provide its evaluation method. <P>SOLUTION: The thermoelectric conversion module 20 comprises a pair of substrates 2 and 7 facing each other, a plurality of p-type thermoelectric conversion elements 3 and a plurality of n-type thermoelectric conversion elements 4 arranged between the pair of substrates 2 and 7, and a plurality of electrodes 6 and 8 provided, respectively, on the pair of substrates 2 and 7 in order to connect the end faces of each pair of p-type thermoelectric conversion element 3 and n-type thermoelectric conversion element 4 electrically, and to connect the plurality of p-type thermoelectric conversion elements 3 and the plurality of n-type thermoelectric conversion elements 4 alternately in terms of p-type/n-type and electrically in series, wherein a through hole 1 for exposing a part of the electrode is formed in both of the pair of substrates 2 and 7 for every electrode 6, 8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱電変換モジュール及びその評価方法を提供する。   The present invention provides a thermoelectric conversion module and an evaluation method thereof.

熱電変換モジュールとして、互いに対向する一対の基板と、一対の基板の間に配置された複数のp型及びn型の熱電変換素子と、一対の基板上にそれぞれ設けられ、これらのp型及びn型の熱電変換素子を電気的に直列に接続する複数の電極と、を備えるものが知られている(例えば、特許文献1)。
特開2006−40963号公報
As the thermoelectric conversion module, a pair of substrates facing each other, a plurality of p-type and n-type thermoelectric conversion elements disposed between the pair of substrates, and the p-type and n-type are provided on the pair of substrates, respectively. And a plurality of electrodes that electrically connect type thermoelectric conversion elements in series are known (for example, Patent Document 1).
JP 2006-40963 A

このような熱電変換モジュールは、複数の熱電変換素子及び複数の電極により構成された回路を有しており、回路の両端には電圧出力用の外部出力電極が設けられている。そして、このような構造を有する熱電変換モジュールにおいては、組み立て後に、回路全体の抵抗について外部出力電極を利用して調べることができるものの、各熱電変換素子や電極が基板間に挟まれているために、回路の一部の抵抗値を測ることは困難である。そのため、熱電変換モジュールの組み立て後に、各熱電変換素子と電極との接合形成異常又は熱電変換素子の破損等の不具合が生じても、それらの位置を具体的に知ることが困難であった。そして、不具合の位置及び原因を特定するために多大な時間が費やされることは、熱電変換モジュールの生産コスト又は保守コストを増加させる大きな要因の一つとなっている。   Such a thermoelectric conversion module has a circuit composed of a plurality of thermoelectric conversion elements and a plurality of electrodes, and external output electrodes for voltage output are provided at both ends of the circuit. And in the thermoelectric conversion module having such a structure, the resistance of the entire circuit can be examined using an external output electrode after assembly, but each thermoelectric conversion element or electrode is sandwiched between substrates. In addition, it is difficult to measure the resistance value of a part of the circuit. For this reason, even after the assembly of the thermoelectric conversion module, even if defects such as abnormal formation of bonding between the thermoelectric conversion elements and the electrodes or breakage of the thermoelectric conversion elements occur, it is difficult to specifically know their positions. And it takes one of the big factors to increase the production cost or the maintenance cost of the thermoelectric conversion module that much time is spent to identify the location and cause of the malfunction.

そこで本発明は、熱電変換モジュールが有する回路の一部の抵抗値を容易に測定可能な熱電変換モジュール及びその評価方法を提供する。   Therefore, the present invention provides a thermoelectric conversion module capable of easily measuring the resistance value of a part of a circuit included in the thermoelectric conversion module and an evaluation method thereof.

本発明に係る熱電変換モジュールは、互いに対向する一対の基板と、一対の基板の間に配置された、複数のp型熱電変換素子及び複数のn型の熱電変換素子と、一対の基板上にそれぞれ設けられ、p型熱電変換素子及びn型熱電変換素子の各一対の端面同士を電気的に接続し、複数のp型熱電変換素子及び複数のn型熱電変換素子をp型n型交互に電気的に直列に接続させる複数の電極と、を備え、一対の基板の少なくとも一方に、電極の一部を外部に露出させる貫通孔が形成されている。   A thermoelectric conversion module according to the present invention includes a pair of substrates facing each other, a plurality of p-type thermoelectric conversion elements and a plurality of n-type thermoelectric conversion elements arranged between the pair of substrates, and a pair of substrates. A pair of end faces of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element are electrically connected to each other, and a plurality of p-type thermoelectric conversion elements and a plurality of n-type thermoelectric conversion elements are alternately p-type and n-type. A plurality of electrodes that are electrically connected in series, and at least one of the pair of substrates is formed with a through hole that exposes a part of the electrode to the outside.

本発明によれば、外部から貫通孔を介し、電極に対して測定用のプローブを容易に接触させることができる。これにより、貫通孔を介して外部に露出された電極と、他の電極、例えば、熱電変換モジュールを構成する電極のうちで最も外側に配置された電極の側面又は外部出力電極等と、を導通させることによって、複数の電極、複数のp型熱電変換素子及び複数のn型熱電変換素子により構成される回路の一部の電気抵抗を容易に測定することができる。これにより、この抵抗値に基づいて、不具合のある熱電変換素子及び接合形成異常の生じている熱電変換素子と電極とが存在する部分を容易に特定することができる。   According to the present invention, a measurement probe can be easily brought into contact with an electrode from the outside through a through hole. Thereby, the electrode exposed to the outside through the through hole and the other electrode, for example, the side surface of the outermost electrode among the electrodes constituting the thermoelectric conversion module or the external output electrode are electrically connected. By doing so, it is possible to easily measure the electrical resistance of a part of a circuit constituted by a plurality of electrodes, a plurality of p-type thermoelectric conversion elements, and a plurality of n-type thermoelectric conversion elements. Thereby, based on this resistance value, it is possible to easily identify a portion where there is a defective thermoelectric conversion element and a thermoelectric conversion element and an electrode in which an abnormal bonding is generated.

ここで、電極の一部を露出させる貫通孔は、一対の基板の両方にそれぞれ形成されていることが好ましい。   Here, it is preferable that the through holes exposing a part of the electrodes are formed in both of the pair of substrates.

これにより、各基板の側から貫通孔を介し、電極に対して測定用のプローブを容易に接触させることができる。そして、外部からの接触が可能になったそれぞれの電極と、他の電極とを導通することにより、回路の一部の電気抵抗をより細かく測定することができる。したがって、その抵抗値に基づいて、不具合のある熱電変換素子及び接合形成異常の生じている熱電変換素子と電極とが存在する部分を、より具体的に特定することができる。   Thereby, the measurement probe can be easily brought into contact with the electrode through the through hole from the side of each substrate. Then, the electrical resistance of a part of the circuit can be measured more finely by conducting each electrode that can be contacted from the outside and another electrode. Therefore, based on the resistance value, it is possible to more specifically specify a portion where there is a defective thermoelectric conversion element and a thermoelectric conversion element in which an abnormal bonding is generated and an electrode.

また、一対の基板の両方に、電極の一部を露出させる貫通孔が電極毎に形成されていることが好ましい。   Moreover, it is preferable that the through-hole which exposes a part of electrode is formed for every electrode in both of a pair of board | substrates.

貫通孔が電極毎に形成されているため、各熱電変換素子及びその熱電変換素子を挟む一対の電極により構成される単位回路の電気抵抗を個別に測定することができる。したがって、その抵抗値に基づいて、熱電変換素子本体の不具合並びに熱電変換素子と電極との接合形成異常の生じている部分を熱電変換素子毎に調べることができ、欠陥のある位置を極めて具体的に特定することができる。   Since the through hole is formed for each electrode, it is possible to individually measure the electric resistance of the unit circuit constituted by each thermoelectric conversion element and a pair of electrodes sandwiching the thermoelectric conversion element. Therefore, based on the resistance value, it is possible to investigate the defect of the thermoelectric conversion element main body and the portion where the abnormal formation of the junction between the thermoelectric conversion element and the electrode occurs for each thermoelectric conversion element, and the position of the defect is extremely specific. Can be specified.

また、p型熱電変換素子及びn型熱電変換素子のうち少なくとも1つの伝導型の熱電変換素子が金属酸化物を含むことが好ましい。   Moreover, it is preferable that at least one of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element includes a metal oxide.

熱電変換素子が金属酸化物を含む材料からなる場合、熱電変換モジュールの製造上、熱電変換素子と電極とを良好に接合することが困難な場合が多く、熱電変換素子と電極との接合形成異常も生じ易い。そのため、熱電変換素子として金属酸化物を含む材料を採用することは本発明にとって特に有用性が高い。   When the thermoelectric conversion element is made of a material containing a metal oxide, it is often difficult to bond the thermoelectric conversion element and the electrode satisfactorily in the manufacture of the thermoelectric conversion module. Is also likely to occur. Therefore, it is particularly useful for the present invention to employ a material containing a metal oxide as the thermoelectric conversion element.

また、本発明に係る熱電変換モジュールの評価方法は、上述の熱電変換モジュールに対して、貫通孔を介して一部が露出された電極にプローブを接触させ、複数の電極、複数のp型熱電変換素子及び複数のn型熱電変換素子により構成される回路の一部の抵抗値を測定する。これにより、容易に不具合の箇所を特定することができる。   Moreover, the evaluation method of the thermoelectric conversion module according to the present invention is such that a probe is brought into contact with the above-described thermoelectric conversion module through an electrode partially exposed through a through hole, and a plurality of electrodes and a plurality of p-type thermoelectrics are provided. A resistance value of a part of a circuit constituted by the conversion element and the plurality of n-type thermoelectric conversion elements is measured. Thereby, the location of the defect can be easily identified.

さらに、一対の基板の両方に、電極の一部を露出させる貫通孔が電極毎に形成されている熱電変換モジュールに対して、複数の貫通孔を介して複数のプローブをそれぞれ複数の電極に接触させた状態とし、各熱電変換素子及び各熱電変換素子の両端を挟む一対の電極により構成される単位回路の抵抗値を測定することが好ましい。   Furthermore, with respect to the thermoelectric conversion module in which a through hole that exposes a part of the electrode is formed in each of the pair of substrates for each electrode, a plurality of probes are brought into contact with the plurality of electrodes through the plurality of through holes, respectively. It is preferable to measure the resistance value of the unit circuit constituted by each thermoelectric conversion element and a pair of electrodes sandwiching both ends of each thermoelectric conversion element.

これによれば、不具合箇所を極めて迅速かつ容易に調べることができる。   According to this, it is possible to examine the defective part extremely quickly and easily.

本発明の熱電変換モジュール及びその評価方法によれば、複数の電極、複数のp型熱電変換素子及び複数のn型熱電変換素子により構成される回路の一部の電気抵抗を容易に測定することができる。   According to the thermoelectric conversion module and the evaluation method of the present invention, it is possible to easily measure the electrical resistance of a part of a circuit constituted by a plurality of electrodes, a plurality of p-type thermoelectric conversion elements, and a plurality of n-type thermoelectric conversion elements. Can do.

以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において、同一又は相当要素には同一の符号を付し、重複する説明は省略する。また、各図面の寸法比率は、必ずしも実際の寸法比率とは一致していない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted. In addition, the dimensional ratio in each drawing does not necessarily match the actual dimensional ratio.

(第1実施形態)
(熱電変換モジュールの構成)
図1は、熱電変換モジュール20の第1実施形態における断面図を示す。図1に示されるように、熱電変換モジュール20は、第1の基板2、第1の電極8、熱電変換素子10、第2の電極6及び第2の基板7を備える。
(First embodiment)
(Configuration of thermoelectric conversion module)
FIG. 1 shows a cross-sectional view of the thermoelectric conversion module 20 in the first embodiment. As shown in FIG. 1, the thermoelectric conversion module 20 includes a first substrate 2, a first electrode 8, a thermoelectric conversion element 10, a second electrode 6, and a second substrate 7.

第1の基板2は、例えば矩形状をなし、電気的絶縁性で、かつ熱伝導性を有し、複数の熱電変換素子10の一端を覆うものである。この第1の基板の材料としては、例えば、アルミナ、窒化アルミニウム、マグネシア等が挙げられる。   The first substrate 2 has, for example, a rectangular shape, is electrically insulative and has thermal conductivity, and covers one end of the plurality of thermoelectric conversion elements 10. Examples of the material for the first substrate include alumina, aluminum nitride, and magnesia.

第1の電極8は、第1の基板2上に設けられ、互いに隣接する熱電変換素子10の一端面同士を電気的に接続するものである。この第1の電極8は、第1の基板2上の所定位置に、例えば、スパッタや蒸着等の薄膜技術、スクリーン印刷、めっき、溶射等の方法を用いて形成することができる。また、所定形状の金属板等を例えば、はんだ、ロウ付け等で第1の基板2上に接合させてもよい。第1の電極8の材料としては、導電性を有するものであれば特に制限されないが、電極の耐熱性、耐食性、熱電素子への接着性を向上させる観点から、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、モリブデン、銀、パラジウム、金、タングステン及びアルミニウムからなる群より選ばれる少なくとも1種の元素を主成分として含む金属が好ましい。ここで、主成分とは、電極材料中に50体積%以上含有されている成分を言う。   The first electrode 8 is provided on the first substrate 2 and electrically connects one end surfaces of the thermoelectric conversion elements 10 adjacent to each other. The first electrode 8 can be formed at a predetermined position on the first substrate 2 by using, for example, a thin film technique such as sputtering or vapor deposition, a method such as screen printing, plating, or thermal spraying. Further, a metal plate or the like having a predetermined shape may be bonded onto the first substrate 2 by, for example, soldering or brazing. The material of the first electrode 8 is not particularly limited as long as it has conductivity, but from the viewpoint of improving the heat resistance, corrosion resistance, and adhesion to the thermoelectric element of the electrode, titanium, vanadium, chromium, manganese, A metal containing at least one element selected from the group consisting of iron, cobalt, nickel, copper, molybdenum, silver, palladium, gold, tungsten and aluminum as a main component is preferable. Here, the main component refers to a component contained in the electrode material by 50% by volume or more.

また、第1の電極8の中で、最も外側に配置された電極8は、それぞれ基板2、7の外側に延びていて、熱起電力によって発生した電流を外部に取り出す外部出力電極11a,11bとして機能する。   Of the first electrodes 8, the electrodes 8 arranged on the outermost sides extend to the outside of the substrates 2 and 7, respectively, and external output electrodes 11a and 11b for taking out the current generated by the thermoelectromotive force to the outside. Function as.

熱電変換素子10は、例えば断面矩形状の棒状部材であり、p型熱電変換素子3及びn型熱電変換素子4の2種類が存在する。   The thermoelectric conversion element 10 is, for example, a rod-shaped member having a rectangular cross section, and there are two types, a p-type thermoelectric conversion element 3 and an n-type thermoelectric conversion element 4.

各熱電変換素子10を構成する材料は特に限定されず、金属、金属酸化物等の種々の材料を用いることができる。   The material which comprises each thermoelectric conversion element 10 is not specifically limited, Various materials, such as a metal and a metal oxide, can be used.

例えば、p型の材料としては、NaCoO、CaCo等の金属複合酸化物、MnSi1.73、Fe1−xMnSi、Si0.8Ge0.2、β−FeSi等のシリサイド、CoSb、FeSb、RFeCoSb12(RはLa、Ce又はYbを示す)等のスクッテルダイト、BiTeSb、PbTeSb、Bi2Te、PbTe等のTeを含有する合金等が挙げられる。 For example, as a p-type material, a metal composite oxide such as Na x CoO 2 or Ca 3 Co 4 O 9 , MnSi 1.73 , Fe 1-x Mn x Si 2 , Si 0.8 Ge 0.2 , Contains silicide such as β-FeSi 2 , skutterudite such as CoSb 3 , FeSb 3 , RFe 3 CoSb 12 (R represents La, Ce or Yb), Te such as BiTeSb, PbTeSb, Bi 2 Te 3 , PbTe And the like.

また、n型の材料としては、例えば、SrTiO、Zn1−xAlO、CaMnO、LaNiO、BaTi16、BaTiO、Ti1−xNbO等の金属複合酸化物、MgSi、Fe1−xCoSi,Si0.8Ge0.2、β−FeSi等のシリサイド、スクッテルダイト、BaAl12Si30,BaAl12Ge30等のクラスレート化合物、CaB、SrB、BaB、CeB等のホウ素化合物、BiTeSb、PbTeSb、Bi2Te、PbTe等のTeを含有する合金等が挙げられる。 Examples of the n-type material include metal composite oxides such as SrTiO 3 , Zn 1-x Al x O, CaMnO 3 , LaNiO 3 , Ba x Ti 8 O 16 , BaTiO 3 , and Ti 1-x Nb x O. , Mg 2 Si, Fe 1-x Co x Si 2 , Si 0.8 Ge 0.2 , β-FeSi 2, etc. silicide, skutterudite, Ba 8 Al 12 Si 30 , Ba 8 Al 12 Ge 30, etc. the clathrate compound, CaB 6, SrB 6, BaB 6, CeB boron compounds such as 6, BiTeSb, PbTeSb, alloys containing Te such as Bi 2 Te 3, PbTe, and the like.

第2の基板7は、例えば矩形状をなし、熱電変換素子10の他端側を覆うものである。また、第2の基板7は、第1の基板2と対向している。第2の基板7は、第1の基板2と同様に、電気的絶縁性で、かつ熱伝導性を有するものであれば特に制限されるものではなく、例えば、アルミナ、窒化アルミニウム、マグネシア等の材料を用いることができる。   The second substrate 7 has a rectangular shape, for example, and covers the other end side of the thermoelectric conversion element 10. Further, the second substrate 7 faces the first substrate 2. Similarly to the first substrate 2, the second substrate 7 is not particularly limited as long as it is electrically insulating and has thermal conductivity. For example, alumina, aluminum nitride, magnesia, etc. Materials can be used.

第2の電極6は、互いに隣接する熱電変換素子10の他端面同士を電気的に接続するものであり、第2の基板7の下面に、例えば、スパッタや蒸着等の薄膜技術、スクリーン印刷、めっき、溶射等の方法を用いて形成することができる。そして、この第2の電極6と、熱電変換素子10の下端面側に設けられた第1の電極8とにより、熱電変換素子10は電気的に直列に接続されている。   The second electrode 6 is for electrically connecting the other end faces of the thermoelectric conversion elements 10 adjacent to each other, and on the lower surface of the second substrate 7, for example, thin film technology such as sputtering or vapor deposition, screen printing, It can be formed using a method such as plating or thermal spraying. The thermoelectric conversion element 10 is electrically connected in series by the second electrode 6 and the first electrode 8 provided on the lower end surface side of the thermoelectric conversion element 10.

p型熱電変換素子3及びn型熱電変換素子4は、第1の基板2及び第2の基板7間に交互に並んで配置されると共に、これらの両面が対応する第1の電極8及び第2の電極6の表面に対して、例えば、AuSb、PbSb系のはんだや銀ペースト等の接合材9により固定され、全体として電気的に直列に接続されている。この接合材は、熱電変換素子モジュールとしての使用時に固体であるものが好ましい。   The p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 are alternately arranged between the first substrate 2 and the second substrate 7, and the first electrode 8 and the second electrode corresponding to both of these surfaces are arranged. The surface of the second electrode 6 is fixed by, for example, a bonding material 9 such as AuSb or PbSb solder or silver paste, and is electrically connected in series as a whole. This bonding material is preferably solid when used as a thermoelectric conversion element module.

ここで、p型熱電変換素子3及びn型熱電変換素子4は、それらの上面及び底面に、それぞれ金属層を有してもよい。すなわち、各熱電変換素子10と電極6、8とを接合剤9によって接合する際、各熱電変換素子10と接合剤9との接合性を向上させるために、各熱電変換素子10の表面における電極6、8との接合面に、金属層を予め形成してから、この金属層と電極6、8とを接合材9により接合してもよい。   Here, the p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 may have metal layers on their upper and bottom surfaces, respectively. That is, when the thermoelectric conversion elements 10 and the electrodes 6 and 8 are bonded with the bonding agent 9, the electrodes on the surface of the thermoelectric conversion elements 10 are used in order to improve the bonding property between the thermoelectric conversion elements 10 and the bonding agent 9. A metal layer may be formed in advance on the joint surface with 6 and 8, and the metal layer and the electrodes 6 and 8 may be joined with the joining material 9.

各熱電変換素子10と電極6、8との接合面に金属層が形成されていると、接合材9によって、この金属層と電極6、8との接合が容易に行われるうえに、金属層と各熱電変換素子10との密着性がよいために、より接続信頼性が高く、かつ、より接触抵抗の低い熱電変換モジュール20を実現できる。従って、熱電変換モジュール20の発電効率を高めることができる。   If a metal layer is formed on the bonding surface between each thermoelectric conversion element 10 and the electrodes 6 and 8, the bonding material 9 facilitates the bonding between the metal layer and the electrodes 6 and 8, and the metal layer Therefore, the thermoelectric conversion module 20 with higher connection reliability and lower contact resistance can be realized. Therefore, the power generation efficiency of the thermoelectric conversion module 20 can be increased.

特に、各熱電変換素子10が金属酸化物を含む材料からなる場合、熱電変換素子と電極との接合は困難な場合が多く、あらかじめ金属層を形成することが特に好ましい。しかしながら、金属酸化物を含む熱電変換素子の表面に、予め密着性の高い金属の層を形成すること自体が困難な場合も多く、熱電変換素子と電極との接合形成異常が生じ易い。したがって、p型熱電変換素子3及びn型熱電変換素子4のうち少なくとも1つの伝導型の熱電変換素子10が、金属酸化物を含む材料から構成されている場合に、本発明は極めて有効となる。   In particular, when each thermoelectric conversion element 10 is made of a material containing a metal oxide, it is often difficult to bond the thermoelectric conversion element and the electrode, and it is particularly preferable to form a metal layer in advance. However, it is often difficult to form a metal layer with high adhesion on the surface of a thermoelectric conversion element containing a metal oxide in advance, and abnormal formation of a junction between the thermoelectric conversion element and the electrode is likely to occur. Therefore, the present invention is extremely effective when at least one of the p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 is made of a material containing a metal oxide. .

そして、本実施形態においては、一対の基板2、7のうち一方の、例えば第2の基板7に対して、第2の電極6の一部を外部に露出させる貫通孔1が形成されている。なお、本実施形態における貫通孔1は、電極6のうち、p型熱電変換素子3及びn型熱電変換素子4と対向していない部分を外部に露出させているが、電極6のうちp型熱電変換素子3と対向する部分や、n型熱電変換素子4と対向する部分を外部に露出させるものでも構わない。   In the present embodiment, a through hole 1 that exposes a part of the second electrode 6 to the outside is formed in one of the pair of substrates 2 and 7, for example, the second substrate 7. . In addition, although the through-hole 1 in this embodiment has exposed the part which is not facing the p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 among the electrodes 6, it is p-type among the electrodes 6. A part that faces the thermoelectric conversion element 3 or a part that faces the n-type thermoelectric conversion element 4 may be exposed to the outside.

貫通孔1の径は、後述する導通試験用のプローブが挿入できる径であれば特に限定されないが、0.1mm以上であることが好ましい。なお、径の最大値は、電極よりも小さければよいが、ある程度貫通孔1の径を大きくすることにより、電極と基板との間に生じる熱応力を緩和し、熱電変換モジュールの破壊を抑制する効果もある。   Although the diameter of the through-hole 1 will not be specifically limited if it is a diameter which can insert the probe for a continuity test mentioned later, It is preferable that it is 0.1 mm or more. The maximum value of the diameter may be smaller than that of the electrode, but by increasing the diameter of the through hole 1 to some extent, the thermal stress generated between the electrode and the substrate is alleviated and the destruction of the thermoelectric conversion module is suppressed. There is also an effect.

この貫通孔1は、例えば、予め電極6を形成した基板7に対して、電極6を形成した面の反対側からドリル等により電極6まで到達する孔を形成することによって製造できる。また、予め貫通孔1を形成した基板7に対して、貫通孔1を覆うように金属板を貼り付けて電極とすることもできる。   The through-hole 1 can be manufactured, for example, by forming a hole that reaches the electrode 6 with a drill or the like from the opposite side of the surface on which the electrode 6 is formed on the substrate 7 on which the electrode 6 is previously formed. Alternatively, an electrode can be formed by attaching a metal plate to the substrate 7 on which the through hole 1 has been formed in advance so as to cover the through hole 1.

(評価方法)
熱電変換モジュール20に対して、貫通孔1を介して一部が露出された電極6に対して抵抗測定器のプローブの一方を接触させ、他の電極、例えば、外部出力電極11a,11bに対して抵抗測定器のプローブの他端を接触させることにより、複数の電極6、8、及び複数のp型熱電変換素子3及びn型熱電変換素子4により構成される回路の一部の抵抗値等を測定することができる。具体的には、一部が露出された電極6と外部出力電極11aとの間の抵抗値と、一部が露出された電極6と外部出力電極11bとの間の抵抗値を比較することにより、図1の右側左側のいずれかに不具合があるか、すなわち、不具合のある熱電変換素子並びに接合形成異常の生じている熱電変換素子と電極との接合面が存在する領域を判断することができる。
(Evaluation methods)
One end of the probe of the resistance measuring instrument is brought into contact with the thermoelectric conversion module 20 with respect to the electrode 6 that is partially exposed through the through-hole 1, and the other electrodes, for example, the external output electrodes 11a and 11b. By bringing the other end of the probe of the resistance measuring instrument into contact with each other, the resistance value of a part of the circuit constituted by the plurality of electrodes 6, 8 and the plurality of p-type thermoelectric conversion elements 3 and n-type thermoelectric conversion elements 4, etc. Can be measured. Specifically, by comparing the resistance value between the partially exposed electrode 6 and the external output electrode 11a with the resistance value between the partially exposed electrode 6 and the external output electrode 11b. 1, it is possible to determine whether there is a defect on either the left side or the right side of FIG. 1, that is, the region where the defective thermoelectric conversion element and the junction surface between the thermoelectric conversion element and the electrode in which the abnormal bonding is generated exist. .

なお、ここで測定される抵抗値は、各プローブが接触した2枚の電極間における各熱電変換素子10の抵抗値、電極6、8と熱電変換素子10との各界面の接触抵抗値、及び、各電極6、8自身の抵抗値からなる合成抵抗値である。   Note that the resistance value measured here is the resistance value of each thermoelectric conversion element 10 between the two electrodes in contact with each probe, the contact resistance value of each interface between the electrodes 6 and 8 and the thermoelectric conversion element 10, and The combined resistance value is composed of the resistance values of the electrodes 6 and 8 themselves.

また、ここで使用するプローブは、特に限定されないが、例えば、径が10μm〜75μm等の導電性の針状の物を使用できる。   Moreover, the probe used here is not particularly limited, but for example, a conductive needle-like object having a diameter of 10 μm to 75 μm can be used.

このように、本実施形態によれば、第2の基板7に設けられた貫通孔1を通じて外部から第2の電極6に対してプローブを接触させることができるので、複数の電極6、8、複数のp型熱電変換素子3及び複数のn型熱電変換素子4により構成される回路の一部の電気抵抗を測定することができる。したがって、測定した抵抗値に基づいて、不具合が存在する領域を容易に特定することができる。   Thus, according to the present embodiment, the probe can be brought into contact with the second electrode 6 from the outside through the through hole 1 provided in the second substrate 7, so that the plurality of electrodes 6, 8, The electrical resistance of a part of the circuit constituted by the plurality of p-type thermoelectric conversion elements 3 and the plurality of n-type thermoelectric conversion elements 4 can be measured. Therefore, based on the measured resistance value, it is possible to easily identify a region where a defect exists.

(第2実施形態)
(熱電変換モジュールの構成)
図2に、熱電変換モジュール20の第2実施形態における断面図を示す。
(Second Embodiment)
(Configuration of thermoelectric conversion module)
In FIG. 2, sectional drawing in 2nd Embodiment of the thermoelectric conversion module 20 is shown.

第2実施形態に係る熱電変換モジュール20が第1実施形態に係る熱電変換モジュール20と異なる点は、第一の基板2に対して、第1の電極8の一部を外部に露出させる貫通孔1がさらに形成されている点である。   The thermoelectric conversion module 20 according to the second embodiment is different from the thermoelectric conversion module 20 according to the first embodiment in that a through hole that exposes a part of the first electrode 8 to the outside with respect to the first substrate 2. 1 is further formed.

(評価方法)
本実施形態に係る熱電変換モジュール20では、第1の基板2に設けられた貫通孔1を介して外部から第2の電極6に対してプローブを接触させることができる上に、第2の基板7に設けられた貫通孔1を介して外部から第1の電極8にもプローブを接触させることができる。したがって、さらに、外部からの接触が可能になった第1の電極8と外部からの接触が可能となった第2の電極6との間の抵抗値、この第1の電極8と外部出力電極11a,11bとの間の抵抗値を測定することができる。したがって、これらの抵抗値に基づいて、不具合のある熱電変換素子10及び接合形成異常の生じている熱電変換素子10と電極6、8とが存在する部分を、第1実施形態より具体的に特定することができる。
(Evaluation methods)
In the thermoelectric conversion module 20 according to the present embodiment, the probe can be brought into contact with the second electrode 6 from the outside via the through hole 1 provided in the first substrate 2, and the second substrate The probe can also be brought into contact with the first electrode 8 from the outside through the through hole 1 provided in 7. Therefore, the resistance value between the first electrode 8 that can be contacted from the outside and the second electrode 6 that can be contacted from the outside, and the first electrode 8 and the external output electrode The resistance value between 11a and 11b can be measured. Therefore, based on these resistance values, the portion where the defective thermoelectric conversion element 10 and the thermoelectric conversion element 10 in which the abnormal bonding is generated and the electrodes 6 and 8 exist is specified more specifically than in the first embodiment. can do.

(第3実施形態)
(熱電変換モジュールの構成)
図3に、熱電変換モジュール20の第3実施形態における断面図を示す。
第3実施形態に係る熱電変換モジュール20が第2実施形態に係る熱電変換素子20と異なる点は、一対の基板2、7の両方において、電極6、8の一部を外部に露出させる貫通孔1が電極毎に形成されている点である。
(Third embodiment)
(Configuration of thermoelectric conversion module)
In FIG. 3, sectional drawing in 3rd Embodiment of the thermoelectric conversion module 20 is shown.
The thermoelectric conversion module 20 according to the third embodiment is different from the thermoelectric conversion element 20 according to the second embodiment in that a through hole that exposes a part of the electrodes 6 and 8 to the outside in both the pair of substrates 2 and 7. 1 is a point formed for each electrode.

(評価方法)
このような熱電変換モジュール20に対しては、各貫通孔1を介して外部から各電極6、8に対してプローブを接触させることができる。これにより、1つの熱電変換素子3、4を挟む一対の電極6、8間の抵抗値を測定することができる。すなわち、熱電変換モジュール20の回路全体を構成する最小単位となる、1つの熱電変換素子10及びその熱電変換素子10を挟む二枚の電極6及び8により構成された単位回路毎に、電気抵抗を測定することができるのである。したがって、これらの抵抗値に基づいて、熱電変換素子本体の不具合並びに熱電変換素子と電極との接合形成異常の生じている部分を熱電変換素子毎に調べることができ、欠陥のある位置を極めて精密に特定することができる。
(Evaluation methods)
With respect to such a thermoelectric conversion module 20, the probe can be brought into contact with the electrodes 6 and 8 from the outside through the through holes 1. Thereby, the resistance value between a pair of electrodes 6 and 8 sandwiching one thermoelectric conversion element 3 and 4 can be measured. That is, for each unit circuit constituted by one thermoelectric conversion element 10 and two electrodes 6 and 8 sandwiching the thermoelectric conversion element 10 which is the minimum unit constituting the entire circuit of the thermoelectric conversion module 20, the electric resistance is determined. It can be measured. Therefore, on the basis of these resistance values, it is possible to examine each thermoelectric conversion element for a defect in the thermoelectric conversion element main body and a portion where an abnormality occurs in the formation of the junction between the thermoelectric conversion element and the electrode. Can be specified.

また、本実施形態に係る熱電変換モジュール20では、図4に示すように、多数のプローブを固定したプローブカード42a,42bを用いることにより、好適に単位回路の抵抗値を測定できる。   Further, in the thermoelectric conversion module 20 according to the present embodiment, as shown in FIG. 4, the resistance value of the unit circuit can be suitably measured by using probe cards 42 a and 42 b to which a large number of probes are fixed.

プローブカード41aは、基板41に対して、複数のプローブ40a〜40cが立設されたものであり、プローブカード41bは、基板41に対して、複数のプローブ40d〜40gが立設されたものである。各プローブカード41a,41bのプローブ40a〜40gは、各基板2、7の各貫通孔1の設置間隔に対応して各基板41に設けられている。そして、プローブ40a〜40cと、プローブ40d〜40gはマルチプレクサ50a,50bにそれぞれ接続され、任意のプローブからの信号を抵抗測定器60の両端に供給可能となっている。   The probe card 41a has a plurality of probes 40a to 40c erected with respect to the substrate 41, and the probe card 41b has a plurality of probes 40d to 40g erected with respect to the substrate 41. is there. The probes 40a to 40g of the probe cards 41a and 41b are provided on the substrates 41 corresponding to the installation intervals of the through holes 1 of the substrates 2 and 7, respectively. The probes 40a to 40c and the probes 40d to 40g are connected to the multiplexers 50a and 50b, respectively, so that signals from arbitrary probes can be supplied to both ends of the resistance measuring device 60.

そして、これらのようなプローブカード41a,41bを使用すると、各プローブ40a〜40gと複数の電極6、8とを、各貫通孔1を介して同時に接触させた状態とすることができる。そして、マルチプレクサ50a,50bを利用して、任意のプローブ間の抵抗値をスキャンしながら迅速に測定することができる。例えば、プローブ40aとプローブ40bとの間の抵抗値、プローブ40aとプローブ40eとの間の抵抗値、…、プローブ40cとプローブ40gとの間の抵抗値を取得できる。これにより、不具合箇所の特定が極めて容易となる。   When such probe cards 41 a and 41 b are used, the probes 40 a to 40 g and the plurality of electrodes 6 and 8 can be brought into contact with each other through the through holes 1 at the same time. Then, using the multiplexers 50a and 50b, the resistance value between arbitrary probes can be quickly measured while scanning. For example, a resistance value between the probe 40a and the probe 40b, a resistance value between the probe 40a and the probe 40e,..., A resistance value between the probe 40c and the probe 40g can be acquired. This makes it extremely easy to identify the defect location.

以上、本発明における好適な実施形態を具体的に示したが、本発明はこれに限定されるものではない。   As mentioned above, although preferred embodiment in this invention was shown concretely, this invention is not limited to this.

例えば、第一実施形態や第二実施形態における貫通孔1を各基板において複数形成してもよいのは言うまでもない。   For example, it goes without saying that a plurality of through holes 1 in the first embodiment and the second embodiment may be formed in each substrate.

第1実施形態に係る熱電変換モジュール20の断面図である。It is sectional drawing of the thermoelectric conversion module 20 which concerns on 1st Embodiment. 第2実施形態に係る熱電変換モジュール20の断面図である。It is sectional drawing of the thermoelectric conversion module 20 which concerns on 2nd Embodiment. 第3実施形態に係る熱電変換モジュール20の断面図である。It is sectional drawing of the thermoelectric conversion module 20 which concerns on 3rd Embodiment. 図3の熱電変換モジュールの抵抗値測定法の一例を示す断面図である。It is sectional drawing which shows an example of the resistance value measuring method of the thermoelectric conversion module of FIG.

符号の説明Explanation of symbols

1…貫通孔、2…第1の基板、3…p型熱電変換素子、4…n型熱電変換素子、6…第2の電極、7…第2の基板、8…第1の電極、9…接合材、10…熱電変換素子、11…入出力端子、20…熱電変換モジュール、40a〜g…プローブ。










DESCRIPTION OF SYMBOLS 1 ... Through-hole, 2 ... 1st board | substrate, 3 ... p-type thermoelectric conversion element, 4 ... n-type thermoelectric conversion element, 6 ... 2nd electrode, 7 ... 2nd board | substrate, 8 ... 1st electrode, 9 DESCRIPTION OF SYMBOLS Joining material, 10 ... Thermoelectric conversion element, 11 ... Input / output terminal, 20 ... Thermoelectric conversion module, 40a-g ... Probe.










Claims (6)

互いに対向する一対の基板と、
前記一対の基板の間に配置された、複数のp型熱電変換素子及び複数のn型熱電変換素子と、
前記一対の基板上にそれぞれ設けられ、前記p型熱電変換素子及び前記n型熱電変換素子の各一対の端面同士を電気的に接続し、前記複数のp型熱電変換素子及び前記複数のn型熱電変換素子をp型n型交互に電気的に直列に接続させる複数の電極と、
を備え、前記一対の基板の少なくとも一方に、前記電極の一部を外部に露出させる貫通孔が形成されている熱電変換モジュール。
A pair of substrates facing each other;
A plurality of p-type thermoelectric conversion elements and a plurality of n-type thermoelectric conversion elements disposed between the pair of substrates;
The p-type thermoelectric conversion elements and the n-type thermoelectric conversion elements are provided on the pair of substrates, respectively, and electrically connect the pair of end faces of the p-type thermoelectric conversion elements and the n-type thermoelectric conversion elements. A plurality of electrodes for electrically connecting the thermoelectric conversion elements in p-type and n-type alternately in series;
A thermoelectric conversion module in which a through hole that exposes a part of the electrode to the outside is formed in at least one of the pair of substrates.
前記一対の基板の両方に、前記電極の一部を露出させる貫通孔がそれぞれ形成されている請求項1記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein a through-hole exposing a part of the electrode is formed in both of the pair of substrates. 前記一対の基板の両方に、前記電極の一部を露出させる貫通孔が前記電極毎に形成されている請求項1記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein a through hole for exposing a part of the electrode is formed in each of the pair of substrates. 前記p型熱電変換素子及びn型熱電変換素子のうち少なくとも1つの伝導型の熱電変換素子が金属酸化物を含む請求項1〜3のいずれか一項記載の熱電変換モジュール。   The thermoelectric conversion module according to any one of claims 1 to 3, wherein at least one of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element includes a metal oxide. 請求項1〜3のいずれか記載の熱電変換モジュールの評価方法であって、前記貫通孔を介して前記一部が露出された電極に対してプローブを接触させ、前記複数の電極、前記複数のp型熱電変換素子及び前記複数のn型熱電変換素子により構成される回路の一部の抵抗値を測定する熱電変換モジュールの評価方法。   The method for evaluating a thermoelectric conversion module according to any one of claims 1 to 3, wherein a probe is brought into contact with an electrode from which the part is exposed through the through-hole, and the plurality of electrodes, the plurality of electrodes A method for evaluating a thermoelectric conversion module, which measures a resistance value of a part of a circuit constituted by a p-type thermoelectric conversion element and the plurality of n-type thermoelectric conversion elements. 請求項3記載の熱電変換モジュールの評価方法であって、前記複数の貫通孔を介して前記複数の電極に対して、複数のプローブをそれぞれ接触させた状態とし、前記各熱電変換素子及び前記各熱電変換素子の両端を挟む一対の前記電極により構成される単位回路の抵抗値を測定する熱電変換モジュールの評価方法。




















The method for evaluating a thermoelectric conversion module according to claim 3, wherein a plurality of probes are brought into contact with the plurality of electrodes via the plurality of through holes, respectively, The evaluation method of the thermoelectric conversion module which measures the resistance value of the unit circuit comprised by a pair of said electrode which pinches | interposes the both ends of a thermoelectric conversion element.




















JP2007232951A 2007-09-07 2007-09-07 Thermoelectric conversion module and its evaluation method Pending JP2009065044A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007232951A JP2009065044A (en) 2007-09-07 2007-09-07 Thermoelectric conversion module and its evaluation method
TW097133582A TW200919790A (en) 2007-09-07 2008-09-02 Thermo-electric conversion module and its method of evaluation
PCT/JP2008/066275 WO2009031698A1 (en) 2007-09-07 2008-09-03 Thermoelectric conversion module and method for evaluating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232951A JP2009065044A (en) 2007-09-07 2007-09-07 Thermoelectric conversion module and its evaluation method

Publications (1)

Publication Number Publication Date
JP2009065044A true JP2009065044A (en) 2009-03-26

Family

ID=40429002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232951A Pending JP2009065044A (en) 2007-09-07 2007-09-07 Thermoelectric conversion module and its evaluation method

Country Status (3)

Country Link
JP (1) JP2009065044A (en)
TW (1) TW200919790A (en)
WO (1) WO2009031698A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229382B2 (en) * 2009-03-31 2013-07-03 富士通株式会社 Thermoelectric conversion module and repair method thereof
TWI467407B (en) * 2011-06-30 2015-01-01 Nat Univ Chin Yi Technology Method of computing coefficient of performance, refrigerating capacity and error of thermoelectric cooling chip
JP6546414B2 (en) * 2015-03-06 2019-07-17 株式会社Kelk Thermoelectric generation unit
TWI570972B (en) * 2016-01-20 2017-02-11 財團法人工業技術研究院 Thermoelectric conversion device and thermoelectric converter
EP3696868B1 (en) * 2019-02-12 2021-10-06 LG Innotek Co., Ltd. Thermoelectric module
US11723275B2 (en) 2019-02-12 2023-08-08 Lg Innotek Co., Ltd. Thermoelectric module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270458A (en) * 1985-09-24 1987-03-31 Sakata Shokai Ltd Coating resin composition
JPH08335723A (en) * 1995-06-06 1996-12-17 Fujikura Ltd Thermoelectric converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349409Y2 (en) * 1985-10-21 1991-10-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270458A (en) * 1985-09-24 1987-03-31 Sakata Shokai Ltd Coating resin composition
JPH08335723A (en) * 1995-06-06 1996-12-17 Fujikura Ltd Thermoelectric converter

Also Published As

Publication number Publication date
TW200919790A (en) 2009-05-01
WO2009031698A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4912964B2 (en) Thermoelectric conversion module
JP2009065044A (en) Thermoelectric conversion module and its evaluation method
US20100218796A1 (en) Thermoelectric conversion module
JP4728745B2 (en) Thermoelectric device and thermoelectric module
WO2010082542A1 (en) Thermoelectric conversion module and thermoelectric conversion module block
US8013235B2 (en) Thermoelectric device
US9255946B2 (en) Electronic component, in particular current sensor
WO2010113257A1 (en) Thermoelectric conversion module and method for recovering the same
TWI505522B (en) Method for manufacturing thermoelectric conversion module
JP2008305987A (en) Thermoelectric conversion module
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
CN102282692A (en) Method for manufacturing thermoelectric conversion module, and thermoelectric conversion module
JP4684855B2 (en) Probe and manufacturing method thereof
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
US9370109B2 (en) Sensor device and method for manufacture
US10868230B2 (en) Thermoelectric conversion module and manufacturing method thereof
US10509057B2 (en) Probe assembly and probe structure thereof
JP2013168400A (en) Wiring board for semiconductor device inspection apparatus and manufacturing method therefor
JP2005251950A (en) Thermoelectric conversion module including a plurality of electric circuits and thermoelectric conversion system
JP2009099864A (en) Thermoelectric conversion element, thermoelectric conversion module using thermoelectric conversion element, and manufacturing method of thermoelectric conversion module
JP2005235958A (en) Thermoelectric transducer
WO2020071036A1 (en) Thermoelectric conversion module, and cooling device, temperature measurement device, heat flow sensor, or power generation device using same
JPH06310765A (en) Thermionic element and thermionic device
WO2021167089A1 (en) Thermoelectric conversion module, insulated circuit substrate, method for joining members, and method for attaching thermoelectric conversion module
JP2010010336A (en) Electronic element carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117